JP4637071B2 - 3次元フォトニック結晶及びそれを用いた機能素子 - Google Patents

3次元フォトニック結晶及びそれを用いた機能素子 Download PDF

Info

Publication number
JP4637071B2
JP4637071B2 JP2006254437A JP2006254437A JP4637071B2 JP 4637071 B2 JP4637071 B2 JP 4637071B2 JP 2006254437 A JP2006254437 A JP 2006254437A JP 2006254437 A JP2006254437 A JP 2006254437A JP 4637071 B2 JP4637071 B2 JP 4637071B2
Authority
JP
Japan
Prior art keywords
layer
photonic crystal
medium
axis
dimensional photonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006254437A
Other languages
English (en)
Other versions
JP2007148365A (ja
Inventor
和哉 野林
章成 高木
光 星
聖雄 池本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006254437A priority Critical patent/JP4637071B2/ja
Priority to DE602006002581T priority patent/DE602006002581D1/de
Priority to EP06122333A priority patent/EP1791008B1/en
Priority to AT06122333T priority patent/ATE407378T1/de
Priority to US11/551,741 priority patent/US7274849B2/en
Publication of JP2007148365A publication Critical patent/JP2007148365A/ja
Application granted granted Critical
Publication of JP4637071B2 publication Critical patent/JP4637071B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals

Description

本発明は、3次元的な屈折率周期構造を有する3次元フォトニック結晶及びこれを利用した光導波路、光共振器、光学フィルタ、偏光素子等の機能素子に関する。
波長以下の構造によって電磁波の透過・反射特性を制御する概念は、Yablonovitchによって提唱されている(非特許文献1)。非特許文献1によれば、波長以下の構造を周期的に配列することによって電磁波の透過・反射特性を制御することができる。
特に、電磁波の波長を光の波長にまで小さくすることによって、光の透過・反射特性を制御することができる。このような構造物はフォトニック結晶として知られており、ある波長域において100%の反射率を有する反射ミラーを実現できることが示唆されている。
このように、ある波長域で反射率を100%にすることができる概念は、半導体が持つエネルギーギャップとの比較から、フォトニックバンドギャップと言われている。
また、構造を3次元的な微細周期構造にすることによって、あらゆる方向から入射した光に対してフォトニックバンドギャップを実現することができ、以下、これを完全フォトニックバンドギャップと呼ぶことにする。
完全フォトニックバンドギャップが実現できると、発光素子における自然放出の抑制など様々な応用が可能となり、新しい機能素子の実現が可能となる。このため、より広い波長域で完全フォトニックバンドギャップを実現することができる構造を持つ機能素子が求められている。
このような完全フォトニックバンドギャップを呈する構造体が、これまでにも幾つか提案されている(特許文献1、2、3)。
図14(a)は、特許文献1にて提案されたウッドパイル構造であり、平行に配置された複数の柱状構造を90度ずつ回転させながら積層した構造である。
図14(b)は、特許文献2に開示されている完全フォトニックバンドギャップを呈する構造体の概略図である。米国特許5,440,421にて提案された構造体は、積層方向に一部重なって平行に配置された複数の柱状構造に垂直に複数の孔を貫通させて形成した構造である。
図14(c)は、特許文献3に開示されている完全フォトニックバンドギャップを呈する構造体の概略図である。特許文献3にて提案された完全フォトニックバンドギャップを呈する構造体は、三角格子状に形成された孔を有する層と三角格子状に形成された柱状構造を、基本周期の1/3ずつずらしながら積層した構造より成っている。
Physical Review Letters,Vol.58,pp.2059,1987年 米国特許5、335、240 米国特許5,440,421 米国特許6,597,851
特許文献1に開示されているウッドパイル構造は、4層で1周期が構成されるため、構造が簡単で作製が容易であるという利点を有する。しかし、90度の回転対称性を有するため、構造の異方性が強く、フォトニックバンドギャップ帯域の方向依存性が強くなってしまう。
特許文献2で開示されている構造も完全フォトニックバンドギャップを有するが、非常に深い複数の孔を形成する必要があり、作製が困難であった。
特許文献3に開示されている構造はウッドパイル構造に比べ異方性が少なく、比較的広い完全フォトニックバンドギャップ幅を有する。しかし、6層で1周期が構成されるため、層同士のアライメントに高い精度が必要になるなど、工程が煩雑であるため作製が困難であった。
本発明は、広い波長領域で良好なる完全フォトニックバンドギャップを呈し、しかも製造が容易な3次元フォトニック結晶及びそれを有する機能素子の提供を目的とする。
本発明の3次元フォトニック結晶は、屈折率周期構造を含む複数の層を周期的に積層した3次元フォトニック結晶であって、該層面内方向の第1の軸に沿って周期a、該層面内方向であって該第1の軸と直交する第2の軸に沿って周期bを有する長方格子1の各格子点と、該長方格子1を該第1の軸に沿ってa/2且つ該第2の軸に沿ってb/4ずらした位置に形成される長方格子2の各格子点に、第2の媒質より成る孔を有し、該孔以外の領域を第1の媒質で満たした周期構造より成る第1の層と、該長方格子1を第2の軸に沿って+3b/8ずらした位置に形成され、該第1の軸に沿って周期a、該第2の軸に沿って周期bを有する面心長方格子の各格子点に、第3の媒質からなり積層方向に軸を有する柱状構造と、該柱状構造以外の領域を前記第2の媒質で満たした周期構造より成る第2の層と、前記第1の層に含まれる周期構造が、層面内方向において該第1の層に対して該第1の軸に沿ってa/2且つ該第2の軸に沿ってb/2ずらした位置に形成される周期構造より成る第3の層と、前記第2の層に含まれる周期構造が、層面内方向において該第2の層と同じ位置に形成される周期構造より成る第4の層を有し、該第1の層、第2の層、第3の層、第4の層の順に周期的に積層されていることを特徴としている。
本発明によれば、広い波長領域で良好なるフォトニックバンドギャップを呈し、しかも製造が容易な3次元フォトニック結晶が得られる。
図1は本発明の3次元フォトニック結晶の要部概略図である。図1は第1層110〜第4層140の4層を基本周期として2周期を積層した例である。図中において、3次元フォトニック結晶を構成する各層110〜140の積層方向をz軸にとり、z軸と垂直な層面内方向にx軸をとり、層面内にてx軸と直交する方向にy軸をとる。
(実施例1)
図2(a)〜図2(d)は各々本発明の実施例1の積層構造を有する3次元フォトニック結晶の層面内(xy断面)の要部概略図である。実施例1の3次元フォトニック結晶は図2(a)〜図2(d)に示した第1の層110〜第4の層140の4層を1周期として構成されている。
図2(a)は第1の層110のxy断面概略図である。図2(a)において、111は第1の層110内においてx軸方向に周期a、y軸方向に周期bを有する長方格子である。長方格子111の格子点には、第2の媒質(低屈折率N2)で満たされ、半径をR1とする円孔112が配置されている。
また113は、長方格子111に対して長方格子111と同形状で、x軸方向にa/2且つy軸方向にb/4ずれた位置に配置された長方格子である。長方格子113の格子点には、第2の媒質で満たされ、半径がR1である円孔114が配置されている。さらに、第1の層110内の円孔112、114以外の領域は第1の媒質(高屈折率N1)で満たされている。
図2(b)は第2の層120のxy断面概略図である。図2(b)において121は、第1の層110内の長方格子111に対して長方格子111と同形状でy軸方向に+3b/8ずれた位置に配置された面心長方格子である。面心長方格子121は、長方格子の各格子点から等距離の位置にも格子点を有する格子である。面心長方格子121の各格子点に、半径R2の外接円を有し且つ第3の媒質で構成される積層方向に軸を有する柱状構造、例えば六角柱122が配置されている。第2の層120内の柱状構造は第1の層110内の円孔と第3の層130内の円孔から等距離の位置に配置される。
また、第2の層120内の六角柱122以外の領域は第2の媒質で満たされている。
図2(c)は第3の層130のxy断面概略図である。図2(c)において、131は第1の層110内の長方格子111に対して、長方格子111と同形状でx軸方向にa/2且つy軸方向にb/2ずれた位置に配置された長方格子である。長方格子131の格子点には、第2の媒質で満たされ、半径がR1である円孔132が配置されている。
また、133は、第1の層110内の長方格子113に対して、長方格子113と同形状でx軸方向にa/2且つy軸方向にb/2ずれた位置に配置された長方格子である。長方格子133の格子点には、第2の媒質で満たされ、半径がR1である円孔134が配置されている。さらに、第3の層130内の円孔132、134以外の領域は第1の媒質で満たされている。
図2(d)は第4の層140のxy断面概略図である。図2(d)において、142は第2の層120内に配置された六角柱122と同一の位置に六角柱122と同一媒質且つ同一形状の積層方向に軸を有する六角柱である。第4の層140内の六角柱142以外の領域は第2の媒質で満たされている。
実施例1では、第1、第2、第3の媒質の屈折率N1、N2、N3、第1の層110及び第3の層130に配置される円孔半径R1、第2の層120及び第4の層140に配置される六角柱の外接円の半径R2、各層の厚さ、周期a及びbを最適化している。これにより、所望の周波数域(波長域)にて広い完全フォトニックバンドギャップを得ている。
例えば、各媒質の屈折率N1〜N3、円孔の半径R1、及び六角柱の外接円の半径R2、周期、各層の厚さを表1に示す値としている。このとき平面波展開法によりフォトニックバンドギャップ構造を解析した結果を図3に示す。
図3において、横軸は、波数ベクトルすなわちフォトニック結晶に入射する電磁波の入射方向を表している。K点はz軸と平行な波数ベクトル、X点はxz平面内においてz軸(あるいはx軸)に対して45°の傾きをもった波数ベクトルを表している。L点はyz平面内においてy軸に対して35.26°の傾きをもった波数ベクトルを表している。一方、縦軸は、格子周期(周期a)で規格化した周波数(規格化周波数)を示している。図3中のハッチングで示した規格化周波数0.44から0.48においては、光の入射方向に寄らず光が存在できず、完全フォトニックバンドギャップが形成されている。この構造における完全フォトニックバンドギャップ比Δω/ω0は0.082となる。
完全フォトニックバンドギャップ比とは、完全フォトニックバンドギャップの中心周波数ω0で完全フォトニックバンドギャップ周波数帯域幅Δωを正規化するため、Δωをω0で除した値Δω/ω0である。実施例1の3次元フォトニック結晶の完全フォトニックバンドギャップ比Δω/ω0は、同じ屈折率の媒質を用いたウッドパイル構造の最適な例と比べて約1.2倍となる。なお、比較に用いたウッドパイル構造の角柱を構成する媒質の屈折率は2.4、角柱以外の領域を構成する媒質の屈折率は1.0とした。
表1に示す構造のより具体的な一例として周期aを250nmとした場合、半径R1は107.5nm、半径R2は65nm、周期bは353.6nm、厚さH1は77.5nm、厚さH2は47.5nmとなる。このときの完全フォトニックバンドギャップ中心波長は543.3nmとなり、波長522.0nmから波長566.5nmの波長域にて、完全フォトニックバンドギャップを呈する。
実施例1による3次元フォトニック結晶は、図2(a)や図2(c)に示したように、x方向に繋がった高屈折率媒質(N1)により構成される構造部分が、ウッドパイル構造と比較して滑らかに彎曲している。この彎曲部分があることで、構造の各層内及び各層間の等方性が向上する。そのため、x方向へ伝播する電磁波に対して高屈折率媒質(N1)部分にエネルギーが集中する定在波が存在しやすくなる。またyz断面内の斜め方向についても、図2(a)や図2(c)に示したように、彎曲部分の先端に突起部があることで、斜め方向への構造の等方性が向上し、低屈折率媒質にエネルギーが集中する定在波が存在しやすくなる。以上の結果、主に高屈折率媒質に集中する定在波のエネルギーと主に低屈折率媒質に集中する定在波のエネルギーのエネルギー差が増加する。この結果、完全フォトニックバンドギャップを呈する周波数帯域を大きくすることが可能となる。
以上の効果を得る為に、実施例1では図2(b)の第2の層120及び図2(d)の第4の層140に記載の六角柱122、142を用いたが、六角柱以外の多角柱や円柱や楕円柱でも同様の効果を得ることができる。
Figure 0004637071
以上のように実施例1の3次元フォトニック結晶は屈折率周期構造を含む複数の層(4つの層)を周期的に積層して構成している。第1の層110において、長方格子111は、第1層110の面内方向の第1の軸(x軸)に沿って周期a、第1層110の面内方向であって第1の軸と直交する第2の軸(y軸)に沿って周期bを有する。
長方格子113は、該長方格子111を該第1の軸に沿ってa/2且つ該第2の軸に沿ってb/4ずらした位置に形成される。第1の層110は、長方格子111と長方格子113の各格子点に、第2の媒質(屈折率N2)より成る孔112,114を有し、孔以外の領域を第1の媒質(屈折率N1)で満たした周期構造より成る。
第2の層120において、面心長方格子121は、第1の軸に沿って周期a、該第2の軸に沿って周期bを有する。第2の層120は面心長方格子121の各格子点に、第3の媒質(屈折率N3)からなり積層方向に軸を有する柱状構造122と、該柱状構造122以外の領域を第2の媒質(屈折率N2)で満たした周期構造より成る。
第3の層130は、第1の層110に含まれる周期構造が、層の面内方向において第1の層110に対して第1の軸に沿ってa/2且つ該第2の軸に沿ってb/2ずらした位置に形成される周期構造より成る。
第4の層140は、第2の層120に含まれる周期構造が、層の面内方向において第2の層120と同じ位置に形成される周期構造より成る。
実施例1の3次元フォトニック結晶は、第1の層110、第2の層120、第3の層130、第4の層140の順に積層されている。
尚、この構成は積層方向に一部分でも有していれば良い。
尚、第1、第3の層110、130に形成される孔の層面内の断面形状は円形、楕円形、多角形のうちの少なくとも1つである。
(実施例2)
図4(a)〜図4(d)は実施例2の積層構造を有する3次元フォトニック結晶の層面内(xy断面)の要部概略図である。実施例2の3次元フォトニック結晶は図4(a)〜図4(d)に示した第1の層510〜第4の層540の4層を1周期として構成されている。
図4(a)は第1の層510のxy断面概略図である。図4(a)において、511はx軸方向に周期a、y軸方向に周期bを有する長方格子である。長方格子511の格子点には、第2の媒質(低屈折率N2)で満たされ、半径がR1である円孔512が配置されている。
また、513は、長方格子511に対して長方格子511と同じ形状でx軸方向にa/2且つy軸方向にb/4ずれた位置に配置された長方格子である。長方格子513の格子点には、第2の媒質で満たされ、半径がR1である円孔514が配置されている。さらに、第1の層510内の円孔512、514以外の領域は第1の媒質(高屈折率N1)で満たされている。
図4(c)は第3の層530のxy断面概略図である。図4(c)において、531は第1の層510内の長方格子511に対して、長方格子511と同形状でx軸方向にa/2且つy軸方向にb/2ずれた位置に配置された長方格子である。長方格子531の格子点には、第2の媒質で満たされ、半径がR1である円孔532が配置されている。
また、533は第1の層510内の長方格子513に対して、長方格子513と同形状でx軸方向にa/2且つy軸方向にb/2ずれた位置に配置された長方格子である。長方格子533の格子点には、第2の媒質で満たされ、半径をR1とした円孔534が配置されている。さらに、第3の層530内の円孔532、534以外の領域は第1の媒質(高屈折率N1)で満たされている。
図4(b)は第2の層520のxy断面図である。図4(b)において、521、523は、第1の層510内の長方格子511及び長方格子513と同一の位置に配置された長方格子である。長方格子521及び長方格子523の格子点には、第2の媒質で満たされ、半径をR2とした円孔522及び円孔524が配置されている。
また、第2の層520内において、525,527は第3の層530内の長方格子531及び長方格子533と同一の位置に配置された長方格子である。長方格子525及び長方格子527の格子点に半径R2を有し且つ第2の媒質で満たされた円孔526及び円孔528が配置されている。さらに、第2の層内の円孔522,524,526,528以外の領域は、第3の媒質(高屈折率N3)で満たされている。
図4(d)は第4の層540のxy断面図である。図4(d)において第4の層540は、第2の層520内に配置された円孔522,524,526,528と同一の位置に同一媒質且つ同一形状の円孔542,544,546,548を有する。
また、第4の層540内の円孔542,544,546,548以外の領域は、第3の媒質(高屈折率N3)で満たされている。
以上のように実施例2においては、図4(b)、(d)に示す第2の層520と、第4の層540の柱状構造を次のように構成している。
第2の層520は、層面内方向において、長方格子521及び長方格子523の各格子点と、長方格子525の格子点と、長方格子527の格子点に第2の媒質より成る孔を有している。
そして柱状構造122aは、これら該孔以外の領域を第3の媒質で満たして構成されている。
第4の層540における柱状構造も第2の層520と全く同じである。
実施例2では、第1、第2、第3の媒質の屈折率N1、N2、N3、第1の層510及び第3の層530に配置された円孔の半径R1、第2の層520及び第4の層540に配置された円孔の半径R2、各層の厚さ、周期a及びbなどを最適化している。これにより所望の周波数域(波長域)にて広い完全フォトニックバンドギャップを得ている。
例えば、各媒質の屈折率N1〜N3、各層内に配置されている円孔の半径R1、R2、周期、各層の厚さを表2に示す値としている。このとき平面波展開法によりフォトニックバンドギャップ構造を解析した結果を図5に示す。
図5のハッチングで示した規格化周波数帯域では、完全フォトニックバンドギャップが形成され、完全フォトニックバンドギャップ比Δω/ω0は0.092となる。
実施例2の3次元フォトニック結晶の完全フォトニックバンドギャップ比は、同じ屈折率の媒質を用いた従来構造であるウッドパイル構造の最適な例と比べて約1.3倍となる。なお、比較に用いたウッドパイル構造の角柱122を構成する媒質の屈折率は2.4、角柱以外の領域を構成する媒質の屈折率は1.0とした。
このように、第2の層520及び第4の層540内の柱状構造を円孔により形成することで構造の等方性が向上する。
その結果、1つの周期を形成する為に必要な層数が4層と少ないにも関わらず、完全フォトニックバンドギャップを呈する周波数帯域を従来に比べて広くすることができる。
また、実施例2では第2の層520及び第4の層540内に円孔を形成することにより柱状構造を形成した。この円孔の代わりに、第2の層520および第4の層を図6(a)および図6(b)に示すように楕円孔とした場合にも同様の効果を得ることができる。もしくはこの円孔を、第2の層520および第4の層540を図7(a)および図7(b)に示すように多角孔(6角柱や8角柱その他の多角柱でも良い。)とした場合にも同様の効果を得ることができる。
次に、表3のように各媒質の屈折率N1〜N3、各層内に配置されている円孔の半径R1、R2、周期b、各層の厚さを選んだ場合に、平面波展開法によりフォトニックバンドギャップ構造を解析した。この結果完全フォトニックバンドギャップ比Δω/ω0は0.230となる。
実施例2中の3次元フォトニック結晶の完全フォトニックバンドギャップ比は、同じ屈折率の媒質を用いた従来のウッドパイル構造の最適な例と比べて、約1.3倍となる。なお、比較に用いたウッドパイル構造の角柱122を構成する媒質の屈折率は3.3、角柱以外の領域を構成する媒質の屈折率は1.0とした。
このように、3次元フォトニック結晶を構成する媒質の屈折率を変化させても本発明の効果を得ることができる。
特に1つの周期を形成する層数が4層と少ないにも関わらず、完全フォトニックバンドギャップを呈する周波数帯域を広くすることができる。
次に、表4のように各媒質の屈折率N1〜N3、各層内に配置されている円孔の半径R1、R2、周期、各層の厚さを選んだ場合に、平面波展開法によりフォトニックバンドギャップ構造を解析した。この結果、完全フォトニックバンドギャップ比Δω/ω0は0.119となる。
このように、第3の媒質の屈折率N3を第1の媒質の屈折率N1と比べて高くすることで、屈折率のコントラスト比が大きくなる。その為、高屈折率媒質部分に集中する定在波のエネルギーと、低屈折率媒質部分に集中する定在波のエネルギーの差が大きくなり、完全フォトニックバンドギャップを呈する周波数帯域を広くすることが可能となる。
以上の結果を得る為に、表4に示したパラメータでは、第1の媒質の屈折率N1よりも第3の媒質の屈折率N3を大きな値としたが、第3の媒質の屈折率N3よりも第1の媒質の屈折率N1を大きくすることでも同様の効果を得ることができる。
Figure 0004637071
Figure 0004637071
Figure 0004637071
(実施例3)
図8(a)〜図8(d)は実施例3の積層構造を有する3次元フォトニック結晶の層面内(xy断面)の要部概略図である。実施例3の3次元フォトニック結晶は図8(a)〜図8(d)に示した第1の層910〜第4の層940の4層を1周期として積層して構成されている。
図8(a)は第1の層910のxy断面図である。図8(a)において、911はx軸方向に周期a、y軸方向に周期bを有する長方格子である。長方格子911の格子点に長半径R1aと短半径R1bを有し且つ第2の媒質(低屈折率N2)で満たされた楕円孔912が配置されている。
また、913は長方格子911に対して長方格子911と同形状でx軸方向にa/2且つy軸方向にb/4ずれた位置に配置された長方格子である。長方格子913の格子点に長半径R1aと短半径R1bを有し且つ第2の媒質で満たされた楕円孔914が配置されている。さらに、第1の層910内の楕円孔912,914以外の領域は第1の媒質(高屈折率N1)で満たされている。
図8(c)は第3の層930のxy断面図である。図8(c)において931は、第1の層910内の長方格子911に対して、長方格子911と同形状でx軸方向にa/2且つy軸方向にb/2ずれた位置に配置された長方格子である。長方格子931の格子点に長半径R1aと短半径R1bを有し且つ第2の媒質で満たされた楕円孔932が配置されている。
また、933は第1の層910内の長方格子913に対して、長方格子911と同形状でx軸方向にa/2且つy軸方向にb/2ずれた位置に配置された長方格子である。長方格子933の格子点に長半径R1と短半径R2を有し且つ第2の媒質で満たされた楕円孔934が配置されている。
さらに、第3の層930内の楕円孔932,934以外の領域は第1の媒質(高屈折率N1)で満たされている。
図8(b)は第2の層920のxy断面図である。図8(b)において、921,923は、第1の層910内の長方格子911及び長方格子913と同一の位置に配置された長方格子である。長方格子921及び長方格子923の格子点に半径R2を有し且つ第2の媒質で満たされた円孔922及び円孔924が配置されている。
また925,927は、第2の層920内において、第3の層930内の長方格子931及び長方格子933と同一の位置に配置された長方格子である。長方格子925及び長方格子927の格子点に半径R2を有し且つ第2の媒質で満たされた円孔926及び円孔928が配置されている。さらに第2の層920内の円孔922,924、926、928以外の領域は第3の媒質(高屈折率N3)で満たされている。
図8(d)は第4の層940のxy断面図である。第4の層940は、図8(d)において、第2の層920内に配置された円孔922,924,926,928と同一の位置に同一媒質且つ同一形状の円孔942,944,946,948を有する。
また、第4の層940内の円孔942,944,946,948以外の領域は、第3の媒質(高屈折率)で満たされている。
実施例3では、第1、第2、第3の媒質の屈折率N1〜N3、第1の層910内及び第3の層930内に配置された楕円孔の長半径R1a及び短半径R1bを最適化している。
更に第2の層920内及び第4の層940内に配置された円孔の半径R2、各層の厚さ、周期a及びbなどを最適化している。これにより所望の周波数域(波長域)にて広い完全フォトニックバンドギャップを得ている。
例えば、表5のように、各媒質の屈折率N1〜N3、楕円孔の長半径R1a及び短半径R1b、円孔の半径R2、周期b、各層の厚さH1及びH2を選んだ場合に、平面波展開法によりフォトニックバンドギャップ構造を解析した。この結果完全フォトニックバンドギャップ比Δω/ω0は0.092となる。
以上の結果から、第1の層910及び第3の層930内の屈折率周期構造を楕円孔により形成した場合においても、フォトニックバンドギャップ帯域の方向依存性が弱くなる。この結果1つの周期を形成するのに必要な層数が4層と少ないにも関わらず、完全フォトニックバンドギャップを呈する周波数帯域を広くすることができる。
以上の効果を得る為に、実施例3中では、図8(a)中の第1の層910及び第3の層930内に楕円孔を配置したが、この楕円孔を、多角孔とした場合にも同様の効果を得ることができる。
Figure 0004637071
次に、フォトニック結晶の具体的な作製プロセスの実施例について説明する
(実施例4)
図9(a)〜図9(i)は、フォトニック結晶の作製プロセスの実施例4の説明図である。
まず、基板1001上に結晶成長や蒸着などにより、媒質1による薄膜1002を形成し(図9(a))、薄膜1002上にレジスト1003を塗布する(図9(b))。次に、電子ビームリソグラフィなどによって周期レジストパターン1004を形成し(図9(c)、周期レジストパターン1004をマスクとしてエッチングにより薄膜1002に孔を形成する。
次に、残存レジスト1003を除去することで、第1の層内に周期的な屈折率分布を有する屈折率周期構造1005を形成している(図9(d))。
次に、基板1006上に結晶成長や蒸着などにより、媒質3による薄膜1007を形成する(図9(e))。
次いで屈折率周期構造1005のパターン面と、薄膜1007が対向するように融着した後(図9(f))、基板1006をリフトオフやエッチングなどにより除去する(図9(g))。以上の工程により屈折率周期構造1005上に薄膜1007を形成している。屈折率周期構造上に薄膜を形成する為の方法として、屈折率周期構造の空隙を媒質2や後工程にて選択エッチング可能な媒質により充填した後、屈折率周期構造上に結晶成長や蒸着を用いて薄膜を形成する方法を用いても良い。
次に、薄膜1007上にレジストを塗布し、電子ビームリソグラフィなどによって周期レジストパターン1008を形成する(図9(h))。
次に、周期レジストパターン1008をマスクとして薄膜1007をエッチング後、残存レジストを除去することによって第2の層内の屈折率周期構造1009を第1の層上に形成している(図9(i))。
第3の層以降も、以上の作製方法を繰り返すことにより、複数層よりなる3次元フォトニック結晶を作製する。
図10は、実施例4の方法で作製した3次元フォトニック結晶の要部概略図である。
また、層内の屈折率周期構造は、干渉露光法、ナノインプリント法、超短パルス光による多光子吸収をもちいた方法や、X線露光、紫外線露光、近接場露光などリソグラフィ技術を用いた方法などとエッチングを組み合わせて形成してもよい。
本実施例によるフォトニック結晶を構成する媒質1と媒質3は、GaAs、InP、GaNやZnOなどの化合物半導体、Siなどの半導体、TiOなどの誘電体や金属を用いている。
尚、媒質1と媒質3に同一の媒質を用いてもよい。媒質1と媒質3に同一の媒質を用いることで、ウエハ融着や屈折率周期構造上への結晶成長などが容易になり、3次元フォトニック結晶の作製がより容易になる。
また、媒質2(媒質1と媒質3以外の領域)として、空気や、SiO2などの誘電体、PMMAなどの高分子有機材などを用いている。
実施例4中では、第1の層1005上に薄膜を形成後、電子ビームリソグラフィ等とエッチングを組み合わせて第2の層を作製している。
しかし、基板1006上の薄膜1007に屈折率周期構造を形成した後、第1の層1005と屈折率周期構造を形成した薄膜1007が対向するようにウエハ融着を行い、基板1006をリフトオフやエッチング等を用いて剥離する方法を用いても良い。
(実施例5)
次にフォトニック結晶の作製プロセスの実施例5について説明する。
実施例5では、第2の層及び第4の層内の柱状構造を形成する為に孔を用い、且つ各層内に配置される孔が層面内において同一形状を有している場合の作製プロセスである。例えば、図4(a)〜(d)に示した3次元フォトニック結晶のxy断面図において、第1の層510及び第3の層530の円孔半径R1と第2の層520及び第4の層540の円孔半径R2の値が等しい場合である。
図11(a)に示すように、基板1201上に結晶成長や蒸着により、媒質1による薄膜1202を形成する。
次にレジスト1203を薄膜1202上に塗布する(図11(b))。
次に電子ビームリソグラフィなどによって周期レジストパターンを形成する。その後に、該周期レジストパターンをマスクとしてエッチングにより薄膜1202に孔1204を形成する(図11(c))。
次に残存レジスト1203を除去することによって、薄膜1202内の屈折率周期構造を基板上に形成する(図11(d))。
次に、図11(e)に示すように、基板1205上に媒質1による薄膜1206を形成する。そして薄膜1206と薄膜1202内の屈折率周期構造(第1の屈折率周期構造)のパターン面が対向するように融着し(図11(f))、リフトオフやエッチングなどにより基板1205を除去する(図11(g))。
屈折率周期構造上に薄膜を形成する方法としては、薄膜1202内の屈折率周期構造の空隙(孔1204)を媒質2や後工程にて選択エッチング可能な媒質で充填した上で、結晶成長や蒸着を用いて薄膜1206を形成してもよい。
次に、薄膜1206上にレジスト1207を塗布し、電子ビームリソグラフィなどにより周期レジストパターンを形成した後、周期レジストパターンをマスクとしてエッチングにより薄膜1206内に屈折率周期構造(第2の屈折率周期構造)を形成する。
このとき孔1208を薄膜1206の膜厚より深くエッチングする(図11(h))。その後、残存レジスト1207を除去することによって3次元フォトニック結晶の第1の層上に第2の層及び第3の層を同時に形成している(図11(i))。
次に、図11(f)で示す薄膜1202上に薄膜1206を形成した工程と同様の工程を用いることにより、屈折率周期構造を有する薄膜1206上に、媒質1による薄膜1209を形成する(図11(j))。
次に、図11(h)で示す薄膜1206内の屈折率周期構造を形成した工程と同様の工程を用いて、薄膜1209内に孔1210を形成する。
以上の工程により、3次元フォトニック結晶の第1の層、第2の層、第3の層、第4の層を形成している(図11(k))。
図12は、作製方法を繰り返すことにより、複数層からなる3次元フォトニック結晶を作製したときの要部断面図である。
また、層内の屈折率周期構造は、干渉露光法、ナノインプリント法、超短パルス光による多光子吸収をもちいた方法や、X線露光、紫外線露光、近接場露光などリソグラフィ技術を用いた方法などとエッチングを組み合わせて形成してもよい。
本実施例によるフォトニック結晶を構成する媒質1は、例えばGaAs、InP、GaNやZnOなどの化合物半導体、Siなどの半導体、TiOなどの誘電体や金属を用いる。媒質2として、空気や、SiOなどの誘電体や、PMMAなどの高分子有機材などを用いている。以上の作製手法を用いることで、本実施例の3次元フォトニック結晶内の隣接する2つの層を同時に形成することが可能となり、より容易に且つ少ない工程で3次元フォトニック結晶を作製することが可能となる。
(実施例6)
次に、本発明による3次元フォトニック結晶を用いた機能素子の実施例を示す。図13(a)、(b)は、本発明による3次元フォトニック結晶中に周期を乱す線状の欠陥を配置した導波路1400を有した機能素子の断面図である。
本実施例中では、3次元フォトニック結晶中に周期を乱す線状の欠陥を設けている。これにより、フォトニック結晶が有する完全フォトニックバンドギャップ波長域中の一部の波長域の電磁波に対して、欠陥部1400のみ電磁波が存在できる状態にすることができる。
これにより、低損失且つ急峻な曲げ角度を実現できる導波路を構成している。図13(a)は、本発明による3次元フォトニック結晶中の所定の領域に構造を付加し、直線状の導波路1400を構成したものの断面図を示している。図13(b)は本発明による3次元フォトニック結晶の所定の領域にのみ構造を付加し、曲げ導波路1401を構成したものの断面図を示している。線状の欠陥部は、導波路波長域など所望の性能の導波路構造となるように、構造を除去、あるいは位置をずらす、形状を変える、フォトニック結晶を構成する媒質とは屈折率の異なる媒質で置換するなどして形成する。
図13(c)は本発明による3次元フォトニック結晶中に周期を乱す孤立した欠陥を配置した共振器1401の断面図である。図13(c)の実施例中では、周期を乱す孤立した欠陥部1402を設けている。これにより、フォトニック結晶が有する完全フォトニックバンドギャップ内の波長域中の一部の波長域の電磁波に対して、欠陥部1402のみ電磁波が存在できる状態にすることができる。
これにより、非常に小さい領域に電磁波を閉じ込め、且つ閉じ込め効果の高い高性能な共振器を構成している。この共振器を用いることにより、入射波から共振器の共振波長に対応した非常に狭い波長域の電磁波を取り出す波長選択フィルタなどが実現できる。
孤立した点状の周期を乱す欠陥は、選択波長など所望の共振器となるように、構造部を除去、あるいは位置をずらす、形状を変えるなどして形成する。本発明による作製手法で作製されたフォトニック結晶を用いて共振器を構成することにより、所望波長域で動作する共振器を容易に作製することができる。
本実施例において、図13(c)に示した共振器内に活性媒質を充填し、共振器外部から電磁波や電流などでエネルギーを供給することにより、非常に効率の高いレーザやLEDなどの発光素子を実現している。
例えば、前記共振器の共振波長を赤外光通信波長帯域(800nm−1800nm)に対応させることで光通信用光源に用いることができる。そして光の三原色である赤色(R)、緑色(G)、青色(B)に対応させることで、画像表示装置用の光源手段に用いることができる。
またCDやDVDなどの光ピックアップ用光源に用いることができる。
なお、図13(a)、(b)に示した導波路や図13(c)に示した共振器、発光素子、フォトニックバンド内の分散異常を用いた偏光素子などの様々な機能素子を組み合わせることで、超小型高機能集積回路を実現することができる。
以上述べたように、各実施例の3次元フォトニック結晶は、一つの周期を形成する為に要する層数が4層と少ない為作製が容易である。且つ屈折率周期構造の方向依存性が弱い為に従来の3次元フォトニック結晶よりも広い完全フォトニックバンドギャップが得られる。
また、各実施例の3次元フォトニック結晶を用いて機能素子を構成すれば、作製が容易で、より広い波長帯域で動作する機能素子を実現できる。
またそれらを組み合わせることで、超小型高機能集積回路を実現できる。
以上のように各実施例によれば、1つの基本周期を形成する為に必要な層数が少なく、製造が容易で、しかも広い波長域で完全フォトニックバンドギャップを呈する3次元フォトニック結晶及びそれを有する機能素子が得られる。
本発明の3次元フォトニック結晶の要部斜視図 本発明の3次元フォトニック結晶の実施例1の各層の説明図 本発明の3次元フォトニック結晶の実施例1のフォトニックバンド構造の説明図 本発明の3次元フォトニック結晶の実施例2の各層の説明図 本発明の3次元フォトニック結晶の実施例2のフォトニックバンド構造の説明図 本発明の3次元フォトニック結晶の変形例の説明図 本発明の3次元フォトニック結晶の変形例の説明図 本発明の3次元フォトニック結晶の変形例の説明図 本発明の3次元フォトニック結晶の作製方法の説明図 本発明の3次元フォトニック結晶の要部断面図 本発明の3次元フォトニック結晶の作製方法の説明図 本発明の3次元フォトニック結晶の要部断面図 本発明の3次元フォトニック結晶を有する機能素子の説明図 従来の3次元フォトニック結晶の概略図
符号の説明
110 第1の層
120 第2の層
130 第3の層
140 第4の層
111 長方格子
113 長方格子
131 長方格子
133 長方格子
510 第1の層
520 第2の層
530 第3の層
540 第4の層
511 長方格子
513 長方格子
531 長方格子
533 長方格子
112 円孔
114 円孔
132 円孔
134 円孔
512 円孔
514 円孔
532 円孔
534 円孔
122 6角柱
142 6角柱
910 第1の層
920 第2の層
930 第3の層
940 第4の層
911 長方格子
913 長方格子
931 長方格子
933 長方格子
912 楕円孔
914 楕円孔
932 楕円孔
934 楕円孔
922 円孔
924 円孔
926 円孔
928 円孔
942 円孔
944 円孔
946 円孔
948 円孔

Claims (13)

  1. 屈折率周期構造を含む複数の層を周期的に積層した3次元フォトニック結晶であって、
    該層面内方向の第1の軸に沿って周期a、該層面内方向であって該第1の軸と直交する第2の軸に沿って周期bを有する長方格子1の各格子点と、該長方格子1を該第1の軸に沿ってa/2且つ該第2の軸に沿ってb/4ずらした位置に形成される長方格子2の各格子点に、第2の媒質より成る孔を有し、該孔以外の領域を第1の媒質で満たした周期構造より成る第1の層と、
    該長方格子1を第2の軸に沿って+3b/8ずらした位置に形成され、該第1の軸に沿って周期a、該第2の軸に沿って周期bを有する面心長方格子の各格子点に、第3の媒質からなり積層方向に軸を有する柱状構造と、該柱状構造以外の領域を前記第2の媒質で満たした周期構造より成る第2の層と、
    前記第1の層に含まれる周期構造が、層面内方向において該第1の層に対して該第1の軸に沿ってa/2且つ該第2の軸に沿ってb/2ずらした位置に形成される周期構造より成る第3の層と、
    前記第2の層に含まれる周期構造が、層面内方向において該第2の層と同じ位置に形成される周期構造より成る第4の層を有し、
    該第1の層、第2の層、第3の層、第4の層の順に周期的に積層されていることを特徴とする3次元フォトニック結晶。
  2. 前記第1、第3の層に形成される孔の層面内の断面形状は円形又は楕円形であることを特徴とする請求項1に記載の3次元フォトニック結晶。
  3. 前記第2、第4の層の柱状構造は、層面内方向において、前記長方格子1及び前記長方格子2の各格子点と、
    該長方格子1を前記第1の軸に沿ってa/2且つ前記第2の軸に沿ってb/2ずらした位置に形成される長方格子3の格子点と、
    該長方格子2を前記第1の軸に沿ってa/2且つ前記第2の軸に沿ってb/2ずらした位置に配置した長方格子4の格子点に、
    該第2の媒質より成る孔を有し、該孔以外の領域で構成されることを特徴とする請求項1または2に記載の3次元フォトニック結晶。
  4. 前記第2、第4の層に形成される前記孔の層面内の形状は円形または楕円形であることを特徴とする請求項3に記載の3次元フォトニック結晶。
  5. 前記第2の層及び前記第4の層内に形成された前記孔の層面内の形状が、前記第1の層及び前記第3の層内に形成された前記孔の層面内の形状と等しいことを特徴とする請求項4に記載の3次元フォトニック結晶。
  6. 前記柱状構造は、層面内の断面形状が多角形であることを特徴とする請求項1または2に記載の3次元フォトニック結晶。
  7. 前記第1の媒質と前記第3の媒質は異なる媒質であることを特徴とする請求項1乃至6のいずれか1項に記載の3次元フォトニック結晶。
  8. 前記第1の媒質と前記第3の媒質が同一の媒質であることを特徴とする請求項1乃至6のいずれか1項に記載の3次元フォトニック結晶。
  9. 請求項1乃至8のいずれか1項に記載の3次元フォトニック結晶と、該3次元フォトニック結晶の内部に周期欠陥部を有していることを特徴とする機能素子。
  10. 前記周期欠陥部は、線状の周期欠陥部であり、該線状の周期欠陥部により導波路を形成していることを特徴とする請求項9に記載の機能素子。
  11. 前記周期欠陥部は孤立した周期欠陥部であり、該孤立した周期欠陥部により共振器を形成していることを特徴とする請求項9に記載の機能素子。
  12. 前記共振器は発光作用を呈する活性媒質を有していることを特徴とする請求項11に記載の機能素子。
  13. 請求項1に記載の3次元フォトニック結晶の作製方法であって、基板上に第1の屈折率周期構造を有する層を形成する工程と、該第1の屈折率周期構造を有する層上に薄膜を形成する工程と、該薄膜に第2の屈折率周期構造を該薄膜の膜厚よりも深くエッチングして形成する工程とを用いて作製することを特徴とする3次元フォトニック結晶の作製方法。
JP2006254437A 2005-10-26 2006-09-20 3次元フォトニック結晶及びそれを用いた機能素子 Expired - Fee Related JP4637071B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006254437A JP4637071B2 (ja) 2005-10-26 2006-09-20 3次元フォトニック結晶及びそれを用いた機能素子
DE602006002581T DE602006002581D1 (de) 2005-10-26 2006-10-16 Dreidimensionaler photonischer Kristall und diesen enthaltende funktionale Vorrichtung
EP06122333A EP1791008B1 (en) 2005-10-26 2006-10-16 Three-dimensional photonic crystal and functional device including the same
AT06122333T ATE407378T1 (de) 2005-10-26 2006-10-16 Dreidimensionaler photonischer kristall und diesen enthaltende funktionale vorrichtung
US11/551,741 US7274849B2 (en) 2005-10-26 2006-10-23 Three-dimensional photonic crystal and functional device including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005311259 2005-10-26
JP2006254437A JP4637071B2 (ja) 2005-10-26 2006-09-20 3次元フォトニック結晶及びそれを用いた機能素子

Publications (2)

Publication Number Publication Date
JP2007148365A JP2007148365A (ja) 2007-06-14
JP4637071B2 true JP4637071B2 (ja) 2011-02-23

Family

ID=37907816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006254437A Expired - Fee Related JP4637071B2 (ja) 2005-10-26 2006-09-20 3次元フォトニック結晶及びそれを用いた機能素子

Country Status (5)

Country Link
US (1) US7274849B2 (ja)
EP (1) EP1791008B1 (ja)
JP (1) JP4637071B2 (ja)
AT (1) ATE407378T1 (ja)
DE (1) DE602006002581D1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4603847B2 (ja) * 2004-10-15 2010-12-22 キヤノン株式会社 共振器および発光素子および波長変換素子
JP4636996B2 (ja) * 2005-10-26 2011-02-23 キヤノン株式会社 3次元フォトニック結晶およびそれを有する機能素子
JP4689441B2 (ja) * 2005-11-14 2011-05-25 キヤノン株式会社 導波路及びそれを有するデバイス
US7459324B1 (en) * 2006-01-13 2008-12-02 The United States Of America As Represented By The Secretary Of The Navy Metal nanoparticle photonic bandgap device in SOI method
JP4910495B2 (ja) * 2006-06-20 2012-04-04 富士ゼロックス株式会社 3次元構造体およびその製造方法
JP4769658B2 (ja) * 2006-07-31 2011-09-07 キヤノン株式会社 共振器
JP4956119B2 (ja) * 2006-09-27 2012-06-20 キヤノン株式会社 発光素子およびそれを用いた表示素子
JP2009054795A (ja) * 2007-08-27 2009-03-12 Yokohama National Univ 半導体レーザ
KR101012079B1 (ko) * 2008-01-29 2011-02-07 이경욱 광발색 광결정 구조체와 그 제조방법 및 제조장치
US9052425B2 (en) 2008-01-29 2015-06-09 Samwon Fa Co., Ltd. Silicon solar cell
US10718901B2 (en) 2013-06-26 2020-07-21 Micron Technology, Inc. Photonic device having a photonic crystal lower cladding layer provided on a semiconductor substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074954A (ja) * 1999-08-31 2001-03-23 Nippon Telegr & Teleph Corp <Ntt> 3次元フォトニック結晶構造体の作製方法
JP2005292787A (ja) * 2004-03-08 2005-10-20 Canon Inc 3次元周期構造及びそれを有する機能素子および発光素子
JP2007121523A (ja) * 2005-10-26 2007-05-17 Canon Inc 3次元フォトニック結晶およびそれを有する機能素子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5335240A (en) * 1992-12-22 1994-08-02 Iowa State University Research Foundation, Inc. Periodic dielectric structure for production of photonic band gap and devices incorporating the same
US5440421A (en) * 1994-05-10 1995-08-08 Massachusetts Institute Of Technology Three-dimensional periodic dielectric structures having photonic bandgaps
US6358854B1 (en) * 1999-04-21 2002-03-19 Sandia Corporation Method to fabricate layered material compositions
WO2002012933A2 (en) * 2000-08-09 2002-02-14 Massachusetts Institute Of Technology Periodic dielectric structure having a complete three-dimensional photonic band gap
US6898362B2 (en) * 2002-01-17 2005-05-24 Micron Technology Inc. Three-dimensional photonic crystal waveguide structure and method
WO2003087904A1 (en) * 2002-04-12 2003-10-23 Massachusetts Institute Of Technology Metamaterials employing photonic crystals
WO2005006039A1 (en) * 2003-06-24 2005-01-20 Massachusetts Institute Of Technology Polarization-independent optical networks in 3d photonic crystals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074954A (ja) * 1999-08-31 2001-03-23 Nippon Telegr & Teleph Corp <Ntt> 3次元フォトニック結晶構造体の作製方法
JP2005292787A (ja) * 2004-03-08 2005-10-20 Canon Inc 3次元周期構造及びそれを有する機能素子および発光素子
JP2007121523A (ja) * 2005-10-26 2007-05-17 Canon Inc 3次元フォトニック結晶およびそれを有する機能素子

Also Published As

Publication number Publication date
EP1791008A1 (en) 2007-05-30
JP2007148365A (ja) 2007-06-14
DE602006002581D1 (de) 2008-10-16
ATE407378T1 (de) 2008-09-15
US7274849B2 (en) 2007-09-25
EP1791008B1 (en) 2008-09-03
US20070104442A1 (en) 2007-05-10

Similar Documents

Publication Publication Date Title
JP4637071B2 (ja) 3次元フォトニック結晶及びそれを用いた機能素子
JP4636996B2 (ja) 3次元フォトニック結晶およびそれを有する機能素子
JP4612844B2 (ja) 3次元周期構造及びそれを有する機能素子
JP5188009B2 (ja) 3次元周期構造及びそれを有する機能素子および発光素子
JP4560348B2 (ja) 3次元フォトニック結晶およびそれを用いた光学素子
JP4681935B2 (ja) 3次元フォトニック結晶およびそれを用いた光学素子
JP4769658B2 (ja) 共振器
US7502541B2 (en) Resonator, light emitting device, and wavelength conversion device
JP4677276B2 (ja) 3次元フォトニック結晶の作製方法
US7680382B2 (en) Method for fabricating three-dimensional photonic crystal
JP4684861B2 (ja) 導波路及びそれを有するデバイス
JP2006313267A5 (ja)
US7313307B2 (en) Waveguide and device including the same
JP5002216B2 (ja) 導波路及びそれを有する発光素子
JP2011085708A (ja) 3次元フォトニック結晶の作製方法および機能素子
CN100416321C (zh) 三维光子晶体和包含三维光子晶体的功能器件
JP5173386B2 (ja) 3次元フォトニック結晶及び機能素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090918

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4637071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees