JP4606012B2 - 銀ペースト - Google Patents

銀ペースト Download PDF

Info

Publication number
JP4606012B2
JP4606012B2 JP2003385882A JP2003385882A JP4606012B2 JP 4606012 B2 JP4606012 B2 JP 4606012B2 JP 2003385882 A JP2003385882 A JP 2003385882A JP 2003385882 A JP2003385882 A JP 2003385882A JP 4606012 B2 JP4606012 B2 JP 4606012B2
Authority
JP
Japan
Prior art keywords
silver
silver powder
powder
fine
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003385882A
Other languages
English (en)
Other versions
JP2005149913A (ja
Inventor
卓也 佐々木
政志 加藤
克彦 吉丸
洋一 上郡山
圭 穴井
純和 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003385882A priority Critical patent/JP4606012B2/ja
Publication of JP2005149913A publication Critical patent/JP2005149913A/ja
Application granted granted Critical
Publication of JP4606012B2 publication Critical patent/JP4606012B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Conductive Materials (AREA)

Description

本件出願に係る発明は、銀ペーストに関する。特に、低温焼結性能及びファインピッチ回路形成に適しており、且つ、焼結して形成した導体の低抵抗化を図るのに好適な銀ペーストを提供する。
従来から、銀ペースト及び銀インクは、セラミック基板と同時焼成する事によって回路形成を行う等の相対的に高温での焼成用途の他、特許文献1に開示されているように、プリント配線板の配線回路、ビアホール充填、部品実装用接着剤等の種々の樹脂成分と混合して硬化して用いるような用途が存在している。後者のような用途においては、導電フィラーとしての銀粉の粉粒同士が焼結することなく、粉粒同士の接触のみで電気的導電性を得るというのが一般的であった。
ところが、近年は、回路の配線幅や配線膜厚等が著しく微細なものとなってきたため、銀粉を用いて形成した導体に対する電気的低抵抗化だけでなく、高い接続信頼性を得ることも要求されるようになってきた。従来法の銀ペースト及び銀インクは、粉粒同士の接触により導電性を得ているため、低温で微細な配線を形成した場合に高い接続信頼性を得ることができない。よって、銀粉の粉粒同士が低温で焼結して導電性を発揮する銀ペースト及び銀インクへの要求が高まってきた。一般に、このような要求に応えるには、導電フィラーである銀粉の粉粒の微粒化によって焼結温度を下げようと考えるのは当然である。
従来からの銀粉の製造には、特許文献2に記載したように硝酸銀溶液とアンモニア水とで銀アンミン錯体水溶液を製造し、これに有機還元剤を添加する湿式還元プロセスが採用され、これを分散剤を用いて銀ペースト又は銀インクに加工して用いられてきた。そして、この従来の銀粉を用いた場合よりも優れた低温焼結性を確保しようと、特許文献3に開示されているような、銀ナノ粒子を含む銀インクが提唱されており、形成した導体の比抵抗が2.8×10−5Ω・cm程度の導体形成が可能であることが開示されている。
また、銀ペーストを焼結加工して得られる導体の低抵抗化を図るため、他の手段として特許文献4にあるように、粉粒同士の接触面積の広く取れるフレーク銀粉(鱗片状銀粉)の使用も検討されてきた。フレーク銀粉は、銀粉の粉粒を物理的に塑性加工して押しつぶすことにより製造されるものであり、鱗片状銀粉と表現されることもある。確かに、フレーク銀粉は、その形状から容易に考えられるように、粉粒同士の接触面積を広く確保できるため焼結導体の低抵抗化には有効なものであった。
特開2001−107101号公報 特開2002−334618号公報 特開2002−324966号公報 特開平10−183209号公報
しかしながら、従来の銀ペースト技術には、以下に述べるような問題があり、市場の要求を満足できるものではなかった。
銀ナノ粒子を用いる場合の問題: 銀粉等の金属粉は、一般的に粉粒の微粒化と粉粒が単分散により近いという意味での分散性の両立は困難と言われている。例えば、上記特許文献1に開示されているような、銀ナノ粒子を含む銀インクの場合には、ナノ粒子の分散性を安定化するためには保護コロイドとして多量の分散剤を添加するのが一般的である。かかる場合、銀ナノ粒子の焼結温度よりも分散剤の分解温度が高いのが一般的であり、銀ナノ粒子の粉粒間に分散剤が残留することとなる。このとき、銀ナノ粒子は、粒径が著しく微細であるため、粉粒同士の接触を確保する事が困難で、本来持つ低温焼結特性を充分に生かしきれないものとなる傾向が高い。
また、銀ナノ粒子を含む銀インクの場合、従来よりもフィラー含有量が大幅に低いものとなるため、薄膜形成は容易であっても厚膜を形成することが難しく、例え厚膜の形成が可能であるとしても膜の比抵抗が著しく高くなる等して、比較的大電流を流すような電源回路に用いることの出来るような回路断面の大きな配線回路の形成用途、又は低抵抗回路用途への適用が困難となる。さらに実装部品の接着剤用途では導電性と共に接着強度に対する要求も厳しく、硬化により強い接着強度を発揮する樹脂を一定量以上添加する事が不可欠であり、そのため銀ナノ粒子のインクでは対応できない部分が多く存在したのである。
従来の銀粉の持つ粉体特性における問題: 従来の銀粉を含んだ銀ペーストを用いた回路形成においては、加熱温度が300℃以下という非焼成若しくは低温焼結型の用途が多く、低温での高い焼結性能を得るためには、低結晶性の銀粉が好ましいとされてきた。しかし、低結晶性の銀粉を得るためには、製造条件上、還元の速い反応系を採用せざるを得ず、その結果、結晶性は低いものの、凝集の著しい銀粉しか得られなかった。従って、市場では、低温焼結性を備え、且つ、従来にない微粒の銀粉であって、しかも粉粒の凝集の少ない良好な分散性を備えた銀粉の供給が求められてきたのである。
一方では、銀粉に不純物量の少ないことが求められてきた。即ち、銀粉の製造は、上述した湿式還元プロセスが採用されており、そのプロセスで使用する還元剤等が銀粉の粉粒表面に残留するのである。従って、従来の製造方法を採用する以上、不可避的な問題であった。そして、銀粉の不純物量が増加すると、その銀粉を用いて形成した導体の電気的抵抗が増加するのである。
また、従来の銀粉及びフレーク銀粉を用いた場合には、近年のファインピッチ化した回路形成等には全く対応できない銀ペーストしか得られないのである。なぜなら、従来の製造方法で得られる銀粉の粉粒中には、粒子径が10μmを超える粗粒を含んでいるからである。
その結果、市場では銀粉を含む銀ペーストに対し、ファインピッチ回路形成が可能で、従来にない低温焼結性を備えることが望まれてきたのである。特に、スクリーン印刷法を用いて、微細回路を精度良く描くためには、銀ペーストに含まれる銀粉が微粒で、且つ、高分散であることが望まれてきたのである。しかも、銀ペーストには、低抵抗を実現するための不純物含有量が少ないという要求も行われてきたのである。
そこで、本件発明者等は、鋭意研究を行った結果、以下に述べる銀ペーストを採用することで、上述した課題を解決するに到ったのである。以下、「銀ペースト」と「銀ペーストの製造方法」とに分けて説明する。
<銀ペースト>
本件発明に係る銀ペーストは、フィラーとしての銀粉と樹脂成分と有機溶剤とからなる銀ペーストにおいて、前記銀粉の粉粒は略球形であり、凝集性の低い微粒の銀粉であって、a.走査型電子顕微鏡像の画像解析により得られる一次粒子の平均粒径D IA が0.6μm以下。b.前記一次粒子の平均粒径D IA と、レーザー回折散乱式粒度分布測定法による平均粒径D 50 とを用いてD 50 /D IA で表される凝集度が1.5以下。c.結晶子径が10nm以下。の粉体特性を備えたものを用い、銀粉の含有量が85wt%〜93wt%であることを特徴とする。
ペーストを構成する銀粉: 銀粉に求められるのは、まず粉粒の形状が略球形であるというものである。例えば、粉粒の形状がフレーク等のように異形状のものであれば、粉体特性がいかに良好なものであっても、版の目詰まりを引き起こしやすくなるのである。
そして、銀粉は、凝集性の低い微粒の銀粉であることが好ましい。更に、以下のa.〜c.の粉体特性を備えることで、銀ペーストで描く回路形状をファインピッチ化することが可能となり、焼結加工したときの焼結導体の表面粗さを適正な滑らかなものとするのである。
a.の特性は、走査型電子顕微鏡像の画像解析により得られる一次粒子の平均粒径DIAが0.6μm以下という粉体特性である。銀粉の粉粒自体が微細なものでなければ、いかに有機剤組成を工夫しようとも低温焼結性は得られないからであり、一次粒子の平均粒径DIAが0.6μmという値は、低温焼結性を飛躍的に向上させることができる臨界的粒径なのである。ここで、「走査型電子顕微鏡像の画像解析により得られる一次粒子の平均粒径DIA」とは、走査型電子顕微鏡(SEM)を用いて観察される銀粉の観察像(本件発明にかかる微粒銀粉の場合には倍率10000倍、従来の銀粉の場合は倍率3000〜5000倍で観察するのが好ましい。)を画像解析することにより得られる平均粒径のことである。なお、本件明細書における走査型電子顕微鏡(SEM)を用いて観察される微粒銀粉の画像解析は、旭エンジニアリング株式会社製のIP−1000PCを用いて、円度しきい値10、重なり度20として円形粒子解析を行い、平均粒径DIAを求めたものである。この微粒銀粉の観察像を画像処理することにより得られる平均粒径DIAは、SEM観察像から直接得るものであるため、一次粒子の平均粒径が確実に捉えられていることになる。本件発明で言う微粒銀粉のDIAは、本件発明者らが観察する限り0.01μm〜0.6μmの範囲に殆どが入ってくるが、現実には更に微細な粒径のものが確認できる場合もあり、下限値を敢えて明記していないのである。
.の特性は、前記一次粒子の平均粒径D IA と、レーザー回折散乱式粒度分布測定法による平均粒径D 50 とを用いてD 50 /D IA で表される凝集度が1.5以下である。本件明細書で言う凝集度とは、前記一次粒子の平均粒径DIAと、レーザー回折散乱式粒度分布測定法による平均粒径D50とを用いてD50/DIAで表される値のことである。ここで、D50とは、レーザー回折散乱式粒度分布測定法を用いて得られる体積累積50%における粒径のことであり、この平均粒径D50の値は、真に粉粒の一つ一つの径を直接観察したものではなく、凝集した粉粒を一個の粒子(凝集粒子)として捉えて、平均粒径を算出していると言えるのである。即ち、現実の銀粉の粉粒は、個々の粒子が完全に分離した、いわゆる単分散粉ではなく、複数個の粉粒が凝集した状態になっているのが通常と考えられるからである。しかしながら、粉粒の凝集状態が少なく、単分散に近いほど、平均粒径D50の値は小さなものとなるのが通常である。本件発明で用いる微粒銀粉のD50は、0.25μm〜0.80μm程度の範囲となり、従来の製造方法では全く得られなかった範囲の平均粒径D50を持つ微粒銀粉となるのである。なお、本件明細書における、レーザー回折散乱式粒度分布測定法は、屈折率に1.15を採用してベックマンコールター社製LS−230を用いて測定したものである。
これに対し、「走査型電子顕微鏡像の画像解析により得られる一次粒子の平均粒径DIA」は、上述のとおり走査型電子顕微鏡(SEM)を用いて観察される銀粉の観察像を画像解析することにより得られる平均粒径のことであり、凝集状態を考慮することなく一次粒子の平均粒径が確実に捉えられているものである。
そこで、本件発明者等は、レーザー回折散乱式粒度分布測定法の平均粒径D50と画像解析により得られる平均粒径DIAとを用いて、D50/DIAで算出される値を凝集度として捉えることとしたのである。即ち、同一ロットの微粒銀粉においてD50とDIAとの値が同一精度で測定できるものと仮定して、上述した理論で考えると、凝集状態のあることを測定値に反映させるD50の値は、DIAの値よりも大きな値になると考えられる。このとき、D50の値は、微粒銀粉の粉粒の凝集状態がなくなるほど、限りなくDIAの値に近づいてゆき、凝集度であるD50/DIAの値は、1に近づくことになる。凝集度が1となった段階で、粉粒の凝集状態が全く無い単分散粉と言えるのである。
そして、本件発明者等は、凝集度と各凝集度の微粒銀粉を用いて製造した微粒銀ペーストの粘度、焼結加工して得られる導体の表面平滑性等との相関関係を調べてみた。その結果、極めて良好な相関関係が得られる事がわかったのである。このことから分かるように、微粒銀粉の持つ凝集度をコントロールしてやれば、その微粒銀粉を用いて製造する銀ペーストの粘度の自由なコントロールが可能となると判断できるのである。しかも、凝集度を1.5以下にしておけば、銀ペーストの粘度、焼結加工後の表面平滑性等の変動を極めて狭い領域に納めることが可能となることが分かったのである。また、凝集状態が解消されていればいるほど、その銀ペーストを用いて焼結させて得られる導体の膜密度が向上し、結果として形成した焼結導体の電気的抵抗を低くすることが可能となるのである。
なお、現実に凝集度を算出してみると、1未満の値を示す場合もある。これは、凝集度の算出に用いるDIAを真球と仮定しているからと考えられ、理論的には1未満の値にはならないのであるが、現実には、真球ではないがために1未満の凝集度の値が得られるようである。
.の特性は結晶子径が10nm以下というものであり、この結晶子径と焼結開始温度とは、非常に密接な関係を有するものである。即ち、平均粒径が同等の銀粉同士で対比すれば、結晶子径が小さなものであるほど、低温での焼結が可能となるのである。従って、本件発明にかかる微粒銀粉のように微粒であるが故に表面エネルギーが大きく、しかも、10nm以下という小さな結晶子径を備えることで、焼結開始温度を低温化することができるのである。ここで、結晶子径に関して下限値を設けていないが、測定装置、測定条件等により一定の測定誤差が生じるためである。また、結晶子径が10nmを下回る範囲での測定値に高い信頼性を求めることが困難であり、敢えて下限値を定めるとしたならば、本件発明者らの研究の結果得られた2nm程度であると考える。
上述してきた粉体特性を備える微粒銀粉を用いた銀ペーストは、焼結温度という特性から見ると、250℃以下の温度で焼結可能という低温焼結性を備えるものとなるのである。また、この焼結温度に関しても下限値を特に規定していないが、本件発明者等の行った研究及び一般的な技術常識を考慮すれば、150℃を下回る焼結開始温度を得ることは殆ど不可能であり、下限値に相当する温度であると考えている。
ペーストを構成する樹脂成分: 本来であれば、樹脂成分を特に限定する必要のないものである。しかしながら、上述した如き微粒の銀粉をフィラーとして用いることを前提に、微粒銀粉の良好な分散性を確保できる組成を採用しなければならない。また、本件発明に係る銀ペーストは低温焼結性の確保とファインピッチ回路形成が可能となることを目的としており、採用される低温焼結温度以下で溶媒が除去でき、しかもファインピッチ回路形成用途に適したペースト性能を確保できる樹脂組成を採用しなければならない。
これらのことを考慮して、エポキシ樹脂、ポリエステル樹脂、ケイ素樹脂、ユリア樹脂、アクリル樹脂、セルロース樹脂から選ばれる1種以上を含む組成を採用するのが望ましいのである。
これらの樹脂成分を、より具体的に特定すれば、次のようになる。a)エポキシ樹脂とは、ビスフェノールA型、ビスフェノールF型、ビスフェノールAD型、ノボラック型、クレゾールノボラック型、グリシジルアミン型、グリシジルエーテル型、脂肪族型、複素環式型エポキシ樹脂等である。
b)ポリエステル樹脂とは、ポリエチレンテレフタレート、ポリプロピレングリコールマレエートフタレート、ポリプロピレングリコールフマレートフタレート、ポリプロピレングリコールマレート、ポリプロピレングリコールフマレート、ポリプロピレングリコールアジペートマレート等のジカルボン酸とグリコールの重合物等である。
そして、ここで言うポリエステルの合成には、以下に述べるジカルボン酸類とグリコール類とを縮合反応させて得られるのであることが望ましいのである。ジカルボン酸類としては、テレフタル酸、イソフタル酸、オルソフタル酸、2,6−ナフタレンジカルボン酸などの芳香族ジカルボン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、ドデカンジカルボン酸、アゼライン酸等の脂肪族ジカルボン酸、炭素数12〜28の2塩基酸、1,4−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,2−シクロヘキサンジカルボン酸、4−メチルヘキサヒドロ無水フタル酸、3−メチルヘキサヒドロ無水フタル酸、2−メチルヘキサヒドロ無水フタル酸、ジカルボキシ水素添加ビスフェノールA、ジカルボキシ水素添加ビスフェノールS、ダイマー酸、水素添加ダイマー酸、水素添加ナフタレンジカルボン酸、トリシクロデカンジカルボン酸などの脂環族ジカルボン酸等である。
グリコールには、エチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、3−メチル−1,5−ペンタンジオール、2−メチル−1,5−ペンタンジオール、2,2−ジエチル−1,3−プロパンジオール、2−ブチル−2−エチル−1,3−プロパンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,4−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,2−シクロヘキサンジメタノール、ダイマージオール等を用いるのである。
c)ケイ素樹脂とは、アミノ変性シリコーン、エポキシ変性シリコーン、カルボキシル変性シリコーン、カルビノール変性シリコーン、メタクリル変性シリコーン、メルカプト変性シリコーン、フェノール変性シリコーン、ポリエーテル変性シリコーン、ポリエステル変性シリコーン、アルキッド変性シリコーン、アクリル変性シリコーン、メチルスチリル変性シリコーン、アルキル変性シリコーン、フッ素変性シリコーン等である。
d)ユリア樹脂とは、アミン変性ユリア樹脂、ブタノール変性ユリア樹脂等である。
e)アクリル樹脂とは、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸メチル、ポリメタクリル酸メチル、ポリイタコン酸、ポリアクリル酸塩、ポリメタクリル酸塩、ポリイタコン酸塩等である。
f)セルロース樹脂とは、メチルセルロース、エチルセルロース、プロピルセルロース、ブチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボシキメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシブチルセルロース、アセチルセルロース等である。
これらは1種でも2種以上を同時に用いても構わないのである。これらに関しても、分散させる銀粉が容易に分散し、且つ、銀粉の粉粒表面の変質を防止することが可能だからである。
銀粉とペーストとの配合バランス: 更に、本件発明に係る銀ペーストの銀粉と有機剤との配合バランスを適正なものとしなければ、良好な回路形状等を形成出来るものとはならない。そこで、本件発明者等が、鋭意研究の結果、銀粉の含有量が80wt%以上、より好ましくは80wt%〜93wt%の範囲にあれば、良好な回路等の導体形成が可能と判断したのである。銀粉の含有量が80wt%未満の場合には、いかに分散性が高く微粒の銀粉を用いても、焼結して形成した回路等の膜密度が低下し比抵抗が高くなるのである。そして、銀粉の含有量が93wt%を超えると、銀ペースト粘度が急激に上昇し、ファインピッチ回路形状等を形成するには使いづらいレベルに増粘するのである。
<銀ペーストに用いる銀粉の製造方法>
本件発明に係る銀ペーストは、銀粉に、走査型電子顕微鏡像の画像解析により得られる一次粒子の平均粒径DIAが0.6μm以下である微粒銀粉を用いることが前提である。しかも、上述の銀ペースト製造方法の説明から理解できるように、当初から微粒で且つ高分散の銀粉を使用することができれば、極めて有利なものとなる。従って、以下に述べる手法で得られる微粒銀粉を用いることが好ましいのである。
銀粉製造方法1: 本件発明者等は、従来の硝酸銀水溶液とアンモニア水とを混合して反応させ銀アンミン錯体水溶液を得て、これに還元剤を添加することにより銀粒子を還元析出させ、濾過、洗浄、乾燥させるという製造方法を基本として、その製造方法に創意を凝らすことで、従来の製造方法では得ることのできないレベルの微粒銀粉を得たのである。
この銀粉の製造方法は、硝酸銀水溶液とアンモニア水とを混合して反応させ銀アンミン錯体水溶液を得て、これと有機還元剤とを接触反応させて銀粒子を還元析出させ、濾過、洗浄、乾燥させて銀粉を製造する方法において、添加後において希薄な濃度となる還元剤量、硝酸銀量、アンモニア水量を用いるという点が大きな特徴である。従来、還元剤溶液と銀アンミン錯体水溶液とは槽内で一括して混合されるのが一般的であり、そのため一般的に銀濃度を10g/l以上の濃度とするため、多くの硝酸銀量、還元剤量及びアンモニア水量を添加しなければ、設備の規模に対する生産性を確保することが出来なかったのである。
この製造方法において最も重要な特徴は、銀アンミン錯体水溶液と有機還元剤とを接触反応させた後の有機還元剤濃度が低く、生成した銀粉の粉粒表面に吸着残留したり、粉粒の成長過程で粉粒内部に取り込まれる有機還元剤量を低減化できる点にある。従って、この混合後の溶液において、銀濃度が1g/l〜6g/lとしたのに対して、有機還元剤濃度を1g/l〜3g/lに維持することが、最も好ましいのである。
ここで、銀濃度と還元剤量とは比例的な関係にあり、銀濃度が高いほど量的に多くの銀粉を得ることが可能となるのは当然である。しかし、ここでの銀濃度が6g/lを超えるものとすると、析出する銀粒子が粗粒化する傾向があり、何ら従来の銀粉と変わらない粒径となり、本件発明で言う高分散性を備えた微細銀粉を得ることができなくなるのである。これに対し、ここでの銀濃度が1g/l未満となると、微粒銀粉としてきわめて細かなものが得られるものの、微細になりすぎて吸油量が増大し、ペースト粘度の上昇を招くため、有機剤量を増加させる必要が生じ、最終的に形成した焼結導体の膜密度が低く、電気抵抗が上昇する傾向が生じるのである。加えて、必要となる工業的生産性を満足しないものとなるのである。
そして、上記銀濃度が1g/l〜6g/lとしたのに対して、有機還元剤濃度を1g/l〜3g/lに維持することが、微粒銀粉を歩留まり良く得るには最も適した条件となる。ここで、有機還元剤濃度を1g/l〜3g/lとしているのは、銀アンミン錯体水溶液の銀濃度との関係において微粒の銀粉を得るのに最も適した範囲として選択するのである。有機還元剤濃度が3g/lを超えると、銀アンミン錯体水溶液に対し添加する還元剤液量は少なくなるが、還元析出する銀粉の粉粒の凝集の進行が著しくなり始め、粉粒に含まれる不純物量(本件発明では、不純物量を炭素含有量として捉えている。)が急激に多くなり始めるのである。一方、有機還元剤濃度を1g/l未満とすると、使用する還元剤のトータル液量が増大し、廃水処理量も大きくなり、工業的経済性を満足しないものとなるのである。
ここで言う「有機還元剤」とは、ヒドロキノン、アスコルビン酸、グルコース等である。中でも、有機還元剤にはヒドロキノンを選択的に使用することが望ましい。特に、ヒドロキノンは、他の有機還元剤と比べて比較的に反応性に優れ、結晶子径が小さな低結晶性の銀粉を得るために最も適した反応速度を備えるものと言えるのである。
そして、前記有機還元剤と組み合わせて他の添加剤を用いることも可能である。ここで言う添加剤とは、ゼラチン等の膠類、アミン系高分子剤、セルロース類等であり銀粉の還元析出プロセスを安定化させ、同時に一定の分散剤としての機能を果たすものであることが望ましいのであり、有機還元剤、工程の種類等に応じて適宜選択的に使用すれば良いのである。
そして、以上のようにして得た銀アンミン錯体水溶液と還元剤とを接触反応させ微粒銀粉を還元析出させる方法において、本件発明では、図1に示すように、銀アンミン錯体水溶液S1が流れる一定の流路(以上及び以下において「第一流路」と称している。)を流れ、その第一流路aの途中に合流する第二流路bを設け、この第二流路bを通じて有機還元剤及び必要に応じた添加剤S2を第一流路a内に流し、第一流路aと第二流路bとの合流点mで接触混合して、銀粒子を還元析出させる方法(以下、この方法を「合流混合方式」と称することとする。)を採用することが望ましいのである。
このような合流混合方式を採用することにより、2つの液の混合時間が最短で完了し、系内が均一な状態で反応が進行するため、均一な形状の粉粒が形成される。また、混合後の溶液全体としてみたときの有機還元剤量が低いということは、還元析出する微粒銀粉の粉粒表面へ吸着残留する有機還元剤量が少なくなる。結果として、濾過して乾燥して得られる微粒銀粉の付着不純物量を低減化することが可能となるのである。この微粒銀粉の付着不純物量の低下により、銀ペーストを経て形成される焼結導体の電気抵抗の低減化も図れることになるのである。
更に、硝酸銀水溶液とアンモニア水とを接触反応させて、銀アンミン錯体水溶液を得る際に、硝酸銀濃度が2.6g/l〜48g/lの硝酸銀水溶液を用いて、銀濃度が2g/l〜12g/lの銀アンミン錯体水溶液を得ることが望ましいのである。ここで、硝酸銀水溶液の濃度を規定すると言うことは、硝酸銀水溶液の液量を規定しているのと同義であり、銀アンミン錯体水溶液の銀濃度が2g/l〜12g/lとすることを考えるに、そこに添加するアンモニア水の濃度及び液量が必然的に定まることになるのである。現段階において、明確な技術的な理由は判明していないが、ここで言う硝酸銀濃度が2.6g/l〜48g/lの硝酸銀水溶液を用いることにより、最も良好な製造安定性を示し品質的に安定した微粒銀粉を得ることが出来るのである。
銀粉製造方法2: 上述した銀粉製造方法1では、得られた微粒銀粉の洗浄方法に関して、特に規定せず定法を採用するものである。しかしながら、銀粉製造方法1で得られた銀粉の洗浄方法に工夫を加えることで、銀粉の粉粒表面に残留する不純物量を更に減少させ、その微粒銀粉を用いた銀ペーストで形成した回路の導体抵抗の低抵抗化に寄与できるものとなるのである。
このときの洗浄は、水洗浄とアルコール洗浄とを組み合わせて行っても、アルコール洗浄のみを使用しても構わないが、アルコールで洗浄する際の洗浄を強化するのである。即ち、還元析出した微粒銀粉40gとした場合には、通常100ml程度の純水で洗浄を行い、その後、50ml程度のアルコールで洗浄を行うのである。これに対し、ここでは、アルコール洗浄を行う際に200ml以上という、微粒銀粉1kgあたりを5L以上の大容量のアルコールで洗浄し、乾燥するのである。
このような洗浄強化による不純物の低減が図れるのも、微粒銀粉を得る際の銀アンミン錯体水溶液と還元剤との接触反応において、希薄な濃度の反応系を採用し混合後の溶液全体としてみたときの有機還元剤量を低く抑える手法を採用しているからである。
以上に述べてきた銀粉製造方法により得られた銀粉は、走査型電子顕微鏡像の画像解析により得られる一次粒子の平均粒径DIAが0.6μm以下という微粒銀粉であり、しかも良好な分散性をもち、ペースト加工したときの銀粉含有量の調整を容易なものとし、その銀ペーストを用いて描く回路をファインピッチ化することが容易となるのである。また、上述のような製造方法で得られる銀粉は、導体の低抵抗化の可能な不純物含有量であるという点で大きな特徴を持つのである。
本件発明に係る銀ペーストは、内包されている銀粉が、従来に無い微粒且つ高分散の銀粉であるため、低温焼結性能に優れ、しかも微粒で且つ有機剤への優れた分散性を示すため、ファインピッチ回路の形成に最適なものとなる。また、本件発明でペーストに含める銀粉自体が微粒であるため、焼結後の導体の表面粗さは滑らかなものとなる。また、銀粉に含まれる不純物量が少ないため、焼結導体の比抵抗を小さくすることが可能となる。
また、本件発明に係る銀ペーストの製造方法を用いることで、有機剤中に単分散に近い銀粒子を均一に含む銀ペーストを効率よく得ることができ、焼結導体の形成用途に適した銀ペーストを安価に市場に供給することが可能となるのである。
以下、本件発明の最良の実施の形態を、比較例と対比しつつ、実施例を通じて詳細に説明することとする。
銀粉の製造: まず最初に、銀ペーストに用いる微粒銀粉を製造した。以下、その手順に関して述べる。63.3gの硝酸銀を9.7リットルの純水に溶解させ硝酸銀水溶液を調製し、これに235mlの25wt%濃度アンモニア水を一括で添加して攪拌することにより銀アンミン錯体水溶液を得たのである。
そして、この銀アンミン錯体水溶液を、図1に示した内径13mmの第一流路aに流量1500ml/secで導入し、第二流路bから還元剤を流量1500ml/secで流し合流点mで20℃の温度になるようにして接触させ、微粒銀粉を還元析出させた。このときに用いた還元剤には、21gのヒドロキノンを10リットルの純水に溶解させたヒドロキノン水溶液を用いた。従って、混合が終了した時点でのヒドロキノン濃度は、約1.04g/lであり、非常に希薄な濃度である。
以上のようにして得られた微粒銀粉を分取するため、ヌッチェを用いて濾過し、100mlの水と50mlのメタノールとを用いて洗浄し、更に70℃×5時間の乾燥を行い略球形の微粒銀粉を得たのである。この得られた微粒銀粉の走査型電子顕微鏡写真を図2に示している。この銀粉の平均粒径DIAは0.3μmを、屈折率に1.15を採用してレーザー回折散乱式粒度分布測定装置LS−230(ベックマン・コールター社製)を用いて粒度分布を測定したところ、D10が0.283μm、D50が0.371μm、D90が0.491μm及びDmaxが0.791μmであり、標準偏差は0.06μmであった。更に、D50/DIAで表される凝集度が1.24、結晶子径が7nm、炭素含有量0.21wt%であった。図3には、従来の製造方法で得られた銀粉の走査型電子顕微鏡写真を示しているが、図2と対比することで、本件発明で用いた銀粉が極めて微粒となっていることが理解できるのである。
なお、結晶子径の測定には、X線回折法を用いたのである。そして、炭素含有量は、銀粉の粉粒に付着した不純物量の目安とするためのものであり、堀場製作所製 EMIA−320Vを用いて、微粒銀粉0.5g、タングステン粉1.5g、スズ粉0.3gを混合し、これを磁性るつぼ内に入れ、燃焼−赤外吸収法により測定したものである。
銀ペーストの製造: ビスフェノールF型エポキシ樹脂(日本化薬社製:RE−303SL)12.0gと酸無水物系硬化剤(日本化薬社製カヤハードMCD)2.1gと、アミンアダクト型硬化剤(味の素ファインテクノ社製:アミキュアMY−24)0.7gと、粘度調整剤としてα−ターピネオール(ヤスハラケミカル社製)15.2gをパドル型混練機で5分間混練した後、上記微粒銀粉を170g加え、さらに10分間混練した。そして、得られた混練物を引き続き3本ロールで混練した後、脱泡機(シンキー社製:AR−250)を用いて混練物中に含まれる気泡を除去し、銀ペーストBを得た。
この得られた銀ペーストBを、スクリーン印刷機を用いて配線幅50μm、配線間ギャップを50μmとしアルミナ基板に印刷したところ、配線の断線やニジミが無い良好な印刷性を示した。また、スクリーン印刷機に用いた版を顕微鏡により観察した結果、版に銀粉が全く目詰まりしていない事を確認した。
更に、スクリーン印刷機を用いて、アルミナ基板上に比抵抗測定用のサンプルとして、縦4cm×横3cmの条件で銀ペーストBを印刷した後、温度180℃の条件で2時間乾燥させた。このとき得られた乾燥膜の表面抵抗を4探針抵抗測定器(三菱化学社製:ロレスタGP)で測定し、また、乾燥膜の膜厚をデジタル膜厚計で測定し、比抵抗を算出した。その結果、比抵抗は5.7×10−4Ω・cmであった。
銀粉の製造: ここでの銀粉の製造は、実施例1と共通するため、重複した説明を避けるため、ここでの説明は省略する。
銀ペーストの製造: エチルセルロース(和光純薬社製)1.5gと粘度調整剤としてα−ターピネオール(ヤスハラケミカル製)28.5gと上記微粒銀粉を170gとをパドル型混練機で10分間混練した。
このようにして得られた混練物を引き続き3本ロールで混練した後、脱泡機(シンキー社製:AR−250)を用いて混練物中に含まれる気泡を除去し、銀ペーストCを得た。この銀ペーストCを、スクリーン印刷機を用いて配線幅50μm、配線間ギャップ50μmとしアルミナ基板に印刷したところ、配線の断線やニジミが無い良好な印刷性を示した。また、スクリーン印刷機に用いた版を顕微鏡により観察した結果、版に銀粉が全く目詰まりしていない事を確認した。
更に、スクリーン印刷機を用いて、アルミナ基板上に比抵抗測定用のサンプルとして、縦4cm×横3cmの条件で銀ペーストCを印刷した後、温度180℃の条件で2時間乾燥させた。このようにして得られた乾燥膜の表面抵抗を4探針抵抗測定器(三菱化学社製:ロレスタGP)で測定し、また、乾燥膜の膜厚をデジタル膜厚計で測定し、比抵抗を算出した。その結果、比抵抗は2.5×10−5Ω・cmであった。
銀粉の製造: ここでの銀粉の製造は、実施例1と共通するため、重複した説明を避けるため、ここでの説明は省略する。
銀ペーストの製造: アクリル酸エステルポリマー(日本純薬社製:ジュリマーAT−510)0.6gとオキサゾリン基含有ポリマー(日本触媒社製:エポクロスWS−500)0.6gとα−ターピネオール(ヤスハラケミカル社製)28.7gと上記銀粉170gをパドル型混練機で10分間混練し、銀ペーストDを得た。
このようにして得られた銀ペーストDを、スクリーン印刷機を用いて配線幅50μm、配線と配線の間隔を50μmとしアルミナ基板に印刷したところ、配線の断線やニジミが無い良好な印刷性を示した。また、スクリーン印刷機に用いた版を顕微鏡により観察した結果、版に銀粉が全く目詰まりしていない事を確認した。
更に、引き続きスクリーン印刷機を用いて、アルミナ基板上に比抵抗測定用のサンプルとして、縦4cm×横3cmの条件で銀ペーストDを印刷した後、温度180℃の条件で2時間乾燥させた。このようにして得られた乾燥膜の表面抵抗を4探針抵抗測定器(三菱化学社製:ロレスタLP)で測定し、また、乾燥膜の膜厚をデジタル膜厚計で測定し、比抵抗を算出した。その結果、比抵抗は6.6×10−5Ω・cmであった。
[比較例1]
銀粉の製造: この比較例では、銀粉を三井金属鉱業株式会社製のフレーク状銀粉である「3050HDP」に変更したのである。この3050HDPの粉体特性は、次のとおりである。この銀粉の平均粒径DIAは2.01μmを、屈折率に1.15を採用してレーザー回折散乱式粒度分布測定装置LS−230(ペックマン・コールター社製)を用いて粒度分布を測定したところ、D10が1.46μm、D50が2.25μm、D90が2.25μm及びDmaxが5.61μmであり、D50/DIAで表される凝集度が1.12、結晶子径が8nm、炭素含有量0.30wt%であった。
銀ペーストの製造: 上記銀粉を用いて実施例1と同様にして、銀ペーストEを得たのである。このようにして得られた銀ペーストEを、スクリーン印刷機を用いて配線幅50μm、配線間ギャップ50μmとしアルミナ基板に印刷したところ、配線に断線が発生していた。そして、スクリーン印刷機に用いた版を顕微鏡により観察した結果、フレーク状の銀粉は、例え良好な粉体特性を備えていても版に銀粉が目詰まりし、これが断線の原因と考えられる結果となった。従って、回路の比抵抗測定は、行わなかった。
本件発明に係る銀ペーストは、焼結後の導体の膜密度低下、不純物含有量上昇を招くことなく、内包された微粒銀粉の低温焼結特性を有効に活用できるものである。その結果、本件発明に係る銀ペーストを用いて得られた焼結導体の焼結温度は150℃〜250℃の範囲に入るものとなるのである。この銀ペースト中に含まれる銀粉は非常に高い分散性及び低不純物含有量を備えているため、高品質の低抵抗導体を備える回路基板等の高い生産性を確保できるのである。
また、本件発明に係る銀ペーストの製造方法を用いることで、有機剤中での銀粒子の分散性に優れた銀ペーストを効率よく得ることができ、高品質の焼結導体形成用の銀ペーストを安定して生産でき、安価に市場に供給することが可能となるのである。
銀アンミン錯体水溶液と還元剤との混合概念を表した図。 本件発明にかかる微粒銀粉の走査電子顕微鏡観察像。 従来の製造方法にかかる微粒銀粉の走査電子顕微鏡観察像。
S1 銀アンミン錯体水溶液
S2 添加剤
a 第一流路
b 第二流路
m 合流点

Claims (2)

  1. フィラーとしての銀粉と樹脂成分と有機溶剤とからなる銀ペーストにおいて、
    前記銀粉の粉粒は略球形であり、凝集性の低い微粒の銀粉であって、以下のa.〜c.の粉体特性を備えたものを用い、銀粉の含有量が85wt%〜93wt%であることを特徴とした銀ペースト。
    a.走査型電子顕微鏡像の画像解析により得られる一次粒子の平均粒径D IA が0.6μm以下。
    b.前記一次粒子の平均粒径D IA と、レーザー回折散乱式粒度分布測定法による平均粒径D 50 とを用いてD 50 /D IA で表される凝集度が1.5以下。
    c.結晶子径が10nm以下。
  2. 前記銀粉は、レーザー回折散乱式粒度分布測定法による平均粒径D50がD50=0.25μm〜0.80μmの粉体特性を備えたものを用いた請求項1に記載の銀ペースト。
JP2003385882A 2003-11-14 2003-11-14 銀ペースト Expired - Fee Related JP4606012B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003385882A JP4606012B2 (ja) 2003-11-14 2003-11-14 銀ペースト

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003385882A JP4606012B2 (ja) 2003-11-14 2003-11-14 銀ペースト

Publications (2)

Publication Number Publication Date
JP2005149913A JP2005149913A (ja) 2005-06-09
JP4606012B2 true JP4606012B2 (ja) 2011-01-05

Family

ID=34693790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003385882A Expired - Fee Related JP4606012B2 (ja) 2003-11-14 2003-11-14 銀ペースト

Country Status (1)

Country Link
JP (1) JP4606012B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105008070A (zh) * 2012-12-05 2015-10-28 住友金属矿山株式会社 银粉

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5355007B2 (ja) * 2008-09-17 2013-11-27 Dowaエレクトロニクス株式会社 球状銀粉の製造方法
JP5458862B2 (ja) * 2009-12-17 2014-04-02 住友金属鉱山株式会社 加熱硬化型銀ペーストおよびこれを用いて形成した導体膜
JP5370784B2 (ja) * 2011-05-26 2013-12-18 住友電気工業株式会社 金属配線
WO2013018645A1 (ja) * 2011-07-29 2013-02-07 戸田工業株式会社 銀微粒子並びに該銀微粒子を含有する導電性ペースト、導電性膜及び電子デバイス
US9744593B2 (en) * 2012-03-07 2017-08-29 Sumitomo Metal Mining Co., Ltd. Silver powder and method for producing same
JP5890387B2 (ja) * 2013-12-26 2016-03-22 Dowaエレクトロニクス株式会社 導電性ペースト用銀粉および導電性ペースト
JP5925350B2 (ja) * 2015-03-05 2016-05-25 Dowaエレクトロニクス株式会社 球状銀粉
CN105772705A (zh) * 2016-03-22 2016-07-20 苏州捷德瑞精密机械有限公司 一种导电银粉及其制备方法
CN115746625A (zh) * 2016-04-04 2023-03-07 株式会社大赛璐 网版印刷用油墨
CN110494805A (zh) * 2017-03-13 2019-11-22 伊斯曼柯达公司 含有纤维素聚合物的含银组合物和用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302213A (ja) * 1993-04-14 1994-10-28 Sumitomo Metal Mining Co Ltd 導電性樹脂ペースト
JPH09176448A (ja) * 1995-12-25 1997-07-08 Matsushita Electric Ind Co Ltd 導電ペースト
JP2002299833A (ja) * 2001-03-30 2002-10-11 Harima Chem Inc 多層配線板およびその形成方法
JP2003034802A (ja) * 2001-07-25 2003-02-07 Mitsui Mining & Smelting Co Ltd 銅粉、その銅粉の製造方法、その銅粉を用いた銅ペースト、及びその銅ペーストを用いたプリント配線板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302213A (ja) * 1993-04-14 1994-10-28 Sumitomo Metal Mining Co Ltd 導電性樹脂ペースト
JPH09176448A (ja) * 1995-12-25 1997-07-08 Matsushita Electric Ind Co Ltd 導電ペースト
JP2002299833A (ja) * 2001-03-30 2002-10-11 Harima Chem Inc 多層配線板およびその形成方法
JP2003034802A (ja) * 2001-07-25 2003-02-07 Mitsui Mining & Smelting Co Ltd 銅粉、その銅粉の製造方法、その銅粉を用いた銅ペースト、及びその銅ペーストを用いたプリント配線板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105008070A (zh) * 2012-12-05 2015-10-28 住友金属矿山株式会社 银粉
CN105008070B (zh) * 2012-12-05 2017-05-24 住友金属矿山株式会社 银粉

Also Published As

Publication number Publication date
JP2005149913A (ja) 2005-06-09

Similar Documents

Publication Publication Date Title
JP4047304B2 (ja) 微粒銀粒子付着銀粉及びその微粒銀粒子付着銀粉の製造方法
JP4489388B2 (ja) 微粒銀粉の製造方法
JP2005048237A (ja) 微粒銀粉及びその微粒銀粉の製造方法
Jeong et al. Preparation of aqueous Ag Ink with long-term dispersion stability and its inkjet printing for fabricating conductive tracks on a polyimide film
JP5074837B2 (ja) 扁平銀粉の製造方法、扁平銀粉、及び導電性ペースト
JP4606012B2 (ja) 銀ペースト
JP4447273B2 (ja) 銀インク及びその銀インクの製造方法
KR20130099998A (ko) 금속 입자 및 그 제조 방법
JP2005251542A (ja) 導電性銀ペースト
JP2007239077A (ja) 微粒銀粒子製造方法及びその製造方法で得られた微粒銀粒子
JP2007100155A (ja) 微粒銀粒子付着銀銅複合粉及びその微粒銀粒子付着銀銅複合粉製造方法
JP4473620B2 (ja) 銀ペースト
JP2007270312A (ja) 銀粉の製造方法及び銀粉
CN106205776A (zh) 低温固化型石墨烯/银导电浆料及其制备方法和应用
JP2006049106A (ja) 銀ペースト
JP4969794B2 (ja) スズ粉の製造方法
JP5622127B2 (ja) 還元析出型球状NiP微小粒子およびその製造方法
CA2571135A1 (en) Copper-containing tin powder and method for producing the copper-containing tin powder, and electroconductive paste using the copper-containing tin powder
US8911821B2 (en) Method for forming nanometer scale dot-shaped materials
WO2022262794A1 (zh) 适用于高精密直写3d打印的纳米颗粒铜浆、制备及用途
Daniel Lu et al. Recent advances in nano-conductive adhesives
JP2013136818A (ja) 銅粉
JP2005281781A (ja) 銅ナノ粒子の製造方法
JP2008179851A (ja) 銀粉の製造方法及び銀粉
JP2004156062A (ja) 二層コート銅粉並びにその二層コート銅粉の製造方法及びその二層コート銅粉を用いた導電性ペースト

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101005

R150 Certificate of patent or registration of utility model

Ref document number: 4606012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees