JP4599847B2 - Optical wireless transmission device - Google Patents

Optical wireless transmission device Download PDF

Info

Publication number
JP4599847B2
JP4599847B2 JP2004035048A JP2004035048A JP4599847B2 JP 4599847 B2 JP4599847 B2 JP 4599847B2 JP 2004035048 A JP2004035048 A JP 2004035048A JP 2004035048 A JP2004035048 A JP 2004035048A JP 4599847 B2 JP4599847 B2 JP 4599847B2
Authority
JP
Japan
Prior art keywords
optical
receiving
light
receiver
optical signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004035048A
Other languages
Japanese (ja)
Other versions
JP2005229277A (en
Inventor
忠 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2004035048A priority Critical patent/JP4599847B2/en
Publication of JP2005229277A publication Critical patent/JP2005229277A/en
Application granted granted Critical
Publication of JP4599847B2 publication Critical patent/JP4599847B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、放射角が比較的狭い光信号を送信機から受信機に送信する光無線伝送装置に関し、特に送信機と受信機の光軸合わせの改良に関する。   The present invention relates to an optical wireless transmission apparatus that transmits an optical signal having a relatively narrow radiation angle from a transmitter to a receiver, and more particularly to an improvement in optical axis alignment between a transmitter and a receiver.

従来から光を用いて情報の空間伝送を行う光無線伝送技術がある。この光無線伝送には一般に赤外光が用いられ、その発光素子としては、発光ダイオードやレーザダイオードなどの半導体発光素子が用いられている。このような光無線伝送において、送受信間距離を十分にとりたい場合は、受信装置側に十分な光レベルを入射させるように、指向性を高くすべく送信装置より発する光ビームを鋭く絞る必要がある。そこで、送信装置及び受信装置の光軸を合わせなければならないが、指向性の低い光ビームを用いることや、光ビームが目に見えない赤外光を用いることなどから、光軸合わせは大変煩わしい作業となる。そこで、従来から、この光軸合わせを容易に行えるような光無線伝送装置の提案がされている。   Conventionally, there is an optical wireless transmission technology for performing spatial transmission of information using light. Infrared light is generally used for the optical wireless transmission, and a semiconductor light emitting element such as a light emitting diode or a laser diode is used as the light emitting element. In such optical wireless transmission, when a sufficient distance between transmission and reception is desired, it is necessary to sharply squeeze the light beam emitted from the transmission device so as to increase the directivity so that a sufficient light level is incident on the reception device side. . Therefore, the optical axes of the transmitting device and the receiving device must be aligned. However, the alignment of the optical axes is very troublesome because of using a light beam with low directivity or using an invisible infrared light beam. It becomes work. Therefore, conventionally, there has been proposed an optical wireless transmission device that can easily perform this optical axis alignment.

その例としては、送信装置に照準機を設置してその照準機を見ながら光軸を合わせる光無線伝送装置や、受信装置側に受光レベル検出用測定機を接続して2人一組で光軸合わせを行う光無線伝送装置もある。また、本出願人による下記の特許文献1で開示されるような、受光器側に光軸調整用の光源を設けて、送信機からの送信光の受信レベル情報を折り返し、それに応じて送信機側で調整し光軸を合わせるものもある。
特開平7−131422号公報(要約書)
For example, an optical wireless transmission device that installs a sighting device in the transmitter and aligns the optical axis while looking at the sighting device, or a measuring device for detecting the received light level on the receiving device side, and a pair of two Some optical wireless transmission devices perform axis alignment. Further, as disclosed in the following Patent Document 1 by the present applicant, a light source for adjusting the optical axis is provided on the light receiver side, and reception level information of the transmitted light from the transmitter is turned back, and the transmitter is accordingly transmitted. Some of them are adjusted on the side to adjust the optical axis.
JP-A-7-131422 (abstract)

しかしながら、従来の光無線伝送装置は、送信側の送信光軸を受信側の受信手段に対して簡単で正確に当てようとするもので、受信側の受信手段を送信側に正しく対向させる視点が欠落していた。送信機からの送信光を受信機のフォトダイオードなどの受信手段に当てたとしても、受信手段はそれぞれ受光可能な範囲の角度を有しており、送信光をこの角度範囲内で受光しなければ、送信光が受信機の受信手段に当たったとしても光無線伝送は実現しない。この点に関して、特許文献1の例では受信側を送信光に正対させるための方向制御手段を持たないので、受信機そのものを動かしたり傾けたりする必要がある。   However, the conventional optical wireless transmission apparatus is intended to easily and accurately apply the transmission optical axis on the transmission side to the reception means on the reception side, and has a viewpoint of correctly facing the reception means on the reception side to the transmission side. It was missing. Even if the transmission light from the transmitter is applied to the receiving means such as the photodiode of the receiver, each receiving means has an angle within a range in which light can be received, and the transmission light must be received within this angle range. Even if the transmitted light hits the receiving means of the receiver, optical wireless transmission is not realized. In this regard, since the example of Patent Document 1 does not have a direction control means for causing the receiving side to face the transmitted light, it is necessary to move or tilt the receiver itself.

なお、受信側からの受光レベル情報を送信機側の受信手段で受信して、送信機の送信手段と受信手段を一体として移動可能な駆動手段により、粗・密の2段階で光軸調整を行う方法が考えられるが、この方法では、送信機・受信機共光軸を合わせる手段として比較的指向角の広い発光素子と受光素子を備え、光無線により伝えるべき情報が載った、より指向角の狭い送信光の光軸合わせに利用できるが、やはり受信機を送信光に正対させる手段を持たないので、受信機そのものを動かしたり傾けたりする必要がある。   The light receiving level information from the receiving side is received by the receiving means on the transmitter side, and the optical axis is adjusted in two stages, coarse and dense, by the driving means that can move the transmitting means and the receiving means of the transmitter integrally. Although this method can be considered, this method includes a light emitting element and a light receiving element having a relatively wide directivity angle as means for aligning the optical axis of both the transmitter and the receiver, and a more directivity angle on which information to be transmitted by optical radio is placed. However, since there is no means for making the receiver directly face the transmitted light, it is necessary to move or tilt the receiver itself.

また、受信側の受信手段を2軸の回転駆動手段により送信光に正対させる構造が考えられるが、受信手段の位置が動くのを抑えるような配慮をしないと、回転と同時に受信手段も位置が動いてしまい、受信側が送信光に正対するための回転前には、送信光スポットが受信手段に当たっていたとしても回転により受信手段の位置が動いて受信手段が送信光スポットから外れてしまう。特に送信光の指向角が狭く絞ってあり、送信光スポットが小さい場合は、回転による受信手段の位置変動によって、送信光スポットから受信手段が外れやすくなってしまうのが課題である。   In addition, a structure is conceivable in which the receiving means on the receiving side is directly opposed to the transmitted light by the biaxial rotation driving means. Even if the transmission light spot hits the reception means before the reception side rotates to face the transmission light, the position of the reception means moves due to the rotation and the reception means deviates from the transmission light spot. In particular, when the directivity angle of the transmission light is narrowed down and the transmission light spot is small, it is a problem that the reception means is likely to be detached from the transmission light spot due to the positional variation of the reception means due to rotation.

本発明は上記の問題点に鑑み、受信機の受信手段の角度調整による位置変動を最小限に抑えて、送信光と受信手段を正対させて確実に光軸を合わせることができる光無線伝送装置を提供することを目的とする。   In view of the above-described problems, the present invention minimizes the positional fluctuation caused by the angle adjustment of the receiving means of the receiver and minimizes the positional variation between the transmitting light and the receiving means so that the optical axis can be reliably aligned with the optical axis. An object is to provide an apparatus.

本発明は上記目的を達成するために、1の光信号を送信する第1の光学送信手段を有する送信機と、前記第1の光信号を受信して電気信号に変換する第1の光学受信手段を有する受信機とを備えた光無線伝送装置であって、
前記送信機は、
放射角が前記第1の光信号の放射角より広い第2の光信号を送信する第2の光学送信手段と、
前記受信機が送信する放射角が前記第1の光信号の放射角より広い第3の光を受信する第3の光学受信手段と、
前記第3の光学受信手段が受信した前記第3の光信号に基づいて前記第1の光学送信手段の光軸合わせを行う光軸合わせ手段を備え、
前記受信機は、
前記第2の光信号を、複数の受光素子によって受信する第2の光学受信手段と、
前記複数の受光素子で検出される各受光レベルを比較して得た信号に基づいて、上下左右方向の光軸合わせガイドを表示する表示手段と、
前記第3の光信号を送信する第3の光学送信手段と、
前記表示手段に表示される前記光軸合わせガイドに基づいて、少なくとも前記第1、第2の光学受信手段を一体として、直交する2軸の回転軸の回りを手動で回転させることが可能であり、かつ、前記2軸が、主信号であり、前記第2、第3の光信号よりも放射角が狭い前記第1の光信号を受信する前記第1の光学受信手段の略受光中心を通るように構成された回転駆動手段を備えたことを特徴とする。
The present invention, in order to achieve the above object, a first optical converting a first transmitter having an optical transmission means, an electric signal by receiving the first optical signal for transmitting a first optical signal An optical wireless transmission device comprising a receiver having a receiving means,
The transmitter is
Second optical transmission means for transmitting a second optical signal having a radiation angle wider than the radiation angle of the first optical signal;
Third optical receiving means for receiving third light having a radiation angle transmitted by the receiver wider than the radiation angle of the first optical signal;
An optical axis alignment unit configured to perform optical axis alignment of the first optical transmission unit based on the third optical signal received by the third optical reception unit;
The receiver
Second optical receiving means for receiving the second optical signal by a plurality of light receiving elements;
Display means for displaying optical axis alignment guides in the vertical and horizontal directions based on signals obtained by comparing the respective light reception levels detected by the plurality of light receiving elements;
Third optical transmission means for transmitting the third optical signal ;
Based on the optical axis alignment guide displayed on the display means, at least the first and second optical receiving means can be integrally rotated around two orthogonal rotation axes. In addition, the two axes are main signals and pass through a substantially light receiving center of the first optical receiving means for receiving the first optical signal having a radiation angle narrower than that of the second and third optical signals. Rotational drive means configured as described above is provided.

本発明の光無線伝送装置によれば、受信機の受信手段の回転軸が略受光中心を通るように構成されているので、放射角が狭い送信光に対して受信手段を回転させる際に、2軸の回転軸のうちどちらを動かしても送信光のスポットから受信手段が外れないようにすることができる。   According to the optical wireless transmission apparatus of the present invention, since the rotation axis of the receiving means of the receiver is configured to pass through the light receiving center, when rotating the receiving means with respect to transmission light having a narrow radiation angle, It is possible to prevent the receiving means from being removed from the spot of the transmitted light by moving either of the two rotation axes.

以下、図面を参照して本発明の実施の形態について説明する。
<装置の全体構成>
図1は、本発明の光軸合わせ方法を実現するための光無線伝送装置の一実施の形態を示す概略構成図である。図1に示すように、本発明による光無線伝送装置は、映像表示部4から離れた場所にある映像制御部3の映像信号を映像表示部4に光無線伝送して映し出すために、映像制御部3側に設けられた送信機1と、映像表示部4側に設けられた受信機2により構成される。
Embodiments of the present invention will be described below with reference to the drawings.
<Overall configuration of device>
FIG. 1 is a schematic configuration diagram showing an embodiment of an optical wireless transmission apparatus for realizing the optical axis alignment method of the present invention. As shown in FIG. 1, the optical wireless transmission apparatus according to the present invention performs video control in order to optically wirelessly transmit a video signal of the video control unit 3 located at a location away from the video display unit 4 to the video display unit 4 for display. It comprises a transmitter 1 provided on the unit 3 side and a receiver 2 provided on the video display unit 4 side.

送信機1からは映像信号が光信号(後述するL1)に変換されて出力され、その出力された光信号は一定の放射角の範囲B(=−B/2〜+B/2)内において受信可能な所定の強度を保つ。一方、受信機2においては、送信機1より出力された光信号を受ける受光素子が受信可能な受信光指向角A(=−A/2〜+A/2)を有する。光伝送を実現するには、送信機1からの光信号の送信光放射角Bの範囲内に受信機2の受光素子を捕らえ、かつ、受信機2の受光素子が送信光を受信可能な受信光指向角Aの範囲内で送信光を受ける必要がある。光無線伝送における光軸合わせとは上記のような状態を作り出すことである。本実施の形態においては、映像信号を光伝送する光学送信手段としてLD(レーザダイオード)を、光学受信手段としてはPD(フォトダイオード)を用いている。   From the transmitter 1, the video signal is converted into an optical signal (L1 to be described later) and output, and the output optical signal is received within a certain radiation angle range B (= −B / 2 to + B / 2). Keep the given strength possible. On the other hand, the receiver 2 has a received light directivity angle A (= −A / 2 to + A / 2) that can be received by the light receiving element that receives the optical signal output from the transmitter 1. In order to realize the optical transmission, the light receiving element of the receiver 2 is caught within the range of the transmission light radiation angle B of the optical signal from the transmitter 1, and the light receiving element of the receiver 2 can receive the transmitted light. It is necessary to receive transmission light within the range of the light directivity angle A. Optical axis alignment in optical wireless transmission is to create the state as described above. In this embodiment, an LD (laser diode) is used as an optical transmission means for optically transmitting a video signal, and a PD (photodiode) is used as an optical reception means.

<送受信機1、2の内部構成>
図2は、本発明の光無線伝送装置の送信機1と受信機2の概略構成図である。送信機1、受信機2にはそれぞれ、映像信号を変換した第1の光信号L1を送受信するための第1の光学送信手段11、第1の光学受信手段21が設けられている。また、それとは別に、映像信号を伝送する光軸を合わせるために、送信機1には第2の光学送信手段12と第3の光学受信手段13が設けられ、受信機2には第2の光学受信手段22と第3の光学送信手段23が設けられている。最終的に送信機1側の放射角の狭い第1の光信号L1を対応する受信機2側の第1の光学受信手段21に正面から当てる光軸合わせを受信機2側で手動で容易に行うために、送信機1側の第2の光学送信手段12から放射角の広い第2の光信号L2を送信し、受信機2側の第2の光学受信手段22により受光光量を得て、送信機1の方向を検知し、映像信号を光伝送する光軸合わせに利用している。
<Internal configuration of transceivers 1 and 2>
FIG. 2 is a schematic configuration diagram of the transmitter 1 and the receiver 2 of the optical wireless transmission apparatus of the present invention. Each of the transmitter 1 and the receiver 2 is provided with a first optical transmitter 11 and a first optical receiver 21 for transmitting and receiving the first optical signal L1 obtained by converting the video signal. Separately, in order to align the optical axis for transmitting the video signal, the transmitter 1 is provided with the second optical transmission means 12 and the third optical reception means 13, and the receiver 2 is provided with the second optical transmission means 12. An optical receiver 22 and a third optical transmitter 23 are provided. Finally, the optical axis alignment of the first optical signal L1 having a narrow radiation angle on the transmitter 1 side to the corresponding first optical receiving means 21 on the receiver 2 side from the front can be easily performed manually on the receiver 2 side. In order to do this, the second optical signal L2 having a wide radiation angle is transmitted from the second optical transmitter 12 on the transmitter 1 side, and the received light quantity is obtained by the second optical receiver 22 on the receiver 2 side. The direction of the transmitter 1 is detected and used for optical axis alignment for optical transmission of video signals.

ここで、送信機1では、第1の光学送信手段11と、第2の光学送信手段12と第3の光学受信手段13が送信側光学ユニット14内に一体化され、送信側光学ユニット14は自動で垂直方向回転駆動手段15、水平方向回転駆動手段16によりそれぞれ垂直方向、水平方向に回転可能である。また、受信機2では、第1の光学受信手段21と、第2の光学受信手段22と第3の光学送信手段23が受信側光学ユニット24内に一体化され、受信側光学ユニット24は手動で垂直方向、水平方向に回転可能である。さらに図3〜図7に示すように、受信側光学ユニット24の垂直方向の回転軸31vと水平方向の回転軸31hは第1の光学受信手段21の中心Oを通るように構成されている。   Here, in the transmitter 1, the first optical transmission unit 11, the second optical transmission unit 12, and the third optical reception unit 13 are integrated in the transmission side optical unit 14. The vertical rotation drive means 15 and the horizontal rotation drive means 16 can automatically rotate in the vertical and horizontal directions, respectively. In the receiver 2, the first optical receiving means 21, the second optical receiving means 22, and the third optical transmitting means 23 are integrated in the receiving optical unit 24, and the receiving optical unit 24 is manually operated. It can be rotated in the vertical and horizontal directions. Further, as shown in FIGS. 3 to 7, the vertical rotation shaft 31 v and the horizontal rotation shaft 31 h of the reception-side optical unit 24 are configured to pass through the center O of the first optical reception means 21.

<光軸合わせの手順:送信機1側自動>
映像信号を光伝送するためには、まずユーザが送信機1と受信機2をおおよそ対向させるように設置して、送信機1の第3の光学受信手段13が受信機2の第3の光学送信手段23からの光信号L3により受信機2の方向を検知できるようにする。本実施の形態においては光軸合わせ用の第3の光学送信手段23として放射角が比較的広いLED(発光ダイオード)を、第3の光学受信手段13としては受光角が比較的広い複数のPDを利用しており、ユーザが送信機1と受信機2をおおよそ向かい合わせるだけで、それぞれの受光素子・発光素子の指向角の範囲内に設置できる。
<Optical axis alignment procedure: Transmitter 1 side automatic>
In order to optically transmit a video signal, a user first installs the transmitter 1 and the receiver 2 so as to face each other, and the third optical receiving means 13 of the transmitter 1 uses the third optical of the receiver 2. The direction of the receiver 2 can be detected by the optical signal L3 from the transmission means 23. In the present embodiment, an LED (light emitting diode) having a relatively wide radiation angle is used as the third optical transmission means 23 for aligning the optical axis, and a plurality of PDs having a relatively wide light receiving angle are used as the third optical reception means 13. By simply using the transmitter 1 and the receiver 2 facing each other, the user can install the light receiving element and the light emitting element within the range of the directivity angle.

受信機2の第3の光学送信手段23からの光信号L3を受けた送信機1の第3の光学受信手段13は、複数のPDからの受信信号を増幅するなどの処理を加える。この受信信号は図示しない受信レベル検出回路により受信レベルを検出し、各PDからの受信レベルを比較して駆動制御部を制御してステッピングモータなどの駆動手段15、16により送信側光学ユニット14をそれぞれ垂直方向、水平方向に回転駆動して向きを制御して、映像信号が載った放射角の狭い第1の光信号L1を受信機2の第1の光学受信手段21に当てる。   The third optical receiver 13 of the transmitter 1 that has received the optical signal L3 from the third optical transmitter 23 of the receiver 2 performs processing such as amplifying received signals from a plurality of PDs. The reception signal is detected by a reception level detection circuit (not shown), the reception level from each PD is compared, the drive control unit is controlled, and the transmission side optical unit 14 is driven by driving means 15 and 16 such as a stepping motor. The first optical signal L1 having a narrow emission angle on which the video signal is carried is applied to the first optical receiving means 21 of the receiver 2 by rotating and driving in the vertical direction and the horizontal direction, respectively.

<光軸合わせの手順:受信機2側手動>
次に、光信号L1が受信機2の第1の光学受信手段21に当たった状態で、受信機2の受信側光学ユニット24の向きを光信号L1に正対させるように手動で調整する。受信機2は、光信号L2を第2の光学受信手段22の複数、例えば2×2個のPDにより受光して各受光レベルを検出し、比較して得た信号に基づいて図3に示すような上下左右方向の光軸合わせガイドを光軸調整方向表示部30に表示する。光軸合わせに際しては、人間(操作者)がこの表示情報を見ながら受信側光学ユニット24を垂直方向、水平方向に調整する。
<Optical axis alignment procedure: manual on receiver 2 side>
Next, in a state where the optical signal L1 hits the first optical receiving means 21 of the receiver 2, the direction of the receiving side optical unit 24 of the receiver 2 is manually adjusted so as to face the optical signal L1. The receiver 2 receives the optical signal L2 by a plurality of, for example, 2 × 2 PDs of the second optical receiving means 22, detects each received light level, and shows the result shown in FIG. Such optical axis alignment guides in the vertical and horizontal directions are displayed on the optical axis adjustment direction display unit 30. When aligning the optical axis, a human (operator) adjusts the receiving-side optical unit 24 in the vertical and horizontal directions while viewing the display information.

<映像信号伝送用の光軸が合う>
これまでの段階で、送信側光学ユニット14と受信側光学ユニット24を正対させることができたので、映像信号が乗った光信号L1を伝送するための第1の光学送信手段11と第1の光学受信手段21の光軸が合う。
<Optical axis for video signal transmission matches>
Since the transmission side optical unit 14 and the reception side optical unit 24 can be directly opposed in the previous steps, the first optical transmission means 11 for transmitting the optical signal L1 carrying the video signal and the first optical transmission unit 11 The optical axes of the optical receiving means 21 are aligned.

図4は放射角が狭い第1の光信号L1を受ける受信機2側の第1の光学受信手段21と受信側光学ユニット24の回転軸31v、31hを示す図である。第1の光学受信手段21の受光手段としては、複数、例えば2×2個の受光素子21aを内蔵するPDを用い、光を受けて光信号L1を検出する際の基準位置は複数の受光素子21aの中心Oである。この中心Oが受光中心であり、受光中心Oと受信側光学ユニット24の回転軸31v、31hの交点を一致させれば、どちらの軸31v、31hの周りに回転しても受光中心Oの位置は不変である。本実施の形態においては、直交する2軸の回転軸を垂直方向と水平方向の回転軸31v、31hとしたが、いかなる軸であっても、受光中心Oを通る回転軸であれば、光軸調整の際に受光中心Oが変位することは無い。   FIG. 4 is a diagram showing the first optical receiving means 21 on the receiver 2 side that receives the first optical signal L1 having a narrow radiation angle and the rotation axes 31v and 31h of the receiving optical unit 24. As the light receiving means of the first optical receiving means 21, a plurality of PDs, for example, 2 × 2 light receiving elements 21a are used, and the reference position when detecting the optical signal L1 by receiving light is a plurality of light receiving elements. It is the center O of 21a. This center O is the light receiving center, and if the intersection of the light receiving center O and the rotation axes 31v, 31h of the receiving optical unit 24 is made coincident, the position of the light receiving center O will be able to rotate around any axis 31v, 31h. Is immutable. In the present embodiment, the two orthogonal rotation axes are the vertical and horizontal rotation axes 31v and 31h. However, any axis can be used as long as it is a rotation axis passing through the light receiving center O. The light receiving center O is not displaced during the adjustment.

図5(a)、(b)はそれぞれ、本発明における光無線伝送装置の受信機2における、映像信号伝送用の第1の光学送信手段11に対応した第1の光学受信手段21の受光素子の受光中心Oと回転軸31v、31hの位置関係の例を示す側面図、正面図である。放射角の狭い第1の光信号L1に対応した第1の光学受信手段21の受光中心Oと2軸の回転軸31v、31hの交点が一致するように構成されている。第1の光学受信手段21の回転による位置変位は回転中心より離れる程大きくなるが、2軸の回転中心と第1の光学受信手段21の受光中心Oが一致していれば、受信側光学ユニット24の回転による位置変動は無視できる。   FIGS. 5A and 5B respectively show the light receiving element of the first optical receiving means 21 corresponding to the first optical transmitting means 11 for video signal transmission in the receiver 2 of the optical wireless transmission apparatus according to the present invention. It is the side view and front view which show the example of the positional relationship of the light reception center O and rotating shaft 31v, 31h. The light receiving center O of the first optical receiving means 21 corresponding to the first optical signal L1 having a narrow radiation angle is configured such that the intersection of the two rotational axes 31v and 31h coincides. The positional displacement due to the rotation of the first optical receiving means 21 increases as the distance from the rotation center increases. However, if the biaxial rotation center and the light receiving center O of the first optical receiving means 21 coincide, The position variation due to the rotation of 24 can be ignored.

図6と図7はそれぞれ、本発明による光無線伝送装置の受信側光学ユニット24が放射角の狭い第1の光信号L1を受ける第1の光学受信手段21の受光中心Oを中心として回転する前後の図である。受信側光学ユニット24が回転しても、第1の光学受信手段21の受光中心Oの位置は不変であるので、第1の光学受信手段21が光信号L1の送信光スポットS1から外れることは無い。同じく、受信機2側に送られる第2の光学送信手段12による光信号L2は、元来、第1の光信号L1を第1の光学受信手段21に合わせるためのものであり、十分に放射角が広いので、第2の光信号L2に対応する第2の光学受信手段22が受信側光学ユニット24の回転により第2の光信号L2の送信光スポットS2から外れることはない。   6 and 7 respectively, the receiving-side optical unit 24 of the optical wireless transmission apparatus according to the present invention rotates around the light receiving center O of the first optical receiving means 21 that receives the first optical signal L1 having a narrow emission angle. It is a figure before and after. Even if the receiving side optical unit 24 rotates, the position of the light receiving center O of the first optical receiving means 21 does not change, so that the first optical receiving means 21 does not deviate from the transmission light spot S1 of the optical signal L1. No. Similarly, the optical signal L2 by the second optical transmission means 12 sent to the receiver 2 side is originally for matching the first optical signal L1 with the first optical reception means 21, and is sufficiently radiated. Since the angle is wide, the second optical receiving means 22 corresponding to the second optical signal L2 does not deviate from the transmission light spot S2 of the second optical signal L2 due to the rotation of the receiving optical unit 24.

図8は、受信側光学ユニット24の回転軸が第1の光学受信手段21から離れた位置にあり、受信側光学ユニット24が回転すると、第1の光学受信手段21が第1の光信号L1の送信光スポットS1から外れてしまう場合を示している。図示の状態は第1の光信号L1がギリギリで第1の光学受信手段21に当たっているような場合に起こる可能性がより高い。   In FIG. 8, the rotation axis of the reception-side optical unit 24 is at a position away from the first optical reception means 21, and when the reception-side optical unit 24 rotates, the first optical reception means 21 changes to the first optical signal L1. In this case, the transmission light spot S1 is deviated. The state shown in the figure is more likely to occur when the first optical signal L1 is barely hitting the first optical receiving means 21.

本発明の光軸合わせ方法を実現するための光無線伝送装置の一実施の形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the optical wireless transmission apparatus for implement | achieving the optical axis alignment method of this invention. 本発明の光無線伝送装置の送信機と受信機の概略構成図である。It is a schematic block diagram of the transmitter and receiver of the optical wireless transmission apparatus of the present invention. 本発明による受信機の光軸合わせのための光軸調整方向表示部を示す図である。It is a figure which shows the optical axis adjustment direction display part for the optical axis alignment of the receiver by this invention. 放射角の狭い第1の光信号を受ける受信機側の第1の光学受信手段と受信側光学ユニットの回転軸の位置関係を示す図である。It is a figure which shows the positional relationship of the rotating shaft of the 1st optical receiving means by the side of the receiver which receives the 1st optical signal with a narrow radiation angle, and a receiving side optical unit. 図4の受信側光学ユニットを搭載した受信機の全体図である。FIG. 5 is an overall view of a receiver on which the receiving side optical unit of FIG. 4 is mounted. 本発明による光無線伝送装置の受信側光学ユニットが回転する前の図である。It is a figure before the receiving side optical unit of the optical wireless transmission apparatus by this invention rotates. 本発明による光無線伝送装置の受信側光学ユニットが回転した後の様子を示す模式図である。It is a schematic diagram which shows a mode after the receiving side optical unit of the optical wireless transmission apparatus by this invention rotates. 本発明の構成を有さない光無線伝送装置の受信側光学ユニットが回転する様子を示す模式図である。It is a schematic diagram which shows a mode that the receiving side optical unit of the optical wireless transmission apparatus which does not have the structure of this invention rotates.

符号の説明Explanation of symbols

1 送信機
2 受信機
3 映像制御部
4 映像表示部
11 第1の光学送信手段
12 第2の光学送信手段
13 第3の光学受信手段
14 送信側光学ユニット
15 垂直方向回転駆動手段
16 水平方向回転駆動手段
21 第1の光学受信手段
21a 受光素子
22 第2の光学受信手段
23 第3の光学送信手段
24 受信側光学ユニット
30 光軸調整方向表示部
31h 水平方向回転軸
31v 垂直方向回転軸
O 受光中心
S1、S2 送信光スポット
DESCRIPTION OF SYMBOLS 1 Transmitter 2 Receiver 3 Image | video control part 4 Image | video display part 11 1st optical transmission means 12 2nd optical transmission means 13 3rd optical reception means 14 Transmission side optical unit 15 Vertical direction rotation drive means 16 Horizontal direction rotation Driving means 21 First optical receiving means 21a Light receiving element 22 Second optical receiving means 23 Third optical transmitting means 24 Receiving side optical unit 30 Optical axis adjustment direction display unit 31h Horizontal rotation axis 31v Vertical rotation axis O Light reception Center S1, S2 Transmitted light spot

Claims (1)

1の光信号を送信する第1の光学送信手段を有する送信機と、前記第1の光信号を受信して電気信号に変換する第1の光学受信手段を有する受信機とを備えた光無線伝送装置であって、
前記送信機は、
放射角が前記第1の光信号の放射角より広い第2の光信号を送信する第2の光学送信手段と、
前記受信機が送信する放射角が前記第1の光信号の放射角より広い第3の光を受信する第3の光学受信手段と、
前記第3の光学受信手段が受信した前記第3の光信号に基づいて前記第1の光学送信手段の光軸合わせを行う光軸合わせ手段を備え、
前記受信機は、
前記第2の光信号を、複数の受光素子によって受信する第2の光学受信手段と、
前記複数の受光素子で検出される各受光レベルを比較して得た信号に基づいて、上下左右方向の光軸合わせガイドを表示する表示手段と、
前記第3の光信号を送信する第3の光学送信手段と、
前記表示手段に表示される前記光軸合わせガイドに基づいて、少なくとも前記第1、第2の光学受信手段を一体として、直交する2軸の回転軸の回りを手動で回転させることが可能であり、かつ、前記2軸が、主信号であり、前記第2、第3の光信号よりも放射角が狭い前記第1の光信号を受信する前記第1の光学受信手段の略受光中心を通るように構成された回転駆動手段を備えた光無線伝送装置。
First a transmitter having a first optical transmission means for transmitting an optical signal, the light and a receiver having a first optical receiver means for converting into an electric signal by receiving the first optical signal A wireless transmission device,
The transmitter is
Second optical transmission means for transmitting a second optical signal having a radiation angle wider than the radiation angle of the first optical signal;
Third optical receiving means for receiving third light having a radiation angle transmitted by the receiver wider than the radiation angle of the first optical signal;
An optical axis alignment unit configured to perform optical axis alignment of the first optical transmission unit based on the third optical signal received by the third optical reception unit;
The receiver
Second optical receiving means for receiving the second optical signal by a plurality of light receiving elements;
Display means for displaying optical axis alignment guides in the vertical and horizontal directions based on signals obtained by comparing the respective light reception levels detected by the plurality of light receiving elements;
Third optical transmission means for transmitting the third optical signal ;
Based on the optical axis alignment guide displayed on the display means, at least the first and second optical receiving means can be integrally rotated around two orthogonal rotation axes. In addition, the two axes are main signals and pass through a substantially light receiving center of the first optical receiving means for receiving the first optical signal having a radiation angle narrower than that of the second and third optical signals. An optical wireless transmission apparatus comprising a rotation driving unit configured as described above.
JP2004035048A 2004-02-12 2004-02-12 Optical wireless transmission device Expired - Fee Related JP4599847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004035048A JP4599847B2 (en) 2004-02-12 2004-02-12 Optical wireless transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004035048A JP4599847B2 (en) 2004-02-12 2004-02-12 Optical wireless transmission device

Publications (2)

Publication Number Publication Date
JP2005229277A JP2005229277A (en) 2005-08-25
JP4599847B2 true JP4599847B2 (en) 2010-12-15

Family

ID=35003659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004035048A Expired - Fee Related JP4599847B2 (en) 2004-02-12 2004-02-12 Optical wireless transmission device

Country Status (1)

Country Link
JP (1) JP4599847B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6430747B2 (en) * 2014-08-06 2018-11-28 公立大学法人岩手県立大学 COMMUNICATION SYSTEM AND MOBILE DEVICE USING THE SAME
JP6396933B2 (en) * 2016-02-09 2018-09-26 Necプラットフォームズ株式会社 Information derivation system, optical transmission / reception system, and communication system

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533119U (en) * 1991-10-15 1993-04-30 三菱電機株式会社 Space optical transmission device
JPH05167537A (en) * 1991-12-17 1993-07-02 Sony Corp Optical space transmitter
JPH05183513A (en) * 1991-12-27 1993-07-23 Mitsubishi Electric Corp Optical space transmitter
JPH05183515A (en) * 1991-12-27 1993-07-23 Mitsubishi Electric Corp Optical space transmitter
JPH05284112A (en) * 1992-04-02 1993-10-29 Kazushi Enomoto Optical multiplex communication system with rotating part
JPH05303424A (en) * 1992-04-24 1993-11-16 Sony Corp Method for controlling posture for infrared ray transmitting equipment
JPH06224858A (en) * 1992-10-16 1994-08-12 Victor Co Of Japan Ltd Optical radio transmitter-receiver and optical radio equipment and optical axis adjusting method for the equipment
JPH07131422A (en) * 1993-10-29 1995-05-19 Victor Co Of Japan Ltd Optical axis alignment method for optical radio transmission equipment
JPH08139674A (en) * 1994-11-11 1996-05-31 Victor Co Of Japan Ltd Optical radio transmitter/receiver
JPH08139675A (en) * 1994-11-11 1996-05-31 Victor Co Of Japan Ltd Optical radio transmitter/receiver
JPH08139676A (en) * 1994-11-11 1996-05-31 Victor Co Of Japan Ltd Optical radio transmitter/receiver
JPH08204640A (en) * 1995-01-25 1996-08-09 Sony Corp Optical space transmitter
JPH08223117A (en) * 1995-02-08 1996-08-30 Sony Corp Optical space transmission equipment
JPH09121112A (en) * 1995-10-25 1997-05-06 Nec Corp Directivity angle controller of spacecraft optical antenna
JPH09307502A (en) * 1996-05-10 1997-11-28 Fuji Xerox Co Ltd Infrared ray communication equipment
JPH10170336A (en) * 1996-12-06 1998-06-26 Victor Co Of Japan Ltd Device for detecting arriving direction of light
JPH10224302A (en) * 1997-02-05 1998-08-21 Victor Co Of Japan Ltd Optical space transmission device
JPH1174842A (en) * 1997-08-29 1999-03-16 Victor Co Of Japan Ltd Photo detector unit, light arrival direction detector and optical transmitter-receiver
JPH1198082A (en) * 1997-09-16 1999-04-09 Victor Co Of Japan Ltd Optical communication device
JPH11122179A (en) * 1997-10-09 1999-04-30 Seiko Epson Corp Space light transmitter and space light transmission method
JP2000244408A (en) * 1999-02-22 2000-09-08 Hitachi Zosen Corp Optical space communication equipment
JP2000295180A (en) * 1999-04-09 2000-10-20 Sharp Corp Optical communication equipment
JP2003008515A (en) * 2001-06-26 2003-01-10 Victor Co Of Japan Ltd Photodetector
JP2004015476A (en) * 2002-06-07 2004-01-15 Canon Inc Optical space communication unit and beam-angle deflecting method
JP2004015135A (en) * 2002-06-04 2004-01-15 Canon Inc Optical space communication unit having direction regulating function
JP2004015134A (en) * 2002-06-04 2004-01-15 Canon Inc Optical space communication unit

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533119U (en) * 1991-10-15 1993-04-30 三菱電機株式会社 Space optical transmission device
JPH05167537A (en) * 1991-12-17 1993-07-02 Sony Corp Optical space transmitter
JPH05183513A (en) * 1991-12-27 1993-07-23 Mitsubishi Electric Corp Optical space transmitter
JPH05183515A (en) * 1991-12-27 1993-07-23 Mitsubishi Electric Corp Optical space transmitter
JPH05284112A (en) * 1992-04-02 1993-10-29 Kazushi Enomoto Optical multiplex communication system with rotating part
JPH05303424A (en) * 1992-04-24 1993-11-16 Sony Corp Method for controlling posture for infrared ray transmitting equipment
JPH06224858A (en) * 1992-10-16 1994-08-12 Victor Co Of Japan Ltd Optical radio transmitter-receiver and optical radio equipment and optical axis adjusting method for the equipment
JPH07131422A (en) * 1993-10-29 1995-05-19 Victor Co Of Japan Ltd Optical axis alignment method for optical radio transmission equipment
JPH08139674A (en) * 1994-11-11 1996-05-31 Victor Co Of Japan Ltd Optical radio transmitter/receiver
JPH08139675A (en) * 1994-11-11 1996-05-31 Victor Co Of Japan Ltd Optical radio transmitter/receiver
JPH08139676A (en) * 1994-11-11 1996-05-31 Victor Co Of Japan Ltd Optical radio transmitter/receiver
JPH08204640A (en) * 1995-01-25 1996-08-09 Sony Corp Optical space transmitter
JPH08223117A (en) * 1995-02-08 1996-08-30 Sony Corp Optical space transmission equipment
JPH09121112A (en) * 1995-10-25 1997-05-06 Nec Corp Directivity angle controller of spacecraft optical antenna
JPH09307502A (en) * 1996-05-10 1997-11-28 Fuji Xerox Co Ltd Infrared ray communication equipment
JPH10170336A (en) * 1996-12-06 1998-06-26 Victor Co Of Japan Ltd Device for detecting arriving direction of light
JPH10224302A (en) * 1997-02-05 1998-08-21 Victor Co Of Japan Ltd Optical space transmission device
JPH1174842A (en) * 1997-08-29 1999-03-16 Victor Co Of Japan Ltd Photo detector unit, light arrival direction detector and optical transmitter-receiver
JPH1198082A (en) * 1997-09-16 1999-04-09 Victor Co Of Japan Ltd Optical communication device
JPH11122179A (en) * 1997-10-09 1999-04-30 Seiko Epson Corp Space light transmitter and space light transmission method
JP2000244408A (en) * 1999-02-22 2000-09-08 Hitachi Zosen Corp Optical space communication equipment
JP2000295180A (en) * 1999-04-09 2000-10-20 Sharp Corp Optical communication equipment
JP2003008515A (en) * 2001-06-26 2003-01-10 Victor Co Of Japan Ltd Photodetector
JP2004015135A (en) * 2002-06-04 2004-01-15 Canon Inc Optical space communication unit having direction regulating function
JP2004015134A (en) * 2002-06-04 2004-01-15 Canon Inc Optical space communication unit
JP2004015476A (en) * 2002-06-07 2004-01-15 Canon Inc Optical space communication unit and beam-angle deflecting method

Also Published As

Publication number Publication date
JP2005229277A (en) 2005-08-25

Similar Documents

Publication Publication Date Title
US20130082162A1 (en) Method of Directing an Optical Receiver Toward a Light Source and an Apparatus of Practising the Method
CN106209225A (en) A kind of wireless optical channel construction method and device
JP4599847B2 (en) Optical wireless transmission device
KR100244356B1 (en) Optical atmospheric transmission device
JP2013238440A (en) Beam scan type object detector
JP3892290B2 (en) Guide laser beam direction setting work system
US6542225B2 (en) Surveying machine automatically adjusting optical axis
JP4462066B2 (en) Spatial light transmission system and portable terminal
US20040096224A1 (en) Optical wireless communication system
JP4462048B2 (en) Spatial optical transmission system and optical receiver
JP2003209520A (en) Transmitter, receiver and signal axis alignment method
JP2006217289A (en) Optical radio transmitting device
JP3649621B2 (en) Optical communication device
JP2007049240A (en) Optical axis adjustment instrument and method
JP2009268530A (en) Visual target presenting apparatus
CN112556663A (en) Measuring device and measuring device system
JP2006042206A (en) Optical radio transmitter
JP4029402B2 (en) Optical axis adjustment device for optical wireless transmission device
JPH06164512A (en) Pointing apparatus for optical space communication device
JP2005045763A (en) Optical radio transmission apparatus
JP2004135326A (en) Optical wireless transmission equipment
JPH08181659A (en) Optical spatial transmitter
JP3965597B2 (en) Data communication mechanism of surveying instrument
WO2021005684A1 (en) Optical axis alignment mechanism and optical axis alignment method
JP4379161B2 (en) Optical transmitter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees