JP4627652B2 - 酸化マグネシウム蒸着材 - Google Patents
酸化マグネシウム蒸着材 Download PDFInfo
- Publication number
- JP4627652B2 JP4627652B2 JP2004292642A JP2004292642A JP4627652B2 JP 4627652 B2 JP4627652 B2 JP 4627652B2 JP 2004292642 A JP2004292642 A JP 2004292642A JP 2004292642 A JP2004292642 A JP 2004292642A JP 4627652 B2 JP4627652 B2 JP 4627652B2
- Authority
- JP
- Japan
- Prior art keywords
- magnesium oxide
- oxide
- vapor deposition
- content
- magnesium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Gas-Filled Discharge Tubes (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Physical Vapour Deposition (AREA)
Description
この課題を解決するための手段として、酸化マグネシウム膜に特定の金属酸化物を導入する方法が検討されている。
蒸着材の酸化マグネシウム原料に、塩基性炭酸マグネシウム五水和物を用いると、その焼成の際に炭酸ガスが発生するため、蒸着材の内部に気泡ができやすくなるという問題がある。蒸着材の内部に気泡があると、電子ビームの照射時の熱衝撃によりスプラッシュ(蒸着材の破片が飛び散る現象)が起こりやすくなる。
また、蒸着により形成される酸化マグネシウム膜の金属酸化物濃度は、蒸着材の金属酸化物濃度よりも少なくなる傾向にある(特に、酸化ジルコニウムのような沸点が酸化マグネシウムよりも高い金属酸化物でこの傾向は高くなる)が、一方では蒸着材の金属酸化物濃度を高くするほど、蒸着材中に金属酸化物を均一に分散させるのが難しくなるという問題がある。金属酸化物が均一に分散していない蒸着材を用いて電子ビーム蒸着を行なうと、得られる酸化マグネシウム膜の二次電子放出効率に部分的なばらつきが見られるようになるだけではなく、膜密度(屈折率)の低下、すなわち耐イオン衝撃性の低下を招くことになる。
(1)金属酸化物が、酸化ジルコニウムである。
(2)酸化マグネシウムが、純度99.9質量%以上である。
(3)酸化マグネシウムが、立方体形状の一次粒子から構成されている。
(4)酸化マグネシウムと金属元素の価数が3価、4価又は5価のいずれかである金属酸化物とを、モル比で99.99:0.01〜94:6の範囲にて、バインダーを含む水性分散媒体に分散させてなるスラリーをスプレードライヤーにより噴霧乾燥することにより、酸化マグネシウムと上記金属酸化物との混合造粒物を得て、得られた造粒物をペレット状に成形し、そしてペレット状成形物を焼結させることによって製造されたものである。
次に、本発明の酸化マグネシウム以外のアルカリ土類金属酸化物と、金属元素の価数が3価、4価又は5価のいずれかである金属酸化物とを含む蒸着材は、吸湿性が低いので、長期間保存しても均質な酸化マグネシウム膜を安定して形成することができる。また、この蒸着材を用いて得られる酸化マグネシウム膜は、酸化マグネシウム以外のアルカリ土類金属酸化物(酸化カルシウム、酸化ストロンチウムあるいは酸化バリウム)を含むので、二次電子の放出効率が高い。従って、上記本発明の蒸着材は、交流型プラズマディスプレイパネルの誘電体層の保護膜として有用な酸化マグネシウム膜を形成するのに有利に利用することができる。
酸化マグネシウムと金属元素の価数が3価、4価又は5価のいずれかである金属酸化物とを焼結して得たペレットからなる本発明の蒸着材において、金属酸化物の含有量は0.01〜6モル%の範囲、好ましくは0.1〜0.5モル%の範囲にある。金属酸化物の含有量が0.01モル%未満だと添加効果が十分に認められず、6モル%より多いと金属酸化物を均一に分散させるのが難しくなる。
上記酸化マグネシウム膜は、緻密性を表す指標の一つである屈折率が1.70〜1.74の範囲にあることが好ましい。
酸化マグネシウムと、酸化マグネシウム以外のアルカリ土類金属酸化物と、金属元素の価数が3価、4価又は5価のいずれかである金属酸化物とからなる焼結体からなる蒸着材において、アルカリ土類金属酸化物の含有量及び金属元素の価数が3価、4価又は5価のいずれかである金属酸化物の含有量は、それぞれ金属元素量に換算して0.005モル%以上であり、かつその合計量は金属元素量に換算して6モル%以下である。酸化マグネシウム以外のアルカリ土類金属酸化物と、金属元素の価数が3価、4価又は5価のいずれかである金属酸化物とが複合酸化物を形成していてもよい。アルカリ土類金属酸化物の含有量と金属元素の価数が3価、4価又は5価のいずれかである金属酸化物の含有量は、金属元素量に換算したモル比で2:1〜1:2の範囲にあることが好ましく、1.5:1〜1:1.5の範囲にあることがより好ましい。
上記の金属酸化物の中で好ましいのは、アルミニウム、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブテン、タングステン、マンガン、鉄、コバルト及びニッケルの酸化物である。特に、好ましいのは沸点が酸化マグネシウムの沸点(3600℃)と同等もしくはそれよりも高い金属酸化物であり、具体的には酸化アルミニウム及び酸化ジルコニウムである。高沸点の金属酸化物は、電子ビーム蒸着法により酸化マグネシウム膜を形成する際に、電子ビームの照射により加熱された蒸着材中の酸化マグネシウムの結晶成長を抑制する効果がある。
但し、実施例1−1は本願発明の実施例ではない。
[実施例1−1]
気相酸化反応法により製造された酸化マグネシウム(MgO)粉末(純度:99.985質量%、一次粒子の平均粒子径:0.2μm、一次粒子の形状:立方体)と酸化ジルコニウム(ZrO2)粉末(純度:99.9質量%、一次粒子の平均粒子径:0.2μm)
との混合粉末[MgO/ZrO2=99.967/0.033(モル比)]50質量部と
を、ポリエチレングリコール濃度6質量%及びポリカルボン酸アンモニウム塩濃度1質量%の水溶液50質量部に混合分散して、スラリー(温度:25℃)を調製した。調製後、スラリー温度を25℃に維持しながら、速やかに(スラリー調製後、約15分以内)、スプレードライヤーを用いて、スラリーを噴霧乾燥(加熱温度:230℃)して造粒物を得た。得られた造粒物を成形圧2トン/cm2にて、ペレット状(直径:6.0mm、高さ
:2.5mm、成形体密度:2.50g/cm3)に成形した。次いで、該成形物を、電
気炉を用いて1650℃の温度で4時間焼成して焼結させた。得られた焼結体ペレットの相対密度は98.3%であった。
蛍光X線法によりジルコニウム含有量を測定して、その値を酸化ジルコニウム含有量に換算した。
[二次電子放出係数の測定方法]
Neイオンの照射により発生した二次電子量を測定した。Neイオンの照射条件は、真空度:3×10-5Pa、Neイオンの加速電圧:300eV、基板温度:300℃とした。
[屈折率の測定方法]
エリプソメータを用いて、波長633nmの光の屈折率を測定した。
混合粉末の組成比を、MgO/ZrO2=99.84/0.16(モル比)とした以外は、実施例1−1と同じ条件で焼結体ペレットを製造した。得られた焼結体ペレットの相対密度は99.0%であった。
この焼結体ペレットを蒸着材に用いて、実施例1−1と同様に、電子ビーム蒸着法により酸化マグネシウム膜を形成した。得られた酸化マグネシウム膜のジルコニウム含有量、二次電子放出係数及び屈折率を、表1に示す。
混合粉末の組成比を、MgO/ZrO2=99.67/0.33(モル比)とした以外は、実施例1−1と同じ条件で焼結体ペレットを製造した。得られた焼結体ペレットの相対密度は99.0%であった。
この焼結体ペレットを蒸着材に用いて、実施例1−1と同様に、電子ビーム蒸着法により酸化マグネシウム膜を形成した。得られた酸化マグネシウム膜のジルコニウム含有量、二次電子放出係数及び屈折率を、表1に示す。
混合粉末の組成比を、MgO/ZrO2=99.00/1.00(モル比)とした以外は、実施例1−1と同じ条件で焼結体ペレットを製造した。得られた焼結体ペレットの相対密度は98.9%であった。
この焼結体ペレットを蒸着材に用いて、実施例1−1と同様に、電子ビーム蒸着法により酸化マグネシウム膜を形成した。得られた酸化マグネシウム膜のジルコニウム含有量、二次電子放出係数及び屈折率を、表1に示す。
混合粉末の組成比を、MgO/ZrO2=98.31/1.69(モル比)とした以外は、実施例1−1と同じ条件で焼結体ペレットを製造した。得られた焼結体ペレットの相対密度は98.8%であった。
この焼結体ペレットを蒸着材に用いて、実施例1−1と同様に、電子ビーム蒸着法により酸化マグネシウム膜を形成した。得られた酸化マグネシウム膜のジルコニウム含有量、二次電子放出係数及び屈折率を、表1に示す。
混合粉末の組成比を、MgO/ZrO2=96.49/3.51(モル比)とした以外は、実施例1−1と同じ条件で焼結体ペレットを製造した。得られた焼結体ペレットの相対密度は98.8%であった。
この焼結体ペレットを蒸着材に用いて、実施例1−1と同様に、電子ビーム蒸着法により酸化マグネシウム膜を形成した。得られた酸化マグネシウム膜のジルコニウム含有量、二次電子放出係数及び屈折率を、表1に示す。
混合粉末の組成比を、MgO/ZrO2=94.54/5.46(モル比)とした以外は、実施例1−1と同じ条件で焼結体ペレットを製造した。得られた焼結体ペレットの相対密度は98.7%であった。
この焼結体ペレットを蒸着材に用いて、実施例1−1と同様に、電子ビーム蒸着法により酸化マグネシウム膜を形成した。得られた酸化マグネシウム膜のジルコニウム含有量、二次電子放出係数及び屈折率を、表1に示す。
酸化ジルコニウム粉末を添加しない以外は、実施例1−1と同じ条件で焼結体ペレットを製造した。得られた焼結体ペレットの相対密度は97.0%であった。
この焼結体ペレットを蒸着材に用いて、実施例1−1と同様に電子ビーム蒸着法により酸化マグネシウム膜を形成した。得られた酸化マグネシウム膜のジルコニウム含有量、二次電子放出係数及び屈折率を、表1に示す。
────────────────────────────────────────
焼結体ペレット 酸化マグネシウム膜
──────── ────────────────────────
ZrO2含有量 ZrO2含有量 二次電子放出係数(*) 屈折率
(モル%) (モル%) (−) (−)
────────────────────────────────────────
実施例1−1 0.033 0.00016 1.10 1.702
実施例1−2 0.16 0.00033 1.30 1.705
実施例1−3 0.33 0.0049 1.35 1.708
実施例1−4 1.00 0.013 1.32 1.723
実施例1−5 1.69 0.016 1.29 1.735
実施例1−6 3.51 0.033 1.20 1.729
実施例1−7 5.46 0.049 1.15 1.722
────────────────────────────────────────
比較例1−1 ZrO2添加せず 検出されず 1.00 1.693
────────────────────────────────────────
(*)実施例1−1〜1−7の二次電子放出係数は、比較例1−1の二次電子放出係数を1.00とした場合の相対比である。
但し、実施例2−1〜2−11及び比較例2−1〜2−4は、本発明の実施例及び比較例ではない。
[実施例2−1]
気相酸化反応法により製造された酸化マグネシウム(MgO)粉末(純度:99.985質量%、一次粒子平均粒子径:0.2μm、一次粒子形状:立方体)と、炭酸カルシウム(CaCO3)粉末(純度:99.9質量%、一次粒子平均粒子径:0.2μm)と、酸化ジルコニウム(ZrO2)粉末(純度:99.9質量%、一次粒子平均粒子径:0.2μm)とを、それぞれMgO:CaCO3:ZrO2=99.892:0.054:0.054(モル比)の割合で混合した。この混合粉末50質量部を、ポリエチレングリコール濃度6質量%、及びポリカルボン酸アンモニウム塩濃度1質量%の水50質量部に分散して、スラリー(液温:25℃)を調製した。
調製したスラリーを、その液温を25℃に維持しながら速やかに(約15分以内)に、スプレードライヤーを用いて、噴霧乾燥して造粒物を得た。
得られた造粒物を金型に充填して、成形圧2トン/cm2にてペレット状(直径:6.0mm、厚さ:2.5mm、成形体密度:2.50g/cm3)に成形した。
そして最後に、ペレット状成形体を、電気炉を用いて1650℃の温度で4時間焼成して焼結させた。
ICP発光分光計により金属元素含有量を測定した。
[相対密度の測定方法]
アルキメデス法により測定した。
焼結体ペレット30gを正確に秤量し、これを温度60℃、相対湿度85%RHの環境下に300時間静置した。静置後の焼結体ペレットの重量を測定して、下記の式により求めた重量増加率を吸湿率とした。吸湿率は、0.1%以下であることが好ましい。
吸湿率%={静置後の焼結体ペレットの重量−静置前の焼結体ペレットの重量(30g)}/静置前の焼結体ペレットの重量(30g)×100
酸化マグネシウム粉末と炭酸カルシウム粉末と酸化ジルコニウム粉末との混合割合を、それぞれMgO:CaCO3:ZrO2=99.642:0.179:0.179(モル比)とする以外は、実施例2−1と同様にして、焼結体ペレットを製造した。この焼結体ペレットの金属元素含有量(カルシウム含有量、ジルコニウム含有量)、相対密度及び吸湿率をそれぞれ前記の方法で測定した。その結果を、表2に示す。
酸化マグネシウム粉末と炭酸カルシウム粉末と酸化ジルコニウム粉末との混合割合を、それぞれMgO:CaCO3:ZrO2=98.214:0.893:0.893(モル比)とする以外は、実施例2−1と同様にして、焼結体ペレットを製造した。この焼結体ペレットの金属元素含有量(カルシウム含有量、ジルコニウム含有量)、相対密度及び吸湿率をそれぞれ前記の方法で測定した。その結果を、表2に示す。
酸化マグネシウム粉末と炭酸カルシウム粉末と酸化ジルコニウム粉末との混合割合を、それぞれMgO:CaCO3:ZrO2=94.642:2.679:2.679(モル比)とする以外は、実施例2−1と同様にして、焼結体ペレットを製造した。この焼結体ペレットの金属元素含有量(カルシウム含有量、ジルコニウム含有量)、相対密度及び吸湿率をそれぞれ前記の方法で同様に測定した。その結果を、表2に示す。
炭酸カルシウム粉末と酸化ジルコニウム粉末の代わりに、ジルコニウム酸カルシウム(CaZrO3)粉末(純度:99.5質量%、一次粒子平均粒子径:0.4μm)を用い
、酸化マグネシウム粉末とジルコニウム酸カルシウム粉末との混合割合を、MgO:CaZrO3=99.821:0.179(モル比)とする以外は、実施例2−1と同様にして、焼結体ペレットを製造した。この焼結体ペレットの金属元素含有量(カルシウム含有量、ジルコニウム含有量)、相対密度及び吸湿率をそれぞれ前記の方法で測定した。その結果を、表2に示す。
酸化マグネシウム粉末とジルコニウム酸カルシウム粉末との混合割合を、MgO:CaZrO3=99.107:0.893(モル比)とする以外は、実施例2−5と同様にして、焼結体ペレットを製造した。この焼結体ペレットの金属元素含有量(カルシウム含有量、ジルコニウム含有量)、相対密度及び吸湿率をそれぞれ前記の方法で測定した。その結果を、表2に示す。
酸化マグネシウム粉末とジルコニウム酸カルシウム粉末との混合割合を、MgO:CaZrO3=97.321:2.679(モル比)とする以外は、実施例2−5と同様にして、焼結体ペレットを製造した。この焼結体ペレットの金属元素含有量(カルシウム含有量、ジルコニウム含有量)、相対密度及び吸湿率をそれぞれ前記の方法で測定した。その結果を、表2に示す。
炭酸カルシウム粉末の代わりに、炭酸ストロンチウム(SrCO3)粉末(純度:99.9質量%、一次粒子平均粒子径:0.3μm)を用い、酸化マグネシウム粉末と炭酸ストロンチウム粉末と酸化ジルコニウム粉末との混合割合を、それぞれMgO:SrCO3:ZrO2=99.034:0.483:0.483(モル比)とする以外は、実施例2−1と同様にして、焼結体ペレットを製造した。この焼結体ペレットの金属元素含有量(ストロンチウム含有量、ジルコニウム含有量)、相対密度及び吸湿率をそれぞれ前記の方法で測定した。その結果を、表2に示す。
炭酸ストロンチウム粉末と酸化ジルコニウム粉末の代わりに、ジルコニウム酸ストロンチウム(SrZrO3)粉末(純度:99.2質量%、一次粒子平均粒子径:0.8μm)を用い、酸化マグネシウム粉末とジルコニウム酸ストロンチウム粉末との混合割合を、MgO:SrZrO3=99.517:0.483(モル比)とする以外は、実施例2−8と同様にして、焼結体ペレットを製造した。この焼結体ペレットの金属元素含有量(ストロンチウム含有量、ジルコニウム含有量)、相対密度及び吸湿率をそれぞれ前記の方法で測定した。その結果を、表2に示す。
炭酸カルシウム粉末の代わりに、炭酸バリウム(BaCO3)粉末(純度:99.9質
量%、一次粒子平均粒子径:0.5μm)を用い、酸化マグネシウム粉末と炭酸バリウム粉末と酸化ジルコニウム粉末との混合割合を、それぞれMgO:BaCO3:ZrO2=99.348:0.326:0.326(モル比)とする以外は、実施例2−1と同様にして、焼結体ペレットを製造した。この焼結体ペレットの金属元素含有量(バリウム含有量、ジルコニウム含有量)、相対密度及び吸湿率をそれぞれ前記の方法で測定した。その結果を、表2に示す。
炭酸バリウム粉末と酸化ジルコニウム粉末の代わりに、ジルコニウム酸バリウム(BaZrO3)粉末(純度:99.2質量%、一次粒子平均粒子径:1.0μm)を用い、酸化マグネシウム粉末とジルコニウム酸バリウム粉末との混合割合を、MgO:BaZrO3=99.674:0.326(モル比)とする以外は、実施例2−10と同様にして、焼結体ペレットを製造した。この焼結体ペレットの金属元素含有量(バリウム含有量、ジルコニウム含有量)、相対密度及び吸湿率をそれぞれ前記の方法で測定した。その結果を、表2に示す。
酸化ジルコニウム粉末を用いずに、酸化マグネシウム粉末と炭酸カルシウム粉末との混合割合を、MgO:CaCO3=99.821:0.179(モル比)とする以外は、実施例2−1と同様にして、焼結体ペレットを製造した。この焼結体ペレットの金属元素含有量(カルシウム含有量)、相対密度及び吸湿率をそれぞれ前記の方法で測定した。その結果を、表2に示す。
酸化ジルコニウム粉末を用いずに、酸化マグネシウム粉末と炭酸カルシウム粉末との混合割合を、MgO:CaCO3=99.107:0.893(モル比)とする以外は、実施例2−1と同様にして、焼結体ペレットを製造した。この焼結体ペレットの金属元素含有量(カルシウム含有量)、相対密度及び吸湿率をそれぞれ前記の方法で測定した。その結果を、表2に示す。
酸化ジルコニウム粉末を用いずに、酸化マグネシウム粉末と炭酸ストロンチウム粉末との混合割合を、MgO:SrCO3=99.517:0.483(モル比)とする以外は、実施例2−8と同様にして、焼結体ペレットを製造した。この焼結体ペレットの金属元素含有量(ストロンチウム含有量)、相対密度及び吸湿率をそれぞれ前記の方法で測定した。その結果を、表2に示す。
酸化ジルコニウム粉末を用いずに、酸化マグネシウム粉末と炭酸バリウム粉末との混合割合を、MgO:BaCO3=99.674:0.326(モル比)とする以外は、実施
例2−10と同様にして、焼結体ペレットを製造した。この焼結体ペレットの金属元素含有量(バリウム含有量)、相対密度及び吸湿率をそれぞれ前記の方法で測定した。その結果を、表2に示す。
────────────────────────────────────────
Ca Sr Ba Zr 相対密度 吸湿率
(モル%)(モル%)(モル%)(モル%) (%) (%)
────────────────────────────────────────
実施例2−1 0.054 − − 0.054 97.9 0.05
実施例2−2 0.179 − − 0.179 98.9 0.01以下
実施例2−3 0.893 − − 0.893 98.7 0.01以下
実施例2−4 2.679 − − 2.679 98.2 0.01以下
実施例2−5 0.179 − − 0.179 99.0 0.03
実施例2−6 0.893 − − 0.893 98.7 0.01以下
実施例2−7 2.679 − − 2.679 98.4 0.01以下
実施例2−8 − 0.483 − 0.483 97.5 0.03
実施例2−9 − 0.483 − 0.483 97.8 0.02
実施例2−10 − − 0.326 0.326 97.0 0.03
実施例2−11 − − 0.326 0.326 97.4 0.02
────────────────────────────────────────
比較例2−1 0.179 − − − 91.7 4.7
比較例2−2 0.893 − − − 90.2 6.9
比較例2−3 − 0.483 − − 94.5 2.6
比較例2−4 − − 0.326 − 93.2 3.4
────────────────────────────────────────
実施例2−1〜2−11及び比較例2−1〜2−4にて製造した焼結体ペレットを用いて、電子ビーム蒸着法にて酸化マグネシウム膜を形成した。そのときの蒸着速度、形成した酸化マグネシウム膜の二次電子放出係数及び金属酸化物含有量をそれぞれ下記の方法により測定した。その結果を、下記表3に示す。なお、表3中の蒸着速度及び二次電子放出係数は、比較例2−1の焼結体ペレットの値を1とした場合の相対値である。
ステンレス基板の上に下記の成膜条件で形成した酸化マグネシウム膜の膜厚を成膜開始から経時毎に記録して、単位時間(分)当たりの成膜速度を算出した。この成膜速度を蒸着速度とした。
(成膜条件)
電圧:8kV
電流:40mA
蒸着チャンバーの酸素分圧:2×10-5Pa
基板温度:200℃
ステンレス基板の上に上記蒸着速度の測定方法と同じ成膜条件で、100nmの酸化マグネシウム膜を形成した。この酸化マグネシウム膜に、下記の条件でNeイオンを照射したときの二次電子発生量を測定した。
(Neイオンの照射条件)
真空度:3×10-5Pa
Neイオンの加速電圧:300eV
基板温度:300℃
シリコンウェハー基板の上に上記蒸着速度の測定方法と同じ成膜条件で、厚さ1000nmの酸化マグネシウム膜を形成した。この酸化マグネシウム膜の金属元素含有量を蛍光X線法により測定した。
────────────────────────────────────────
蒸着速度 二次電子放出 CaO SrO BaO ZrO2
(−) 係数(−) (モル%)(モル%)(モル%)(モル%)────────────────────────────────────────
実施例2−1 1.2 1.30 0.0464 − − 0.0016
実施例2−2 1.3 1.32 0.1464 − − 0.0041
実施例2−3 1.2 1.25 0.6071 − − 0.0097
実施例2−4 1.1 1.12 1.5179 − − 0.0235
実施例2−5 1.3 1.35 0.1071 − − 0.0032
実施例2−6 1.2 1.20 0.5000 − − 0.0089
実施例2−7 1.1 1.10 1.4643 − − 0.0244
実施例2−8 1.2 1.21 − 0.3475 − 0.0057
実施例2−9 1.2 1.25 − 0.32819 − 0.0049
実施例2−10 1.2 1.18 − − 0.2609 0.0041
実施例2−11 1.2 1.22 − − 0.2479 0.0032
────────────────────────────────────────
比較例2−1 1.0 1.00 0.1643 − − −
比較例2−2 0.8 0.90 0.7161 − − −
比較例2−3 0.9 0.95 − 0.3089 − −
比較例2−4 0.9 0.92 − − 0.2461 −
────────────────────────────────────────
前記実施例2−1において、得られた造粒物を成形圧2トン/cm2にて、ペレット状(直径:6mm、高さ1.5mm、成形体密度2.50g/cm3)に形成した以外は、実施例2−1と同様にして、焼結体ペレットを作成した。
得られた焼結体ペレットの相対密度及び吸湿率を、前記の方法にて測定したところ、相対密度は98.8%であり、吸湿率は0.01%以下であった。さらに、この焼結体ペレットを用いて、電子ビーム蒸着法にて酸化マグネシウム膜を形成して、蒸着速度、形成した酸化マグネシウム膜の二次電子放出係数及び金属元素含有量をそれぞれ前記の方法にて測定した。その結果、蒸着速度は1.9、二次電子放出係数は1.32(それぞれ、前記比較例2−1の焼結体ペレットの値を1.0としたときの相対値)、酸化カルシウムの含有量は0.1490モル%、酸化ジルコニウムの含有量は0.0048モル%であり、蒸着速度は、前記実施例2−1にて製造した焼結体ペレットと比べて速くなった。
Claims (4)
- 酸化マグネシウムと金属元素の価数が3価、4価又は5価のいずれかである、アルミニウム、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブテン、タングステン、マンガン、鉄、コバルト及びニッケルよりなる群から選ばれる一種もしくは二種以上の金属元素の酸化物とを焼結して得たペレットであって、相対密度が95%以上であり、該金属元素の酸化物の含有量が0.1〜6モル%の範囲にあることを特徴とする蒸着材。
- 金属元素の酸化物が、酸化ジルコニウムである請求項1に記載の蒸着材。
- 酸化マグネシウムが、純度99.9質量%以上である請求項1に記載の蒸着材。
- 酸化マグネシウムが、立方体形状の一次粒子から構成されている請求項1に記載の蒸着材。
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004292642A JP4627652B2 (ja) | 2003-10-21 | 2004-10-05 | 酸化マグネシウム蒸着材 |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2003360567 | 2003-10-21 | ||
| JP2004126987 | 2004-04-22 | ||
| JP2004292642A JP4627652B2 (ja) | 2003-10-21 | 2004-10-05 | 酸化マグネシウム蒸着材 |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2005203782A Division JP4611138B2 (ja) | 2003-10-21 | 2005-07-13 | 酸化マグネシウム蒸着材の製造方法 |
| JP2010169379A Division JP5873624B2 (ja) | 2003-10-21 | 2010-07-28 | 酸化マグネシウム蒸着材 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2005330574A JP2005330574A (ja) | 2005-12-02 |
| JP4627652B2 true JP4627652B2 (ja) | 2011-02-09 |
Family
ID=35485440
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2004292642A Expired - Fee Related JP4627652B2 (ja) | 2003-10-21 | 2004-10-05 | 酸化マグネシウム蒸着材 |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4627652B2 (ja) |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4831452B2 (ja) * | 2004-03-19 | 2011-12-07 | テクノロジーシードインキュベーション株式会社 | プラズマディスプレイパネル用保護膜材料製造方法 |
| JP2008218414A (ja) * | 2007-03-02 | 2008-09-18 | Lg Electronics Inc | プラズマディスプレイパネル及びその製造方法 |
| JP5231823B2 (ja) | 2008-01-28 | 2013-07-10 | 日本タングステン株式会社 | 多結晶MgO焼結体及びその製造方法、並びにスパッタリング用MgOターゲット |
| JP5425457B2 (ja) * | 2008-12-19 | 2014-02-26 | タテホ化学工業株式会社 | プラズマディスプレイパネルの保護膜用蒸着材 |
| JP2012132085A (ja) * | 2010-03-04 | 2012-07-12 | Mitsubishi Materials Corp | 薄膜形成用の蒸着材及び該薄膜を備える薄膜シート並びに積層シート |
| JP5736246B2 (ja) * | 2010-07-08 | 2015-06-17 | 宇部マテリアルズ株式会社 | 物理的気相成長法に用いる成膜用材料 |
| JP2012072428A (ja) * | 2010-09-28 | 2012-04-12 | Tateho Chemical Industries Co Ltd | プラズマディスプレイパネルの保護膜用蒸着材 |
| JP2012201528A (ja) * | 2011-03-24 | 2012-10-22 | Tateho Chemical Industries Co Ltd | 酸化マグネシウム焼結体の製造方法 |
| JP5637120B2 (ja) * | 2011-11-15 | 2014-12-10 | 三菱電機株式会社 | 蒸着装置 |
| KR102205178B1 (ko) * | 2018-12-13 | 2021-01-21 | 한국재료연구원 | 마그네시아 및 그 제조 방법, 및 고열전도성 마그네시아 조성물, 이를 이용한 마그네시아 세라믹스 |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6011223A (ja) * | 1983-06-27 | 1985-01-21 | Kyowa Chem Ind Co Ltd | 繊維状酸化マグネシウム及びその製法 |
| JPH10291854A (ja) * | 1997-04-22 | 1998-11-04 | Mitsubishi Materials Corp | 多結晶MgO蒸着材及びその製造方法 |
| JP3470633B2 (ja) * | 1998-03-16 | 2003-11-25 | 三菱マテリアル株式会社 | MgOを主成分とする蒸着材及びその製造方法 |
| JPH11339665A (ja) * | 1998-05-27 | 1999-12-10 | Mitsubishi Electric Corp | 交流型プラズマディスプレイパネル、交流型プラズマディスプレイパネル用基板及び交流型プラズマディスプレイパネル用保護膜材料 |
| JP3314728B2 (ja) * | 1998-08-11 | 2002-08-12 | 三菱マテリアル株式会社 | 多結晶MgO蒸着材 |
| JP3893793B2 (ja) * | 1999-04-05 | 2007-03-14 | 三菱マテリアル株式会社 | MgO蒸着材及びその製造方法 |
| JP3832310B2 (ja) * | 2001-10-23 | 2006-10-11 | 松下電器産業株式会社 | プラズマディスプレイパネル |
| JP4255255B2 (ja) * | 2002-08-27 | 2009-04-15 | 宇部マテリアルズ株式会社 | 酸化マグネシウム蒸着材 |
| JP4579488B2 (ja) * | 2002-08-27 | 2010-11-10 | 宇部マテリアルズ株式会社 | 酸化マグネシウム蒸着材の製造方法 |
| JP4255256B2 (ja) * | 2002-08-27 | 2009-04-15 | 宇部マテリアルズ株式会社 | 酸化マグネシウム蒸着材の原料用酸化マグネシウム粉末 |
-
2004
- 2004-10-05 JP JP2004292642A patent/JP4627652B2/ja not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JP2005330574A (ja) | 2005-12-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5873624B2 (ja) | 酸化マグネシウム蒸着材 | |
| Huang et al. | From core–shell Ba 0.4 Sr 0.6 TiO 3@ SiO 2 particles to dense ceramics with high energy storage performance by spark plasma sintering | |
| JP5657558B2 (ja) | 誘電体セラミック形成用組成物及び誘電体セラミック材料 | |
| JP4627652B2 (ja) | 酸化マグネシウム蒸着材 | |
| JP4611138B2 (ja) | 酸化マグネシウム蒸着材の製造方法 | |
| KR101904579B1 (ko) | 옥살산바륨티타닐의 제조 방법 및 티탄산바륨의 제조 방법 | |
| JP7113904B2 (ja) | 多結晶セラミック固体、及び、多結晶セラミック固体の製造方法 | |
| JP5658295B2 (ja) | シュウ酸バリウムチタニルの製造方法及びチタン酸バリウムの製造方法 | |
| JP5293948B2 (ja) | セラミックスの製造方法 | |
| KR101569939B1 (ko) | 다결정 산화 마그네슘재와 그 제조 방법, 및 산화 마그네슘막의 제조 방법 | |
| JP4255256B2 (ja) | 酸化マグネシウム蒸着材の原料用酸化マグネシウム粉末 | |
| JP5736246B2 (ja) | 物理的気相成長法に用いる成膜用材料 | |
| JP4255255B2 (ja) | 酸化マグネシウム蒸着材 | |
| JP2010202610A (ja) | シュウ酸バリウムチタニルの製造方法及びチタン酸バリウムの製造方法 | |
| JP5425457B2 (ja) | プラズマディスプレイパネルの保護膜用蒸着材 | |
| JPS60500496A (ja) | 温度補償コンデンサ用の低温焼成セラミツク誘電体 | |
| JP5129772B2 (ja) | Sr−Ca−O焼結体 | |
| JP2005011805A (ja) | 電灯用電極材料及びその製造方法 | |
| KR20110052628A (ko) | 스트론튬·칼슘 복합 산화물막 제조용 증착재 | |
| JP2005067993A (ja) | 低熱膨張材料 | |
| KR101055434B1 (ko) | PDP보호막용 CaAlO계 나노분말의 제조방법 | |
| TWI471288B (zh) | 積層陶瓷電容用介電陶瓷材料 | |
| JP2023097229A (ja) | ジルコン酸化合物の製造方法並びにジルコン酸化合物及びその焼結体 | |
| US8545982B2 (en) | Hexagonal type barium titanate powder, producing method thereof, dielectric ceramic composition and electronic component | |
| KR20110083521A (ko) | 금속 산화물 다결정체 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070730 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091023 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100531 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100728 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100813 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101012 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101102 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101108 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131119 Year of fee payment: 3 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4627652 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |