JP4654792B2 - レンズ基板の製造方法、レンズ基板、透過型スクリーンおよびリア型プロジェクタ - Google Patents
レンズ基板の製造方法、レンズ基板、透過型スクリーンおよびリア型プロジェクタ Download PDFInfo
- Publication number
- JP4654792B2 JP4654792B2 JP2005185804A JP2005185804A JP4654792B2 JP 4654792 B2 JP4654792 B2 JP 4654792B2 JP 2005185804 A JP2005185804 A JP 2005185804A JP 2005185804 A JP2005185804 A JP 2005185804A JP 4654792 B2 JP4654792 B2 JP 4654792B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- lens
- light
- lens substrate
- microlens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Projection Apparatus (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Overhead Projectors And Projection Screens (AREA)
Description
リア型プロジェクタに用いられる透過型スクリーンには、フレネルレンズや、レンチキュラレンズ、マイクロレンズ等のレンズ基板を備えている。
フレネルレンズ基板やレンチキュラレンズ基板、マイクロレンズ基板等のように、表面に多数の凹凸形状を有するレンズ基板(レンズシート)を製造する方法としては、一般に、合成樹脂を射出成型する方法、樹脂板と成形型とを当接させ、これを加熱加圧することにより成形型の表面凹凸形状を転写する押圧成型法が用いられてきた。
本発明のレンズ基板の製造方法は、レンズ部を有するレンズ基板を製造する方法であって、
前記レンズ部に対応する形状の表面形状を有する型に、流動性を有する組成物を供給する組成物供給工程と、
前記型上に供給された前記組成物を押圧部材で押圧する組成物押圧工程と、
前記組成物に対して、前記型と接触する面側からエネルギ線を照射することにより、前記組成物を硬化させ、前記レンズ部が設けられ、前記押圧部材と前記組成物の硬化物とが接合した基板本体を得るエネルギ線照射工程と、
前記押圧部材の表面に、遮光膜形成用材料を付与する遮光膜形成用材料付与工程と、
前記レンズ部側からレーザ光を照射し、前記レンズ部により屈折、集光した前記レーザ光により、前記遮光膜形成用材料の一部を除去し、開口部が設けられた遮光膜を形成する工程とを有するとともに、
前記エネルギ線照射工程の後に、前記型を除去する型除去工程を有し、さらに、その後に、前記レンズ部に着色剤とベンジルアルコールとを含む着色液を付与することにより、前記レンズ部の表面付近に着色部を形成する着色部形成工程を有し、
前記型として、前記エネルギ線の透過性を有する材料で構成されたものを用いることを特徴する。
これにより、信頼性の高いレンズ基板を効率良く製造することができるレンズ基板の製造方法を提供することができる。
また、コントラストに優れた画像を得ることができる。また、基板本体の着色を容易かつ確実に行うことができる。特に、アクリル系樹脂のように、従来の着色方法では着色が困難であった材料で構成された基板本体に対しても、容易かつ確実に着色を施すことができる。
これにより、簡易な設備で、より容易にレンズ基板を製造することができる。また、組成物の選択の自由度が増すとともに、レンズ基板を製造する際に用いる装置等の部材に対する悪影響の発生をより効果的に防止することができる。
これにより、レンズ基板を製造する際に用いる装置等の部材に対する悪影響の発生をより効果的に防止することができる。また、押圧部材をレンズ基板の構成部材(レンズ基板用基材)として用いる場合、レンズ基板の耐久性を特に優れたものとすることができる。
ガラス材料は、一般に、各種エネルギ線の透過率に優れるとともに、各種エネルギ線に対して優れた安定性を有している。また、ガラス材料は、機械的強度や形状の安定性等の観点からも優れている。したがって、ガラス材料で構成された型を用いることにより、微細な構造を有するレンズ基板を、優れた寸法精度で生産性良く製造することができる。
これにより、エネルギ線照射工程において、組成物を効率良く硬化させることができるとともに、製造されるレンズ基板の信頼性、光学特性を特に優れたものとすることができる。
マイクロレンズを備えるレンズ基板は、二次元的に微小な凹凸を有している。このようなレンズ基板を従来の方法で製造すると、型の微細な凹部内に組成物を確実に供給するのが困難であり、マイクロレンズが形成されるべき部位にマイクロレンズが形成されないといった問題が発生し易かった。これに対し、本発明では、このようなレンズ基板(マイクロレンズ基板)であっても、容易かつ確実に、所望の形状を有するものとして製造することができる。すなわち、レンズ基板が多数個のマイクロレンズを有するものである場合、本発明の効果はより顕著なものとして発揮される。また、レンズ基板が多数個のマイクロレンズを有するものであることにより、視野角特性を特に優れたものとする(上下方向および左右方向の視野角特性をいずれも特に優れたものとする)ことができる。
これにより、光の干渉によるモアレの発生を効果的に防止することができる。
本発明のレンズ基板の製造方法では、レンズ基板の厚さは、0.5〜5mmであることが好ましい。
このように、比較的薄いレンズ基板であっても、本発明によれば好適に製造することができる。また、レンズ基板の厚さが前記範囲内の値であると、レンズ基板の光学特性を特に優れたものとすることができる。
これにより、信頼性の高いレンズ基板を提供することができる。
本発明の透過型スクリーンは、本発明のレンズ基板を備えたことを特徴とする。
これにより、信頼性の高い透過型スクリーンを提供することができる。
本発明のリア型プロジェクタは、本発明の透過型スクリーンを備えたことを特徴とする。
これにより、信頼性の高いリア型プロジェクタを提供することができる。
なお、本発明において、「基板」とは、実質的に可撓性を有さない、比較的肉厚の大きいものから、シート状のものや、フィルム状のもの等を含む概念のことを指す。
本発明のレンズ基板の用途は、特に限定されないが、本実施形態では、レンズ基板を、主に、透過型スクリーン、リア型プロジェクタを構成する部材として用いるものとして説明する。
まず、本実施形態のレンズ基板および透過型スクリーンの構成について説明する。
図1は、本発明のレンズ基板(マイクロレンズ基板)の好適な実施形態を示す模式的な縦断面図、図2は、図1に示すレンズ基板の平面図、図3は、図1に示すレンズ基板を備えた、本発明の透過型スクリーンの好適な実施形態を示す模式的な縦断面図である。なお、以下の説明では、図1、図3中の左側を「(光の)入射側」、右側を「(光の)出射側」と言う。また、本発明においては、特に断りのない限り、「(光の)入射側」、「(光の)出射側」とは、それぞれ、画像光(映像光)を得るための光の「入射側」、「出射側」のことを指し、外光等の「入射側」、「出射側」のことを指すものではない。また、本明細書で参照する各図は、マイクロレンズ、着色部等、構成の一部を強調して示したものであり、実際の寸法を反映するものではない。
また、必要に応じて遮光層としてブラックマトリックス3を備えてもよい。図1においては出射側に備えている様子を示している。
基板本体2の構成材料は、特に限定されないが、通常、基板本体2は、主として樹脂材料やガラス材料(いずれも、通常、光の屈折率が空気よりも大きい)で構成され、所定の屈折率を有する透明な材料で構成されている。
基板本体2の具体的な構成材料としては、例えば、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体(EVA)等のポリオレフィン、環状ポリオレフィン、変性ポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリアミド(例:ナイロン6、ナイロン46、ナイロン66、ナイロン610、ナイロン612、ナイロン11、ナイロン12、ナイロン6−12、ナイロン6−66)、ポリイミド、ポリアミドイミド、ポリカーボネート(PC)、ポリ−(4−メチルペンテン−1)、アイオノマー、アクリル系樹脂、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)、アクリロニトリル−スチレン共重合体(AS樹脂)、ブタジエン−スチレン共重合体、ポリオキシメチレン、ポリビニルアルコール(PVA)、エチレン−ビニルアルコール共重合体(EVOH)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリシクロヘキサンテレフタレート(PCT)等のポリエステル、ポリエーテル、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド、ポリアセタール(POM)、ポリフェニレンオキシド、変性ポリフェニレンオキシド、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリアリレート、芳香族ポリエステル(液晶ポリマー)、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、その他フッ素系樹脂、スチレン系、ポリオレフィン系、ポリ塩化ビニル系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、トランスポリイソプレン系、フッ素ゴム系、塩素化ポリエチレン系等の各種熱可塑性エラストマー、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル、シリコーン系樹脂、ウレタン系樹脂等、またはこれらを主とする共重合体、ブレンド体、ポリマーアロイ等の各種樹脂材料や、ソーダガラス、結晶性ガラス、石英ガラス、鉛ガラス、カリウムガラス、ホウケイ酸ガラス、無アルカリガラス等が挙げられる。中でも、透明性、加工性等の観点から、ポリスチレン、ポリカーボネート、ポリエチレンテレフタレート、アクリル系樹脂が好ましく、特にアクリル系樹脂がより好ましい。アクリル系樹脂は、優れた透明性を有し、かつ、耐熱性、耐光性、加工性、成形した際の寸法精度、機械的強度等にも優れ、また、最適な屈折率を有している。
基材24は、通常、主として、上述したような材料で構成されたものであるが、それ以外の成分を含むものであってもよい。例えば、基材24は、エネルギ線の透過を防止、抑制する機能を有する成分(エネルギ線透過防止剤。例えば、紫外線吸収剤等)を含むものであってもよい。これにより、マイクロレンズ基板1の使用時において、外光に含まれるエネルギ線(例えば、紫外線)がマイクロレンズ基板1に入射した場合であっても、当該エネルギ線によってマイクロレンズ基板1の構成材料が劣化するのを防止することができる。その結果、マイクロレンズ基板1の耐久性を特に優れたものとすることができる。また、基材24が上記のような成分を含むものであると、マイクロレンズ基板1(基板本体2)を製造時において、製造に用いる装置等の部材に対する悪影響の発生をより効果的に防止することができる。このような成分(エネルギ線透過防止剤)としては、例えば、フェノール系化合物、芳香族アミン系化合物、サルファイド系化合物、リン系化合物、サリシレート系化合物、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、ヒンダートアミン系化合物、Ni系化合物、シアノアクリレート系化合物、オキザリックアシッドアニリド系化合物、シュウ酸誘導体、サリチル酸誘導体、ヒドラジド誘導体、酸アミン系化合物、グアニジン類、メルカプトベンゾチアゾール金属塩(例えば、ナトリウム塩)等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。
[1]フェノール系化合物
フェノール系化合物としては、例えば、N,N’−ジサリチリデン−1,2−プロパンジアミン、2,6−ジ−t−ブチルフェノール、2,4−ジ−t−ブチルフェノール、2−t−ブチル−4−メトキシフェノール、2−t−ブチル−4,6−ジメチルフェノール、2,6−ジ−t−ブチル−4−メチルフェノール、2,6−ジ−t−ブチル−4−エチルフェノール、2,4,6−トリ−t−ブチルフェノール、2,6−ジ−t−ブチル−4−ヒドロキシメチルフェノール、2,6−ジ−t−ブチル−2−ジメチルアミノ−p−クレゾール、2,5−ジ−t−ブチルヒドロキノン、2,5−ジ−t−アミルヒドロキノン、n−オクタデシル−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)−プロピオネート、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、スチレン化されたフェノール、スチレン化されたクレゾール、2−t−ブチル−6−(3’−t−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,2’−メチレン−ビス−(4−メチル−6−t−ブチルフェノール)、2,4−ジ−t−ブチルフェニル−3,5’−ジ−t−ブチル−4’−ヒドロキシベンゾエート、2,2’−メチレン−ビス−(4−エチル−6−t−ブチルフェノール)、2,2’−メチレン−ビス−(6−シクロヘキシル−4−メチルフェノール)、2,2’−メチレン−ビス−6−(1−メチルシクロヘキシル)−p−クレゾール、2,2’−エチリデン−ビス−(2,4−ジ−t−ブチルフェノール)、2,2’−ブチリデン−ビス−(2−t−ブチル−4−メチルフェノール)、4,4’−メチレン−ビス−(2,6−ジ−t−ブチルフェノール)、4,4’−ブチリデン−ビス−(3−メチル−6−t−ブチルフェノール)、1,6−ヘキサンジオール−ビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)−プロピオネート]、トリ−エチレングリコール−ビス−[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、N,N’−ビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、N,N’−ビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル]ヘキサメチレンジアミン、2,2’−チオ−ビス−(4−メチル−6−t−ブチルフェノール)、4,4’−チオ−ビス−(3−メチル−6−t−ブチルフェノール)、2,2’−チオ−ジエチレン−ビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、ビス[2−t−ブチル−4−メチル−6−(3−t−ブチル−5−メチル−2−ヒドロキシベンジル)フェニル]テレフテート、1,1,3−トリス−(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)イソシアヌレート、トリス[2−(3’,5’−ジ−t−ブチル−4’−ヒドロキシヒドロ−シナモイルオキシル)エチル]イソシアヌレート、トリス−(4−t−ブチル−2,6−ジメチル−3−ヒドロキシベンジル)イソシアヌレート、テトラキス−[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタン、エチル−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)リン酸の金属塩(例えばカルシウム塩)、プロピル−3,4,5−トリ−ヒドロキシベンゼンカルボネート、オクチル−3,4,5−トリ−ヒドロキシベンゼンカルボネート、ドデシル−3,4,5−トリ−ヒドロキシベンゼンカルボネート、2,2’−メチレン−ビス−(4−メチル−6−t−ブチルフェノール)、4,4’−メチレン−ビス−(2,6−ジ−t−ブチルフェノール)、1,1−ビス−(4−ヒドロキシフェニル)−シクロヘキサン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、3,9−ビス[1,1−ジメチル−2−{β−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}エチル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカンや、これらの誘導体(例えば、アルキル、アリール置換体)等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。
芳香族アミン系化合物としては、例えば、アルキル化ジフェニルアミン、N,N’−ジフェニル−p−フェニレンジアミン、N、N’−ジアリール−p−フェニレンジアミン、6−エトキシ−2,2,4−トリメチル−1,2−ヒドロキノリン、N−フェニル−N’−イソプロピル−p−フェニレンジアミン、N−フェニル−1,3−ジメチルブチル−p−フェニレンジアミン、2,2,4−トリメチル−1,2−ジヒドロキノン(高分子化されたものを含む)、アルドール−α−ナフチルアミン、N−フェニル−β−ナフチルアミン、N,N’−ジ−2−ナフチル−p−フェニレンジアミン、4,4’−ジオクチル−ジフェニルアミンや、これらの誘導体(例えば、アルキル、アリール置換体)等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。
サルファイド系化合物としては、例えば、ジラウリル−3,3’−チオジプロピオネート、ジトリデシル−3,3’−チオジプロピオネート、ジミリスチル−3,3’−チオジプロピオネート、ジステアリル−3,3’−チオジプロピオネート、ジステアリル−3,3’−メチル−3,3’−チオジプロピオネート、ラウリル−ステアリル−3,3’−チオジプロピオネート、ビス[2−メチル−4−{3−n−アルキルチオプロピオニルオキシ}−5−t−ブチルフェニル]サルファイド、ペンタエリスリトール−テトラキス−(β−ラウリル−チオプロピオネート)、2−メルカプトベンズイミダゾール、2−メルカプト−5−メチルベンズイミダゾールや、これらの誘導体(例えば、アルキル、アリール置換体)等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。
リン系化合物としては、例えば、トリス(イソデシル)ホスファイト、トリス(トリデシル)ホスファイト、フェニルジイソオクチルホスファイト、フェニルジイソデシルホスファイト、フェニルジ(トリデシル)ホスファイト、ジフェニルイソオクチルホスファイト、ジフェニルイソデシルホスファイト、ジフェニルトリデシルホスファイト、ホスホナスアシッド[1,1−ジフェニル−4,4’−ジイルビステトラキス[2,4−ビス(1,1−ジメチルエチル)フェニル]エステル、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、4,4’−イソプロピリデン−ジフェノールアルキルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、トリス(ビフェニル)ホスファイト、ジステアリルペンタエリスリトールジフォスファイト、ジ(2,4−ジ−t−ブチルフェニル)ペンタエリスリトールジフォスファイト、ジ(ノニルフェニル)ペンタエリスリトールジフォスファイト、フェニル−ビスフェノールA ペンタエリスリトールジフォスファイト、テトラトリデシル−4,4’−ブチリデン−ビス−(3−メチル−6−t−ブチルフェノール)−ジホスファイト、ヘキサトリデシル1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタントリホスファイト、3,5−ジ−t−ブチル−4−ヒドロキシベンジルホスフェート ジエチルエステル、9,10−ジヒドロ−9−エクサ−10−ホスホフェナンスレン−10−オキシド、ビス(4−t−ブチルフェニル)リン酸の金属塩(例えば、ナトリウム塩)、2,2’−メチレン−ビス(4,6−ジ−t−ブチルフェニル)リン酸の金属塩(例えば、ナトリウム塩)、1,3−ビス(ジフェノキシホスホニルオキシ)ベンゼンや、これらの誘導体(例えば、アルキル、アリール置換体)等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。
サリシレート系化合物としては、例えば、フェニルサリシレート(サリチル酸フェニル)、4−t−ブチルフェニルサリシレート、2,4−ジ−t−ブチルフェニル−3,5’−ジ−t−ブチル−4’−ヒドロキシベンゾエート、4−t−オクチルフェニルサリシレートや、これらの誘導体(例えば、アルキル、アリール置換体)等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。
ベンゾフェノン系化合物としては、例えば、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン−5−スルホン酸(水和物を含む)、2−ヒドロキシ−4−n−オクチルオキシベンゾフェノン、2−ヒドロキシ−4−n−ドデシルオキシベンゾフェノン、2−ヒドロキシ−4−ベンジルオキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、4−ドデシルオキシ−2−ヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノン、1,4−ビス(4−ベンゾイル−3−ヒドロキシフェノキシ)ブタンや、これらの誘導体(例えば、アルキル、アリール置換体)等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。
ベンゾトリアゾール系化合物としては、例えば、ベンゾトリアゾール、トリルトリアゾール、トリルトリアゾール金属塩(例えば、カリウム塩)、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−[2’−ヒドロキシ−3’,5’−ビス(α,α−ジメチルベンジル)フェニル]ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−t−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−t−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−t−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−sec−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−t−アミル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−t−オクチルフェニル)ベンゾトリアゾール、2−(2H−ベンゾトリアゾール−2−イル)−4−メチル−6−(3,4,5,6−テトラヒドロフタルイミジルメチル)フェノール、2−(2’−ヒドロキシ−4’−オクチルオキシフェニル)ベンゾトリアゾール、2,2’−メチレン−ビス[4−(1,1,3,3−テトラメチルブチル)−6−(2N−ベンゾトリアゾール−2−イル)フェノール]や、これらの誘導体(例えば、アルキル、アリール置換体)等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。
ヒンダートアミン系化合物としては、例えば、フェニル−4−ピペリジニルカーボネート、ビス−(2,2,6,6−テトラメチル−4−ピペリジニル)セバケート、ビス−(N−メチル−2,2,6,6−テトラメチル−4−ピペリジニル)セバケート、ビス−(1,2,2,6,6−ペンタメチル−4−ピペリジニル)−2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロネート、ポリ[[6−(1,1,3,3−テトラメチルブチル)イミノ−1,3,5−トリアジン−2,4−ジイル][(2,2,6,6−テトラメチル−4−ピペリジル)イミノ]ヘキサメチレン[(2,2,6,6−テトラメチル−4−ピペリジル)イミノール]]、テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシレート、1,1’−(1,2−エタンジイル)ビス(3,3,5,5−テトラメチルピペラジノン)、コハク酸と4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールとの共重合体、2,2,6,6−テトラメチル−4−ピペリジル−1,2,3,4−ブタン−テトラカルボキシレート、2,2,6,6−テトラメチル−4−トリデシル−1,2,3,4−ブタン−テトラカルボキシレート、1,2,2,6,6−ペンタメチル−4−ピペリジル−1,2,3,4−ブタン−テトラカルボキシレート、1,2,2,6,6−ペンタメチル−4−トリデシル−1,2,3,4−ブタン−テトラカルボキシレート、1,2,3,4−ブタンテトラカルボン酸と1,2,2,6,6−ペンタメチル−4−ピペリジノールとβ,β,β,β−テトラメチル−3,9−(2,4,8,10−テトラオキサスピロ[5.5]ウンデカン)ジエタノールとの縮合物や、これらの誘導体(例えば、アルキル、アリール置換体)等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。
Ni系化合物としては、例えば、[2,2’−チオ−ビス(4−t−オクチルフェノレート)]−2−エチルヘキシルアミンニッケル(II)、ニッケルジブチル−ジチオカルバメート、[2,2’−チオ−ビス(4−t−オクチルフェノラート)]−n−ブチルアミンニッケル(II)、ニッケル−ビス(オクチルフェニル)サルファイド、3,5−ジ−t−ブチル−4−ヒドロキシベンジル酸モノエチルエステル−Ni錯体、2,2’−チオ−ビス(4−t−オクチルフェノラート)トリエタノールアミンニッケル(II)や、これらの誘導体(例えば、アルキル、アリール置換体)等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。
シアノアクリレート系化合物としては、例えば、エチル−2−シアノ−3,3−ジフェニルアクリレート、2−エチルヘキシル−2−シアノ−3,3’−ジフェニルアクリレート、ブチル−2−シアノ−3−メチル−3−(p−メトキシフェニル)アクリレートや、これらの誘導体(例えば、アルキル、アリール置換体)等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。
オキザリックアシッドアニリド系化合物としては、例えば、2−エトキシ−2’−エチルオキザリックアシッドビスアニリド、2−エトキシ−5−t−ブチル−2’−エチルオキザリックアシッドビスアニリドや、これらの誘導体(例えば、アルキル、アリール置換体)等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。
シュウ酸誘導体としては、例えば、シュウ酸−ビス(ベンジリデンヒドラジド)、N,N’−ビス{2−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシル]エチル}オキサミドや、これらの誘導体(例えば、アルキル、アリール置換体)等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。
サリチル酸誘導体としては、例えば、3−(N−サリチロイル)アミノ−1,2,4−トリアゾール、1,12−ドデカン酸−ビス[2−(2−ヒドロキシベンゾイル)ヒドラジド]、N−サリチロイル−N’−サリチリデンヒドラジンや、これらの誘導体(例えば、アルキル、アリール置換体)等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。
ヒドラジド誘導体としては、例えば、N,N’−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、イソフタル酸−ビス[2−フェノキシプロピオニルヒドラジド]や、これらの誘導体(例えば、アルキル、アリール置換体)等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。
その他のエネルギ線透過防止剤としては、例えば、酸アミン系化合物、グアニジン類、メルカプトベンゾチアゾール金属塩(例えば、ナトリウム塩)等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。
以上説明したものの中でも、エネルギ線透過防止剤としては、フェノール系化合物、サリシレート系化合物、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、シアノアクリレート系化合物のうち少なくとも1種を含むものが好ましく、フェノール系化合物、サリシレート系化合物、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、または、シアノアクリレート系化合物を主とするものがより好ましい。エネルギ線透過防止剤としてこのような材料を用いることにより、上述した効果がさらに顕著なものとなる。
また、上記のようなエネルギ線透過防止剤(特に、ベンゾトリアゾール系化合物を主とするもの)は、基材24の主成分(例えば、アクリル系樹脂等の樹脂材料)との相溶性が特に優れており、また、基材24の主成分との化学反応等を極めて生じ難い。このため、エネルギ線透過防止剤として、上記にようなものを用いることにより、マイクロレンズ基板1自体の安定性を、特に優れたものとすることができる。
基板本体2(マイクロレンズ基板1)は、光の入射側に設けられ、着色剤を含む材料で構成された着色部22と、着色部22よりも光の出射側に設けられ、実質的に着色剤を含まない材料で構成された非着色部23とを有している。
着色部22の厚さは、特に限定されないが、0.1〜50μmであるのが好ましく、0.2〜20μmであるのがより好ましく、0.3〜10μmであるのがさらに好ましい。着色部22の厚さが前記範囲内の値であると、光の入射側から入射させるべき光の透過率を特に高いものとしつつ、レンズ基板1に入射させるべき光の入射側とは反対の側から入射した光(外光)を効率良く減衰させて外光の影響をより確実に防止することができる。その結果、マイクロレンズ基板を透過した光により形成される画像のコントラストを特に優れたものとすることができる。これに対し、着色部22の厚さが前記下限値未満であると、外光(光の入射側とは反対側から入射する外光)の反射を十分に防止することが困難となり、画像のコントラストを向上させるという効果が十分に得られない可能性がある。また、着色部22の厚さが前記上限値を超えると、入射光の透過率が低下し、得られる画像において十分な輝度が得られず、結果として、画像のコントラストが不十分となる可能性がある。
上述したように、マイクロレンズ基板1は、光の入射する面側に凸面を有する凸レンズとしてのマイクロレンズ21を多数個備えている。
また、本実施形態において、各マイクロレンズ21は、入射側に突出した凸レンズとして形成されており、焦点fが、出射側の基板面の近傍に位置するように設計されている。すなわち、マイクロレンズ基板1に対して、ほぼ垂直な方向から入射した平行光La(後述するフレネルレンズ基板5からの平行光La)は、マイクロレンズ基板1の各マイクロレンズ21によって集光され、出射側の基板面近傍で焦点fを結ぶ。
また、マイクロレンズ基板1を光の入射面側(図2で示した方向)から平面視したときの、マイクロレンズ21が形成されている有効領域において、マイクロレンズ21の占有率は、90%以上であるのが好ましく、96%以上であるのがより好ましく、97〜99.5%であるのがさらに好ましい。マイクロレンズ21の占有率が90%以上であると、マイクロレンズ21以外を通過する直進光をより少なくすることができ、光利用効率をさらに向上させることができる。なお、マイクロレンズ21の占有率は、平面視したときのマイクロレンズ21の中心(頂部の中心)211と、当該マイクロレンズ21に隣接する、マイクロレンズ21が形成されていない部位の中心部とを結ぶ線分において、マイクロレンズ21が形成されている部位の長さL3[μm]と、前記線分の長さL4[μm]との比率(L3/L4×100[%])として求めることができる(図2参照)。
ブラックマトリックス3は、外光(投影画像を形成する上で好ましくない外光)を吸収する機能を有するものであれば、いかなる材料で構成されたものであってもよいが、ブラックマトリックス3を構成する材料としては、例えば、各種無機材料、各種有機材料、無機材料と有機材料との複合材料等を用いることができ、より具体的には、酸化クロム、クロム、各種顔料、各種染料等を用いることができる。
また、ブラックマトリックス3の厚さ(平均厚さ)は、0.001〜8.0μmであるのが好ましく、0.005〜7.0μmであるのがより好ましく、0.01〜6.0μmであるのがさらに好ましい。ブラックマトリックス3の厚さが前記範囲内の値であると、ブラックマトリックス3の不本意な剥離、クラック等をより確実に防止しつつ、ブラックマトリックス3としての機能(すなわち、画像のコントラストを向上させる機能)をより効果的に発揮させることができ、例えば、マイクロレンズ基板1を備えた透過型スクリーン10において、投影される画像のコントラストを特に優れたものとすることができる。
なお、マイクロレンズ基板1は、着色部22を有していなくてもよい。このような場合、例えば、ブラックマトリックス3の光の出射側(ブラックマトリックス3の基板本体2に対向する面とは反対の面側)に、形状の安定性を保持する目的等で、基材(第2の基材)を備えていてもよい。
マイクロレンズ基板1の光の利用効率(マイクロレンズ基板1の入射面側から入射する光の光量に対する、出射面側から出射する光の光量の割合)は、60%以上であるのが好ましく、70%以上であるのがより好ましく、80〜99%であるのがさらに好ましい。
上記のようなマイクロレンズ基板1の厚さは、0.5〜5mmであるのが好ましく、1〜4mmであるのがより好ましく、2〜3mmであるのがさらに好ましい。マイクロレンズ基板1の厚さが前記範囲内の値であると、光の利用効率および視野角特性を、特に優れたものとすることができる。また、このように比較的薄いレンズ基板は、従来の方法では、精確に製造するのが困難であったが、後に詳述するような本発明の方法によれば好適に製造することができる。
図3に示すように、透過型スクリーン10は、フレネルレンズ基板5と、前述したマイクロレンズ基板1とを備えている。フレネルレンズ基板5は、光(画像光)の入射側に設置されており、フレネルレンズ基板5を透過した光が、マイクロレンズ基板1に入射する構成になっている。
以上のように構成された透過型スクリーン10では、投射レンズからの映像光が、フレネルレンズ基板5によって屈折し、平行光Laとなる。そして、この平行光Laは、マイクロレンズ基板1の着色部が形成された面側からに入射し、各マイクロレンズ21によって集光し、ブラックマトリックス(遮光層)3の開口部31を通過する。
このとき、マイクロレンズ基板1に入射した光は、十分な透過率でマイクロレンズ基板1を透過する。開口部31を通過した光は、拡散し、観察者に平面画像として観測される。
図4は、マイクロレンズ基板の製造に用いる凹部付き基板を示す模式的な縦断面図、図5は、図4に示す凹部付き基板の製造方法を示す模式的な縦断面図である。なお、凹部付き基板の製造においては、実際には基板上に多数の凹部(マイクロレンズ形成用凹部)を形成し、マイクロレンズ基板の製造においては、実際には基板上に多数のマイクロレンズ(凸レンズ)を形成するが、ここでは、説明をわかりやすくするために、その一部分を強調して示した。
また、凹部61の深さをD[μm]、凹部61の短軸方向の長さをS[μm]としたとき、0.02≦S/D≦50の関係を満足するのが好ましく、0.1≦S/D≦1.40の関係を満足するのがより好ましく、0.5≦S/D≦1.0の関係を満足するのがさらに好ましい。このような関係を満足することにより、光の干渉によるモアレの発生を効果的に防止しつつ、視野角特性を特に優れたものとすることができる。
まず、凹部付き基板6を製造するに際し、基板7を用意する。
この基板7は、厚さが均一で、たわみや傷のないものが好適に用いられる。また、基板7は、洗浄等により、その表面が清浄化されているものが好ましい。
特に、本実施形態では、まず、図5(a)に示すように、用意した基板7の裏面に裏面保護膜89を形成するとともに、基板7の表面にマスク形成用膜4を形成し(マスク形成用膜形成工程)、その後、図5(b)に示すように、マスク形成用膜4に初期孔81を形成すること(初期孔形成工程)によりマスク8を得る。マスク形成用膜4および裏面保護膜89は同時に形成することもできる。
かかる観点からは、マスク形成用膜4(マスク8)を構成する材料としては、例えばCr、Au、Ni、Ti、Pt等の金属やこれらから選択される2種以上を含む合金、前記金属の酸化物(金属酸化物)、シリコン、樹脂等が挙げられる。
上記のように、マスク形成用膜4(マスク8)の構成は、特に限定されるものではないが、主としてクロムで構成される層と、主として酸化クロムで構成される層とを有する積層体であるのが好ましい。このような構成のマスク形成用膜4は、後述するようなレーザ光の照射等により、所望の形状の開口部を容易かつ確実に形成することができるものであり、また、このような構成のマスク形成用膜4を用いて得られるマスク8は、様々な組成のエッチング液に対して優れた安定性を有している(後述するエッチング工程において基板7をより確実に保護することができる)。また、マスク形成用膜4(マスク8)のが上記のような構成のものであると、例えば、後述するエッチング工程において、エッチング液として一水素二フッ化アンモニウムを含む液体を好適に用いることができる。一水素二フッ化アンモニウムは毒劇物ではないため、作業中の人体や環境への影響をより確実に防止することができる。また、上記のような構成のマスク形成用膜4(マスク8)は、マスクの内部応力を効率良く緩和することができ、基板7との密着性(特に、エッチング工程における密着性)に特に優れている。このようなことから、上記のような構成のマスク形成用膜4(マスク8)を用いることにより、所望の形状の凹部61を容易かつ確実に形成することができる。
初期孔81の形成方法は、特に限定されないが、レーザ光の照射による方法であるのが好ましい。これにより、所望のパターンに配列した所望の形状の初期孔81を容易かつ精確に形成することができる。その結果、凹部61の形状、配列方式等をより確実に制御することができる。また、初期孔81をレーザの照射により形成することにより、凹部付き基板を生産性良く製造することができる。特に、大面積の基板にも簡単に凹部を形成することができる。また、レーザ光の照射により初期孔81を形成する場合、その照射条件を制御することにより、後述するような初期凹部71を形成することなく初期孔81のみを形成したり、初期孔81とともに、形状、大きさ、深さのばらつきの小さい初期凹部71を、容易かつ確実に形成することができる。また、レーザ光の照射でマスク形成用膜4に初期孔81を形成することで、従来のようなフォトリソグラフィ法によってレジスト膜に開口部を形成する場合に比べて、簡単かつ安価に開口部(初期孔81)を形成することができる。
エッチングの方法は、特に限定されず、例えば、ウェットエッチング、ドライエッチング等が挙げられる。以下の説明では、ウェットエッチングを用いる場合を例に挙げて説明する。
また、ウェットエッチング法を用いると、凹部61を好適に形成できる。そして、エッチング液として、例えば、一水素二フッ化アンモニウムを含むエッチング液を用いると、基板7をより選択的に食刻することができ、凹部61を好適に形成することができる。
また、ウェットエッチングによれば、ドライエッチングに比べて簡単な装置で処理を行うことができ、さらに、一度に多くの基板に対して処理を行うことができる。これにより生産性が向上し、安価に凹部付き基板6を提供することができる。
マスク8が、前述したような主としてクロムで構成される層と、主として酸化クロムで構成される層とを有する積層体である場合、マスク8の除去は、例えば、硝酸第二セリウムアンモニウムと過塩素酸とを含む混合物を用いたエッチングにより行うことができる。
基板7上に千鳥状に配された複数個の凹部61を形成する方法は、特に限定されないが、上述したような方法(レーザ光の照射によりマスク形成用膜4に初期孔81を形成してマスク8を得、その後、そのマスク8を用いてエッチングを行うことにより、基板7上に凹部61を形成する方法)により形成した場合、以下のような効果が得られる。
また、上述したような方法によれば、大型の基板に対する処理も容易に行うことができる。大型の基板を製造する場合に、従来のように複数の基板を貼り合わせる必要がなくなり、貼り合わせの継ぎ目をなくすことができる。これにより高品質で大型の凹部付き基板(マイクロレンズ基板)を簡便な方法で安価に製造することができる。
また、初期孔81の形成をレーザの照射により行う場合、形成される初期孔81の形状、大きさ、配列等を、容易かつ確実に管理することができる。
図6、図7は、図1に示すマイクロレンズ基板の製造方法の一例を示す模式的な縦断面図である。なお、以下の説明では、図6、図7中の下側を「(光の)入射側」、上側を「(光の)出射側」と言う。
なお、本工程においては、組成物26としてスペーサー29を含むものを用いてもよい。これにより、後述する工程において組成物26を基材24で押圧する際に、組成物26で構成された層の不本意な厚さのばらつきが生じるのを防止することができ、最終的に得られるマイクロレンズ基板1での、マイクロレンズ21の焦点の位置をより確実に制御することができ、色ムラ等の不都合の発生をより効果的に防止することができる。
なお、組成物26の付与に先立ち、凹部付き基板6の凹部61が形成されている側の面に離型剤を塗布しておいてもよい。これにより、後述する工程において、凹部付き基板6から、基板本体2を容易かつ確実に分離(剥離)することができる。
本工程で形成される硬化部25の厚さは、特に限定されないが、40〜80μmであるのが好ましい。このように、本発明においては、硬化部をその厚さが十分に小さいものとして好適に形成することができる。
基板本体2表面へのブラックマトリックス形成用材料の付与方法は、特に限定されないが、例えば、ディップコート、ドクターブレード、スピンコート、刷毛塗り、スプレー塗装、静電塗装、電着塗装、ロールコーター等の各種塗布法、蒸着法、イオンプレーティング法、スパッタリング法等の気相成膜法、電解めっき、無電解めっき等の湿式めっき法等を適用することができる。特に、ブラックマトリックス3を、主としてクロムで構成された層と、主として酸化クロムで構成された層とを有する積層体として形成する場合、膜32は、気相成膜法により形成するのが好ましい。また、ブラックマトリックス3を、顔料または染料を含む材料で構成されたもの(特に、顔料、染料に加えて、樹脂材料を含む材料で構成されたもの)して形成する場合、塗布法により形成するのが好ましい。これにより、均一な厚さの膜32を、容易に形成することができる。
本工程で形成される膜32の厚さは、通常、また、ブラックマトリックス3の厚さと実質的に同一である。したがって、膜32の厚さ(平均厚さ)は、0.3〜8.0μmであるのが好ましく、0.8〜7.0μmであるのがより好ましく、1.4〜6.0μmであるのがさらに好ましい。
着色液は、いかなるものであってもよいが、本実施形態では、着色剤とベンジルアルコールとを含むものである。このような着色液を用いることにより、基板本体2の着色を容易かつ確実に行うことができる。特に、アクリル系樹脂のように、従来の着色方法では着色が困難であった材料で構成された基板本体に対しても、容易かつ確実に着色を施すことができる。これは、以下のような理由によるものであると考えられる。
着色液の付与方法としては、例えば、ドクターブレード、スピンコート、刷毛塗り、スプレー塗装、静電塗装、電着塗装、ロールコーター、捺染等の各種塗布法や、基板本体2を着色液中に浸漬するディッピング等の方法が挙げられるが、中でも、ディッピング(特に、浸染)が好ましい。これにより、容易かつ確実に着色部22(特に、均一な濃度の着色部22)を形成することができる。また、特に、着色液の付与を浸染により行う場合、着色液が付与される基板本体2が、アクリル系樹脂のような、従来の方法では、着色するのが困難であった材料で構成されたものであっても、容易かつ確実に着色することができる。これは、ベンジルアルコールと浸染に用いることができる染料が溶液中に十二分に存在しているため、ベンジルアルコールが十分に着色座席を確保し、着色が容易に、且つ、大面積においても均一に行うことができるためである。
また、着色液を付与する工程は、例えば、雰囲気圧を高めた状態(加圧した状態)で行ってもよい。これにより、着色液の基板本体内部への侵入を促進することができ、結果として、着色部22を短時間で効率良く形成することができる。
また、着色液の付与後、必要に応じて、加熱、冷却等の熱処理、光照射、雰囲気の加圧、減圧等の処理を施してもよい。これにより、着色部22の定着(安定化)を促進することができる。
着色液中におけるベンジルアルコールの含有率は、特に限定されないが、0.01〜10.0wt%であるのが好ましく、0.05〜8.0wt%であるのがより好ましく、0.1〜5.0wt%であるのがさらに好ましい。ベンジルアルコールの含有率が上記範囲内の値であると、着色部22を形成すべき基板本体2に対する悪影響の発生(例えば、基板本体2の構成材料の劣化等)をより効果的に防止しつつ、容易かつ確実に好適な着色部22を形成することができる。
本工程で用いるレーザ光の種類は、特に限定されないが、例えば、ルビーレーザ、半導体レーザ、YAGレーザ、フェムト秒レーザ、ガラスレーザ、YVO4レーザ、Ne−Heレーザ、Arレーザ、CO2レーザ、エキシマレーザ等が挙げられる。また、各レーザのSHG、THG、FHG等の波長を使っても良い。
なお、上記のような遮光膜形成用材料の付与、レーザ光の照射の一連の処理を、繰り返し行ってもよい。これにより、遮光膜(ブラックマトリックス)をより厚いものとして形成することができ、コントラストの更なる向上を図ることができる。
図8は、本発明のリア型プロジェクタの構成を模式的に示す図である。
同図に示すように、リア型プロジェクタ300は、投写光学ユニット310と、導光ミラー320と、透過型スクリーン10とが筐体340に配置された構成を有している。
そして、このリア型プロジェクタ300は、上記のような透過型スクリーン10を備えているので、信頼性の高い画像を得ることができる。さらに、本実施形態では、上記のような構成を有しているので、視野角特性、光利用効率等も特に優れたものとなる。
以上、本発明について、図示の実施形態に基づいて説明したが、本発明は、これらに限定されるものではない。
また、前述した実施形態では、レンズ基板として、多数個のマイクロレンズを備えたマイクロレンズ基板について説明したが、本発明において、レンズ基板はいかなるものであってもよく、例えば、レンチキュラレンズ基板、フレネルレンズ基板等であってもよい。また、本発明において、レンズ基板は、両方の主面にレンズ部を備えたもの(例えば、一方の主面にマイクロレンズを備え、かつ、他方の主面にフレネルレンズを備えたレンズ基板等)であってもよい。
また、前述した実施形態では、凹部付き基板の表面に組成物を付与するものとして説明したが、例えば、基材の表面に樹脂を付与し、これを凹部付き基板(型)で押圧することにより、レンズ基板を製造してもよい。
また、前述した実施形態では、凹部付き基板の製造方法の初期孔形成工程において、初期孔81とともに、基板7に初期凹部71を形成するものとして説明したが、このような初期凹部71は形成されなくてもよい。初期孔81の形成条件(例えば、レーザのエネルギ強度、ビーム径、照射時間等)を適宜調整することにより、所望の形状の初期凹部71を形成したり、初期凹部71が形成されないように初期孔81のみを選択的に形成することができる。
また、前述した実施形態では、開口部の形成を、基板本体から凹部付き基板を取り除いた後に行うものとして説明したが、開口部の形成(レーザ光の照射)は、凹部付き基板を取り除く前に行ってもよい。また、遮光膜形成用材料の付与は、凹部付き基板を除去した後に行ってもよい。
また、前述した実施形態では、マイクロレンズ基板(レンズ基板)は、ブラックマトリックス(遮光部)を有するものとして説明したが、必ずしもブラックマトリックスを有していなくてもよい。
また、本発明のレンズ基板、透過型スクリーンは、基板本体を透過した光を拡散させる機能を有する拡散部、拡散板を有するものであってもよい。このような構成であると、例えば、透過型スクリーン、リア型プロジェクタの視野角特性を特に優れたものとすることができる。
(実施例1)
以下のように、マイクロレンズ形成用の凹部を備えた凹部付き基板を製造した。
まず、基板として、横1.2m×縦0.7m角、厚さ4.8mmのソーダガラス基板(絶対屈折率n2:1.50)を用意した。
その後、純水洗浄およびN2ガスを用いた乾燥(純水の除去)を行った。
次に、このソーダガラス基板上に、スパッタリング法にて、クロム/酸化クロムの積層体(クロムの外表面側に酸化クロムが積層された積層体)を形成した。すなわち、ソーダガラス基板の表面に、クロム/酸化クロムの積層体で構成されたのマスク形成用膜および裏面保護膜を形成した。クロム層の厚さは0.03μm、酸化クロム層の厚さは0.01μmであった。
なお、レーザ加工は、エキシマレーザを用いて、エネルギ強度1mW、ビーム径3μm、走査速度0.1m/秒という条件で行った。
これにより、マスクの上記範囲全面に亘って、所定の長さを有する初期孔が、千鳥状に配されたパターンで形成された。初期孔の平均幅は2μmであり、平均長さは2μmであった。
また、この際、ソーダガラス基板の表面に深さ50Åの凹部および変質層も形成した。
なお、ウェットエッチングは、エッチング液として、4wt%の一水素二フッ化アンモニウムと、8wt%の過酸化水素とを含む水溶液を用い、浸漬時間は2.0時間とした。
次に、純水洗浄およびN2ガスを用いた乾燥(純水の除去)を行った。
その後、基板の凹部が形成されている面側に、ヘキサメチルジシラザンによる気相表面処理(シリル化処理)を行い、離型処理部を形成した。
これにより、図4に示すような、ソーダガラス基板上に、マイクロレンズ形成用の多数の凹部が千鳥状に配列された凹部付き基板を得た。得られた凹部付き基板を平面視したときに、凹部が形成されている有効領域において、凹部が占める面積の割合が97%であった。
次に、凹部付き基板上の組成物の表面に、硬化した(重合済)のアクリル系樹脂(PMMA樹脂(メタクリル樹脂))中に、2−(2H−ベンゾトリアゾール−2−イル)−4−メチル−6−(3,4,5,6−テトラヒドロフタルイミジルメチル)フェノールが分散してなる基材(平板状部材)を設置した。基材(第1の基材)の厚さは、50μmであった。その後、押圧手段により基材を押圧し、この基材により、前記組成物を押圧した。押圧手段としては、基材を押圧する押圧部が、平坦でステンレス鋼で構成されたものを用いた。
その後、押圧手段による押圧を行いつつ、組成物に対して凹部付き基板側からエネルギ線としての紫外線を照射することにより、組成物を硬化させた。これにより、組成物が硬化することにより形成された硬化部が、基材に接合してなる基板本体が得られた。
次に、基板本体のマイクロレンズが形成されている側の面から、基板本体の入射側表面に対して垂直方向のレーザ光を照射した(開口部形成工程)。これにより、レーザ光は、マイクロレンズにより集光され、前記膜のうち、マイクロレンズの焦点付近の部位のみが選択的に除去され、多数個の開口部を有するブラックマトリックスが形成された。
その後、ブラックマトリックスの表面に、接着剤を介して、厚さ2mmの基板(第2の基材)を接合した。第2の基材としては、アクリル系樹脂(PMMA樹脂(メタクリル樹脂))中に拡散材が分散したものを用いた。
その後、凹部付き基板から取り外された基板本体(第2の基材が接合された基板本体)を、80℃の着色液中に浸漬することにより、着色部を形成し、図1、図2に示すような(ただし、図示しない第2の基材を有する)、ブラックマトリックスを有するレンズ基板(マイクロレンズ基板)を得た。着色液としては、着色剤(染料のBlue(双葉産業製)、Red(双葉産業製)およびYellow(双葉産業製))と、ベンジルアルコールと、界面活性剤とを含む液体を用いた。着色液中におけるベンジルアルコールの含有率は、2.0wt%であった。
その後、上記のようにして製造されたマイクロレンズ基板と、押出成形により作製したフレネルレンズ基板とを組み立てることにより、図3に示すような透過型スクリーンを得た。
第1の基材として厚さが2mmのものを用い、凹部付き基板から取り外された基板本体に対して、第2の基材を接着しなかった以外は、前記実施例1と同様にしてマイクロレンズ基板、透過型スクリーンを製造した。
(実施例3)
ブラックマトリックスを形成しなかった以外(遮光膜形成用材料付与工程および開口部形成工程を省略した以外)は、前記実施例1と同様にしてマイクロレンズ基板、透過型スクリーンを製造した。
(実施例4)
第1の基材として厚さが2mmのものを用い、凹部付き基板から取り外された基板本体に対して、第2の基材を接着しなかった以外は、前記実施例3と同様にしてマイクロレンズ基板、透過型スクリーンを製造した。
凹部付き基板として、銅で構成され、前記実施例1で用いたのと同様の形状を有するものを用意した。
次に、凹部付き基板上の組成物の表面に、硬化した(重合済)のアクリル系樹脂(PMMA樹脂(メタクリル樹脂))で構成された基材(平板状部材)を設置した。基材の厚さは、50μmであった。その後、押圧手段により基材を押圧し、この基材により、前記組成物を押圧した。押圧手段としては、基材を押圧する押圧部が、平坦でステンレス鋼で構成されたものを用いた。
その後、前記実施例1と同様な処理を施すことにより、マイクロレンズ基板、透過型スクリーンを製造した。
基材として、厚さが2mmのものを用いた以外は、前記比較例1と同様にして、基板本体を製造した。
その後、研磨により、基板本体が有する基材を、その厚さが50μmになるまで研磨した。
その後、前記実施例1と同様な処理を施すことにより、マイクロレンズ基板、透過型スクリーンを製造した。
前記各実施例および各比較例の透過型スクリーンについて、光の利用効率の評価を行った。
光の利用効率の評価は、A(=300)[cd/m2]の白色光を入射させた際、透過型スクリーンの光の出射面側で測定される光の輝度B[cd/m2]の比率(B/A)を求めることにより行った。B/Aの値が大きいほど、光の利用効率が優れているといえる。
[リア型プロジェクタの作製]
前記各実施例および各比較例の透過型スクリーンを用いて、図8に示すようなリア型プロジェクタを、それぞれ作製した。
前記各実施例および各比較例のリア型プロジェクタの透過型スクリーンにサンプル画像(動画)を表示させた。表示された画像について、輝点、ドット抜けの発生状況を以下の4段階の基準に従い評価した。
◎:輝点、ドット抜けが全く認められない。
○:輝点、ドット抜けがほとんど認められない。
△:輝点、ドット抜けのうち少なくとも一つがわずかに認められる。
×:輝点、ドット抜けのうち少なくとも一つが顕著に認められる。
前記各実施例および各比較例のリア型プロジェクタについて、コントラストの評価を行った。
コントラスト(CNT)として、暗室において413lxの全白光が入射した時の白表示の正面輝度(白輝度)LW[cd/m2]と、明室において光源を全消灯した時の黒表示の正面輝度の増加量(黒輝度増加量)LB[cd/m2]との比LW/LBを求めた。なお、黒輝度増加量は、暗室の黒表示の輝度に対する増加量をいう。また、明室での測定は、外光照度が約185lxの環境下で行った。暗室での測定は、外光照度が0.1lx以下の環境下で行った。
前記各実施例および各比較例のリア型プロジェクタの透過型スクリーンにサンプル画像を表示させた状態で、鉛直方向および水平方向での視野角の測定を行った。
視野角の測定は、変角光度計(ゴニオフォトメータ)で、1度間隔で測定するという条件で行った。
前記各実施例および各比較例のリア型プロジェクタの透過型スクリーンにサンプル画像を表示させた。表示された画像について、回折光、モアレ、色ムラの発生状況を以下の4段階の基準に従い評価した。
◎:回折光、モアレ、色ムラが全く認められない。
○:回折光、モアレ、色ムラがほとんど認められない。
△:回折光、モアレ、色ムラのうち少なくとも一つがわずかに認められる。
×:回折光、モアレ、色ムラのうち少なくとも一つが顕著に認められる。
これらの結果を表2にまとめて示す。
これに対し、比較例では、満足な結果が得られなかった。これは、以下のような理由によるものであると考えられる。すなわち、比較例においては、エネルギ線による組成物の硬化を行う際に、凹部付き基板、組成物、押圧部材等を好適な状態で密着させることができず、組成物と凹部付き基板との間や、組成物と押圧部材(基材)との間等に気泡が侵入、残留したり、組成物の表面に設置された基板の表面が平坦にならない等の問題が発生したためであると考えられる。
Claims (12)
- レンズ部を有するレンズ基板を製造する方法であって、
前記レンズ部に対応する形状の表面形状を有する型に、流動性を有する組成物を供給する組成物供給工程と、
前記型上に供給された前記組成物を押圧部材で押圧する組成物押圧工程と、
前記組成物に対して、前記型と接触する面側からエネルギ線を照射することにより、前記組成物を硬化させ、前記レンズ部が設けられ、前記押圧部材と前記組成物の硬化物とが接合した基板本体を得るエネルギ線照射工程と、
前記押圧部材の表面に、遮光膜形成用材料を付与する遮光膜形成用材料付与工程と、
前記レンズ部側からレーザ光を照射し、前記レンズ部により屈折、集光した前記レーザ光により、前記遮光膜形成用材料の一部を除去し、開口部が設けられた遮光膜を形成する工程とを有するとともに、
前記エネルギ線照射工程の後に、前記型を除去する型除去工程を有し、さらに、その後に、前記レンズ部に着色剤とベンジルアルコールとを含む着色液を付与することにより、前記レンズ部の表面付近に着色部を形成する着色部形成工程を有し、
前記型として、前記エネルギ線の透過性を有する材料で構成されたものを用いることを特徴するレンズ基板の製造方法。 - 前記エネルギ線は、紫外線である請求項1に記載のレンズ基板の製造方法。
- 前記押圧部材は、エネルギ線の透過を防止、抑制する機能を有するエネルギ線透過防止剤を含む材料で構成されたものである請求項1または2に記載のレンズ基板の製造方法。
- 前記エネルギ線透過防止剤は、2−(2H−ベンゾトリアゾール−2−イル)−4−メチル−6−(3,4,5,6−テトラヒドロフタルイミジルメチル)フェノールである請求項1ないし3のいずれかに記載のレンズ基板の製造方法。
- 前記型は、ガラス材料で構成されたものである請求項1ないし4のいずれかに記載のレンズ基板の製造方法。
- 前記組成物は、主としてアクリル系樹脂で構成されたものである請求項1ないし5のいずれかに記載のレンズ基板の製造方法。
- 前記レンズ基板は、前記レンズ部として多数個のマイクロレンズを備えるものである請求項1ないし6のいずれかに記載のレンズ基板の製造方法。
- 前記マイクロレンズは、レンズ基板を平面視したときの縦幅が横幅よりも小さい扁平形状を有するものである請求項7に記載のレンズ基板の製造方法。
- レンズ基板の厚さは、0.5〜5mmである請求項1ないし8のいずれかに記載のレンズ基板の製造方法。
- 請求項1ないし9のいずれかに記載の方法を用いて製造されたことを特徴とするレンズ基板。
- 請求項10に記載のレンズ基板を備えたことを特徴とする透過型スクリーン。
- 請求項11に記載の透過型スクリーンを備えたことを特徴とするリア型プロジェクタ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005185804A JP4654792B2 (ja) | 2005-06-24 | 2005-06-24 | レンズ基板の製造方法、レンズ基板、透過型スクリーンおよびリア型プロジェクタ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005185804A JP4654792B2 (ja) | 2005-06-24 | 2005-06-24 | レンズ基板の製造方法、レンズ基板、透過型スクリーンおよびリア型プロジェクタ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007001214A JP2007001214A (ja) | 2007-01-11 |
JP4654792B2 true JP4654792B2 (ja) | 2011-03-23 |
Family
ID=37687231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005185804A Expired - Fee Related JP4654792B2 (ja) | 2005-06-24 | 2005-06-24 | レンズ基板の製造方法、レンズ基板、透過型スクリーンおよびリア型プロジェクタ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4654792B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013018945A1 (ko) * | 2011-08-04 | 2013-02-07 | 주식회사 미성포리테크 | 사출레진 하부에 형성된 인쇄 패턴층을 포함한 입체시트 및 그 입체시트 제조방법 |
KR101960402B1 (ko) * | 2012-08-03 | 2019-03-20 | 쑤저우 에스브이쥐 옵트로닉스 테크놀러지 컴퍼니 리미티드 | 컬러 다이나믹 증폭 보안 필름 |
JP7124388B2 (ja) * | 2018-03-30 | 2022-08-24 | 株式会社リコー | 圧電アクチュエータ、液体吐出ヘッド、液体吐出ユニット、液体を吐出する装置 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03202330A (ja) * | 1989-10-30 | 1991-09-04 | Sharp Corp | マイクロレンズの製造方法 |
JPH07152091A (ja) * | 1993-11-30 | 1995-06-16 | Dainippon Printing Co Ltd | 背面投写スクリーン |
JPH0957868A (ja) * | 1995-08-25 | 1997-03-04 | Kuraray Co Ltd | 光学部品の製造方法 |
JPH11156869A (ja) * | 1997-12-01 | 1999-06-15 | Kuraray Co Ltd | 表面凹凸部品の製造方法 |
JP2001062853A (ja) * | 1999-08-27 | 2001-03-13 | Kuraray Co Ltd | 表面凹凸部品の製造方法 |
JP2002182309A (ja) * | 2000-12-13 | 2002-06-26 | Dainippon Printing Co Ltd | 遮光帯を有するレンチキュラーレンズシートの製造方法、レンチキュラーレンズ、およびスクリーン |
JP2002240055A (ja) * | 2001-02-15 | 2002-08-28 | Seiko Epson Corp | マイクロレンズ基板の製造方法およびマイクロレンズ基板の製造装置 |
JP2004191429A (ja) * | 2002-12-06 | 2004-07-08 | Ricoh Co Ltd | 透過型スクリーン、その製造方法、及び背面投影型プロジェクション装置 |
JP2004258071A (ja) * | 2003-02-24 | 2004-09-16 | Toppan Printing Co Ltd | 光学部品及びその製造方法並びに画像投影スクリーン |
JP2004340985A (ja) * | 2003-05-12 | 2004-12-02 | Seiko Epson Corp | マイクロレンズ用凹部付き基板の製造方法、マイクロレンズ用凹部付き基板、マイクロレンズ基板、透過型スクリーンおよびリア型プロジェクタ |
JP2004361750A (ja) * | 2003-06-05 | 2004-12-24 | Seiko Epson Corp | 着色層の形成方法、マイクロレンズ基板、透過型スクリーンおよびリア型プロジェクタ |
JP2005114873A (ja) * | 2003-10-03 | 2005-04-28 | Seiko Epson Corp | 透過型スクリーン用部材、透過型スクリーンおよびリア型プロジェクタ |
-
2005
- 2005-06-24 JP JP2005185804A patent/JP4654792B2/ja not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03202330A (ja) * | 1989-10-30 | 1991-09-04 | Sharp Corp | マイクロレンズの製造方法 |
JPH07152091A (ja) * | 1993-11-30 | 1995-06-16 | Dainippon Printing Co Ltd | 背面投写スクリーン |
JPH0957868A (ja) * | 1995-08-25 | 1997-03-04 | Kuraray Co Ltd | 光学部品の製造方法 |
JPH11156869A (ja) * | 1997-12-01 | 1999-06-15 | Kuraray Co Ltd | 表面凹凸部品の製造方法 |
JP2001062853A (ja) * | 1999-08-27 | 2001-03-13 | Kuraray Co Ltd | 表面凹凸部品の製造方法 |
JP2002182309A (ja) * | 2000-12-13 | 2002-06-26 | Dainippon Printing Co Ltd | 遮光帯を有するレンチキュラーレンズシートの製造方法、レンチキュラーレンズ、およびスクリーン |
JP2002240055A (ja) * | 2001-02-15 | 2002-08-28 | Seiko Epson Corp | マイクロレンズ基板の製造方法およびマイクロレンズ基板の製造装置 |
JP2004191429A (ja) * | 2002-12-06 | 2004-07-08 | Ricoh Co Ltd | 透過型スクリーン、その製造方法、及び背面投影型プロジェクション装置 |
JP2004258071A (ja) * | 2003-02-24 | 2004-09-16 | Toppan Printing Co Ltd | 光学部品及びその製造方法並びに画像投影スクリーン |
JP2004340985A (ja) * | 2003-05-12 | 2004-12-02 | Seiko Epson Corp | マイクロレンズ用凹部付き基板の製造方法、マイクロレンズ用凹部付き基板、マイクロレンズ基板、透過型スクリーンおよびリア型プロジェクタ |
JP2004361750A (ja) * | 2003-06-05 | 2004-12-24 | Seiko Epson Corp | 着色層の形成方法、マイクロレンズ基板、透過型スクリーンおよびリア型プロジェクタ |
JP2005114873A (ja) * | 2003-10-03 | 2005-04-28 | Seiko Epson Corp | 透過型スクリーン用部材、透過型スクリーンおよびリア型プロジェクタ |
Also Published As
Publication number | Publication date |
---|---|
JP2007001214A (ja) | 2007-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100670987B1 (ko) | 오목부를 갖는 부재, 볼록부를 갖는 부재의 제조 방법,투과형 스크린, 및 리어형 프로젝션 | |
JP4561726B2 (ja) | 凹部付き部材の製造方法およびレンズ基板の製造方法 | |
JP2006154757A (ja) | マイクロレンズ基板の製造方法、マイクロレンズ基板、透過型スクリーンおよびリア型プロジェクタ | |
KR100670989B1 (ko) | 오목부를 갖는 부재, 볼록부를 갖는 부재의 제조 방법,투과형 스크린, 및 리어형 프로젝션 | |
KR100730706B1 (ko) | 오목부를 갖는 기판의 제조 방법, 오목부를 갖는 기판,마이크로렌즈 기판, 투과형 스크린, 및 리어형 프로젝션 | |
JP2006116826A (ja) | マイクロレンズ基板製造用成形型、マイクロレンズ基板の製造方法、マイクロレンズ基板、透過型スクリーンおよびリア型プロジェクタ | |
JP4654792B2 (ja) | レンズ基板の製造方法、レンズ基板、透過型スクリーンおよびリア型プロジェクタ | |
JP4114656B2 (ja) | レンズ基板、レンズ基板の製造方法、透過型スクリーンおよびリア型プロジェクタ | |
JP2006133334A (ja) | 凹部付き部材、凸部付き部材の製造方法、凸部付き部材、透過型スクリーンおよびリア型プロジェクタ | |
JP4655910B2 (ja) | マイクロレンズ基板の製造方法、マイクロレンズ基板、透過型スクリーンおよびリア型プロジェクタ | |
JP2006142587A (ja) | 凸部付き部材の製造方法、凸部付き部材、透過型スクリーンおよびリア型プロジェクタ | |
JP2007047216A (ja) | レンズ基板の製造方法、レンズ基板、透過型スクリーンおよびリア型プロジェクタ | |
JP2007203674A (ja) | レンズ基板の製造方法、レンズ基板、透過型スクリーンおよびリア型プロジェクタ | |
JP4650131B2 (ja) | レンズ基板およびリア型プロジェクタ | |
JP2007008052A (ja) | レンズ基板の製造方法、レンズ基板およびリア型プロジェクタ | |
JP2007193058A (ja) | レンズ基板、レンズ基板の製造方法、透過型スクリーンおよびリア型プロジェクタ | |
JP4876519B2 (ja) | レンズ基板の製造方法、レンズ基板、透過型スクリーンおよびリア型プロジェクタ | |
JP2007025441A (ja) | レンズ基板、レンズ基板の製造方法、透過型スクリーンおよびリア型プロジェクタ | |
JP2007148024A (ja) | マイクロレンズ基板、透過型スクリーンおよびリア型プロジェクタ | |
JP2007017710A (ja) | 透過型スクリーンおよびリア型プロジェクタ | |
JP2007160575A (ja) | レンズ基板の製造方法、レンズ基板、透過型スクリーンおよびリア型プロジェクタ | |
JP2006133622A (ja) | 凸部付き部材の製造方法、凸部付き部材、透過型スクリーンおよびリア型プロジェクタ | |
JP2007171307A (ja) | レンズ基板の製造方法、レンズ基板、透過型スクリーンおよびリア型プロジェクタ | |
JP2006098564A (ja) | レンズ基板の製造方法、レンズ基板、透過型スクリーンおよびリア型プロジェクタ | |
JP2007003955A (ja) | レンズ基板、レンズ基板の製造方法、透過型スクリーンおよびリア型プロジェクタ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070928 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100629 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100630 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100921 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101102 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101124 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101207 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |