JPH08223117A - Optical space transmission equipment - Google Patents

Optical space transmission equipment

Info

Publication number
JPH08223117A
JPH08223117A JP7020562A JP2056295A JPH08223117A JP H08223117 A JPH08223117 A JP H08223117A JP 7020562 A JP7020562 A JP 7020562A JP 2056295 A JP2056295 A JP 2056295A JP H08223117 A JPH08223117 A JP H08223117A
Authority
JP
Japan
Prior art keywords
optical system
optical
transmission
optical axis
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7020562A
Other languages
Japanese (ja)
Inventor
Takashi Otobe
孝 乙部
Koji Suzuki
浩次 鈴木
Yujiro Ito
雄二郎 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP7020562A priority Critical patent/JPH08223117A/en
Publication of JPH08223117A publication Critical patent/JPH08223117A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To always accurately adjust the optical axis of an optical space transmission equipment without depending on the constitution precision of an optical system. CONSTITUTION: The optical system of the optical space transmission equipment integrated for transmission and reception consists of a transmission optical system 104, a reception optical system 105, and an emitting direction detection optical system 106. The transmission optical system 104 is held in an optical system enclosure freely turnably in two orthogonal axial directions in the face perpendicular to the optical axis of emission, and the reception optical system 105 is fixed to the optical system enclosure. The optical system enclosure is held in a device enclosure freely turnably in two orthogonal axial directions in the face perpendicular to the optical axis of the reception optical system 105. The optical axis of the reception optical system 105 is controlled in accordance with the convergence position of incident light on a position detection element 5B, and the optical axis of the transmission optical system 104 is controlled in accordance with incidence information of scanning exiting light to the destination device and the convergence position of exiting light on a position detection element 5A of the emitting direction detection optical system 106.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレーザ光を信号用光源と
する光空間伝送装置に関し、更に詳しくは光空間伝送装
置間の光軸の調整に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical space transmitter using laser light as a signal light source, and more particularly to adjustment of an optical axis between the optical space transmitters.

【0002】[0002]

【従来の技術】まず、光空間伝送装置とは、送信側にお
いて送信情報を光の強度変化に変調し、変調した光を受
信側に向かって大気中に出射し、受信側においては前記
送信側から出射した変調光を受け、復調することによ
り、所望の情報信号の伝達を大気空間を介して行うもの
である。
2. Description of the Related Art First of all, an optical space transmission device is a transmission side that modulates transmission information into a change in the intensity of light, emits the modulated light into the atmosphere toward the reception side, and the reception side uses the transmission side. By receiving and demodulating the modulated light emitted from, the desired information signal is transmitted through the atmospheric space.

【0003】即ち、図6に示すように一方の光空間伝送
装置50Aと他方の光空間伝送装置50Bとの間で行わ
れる光空間伝送は、一方の光空間伝送装置50A(又は
50B)から送信信号で変調されたレーザ光をレンズ1
Dを介して出射(出射光L1)し、他方の光空間伝送装
置50B(又は50A)からの同様に変調されたレーザ
光(入射光L2 )をレンズ1Dを介して受光することで
実現される。
That is, as shown in FIG. 6, optical space transmission performed between one optical space transmission apparatus 50A and the other optical space transmission apparatus 50B is transmitted from one optical space transmission apparatus 50A (or 50B). Lens 1 with laser light modulated by signal
It is realized by emitting (emitted light L1) via D and receiving similarly modulated laser light (incident light L2) from the other optical space transmission device 50B (or 50A) via the lens 1D. .

【0004】図6は送受一体構成の光空間伝送装置を示
しているが、送信機能と受信機能とがそれぞれに分離し
た形態の装置(図示せず)も、今までに多くのものが提
案され、実用化されてきた。
Although FIG. 6 shows an optical space transmission device having a transmission and reception integrated structure, many devices (not shown) in which the transmission function and the reception function are separated from each other have been proposed so far. , Has been put to practical use.

【0005】しかしながら、光ビームはその伝送路であ
る大気中において、雨、霧、微粒子等による吸収を受け
て減衰する為、受信側において十分な光パワーを常に保
証する為には、送信側において多大な光パワーを用意し
なければならなかった。
However, since the light beam is absorbed and attenuated by rain, fog, fine particles, etc. in the atmosphere which is the transmission path, in order to always ensure sufficient optical power on the receiving side, on the transmitting side, I had to prepare a lot of optical power.

【0006】また、大気の揺らぎ、温度勾配の変化等に
よって光ビーム径路が変動し、伝送区間が長くなる程こ
の影響は大きくなる。更に、光空間伝送装置を設置して
いる場所、例えばビルの屋上であっても、周囲の温度変
化によってビルそのものが微小ではあるが変形し、光ビ
ームの出射方向を変動させることになる。従って、光ビ
ームが受信装置から外れないようにする為には光ビーム
の径を大きくする必要があり、この点からも送信側の光
パワーを大きくする必要があった。
Further, the optical beam path fluctuates due to fluctuations in the atmosphere, changes in temperature gradient, etc., and this effect becomes greater as the transmission section becomes longer. Further, even at a place where the optical free space transmission device is installed, for example, on the roof of a building, the building itself is deformed by a change in ambient temperature, although it is minute, and the emission direction of the light beam is changed. Therefore, it is necessary to increase the diameter of the light beam in order to prevent the light beam from coming off the receiving device, and from this point as well, it is necessary to increase the optical power on the transmission side.

【0007】しかし他方では、眼に対する安全対策上か
ら光波長によって単位パワー密度が規制されており、特
に可視光帯域では厳しく、この点からも十分な光パワー
を送信側で用意できるとは限らなかった。
On the other hand, however, the unit power density is regulated by the light wavelength from the viewpoint of eye safety measures, and it is strict especially in the visible light band. From this point, it is not always possible to prepare sufficient light power on the transmitting side. It was

【0008】これらの対策として、本件の出願人等は自
動制御技術を導入し、光ビームが装置の設置場所や伝送
路の状態に関係なく常に相手側装置に到達する機構につ
いて提案してきた。その一例について、図7ないし図9
を参照して説明する。図7に示す光空間伝送装置は送信
と受信の機能が一体となった構成を採り、全く同じ装置
を対向して設置することにより、双方向の情報伝達を行
うことができるものである。
As countermeasures against these problems, the applicants of the present application have introduced an automatic control technique, and have proposed a mechanism in which a light beam always reaches the partner device regardless of the installation location of the device or the state of the transmission path. An example thereof is shown in FIGS.
Will be described with reference to. The optical free space transmission apparatus shown in FIG. 7 has a structure in which the functions of transmission and reception are integrated, and by installing the same apparatus facing each other, bidirectional information transmission can be performed.

【0009】図7にその光空間伝送装置の構成ブロック
を示す。前記光空間伝送装置の光学系は光源となる半導
体レーザ3、レーザビームを平行ビームに変換するレン
ズ1A、光を分離する偏光ビームスプリッタ2A、レー
ザビームを略平行光にして出射する為のレンズ1Bとレ
ンズ1D、入射光を光検出素子4上に集光する為の偏光
ビームスプリッタ2Bとレンズ1C、更に、光軸調整の
為の位置検出素子5と前記位置検出素子5上に集光する
レンズ1Eとを含んで構成されている。上記光学要素は
一体として構成されていて、その構成体は後述する構造
の回動軸を介して装置の筐体に固定されている。
FIG. 7 shows a block diagram of the optical space transmission device. The optical system of the optical space transmission device includes a semiconductor laser 3 as a light source, a lens 1A for converting a laser beam into a parallel beam, a polarization beam splitter 2A for separating light, and a lens 1B for emitting a laser beam into a substantially parallel light. And a lens 1D, a polarization beam splitter 2B and a lens 1C for condensing incident light on the photodetector 4, a position detector 5 for adjusting the optical axis, and a lens for condensing on the position detector 5. 1E is included. The optical element is integrally configured, and its constituent body is fixed to the housing of the apparatus via a rotary shaft having a structure described later.

【0010】また、電気回路は半導体レーザ3を送信信
号に応じて駆動するレーザ駆動回路18、光検出素子4
からの出力信号を受ける受光回路19、位置検出素子5
からの出力信号を受ける集光位置検出回路14、前記集
光位置検出回路14の信号にもとづいてモータ駆動回路
23を制御するCPU15等から構成されている。モー
タ駆動回路23は光学系を出射光軸に垂直な面内におい
て直交する2つの軸、例えば水平方向と垂直方向に回動
するX軸モータ24とY軸モータ25と駆動するもので
ある。
The electric circuit includes a laser drive circuit 18 for driving the semiconductor laser 3 according to a transmission signal, and a photodetector element 4.
Light receiving circuit 19 for receiving an output signal from the position detecting element 5
It is composed of a condensing position detection circuit 14 that receives an output signal from the CPU, a CPU 15 that controls the motor drive circuit 23 based on the signal of the condensing position detection circuit 14, and the like. The motor drive circuit 23 drives the optical system with two axes orthogonal to each other in a plane perpendicular to the emission optical axis, for example, an X-axis motor 24 and a Y-axis motor 25 which rotate in a horizontal direction and a vertical direction.

【0011】つぎに、上述した光空間伝送装置の動作を
簡単に説明する。送信機としては、伝達すべき情報をレ
ーザ駆動回路18の前段の回路(図示せず)において送
信信号に変調し、その変調信号に基づき前記レーザ駆動
回路18は半導体レーザ3を駆動し、レーザ光を前記変
調信号に対応した光強度に変調する。つぎに、前記レー
ザ光はレンズ1A、偏光ビームスプリッタ2A、レンズ
1Bおよびレンズ1Dによって略平行な出射光L1 に変
換して受信する相手装置に送り出すものである。
Next, the operation of the above-described optical space transmission device will be briefly described. As a transmitter, information to be transmitted is modulated into a transmission signal in a circuit (not shown) in the preceding stage of the laser driving circuit 18, and the laser driving circuit 18 drives the semiconductor laser 3 based on the modulation signal, and laser light is emitted. Is modulated to a light intensity corresponding to the modulation signal. Next, the laser light is converted by the lens 1A, the polarization beam splitter 2A, the lens 1B, and the lens 1D into substantially parallel emitted light L1 and sent to the receiving device.

【0012】受信機としての動作は、相手側装置から送
られてきたレーザ光、即ち入射光L2 をレンズ1Dで受
け、偏光ビームスプリッタ2A、2Bとレンズ1Cを通
して光検出素子4上に集光し、前記光検出素子4により
光信号は電気信号に変換され、受光回路19とそれに続
く後段の回路(図示せず)によって元の情報に復調する
ものである。
The operation as a receiver is that the laser light sent from the other device, that is, the incident light L2 is received by the lens 1D and is condensed on the photodetector 4 through the polarization beam splitters 2A, 2B and the lens 1C. An optical signal is converted into an electric signal by the photodetector 4, and is demodulated to original information by a light receiving circuit 19 and a subsequent circuit (not shown) subsequent thereto.

【0013】ここで、前記位置検出素子5と回動軸の構
成を説明し、これに基づき上述した従来の光空間伝送装
置の光軸調整方法について説明する。
Now, the structure of the position detecting element 5 and the rotary shaft will be described, and the optical axis adjusting method of the above-described conventional optical space transmission device will be described based on the structure.

【0014】まず、位置検出素子5は図8に示す構成を
していて、その受光面41は区別された4辺を有する2
次元の広がりを有し、各辺に電極X1 、X2 、Y1 、Y
2 が設けられている。各対向する一組の辺を一つの軸
(例えばX軸)の電極とし、これと直交する他の一組の
辺を一方の軸(例えばY軸)の電極とする。
First, the position detecting element 5 has a structure shown in FIG. 8, and the light receiving surface 41 thereof has two distinct four sides.
It has a dimensional spread and has electrodes X1, X2, Y1, Y on each side.
Two are provided. Each pair of opposite sides is an electrode of one axis (for example, X axis), and the other pair of sides orthogonal to this is an electrode of one axis (for example, Y axis).

【0015】ここで受光面41の中心を原点P0 (0、
0)、光40の集光点をP(X、Y)とし、光の照射に
より生じたX軸、Y軸方向の出力電流をそれぞれ個別に
測定する。即ち電極毎に、電極X1 の出力電流をIX1
、電極X2 の出力電流をIX2 、また電極Y1 の出力
電流をIY1 、電極Y2 の出力電流をIY2 とし、更に
各辺の長さを2D0 とすると、集光点をP1 (X、Y)
は、よく知られているように、 X=D0 (IX2 −IX1 )/(IX2 +IX1 ) Y=D0 (IY2 −IY1 )/(IY2 +IY1 ) として算出される。従って、上述した位置検出素子5か
らの出力電流を演算することにより受光面41の集光位
置を決定することができるものである。
Here, the center of the light receiving surface 41 is the origin P 0 (0,
0), the converging point of the light 40 is P (X, Y), and the output currents in the X-axis and Y-axis directions generated by the light irradiation are individually measured. That is, the output current of the electrode X1 is changed to IX1 for each electrode.
, The output current of the electrode X2 is IX2, the output current of the electrode Y1 is IY1, the output current of the electrode Y2 is IY2, and the length of each side is 2D 0 , the focal point is P 1 (X, Y)
As is well known, is calculated as X = D 0 (IX2 -IX1) / (IX2 + IX1) Y = D 0 (IY2 -IY1) / (IY2 + IY1). Therefore, the focus position of the light receiving surface 41 can be determined by calculating the output current from the position detecting element 5 described above.

【0016】つぎに、回動軸の構成は図9に示すよう
に、光学系を出射光軸に垂直な面内において直交する2
つの軸、例えば水平方向と垂直方向に回動する構造にな
っている。レンズ1Dを含む光学系を搭載した鏡筒30
はY回動軸29を介して内枠31に回動自在に保持さ
れ、前記内枠31はX回動軸28を介して外枠32に回
動自在に保持され、更に、前記外枠32は装置の固定部
(図示せず)に固着されている。X回動軸28にはX軸
歯車26が固着され、外枠32に固定されているX軸モ
ータ24の回転をX回動軸28に伝達する。同様にY回
動軸29にはY軸歯車27が固着され、内枠31に固定
されているY軸モータ25の回転をY回動軸29に伝達
するものである。
Next, as shown in FIG. 9, the configuration of the rotation axis is such that the optical system is orthogonal to the optical axis in the plane perpendicular to the outgoing optical axis.
It has a structure in which it rotates about one axis, for example, the horizontal direction and the vertical direction. A lens barrel 30 equipped with an optical system including a lens 1D
Is rotatably held by an inner frame 31 via a Y rotation shaft 29, and the inner frame 31 is rotatably held by an outer frame 32 via an X rotation shaft 28. Is fixed to a fixed portion (not shown) of the device. The X-axis gear 26 is fixed to the X-rotation shaft 28, and the rotation of the X-axis motor 24 fixed to the outer frame 32 is transmitted to the X-rotation shaft 28. Similarly, the Y-axis gear 27 is fixed to the Y-rotation shaft 29, and the rotation of the Y-axis motor 25 fixed to the inner frame 31 is transmitted to the Y-rotation shaft 29.

【0017】さて、前述した光空間伝送装置の光軸調整
は以下のように行われてきた。相手側装置からの送信
光、即ち入射光L2 をレンズ1Dで受け、偏光ビームス
プリッタ2A、2Bとレンズ1Eを通して位置検出素子
5に集光する。集光位置は前述したように位置検出素子
5上でX、Yの座標として認識することができる。この
座標は入射光L2 の入射角と対応するものである。
The optical axis adjustment of the above-described optical space transmission device has been performed as follows. The transmitted light from the partner device, that is, the incident light L2 is received by the lens 1D and is condensed on the position detection element 5 through the polarization beam splitters 2A, 2B and the lens 1E. The condensing position can be recognized as the X and Y coordinates on the position detecting element 5 as described above. This coordinate corresponds to the incident angle of the incident light L2.

【0018】位置検出素子5は装置間の光軸が一致した
ときの入射光L2 が集光する位置にその原点P0 (0、
0)が来るように設定されるべきものである。しかしな
がら、一般的には調整が困難であることから光軸が一致
したときの集光点PXY0 (X0 、Y0 )を基準位置と
し、その位置をCPU15に記憶しておく。つぎに、光
軸が何らかの原因によりずれた場合、このときの集光位
置P(X、Y)を集光位置検出回路14で検出し、記憶
されている基準の集光点PXY0 (X0 、Y0 )とをCP
U15で比較し、その位置の距離の差に対応した駆動力
でモータ駆動回路23によりX軸モータ24およびY軸
モータ25を駆動し、光学系の光軸を調整するものであ
る。回線を結ぶ2つの装置の各々がこの制御をすること
により光軸を常に一致させて保持することができるもの
である。
The position detecting element 5 has its origin P 0 (0, 0, 0 at the position where the incident light L 2 is condensed when the optical axes of the devices coincide with each other.
0) should be set. However, since adjustment is generally difficult, the focus point PXY 0 (X 0 , Y 0 ) when the optical axes coincide with each other is set as a reference position, and the position is stored in the CPU 15. Next, when the optical axis is deviated for some reason, the focus position P (X, Y) at this time is detected by the focus position detection circuit 14, and the stored reference focus point PXY 0 (X 0). , Y 0 ) and CP
Compared with U15, the X-axis motor 24 and the Y-axis motor 25 are driven by the motor drive circuit 23 by the driving force corresponding to the difference in the position distance, and the optical axis of the optical system is adjusted. By performing this control by each of the two devices connecting the lines, the optical axes can always be held in alignment with each other.

【0019】従って、上述した方法では、光軸の調整が
常時効果的に行われ、光ビームを小さく絞ることができ
る為、送信側の光パワーを狭いビーム径内に納めること
ができ、大気中の雨、霧、微粒子等の光吸収による受信
装置における光パワーの減少に対処することができる。
また、大気の揺らぎ、温度勾配の変化等による光ビーム
径路の変動に対して自動制御によって光ビームが受信装
置から外れないようにすることができた。
Therefore, in the above-mentioned method, the optical axis is constantly adjusted effectively, and the light beam can be narrowed down. Therefore, the optical power on the transmitting side can be kept within a narrow beam diameter, and it can be used in the atmosphere. It is possible to cope with the reduction of the optical power in the receiving device due to the absorption of light such as rain, fog, and particles.
Further, it is possible to prevent the light beam from coming off the receiving device by automatic control with respect to fluctuations in the light beam path due to fluctuations in the atmosphere, changes in temperature gradient, and the like.

【0020】しかし、上述した制御を正確に行う為に
は、半導体レーザ3とレンズ1Aで構成される光学系の
光軸と、位置検出素子5とレンズ1Eで構成される光学
系の光軸とを、温度変化、経時変化を問わず常に一致さ
せて保つ必要がある。例えば、レンズ1Dとレンズ1B
で構成される倍率を25倍とし、角度分解能を1Km先
で2cmとすると角度変化は0.5mrad以内に収め
なくてはならない。また、光学部品の使用点数が多く、
その為に光軸ずれが起きる虞が大きくなると共に光学系
全体の質量が増加し制御性能の向上を困難にするもので
あった。
However, in order to perform the above-mentioned control accurately, the optical axis of the optical system composed of the semiconductor laser 3 and the lens 1A, and the optical axis of the optical system composed of the position detecting element 5 and the lens 1E. Must always be kept the same regardless of changes in temperature and changes with time. For example, lens 1D and lens 1B
If the magnification constituted by is 25 times and the angular resolution is 2 cm at 1 km ahead, the angle change must be within 0.5 mrad. Also, the number of optical components used is large,
As a result, the optical axis is likely to be displaced, and the mass of the entire optical system is increased, which makes it difficult to improve the control performance.

【0021】上述したような送受一体の光空間伝送装置
であって、送信用と受信用のレンズを共用にした光学構
成である場合、大気の揺らぎ、温度勾配の変化等による
光ビーム径路の変動に対して自動制御によって光ビーム
が受信装置から外れないようにする為には、送信用光学
部品と受信用光学部品との光軸を常に厳密に保っておく
必要があった。その為には精密な光学部品を用い、更に
部品固定位置が変動しないように固着対策をしなければ
ならず、コストの上昇を招いた。
In the case of the above-described optical space transmission device with integrated transmission and reception, and in the optical configuration in which the transmission lens and the reception lens are shared, fluctuations in the optical beam path due to atmospheric fluctuations, temperature gradient changes, etc. On the other hand, in order to prevent the light beam from coming off the receiving device by automatic control, it is necessary to always keep the optical axes of the transmitting optical component and the receiving optical component strictly. For that purpose, it is necessary to use a precise optical component and to take a measure for fixing so that the component fixing position does not change, which causes an increase in cost.

【0022】また、送受一体の光空間伝送装置では光学
部品の使用点数が多く制御光学系の質量は大きくなると
いう問題があった。更に、光学部品およびその構成体
は、本質的に温度変化、経時変化を避けることができ
ず、その為の対策を施した光学構成にする必要があり、
これが尚一層制御光学系の質量を増加させることにな
り、制御性能の向上を妨げていた。
In addition, there is a problem that the optical space transmission device with integrated transmission and reception requires a large number of optical components to be used and the mass of the control optical system becomes large. Furthermore, the optical component and its constituents cannot avoid temperature changes and changes over time, and it is necessary to take an optical structure that takes measures therefor.
This further increases the mass of the control optical system and hinders the improvement of control performance.

【0023】[0023]

【発明が解決しようとする課題】従って、本発明の課題
は制御光学系の質量を低減して光軸調整の制御性能を向
上させると共に、製造時における光軸調整を簡便にし、
使用する光学部品の点数を削減し、更に光学精度の緩い
光学部品を用いることを可能にしてコストを低減しよう
とするものである。
Therefore, the object of the present invention is to reduce the mass of the control optical system to improve the control performance of the optical axis adjustment, and to simplify the optical axis adjustment during manufacturing.
The number of optical components to be used is reduced, and it is possible to use an optical component having a looser optical precision to reduce the cost.

【0024】[0024]

【課題を解決するための手段】本発明は以上の点に鑑み
なされたものであって、送信光学系と受信光学系とをそ
れぞれ個別に構成し、送信光学系を送信用レーザ光の光
軸に垂直な面内の直交する2つの軸方向、例えば水平方
向と垂直方向に回動する回動機構を介して光学系筐体に
保持し、また、受信光学系を光学系筐体に、その光軸を
送信光学系の光軸と略一致させて固定し、更に、光学系
筐体をレーザ光の光軸に垂直な面内の直交する2つの軸
方向に回動する回動機構を介して装置筐体に保持する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, in which a transmission optical system and a reception optical system are separately configured, and the transmission optical system is an optical axis of a laser beam for transmission. It is held in the optical system housing via a rotating mechanism that rotates in two axial directions orthogonal to each other in a plane perpendicular to the optical system housing, and the receiving optical system is mounted in the optical system housing. The optical axis is fixed so as to be substantially aligned with the optical axis of the transmission optical system, and the optical system casing is further rotated by a rotating mechanism that rotates in two orthogonal axial directions in a plane perpendicular to the optical axis of the laser light. The device housing.

【0025】送信光学系から出射するレーザ光の出射角
度を検出する装置を送信光学系と光学系筐体の間に設け
る。また、相手装置からのレーザ光の自装置に対する位
置ずれに伴う入射光の変化を検出する検出装置を受信光
学系に設け、前記検出装置で検出した相手装置からのレ
ーザ光の自装置に対する位置ずれ情報を変調して送信信
号に付加すると共に、前記相手装置の送信信号に付加さ
れている自装置からの相手装置に対するレーザ光の位置
ずれ情報を再生する装置を設ける。
A device for detecting the emission angle of the laser light emitted from the transmission optical system is provided between the transmission optical system and the optical system casing. Further, the receiving optical system is provided with a detection device for detecting a change in incident light due to a position shift of the laser light from the partner device with respect to the own device, and the position shift of the laser light from the partner device detected by the detection device with respect to the own device. A device is provided for modulating the information and adding it to the transmission signal, and for reproducing the positional deviation information of the laser beam from the own device to the other device which is added to the transmission signal of the other device.

【0026】受信光学系の光軸制御は、自装置と相手装
置間の光軸が一致したときの入射光の入射角度を基準と
し、実際の入射光の角度と基準入射角度からの角度偏差
量を検出し、その偏差量に応じて前記回動機構を駆動し
て行う。
The optical axis control of the receiving optical system is based on the incident angle of the incident light when the optical axes of the own device and the other device are coincident with each other, and the angle of the actual incident light and the angle deviation amount from the reference incident angle. Is detected, and the rotating mechanism is driven according to the deviation amount.

【0027】送信光学系の光軸制御は、送信用レーザ光
の光軸に垂直な面内の直交する2つの軸方向にそれぞれ
個別に走査し、その走査による相手装置と光ビーム間の
ずれ情報を、相手装置からの送信信号を復調して得ると
共に、前記情報に基づいて行う。
The optical axis control of the transmission optical system individually scans two axial directions orthogonal to each other in a plane perpendicular to the optical axis of the laser light for transmission, and information on the deviation between the partner device and the light beam due to the scanning. Is obtained by demodulating the transmission signal from the partner device and based on the information.

【0028】また、急激な外乱に対しては自装置内に設
けた光ビーム出射角度の検出装置による送信光学系から
出射する正しい光軸時のレーザ光の光学系筐体に対する
出射角度の測定値と、受信光学系に入射する相手装置か
らの正しい光軸時のレーザ光の入射角度の測定値とを一
定の関係に保持するよう制御する。
For a sudden disturbance, a measurement value of the emission angle of the laser beam at the correct optical axis emitted from the transmission optical system by the detector for detecting the emission angle of the light beam provided in its own device with respect to the optical system casing. And the measured value of the incident angle of the laser beam on the correct optical axis from the other device which is incident on the receiving optical system are controlled to be held in a constant relationship.

【0029】送信光学系の送信用レンズと受信光学系の
受信用レンズを非球面レンズで構成し、送信光学系の送
信用レンズを受信光学系の受信用レンズよりも小さい口
径とする。また、送信光学系の角度制御周波数帯域を光
学系筐体の角度制御周波数帯域よりも高くして前記課題
を解決する。
The transmitting lens of the transmitting optical system and the receiving lens of the receiving optical system are composed of aspherical lenses, and the transmitting lens of the transmitting optical system has a smaller diameter than the receiving lens of the receiving optical system. Further, the angle control frequency band of the transmission optical system is set higher than the angle control frequency band of the optical system casing to solve the above problem.

【0030】[0030]

【作用】予め送信光学系と受信光学系の光軸を厳密に一
致させておく必要がなく、また、経時変化或いは温度変
化による光学部品の変形、光軸のずれがあっても装置間
の光軸を常時自動的に調整する。従って、製造が容易で
あり、保守作業も簡単になる。また、光学部品点数を少
なくすることができるので、光学系全体の質量を小さく
なり、姿勢制御の性能が向上すると共に、コストを低減
することができる。また、携帯性に優れ取扱が容易にな
る。
The optical axes of the transmitting optical system and the receiving optical system do not need to be exactly aligned in advance, and even if the optical components are deformed or the optical axes are deviated due to changes with time or temperature changes, the optical axes between the devices will not change. Automatically adjust the axis at all times. Therefore, manufacturing is easy and maintenance work is also easy. Further, since the number of optical components can be reduced, the mass of the entire optical system can be reduced, the performance of attitude control can be improved, and the cost can be reduced. Moreover, it is excellent in portability and easy to handle.

【0031】[0031]

【実施例】本発明の実施例について図1ないし図5を参
照して説明する。一対の光空間伝送装置は共に同一の構
成をしていて、仮にその一方を自装置と称し、他方を相
手装置と称する。これは説明上の便宜的表現であって、
装置の一方が他方に較べて何らかの異なった特徴を有す
るものではない。尚、従来例と同一の構成で同一の動作
をするものについては、同一の符号を付し、その説明は
省略する。
Embodiments of the present invention will be described with reference to FIGS. The pair of free-space optical transmission devices have the same configuration, and one of them is called the own device and the other is called the partner device. This is a descriptive expression,
One of the devices does not have any different characteristics than the other. It should be noted that components having the same configuration as the conventional example and performing the same operation are denoted by the same reference numerals, and the description thereof will be omitted.

【0032】まず、本発明の光空間伝送装置の構成につ
いて図1を参照して説明する。光学系は送信光学系10
4、受信光学系105および出射レーザ光の出射方向検
出光学系106から成り、送信光学系104は半導体レ
ーザ3および送信レンズ101を、受信光学系105は
光検出素子4、位置検出素子5B、ハーフミラー6Bお
よび受信レンズ102を、出射方向検出光学系106は
ハーフミラー6A、レンズ1Fおよび位置検出素子5A
を主要な要素として構成されている。前記送信光学系1
04は光学系筐体8に、また、前記受信光学系105お
よび前記出射方向検出光学系106を内蔵する前記光学
系筐体8は装置筐体9に後述するX軸モータ24A、2
4BおよびY軸モータ25A、25Bを含んで構成する
回動軸を介して回動自在に保持されている。
First, the structure of the optical free space transmission apparatus of the present invention will be described with reference to FIG. The optical system is the transmission optical system 10.
4, a receiving optical system 105 and an emitting direction detecting optical system 106 for emitting laser light, the transmitting optical system 104 includes the semiconductor laser 3 and the transmitting lens 101, and the receiving optical system 105 includes the photodetecting element 4, the position detecting element 5B, and the half. The mirror 6B and the receiving lens 102, the emission direction detection optical system 106 is a half mirror 6A, the lens 1F and the position detection element 5A.
Is configured as a main element. The transmission optical system 1
Reference numeral 04 denotes an optical system casing 8, and the optical system casing 8 incorporating the receiving optical system 105 and the emission direction detecting optical system 106 is an apparatus casing 9 and has X-axis motors 24A, 2A to be described later.
4B and Y-axis motors 25A and 25B, and is rotatably held via a rotary shaft.

【0033】尚、後述するように、送信光学系104と
受信光学系105の2つの光学系はその初期設定におい
て、厳密に光軸を一致させておく必要はなく、また、温
度変化および経時変化等による光軸ずれの虞についても
過度に対策をする必要はなく、これが本発明の大きな特
徴の一つになっている。
As will be described later, it is not necessary that the optical axes of the two optical systems, the transmission optical system 104 and the reception optical system 105, be exactly aligned with each other in the initial setting, and temperature changes and changes with time. There is no need to excessively take measures against the risk of optical axis deviation due to such reasons, and this is one of the major features of the present invention.

【0034】つぎに、電気系の回路ブロックは、光検出
素子4に続いて受光回路19、位置検出素子5A、5B
に続いて集光位置検出回路14A、14B、半導体レー
ザ3を駆動するレーザ駆動回路18および各種信号を処
理し制御する回路部20で構成されている。前記回路部
20は図3ないし図5に示すように信号の変調復調回路
(図示せず)の他にCPU201、ADコンバータ20
2A、202B、DAコンバータ203A、203B、
モータ駆動回路204A、204B等を含んで構成され
ている。
Next, in the electrical circuit block, the photodetector 4 is followed by the light receiving circuit 19 and the position detectors 5A and 5B.
Subsequently, the light-condensing position detection circuits 14A and 14B, a laser drive circuit 18 for driving the semiconductor laser 3, and a circuit section 20 for processing and controlling various signals are included. The circuit unit 20 includes a CPU 201 and an AD converter 20 in addition to a signal modulation / demodulation circuit (not shown) as shown in FIGS.
2A, 202B, DA converters 203A, 203B,
The motor drive circuits 204A and 204B are included.

【0035】つぎに、上述した光学系と電気系の動作に
ついて説明する。まず、受信動作は、受信レンズ102
に入射した相手装置からの入射光L2 はハーフミラー6
Bにより光検出素子4および位置検出素子5Bに集光
し、光検出素子4では光の強度変化に変調された送信信
号を検出し、また、位置検出素子5Bでは前記入射光L
2 の受信光学系105への入射角度を検出するものであ
る。前記入射角度は位置検出素子5B上の集光位置と対
応していて、集光位置検出回路14Bによる集光位置の
算出方法は、既に図8を参照して説明したものと同一で
あり、ここでの説明は省略する。
Next, the operation of the above-mentioned optical system and electric system will be described. First, the receiving operation is performed by the receiving lens 102.
The incident light L2 from the other device incident on the half mirror 6
The light is focused on the photo-detecting element 4 and the position detecting element 5B by B, the photo-detecting element 4 detects the transmission signal modulated by the change in the intensity of light, and the position detecting element 5B detects the incident light L.
The angle of incidence of the second light on the receiving optical system 105 is detected. The incident angle corresponds to the condensing position on the position detecting element 5B, and the method of calculating the condensing position by the condensing position detecting circuit 14B is the same as that already described with reference to FIG. The description of is omitted.

【0036】相手装置からの入射光L2 には、詳しくは
後述するように本来の伝達信号の他に自装置の出射光L
1 と相手装置間の位置ずれに対応した変調が加えられて
いる。入射光L2 は光検出素子4で電気信号に変換さ
れ、受光回路19で信号整形処理がされた後、回路部2
0において伝送すべき主要信号の復調の他に相手装置に
到達した自装置からの出射光L1 の位置ずれ情報を再生
する。
The incident light L2 from the other device is, in detail, as will be described later, emitted light L of its own device in addition to the original transmission signal.
Modulation corresponding to the positional deviation between 1 and the partner device is added. The incident light L2 is converted into an electric signal by the photodetector 4 and is subjected to signal shaping processing by the light receiving circuit 19, and then the circuit portion 2
In addition to demodulating the main signal to be transmitted at 0, the positional deviation information of the emitted light L1 from the own device which has reached the partner device is reproduced.

【0037】つぎに、送信動作は、受信光学系105で
検出された相手装置からの入射光L2 の自装置に対する
位置ずれ情報を回路部20で変調し、更に変調された伝
送すべき主要信号と合成し、その後レーザ駆動回路18
に入力して半導体レーザ3を駆動し、相手装置に向かっ
て出射するものである。
Next, in the transmitting operation, the positional deviation information of the incident light L2 from the partner device with respect to the own device detected by the receiving optical system 105 is modulated by the circuit section 20, and the modulated main signal to be transmitted is transmitted. Combined, then laser drive circuit 18
Is input to drive the semiconductor laser 3 and emits it toward the partner device.

【0038】更に出射方向検出光学系106は、送信光
学系104の送信レンズ101から略平行光として相手
装置に向かって出射された出射光L1 をハーフミラー6
Aでその一部を採り出し、レンズ1Fで位置検出素子5
A上に集光するものである。前述したようにハーフミラ
ー6A、レンズ1F、位置検出素子5Aは光学系筐体8
に固定されている為、位置検出素子5A上の集光位置は
送信光学系104と光学系筐体8、即ち受信光学系10
5の光軸の平行度と対応することになる。尚、前記ハー
フミラー6Aに替わってプリズム等の光学部材を用いて
も良い。
Further, the emission direction detection optical system 106 outputs the emission light L1 emitted from the transmission lens 101 of the transmission optical system 104 to the other device as substantially parallel light, and the half mirror 6 is provided.
A part of it is taken out, and the lens 1F is used to detect the position detecting element 5.
The light is focused on A. As described above, the half mirror 6A, the lens 1F, and the position detecting element 5A are the optical system housing 8
Since it is fixed to the position detecting element 5A, the condensing position on the position detecting element 5A is the transmitting optical system 104 and the optical system housing 8, that is, the receiving optical system 10.
5 corresponds to the parallelism of the optical axis. An optical member such as a prism may be used instead of the half mirror 6A.

【0039】上述した構成の光空間伝送装置の光軸制御
方法について以下に三つの制御形態に分類して説明す
る。
The optical axis control method of the optical free space transmission apparatus having the above-mentioned configuration will be described below by classifying into three control modes.

【0040】その第一として受信光学系105の光軸調
整方法について図2を参照して説明する。この制御は比
較的周期が長い外乱に対処して受信光学系の光軸を調整
するものであり、機構構成上、可動部の質量が大きくな
る受信光学系に用いて適するものである。
First, a method of adjusting the optical axis of the receiving optical system 105 will be described with reference to FIG. This control adjusts the optical axis of the receiving optical system in response to a disturbance having a relatively long period, and is suitable for use in a receiving optical system in which the movable portion has a large mass due to its mechanical structure.

【0041】まず、予め自装置と相手装置間の光軸が一
致したときの入射光L2 の位置検出素子5B上への光集
光位置を基準位置として測定し、ADコンバータ202
Bでデジタル値に変換しCPU201に記憶しておく。
つぎに実際の使用状態において、相手装置からの入射光
L2 の位置検出素子5B上への集光位置を検出し、CP
U201に入力して前記基準位置と比較をする。CPU
201における前記比較の結果をDAコンバータ204
Bでアナログ値に変換してモータ駆動回路204Bに入
力し、X軸モータ24BおよびY軸モータ25Bを駆動
して光学系筐体8、即ち受信光学系105の光軸を制御
するものである。尚、回動軸の構成と動作は既に図9を
参照して説明したものと同一であり、ここでの説明は省
略する。
First, the light condensing position of the incident light L2 on the position detecting element 5B when the optical axes of the own device and the other device coincide with each other is measured as a reference position, and the AD converter 202
It is converted to a digital value in B and stored in the CPU 201.
Next, in an actual use state, the condensing position of the incident light L2 from the partner device on the position detecting element 5B is detected, and CP is detected.
Input into U201 and compare with the reference position. CPU
The result of the comparison in 201 is the DA converter 204
It is converted into an analog value at B and input to the motor drive circuit 204B, and drives the X-axis motor 24B and the Y-axis motor 25B to control the optical axis of the optical system housing 8, that is, the receiving optical system 105. The structure and operation of the rotary shaft are the same as those already described with reference to FIG. 9, and the description thereof is omitted here.

【0042】つぎに、その第二として送信光学系104
の定常状態における、即ち周期的に極めて長い外乱に対
する光軸調整方法について図3および図5を参照して説
明する。
Next, as the second, the transmission optical system 104
The optical axis adjusting method in the steady state, that is, for a disturbance that is extremely long periodically will be described with reference to FIGS. 3 and 5.

【0043】まず、自装置の出射光L1 は相手装置への
入射状態をより正確に検出し制御する為に、光軸に垂直
な面内で直交する2つの軸方向に、交互に独立して走査
を行う。この走査は送信光学系104を光学系筐体8に
回動自在に保持する回動軸の構成要素であるX軸モータ
24AとY軸モータ25Aを制御して行う。即ち、その
制御はCPU201にプログラムされた手順により、ま
たCPU201からのデジタル制御量をDAコンバータ
203Aでアナログ制御量に変換してモータ駆動回路2
04Aに入力し、X軸モータ24AとY軸モータ25A
を駆動して行うものである。尚、この回動軸の構成も前
述したように図9を参照して説明したものと同一であ
る。
First, in order to more accurately detect and control the state of incidence on the partner device, the light L1 emitted from the device itself is alternately and independently set in two axial directions orthogonal to each other in a plane perpendicular to the optical axis. Scan. This scanning is performed by controlling the X-axis motor 24A and the Y-axis motor 25A, which are the components of the rotary shaft that rotatably holds the transmission optical system 104 in the optical system casing 8. That is, the control is performed according to the procedure programmed in the CPU 201, and the digital control amount from the CPU 201 is converted into the analog control amount by the DA converter 203A, and the motor drive circuit 2 is controlled.
04A, X-axis motor 24A and Y-axis motor 25A
Is performed by driving. The structure of this rotating shaft is also the same as that described with reference to FIG. 9 as described above.

【0044】前記走査により走査角度は自装置で認識で
き、その時相手装置が受けている光の強度は常時相手装
置からレーザ光で自装置に送信されているので、走査角
度と相手装置が受けている光の強度との関係は容易にし
かも瞬時に知ることができる。即ち受信光学系105は
入射光L2 を光検出素子4で受けて電気信号に変換し、
受光回路19で相手装置に入る光の強度の情報を再生し
てADコンバータ202Bでデジタル値に変換しCPU
201に入力する。CPU201では前記デジタル値の
光の強度情報と、CPU201が発する送信光学系10
4を走査する情報とから、相手装置に対する入射光強度
と走査角度の関係を認識し、従って、入射光強度の最大
値と走査角度とを決定することができる。
The scanning angle can be recognized by the own device by the scanning, and the intensity of the light received by the partner device at that time is always transmitted from the partner device to the own device by laser light. The relationship with the intensity of the existing light can be known easily and instantly. That is, the receiving optical system 105 receives the incident light L2 by the photodetector 4 and converts it into an electric signal,
The light receiving circuit 19 reproduces the information of the intensity of the light entering the partner device, and the AD converter 202B converts the information into a digital value, and the CPU
Enter in 201. In the CPU 201, the light intensity information of the digital value and the transmission optical system 10 emitted by the CPU 201.
It is possible to recognize the relationship between the incident light intensity and the scanning angle with respect to the other device from the information for scanning 4 and thus determine the maximum value of the incident light intensity and the scanning angle.

【0045】例えば、図5(a)に示すように送信光学
系104を、中心から両側に一定の角度、例えば+ΔΘ
から−ΔΘの範囲で走査し、その走査角度に対する受光
強度を測定する。図5(b)はその関係を示す一例であ
って角度ΔΘ1 で受光強度が最大になった状態を示して
いる。従って、前記2つの情報、即ち走査角度と光の強
度から送信光学系104の最良の光軸方向、即ちΔΘ1
を決定することができ、この角度を保持するようにCP
U201によってX軸モータ24AとY軸モータ25A
を制御をし、光軸を自動的に調整する。
For example, as shown in FIG. 5 (a), the transmission optical system 104 is provided with a constant angle from the center to both sides, for example + ΔΘ.
The scanning is performed in the range from -ΔΘ, and the received light intensity for the scanning angle is measured. FIG. 5B is an example showing the relationship and shows a state in which the received light intensity is maximized at the angle ΔΘ 1. Therefore, from the above two information, that is, the scanning angle and the light intensity, the best optical axis direction of the transmission optical system 104, that is, Δθ1
CP to hold this angle can be determined
X axis motor 24A and Y axis motor 25A by U201
To automatically adjust the optical axis.

【0046】尚、この調整は外乱の周期が長い、例えば
大気の温度変化或いは揺らぎによる伝送径路のずれや、
伝送装置の設置場所の変動によるレーザ光の出射方向の
ずれ、または装置を構成する光学系部品の経時変化或い
は温度変化による位置ずれ等による光軸の変動に対する
調整に適するものである。従って、その走査周期は、例
えば数秒程度の比較的長い周期で良く、走査範囲は当然
のことながら相手装置の受信レンズ102からレーザ光
が外れることのない、極めて狭い角度範囲で良い。尚、
走査する機構としてはモータに替えて半導体レーザ3だ
けを揺動する機構(図示せず)を採っても良いことは論
を待たない。
This adjustment has a long period of disturbance, for example, a shift of the transmission path due to a temperature change or fluctuation of the atmosphere,
It is suitable for the adjustment of the deviation of the emission direction of the laser light due to the change of the installation location of the transmission device, or the change of the optical axis due to the positional deviation of the optical system components constituting the device due to the aging or the temperature change. Therefore, the scanning cycle may be a relatively long cycle of, for example, several seconds, and the scanning range may be an extremely narrow angular range in which the laser light does not deviate from the receiving lens 102 of the partner device. still,
It goes without saying that a mechanism (not shown) for swinging only the semiconductor laser 3 may be adopted as the scanning mechanism instead of the motor.

【0047】最後に第三として送信光学系104の周期
的に短い外乱に対する光軸調整方法について図4を参照
して説明する。これは自装置と相手装置間の光軸が一致
した時の送信光学系104から出射する出射光L1 につ
いて、その時の出射光L1 の位置検出素子5A上の集光
位置(これをPAとする)と、前記受信光学系105の
同様に光軸が一致した時の相手装置からの入射光L2 の
位置検出素子5B上の集光位置(これをPBとする)と
をADコンバータでデジタル値に変換し、CPU201
に記憶しておく。
Finally, as a third method, an optical axis adjusting method for a periodically short disturbance of the transmitting optical system 104 will be described with reference to FIG. This is a condensing position on the position detecting element 5A of the emitted light L1 emitted from the transmission optical system 104 when the optical axes of the own device and the other device coincide with each other (this is referred to as PA). And a condensing position (which is referred to as PB) on the position detecting element 5B of the incident light L2 from the other device when the optical axes coincide with each other in the receiving optical system 105 are converted into digital values by an AD converter. And CPU201
To memorize it.

【0048】送信光学系104と受信光学系105が各
々相手装置に対して光軸が一致したときの、それぞれの
集光位置PA、PBの位置関係は送信光学系104と受
信光学系105の光軸が一致していることと対応してい
る。従って、使用中の前記2つの集光位置(これをP
a、Pbとする)をCPU201によって比較し、その
結果をDAコンバータ203Aでアナログ値に変換し、
モータ駆動回路204AでX軸モータ24AとY軸モー
タ25Aを制御して常に一定の関係、即ち送信光学系1
04と受信光学系105の光軸が一致する状態を保持す
るように光軸の制御を行うものである。
When the optical axes of the transmitting optical system 104 and the receiving optical system 105 coincide with each other, the positional relationship between the condensing positions PA and PB is the same as that of the transmitting optical system 104 and the receiving optical system 105. Corresponds to the axes being aligned. Therefore, the two condensing positions in use (P
a, Pb) is compared by the CPU 201, and the result is converted into an analog value by the DA converter 203A,
The motor drive circuit 204A controls the X-axis motor 24A and the Y-axis motor 25A to keep a constant relationship, that is, the transmission optical system 1
The optical axis is controlled so that the optical axis of 04 and the optical axis of the receiving optical system 105 coincide with each other.

【0049】つまり、外乱により光軸が変動し受信光学
系105への入射光L2 の検出素子5B上の集光位置P
bが変動しても、送信光学系104の出射光L1 の位置
検出素子5A上の集光位置Paを、前記集光位置Pbと
一定の関係を保持するように送信光学系104の光軸を
制御することにより、出射光L1 を相手装置に届けるこ
とができるものである。
That is, the optical axis fluctuates due to the disturbance, and the condensing position P of the incident light L2 on the receiving optical system 105 on the detecting element 5B.
Even if b changes, the optical axis of the transmission optical system 104 is set so that the condensing position Pa of the emitted light L1 of the transmission optical system 104 on the position detecting element 5A maintains a constant relationship with the condensing position Pb. The emitted light L1 can be delivered to the partner device by controlling.

【0050】前記第三の方法は特に周期的に短い瞬時的
な外乱に対応させることを目的としている。送信光学系
104の光学的構成および機械的構成は受信光学系10
5のそれに比較して小さく軽量であり、瞬時的な外乱に
対する制御を負わすのに適しているが、更に、非球面レ
ンズを送信レンズとして用い、尚一層の光学系の小型化
と誤差信号取得のためのダイナミックレンジの拡大を図
るものである。尚、非球面レンズを受信レンズに用いる
ことにより、受信光学系105の光軸調整制御の性能の
向上も図ることができることは論を待たない。
The third method is intended to deal with a momentary disturbance which is particularly short cyclically. The optical configuration and mechanical configuration of the transmission optical system 104 are the same as those of the reception optical system 10.
5 is smaller and lighter than that of 5, and is suitable for imposing control over instantaneous disturbances, but further uses an aspherical lens as a transmission lens to further downsize the optical system and obtain error signals. It is intended to expand the dynamic range for. It is needless to say that the performance of the optical axis adjustment control of the receiving optical system 105 can be improved by using the aspherical lens as the receiving lens.

【0051】以上、本発明による光空間伝送装置の構成
と働きについて、自装置から相手装置を見た場合につい
て説明したが、相手装置から自装置を見た場合について
も、その説明は何ら変わりのないことは当然である。ま
た、図8に示す位置検出素子に替わってCCDラインセ
ンサー或いはエリアセンサーを用いても良い事は当然で
ある。
The configuration and operation of the optical free space transmission apparatus according to the present invention has been described above when the partner apparatus sees the partner apparatus. However, the description does not change even when the partner apparatus views the partner apparatus. Of course not. Further, it goes without saying that a CCD line sensor or area sensor may be used instead of the position detection element shown in FIG.

【0052】[0052]

【発明の効果】従って、本発明によると送信光学系と受
信光学系の光軸を予め厳密に一致させておく必要がない
ので製造が容易であり、保守作業も簡単になる。
As described above, according to the present invention, it is not necessary to exactly match the optical axes of the transmitting optical system and the receiving optical system beforehand, so that the manufacturing is easy and the maintenance work is also simple.

【0053】送信光と受信光を分離することが容易にな
り、従って、送信光と受信光を同じ周波数帯を搬送波と
して使用することが可能になるので、使用できる搬送波
の数が増加する。
It becomes easy to separate the transmitted light and the received light, and therefore it is possible to use the same frequency band as the carrier for the transmitted light and the received light, so that the number of usable carriers increases.

【0054】光軸の温度変化、経時変化について特段考
慮する必要がなく、自動制御によって最適の光軸に常時
保つことができると共に、高価で複雑な機構と光学部品
を用いる必要がないので安価で高性能、高信頼性のある
光空間伝送装置を提供することができる。
It is not necessary to consider the temperature change and the time-dependent change of the optical axis, and it is possible to always keep the optimum optical axis by automatic control, and it is not necessary to use an expensive and complicated mechanism and optical parts. It is possible to provide an optical space transmission device with high performance and high reliability.

【0055】外乱の影響が大きい送信光学系にのみ高速
の制御機構を用いるので、制御性能が向上すると共に、
制御機構の構成コストが低減する。
Since the high-speed control mechanism is used only in the transmission optical system which is greatly affected by the disturbance, the control performance is improved and
The configuration cost of the control mechanism is reduced.

【0056】受信レンズに非球面レンズを用いることに
より受信光学系を短くでき、更に受光角度を広くするこ
とができる。また、同様に送信レンズに非球面レンズを
用いることにより送信光学系が短くなり、従って制御系
の質量が小さくなり制御性能が向上する。
By using an aspherical lens as the receiving lens, the receiving optical system can be shortened and the light receiving angle can be widened. Similarly, by using an aspherical lens as the transmission lens, the transmission optical system is shortened, so that the mass of the control system is reduced and the control performance is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の光空間伝送装置を示す概略ブロック
図である。
FIG. 1 is a schematic block diagram showing an optical space transmission device of the present invention.

【図2】 本発明の光空間伝送装置の第一の制御系を示
す概略ブロック図である。
FIG. 2 is a schematic block diagram showing a first control system of the optical free space transmission apparatus of the present invention.

【図3】 本発明の光空間伝送装置の第二の制御系を示
す概略ブロック図である。
FIG. 3 is a schematic block diagram showing a second control system of the optical free space transmission apparatus of the present invention.

【図4】 本発明の光空間伝送装置の第三の制御系を示
す概略ブロック図である。
FIG. 4 is a schematic block diagram showing a third control system of the optical free space transmission apparatus of the present invention.

【図5】 光空間伝送装置の走査を説明する為の図であ
り、(a)はレーザ光の走査角度について示し、(b)
は走査角度と受光強度との一例を示す。
5A and 5B are diagrams for explaining scanning by the optical space transmission device, FIG. 5A shows a scanning angle of laser light, and FIG.
Shows an example of the scanning angle and the received light intensity.

【図6】 光空間伝送装置の伝送状態を説明する為の図
である。
FIG. 6 is a diagram for explaining a transmission state of the optical free space transmission apparatus.

【図7】 従来の光空間伝送装置の一例を示す概略ブロ
ック図である。
FIG. 7 is a schematic block diagram showing an example of a conventional space optical transmission apparatus.

【図8】 光空間伝送装置のレーザ光出射方向の自動制
御に用いる位置検出素子について説明する為の図であ
る。
FIG. 8 is a diagram for explaining a position detection element used for automatic control of a laser light emission direction of an optical space transmission device.

【図9】 光空間伝送装置の光軸の制御に用いる回動軸
の構成ついて説明する為の概略前面図である。
FIG. 9 is a schematic front view for explaining the configuration of a rotating shaft used for controlling the optical axis of the optical space transmission device.

【符号の説明】[Explanation of symbols]

1A〜1F レンズ 2A、2B 偏光ビームスプリッタ 3 半導体レーザ 4 光検出素子 5、5A、5B 位置検出素子 6A、6B ハーフミラー 8 光学系筐体 9 装置筐体 14、14A、14B 集光位置検出回路 15、201 CPU 18 レーザ駆動回路 19 受光回路 20 回路部 23、204 モータ駆動回路 24、24A、24B X軸モータ 25、25A、25B Y軸モータ 26 X軸歯車 27 Y軸歯車 28 X回動軸 29 Y回動軸 31 内枠 32 外枠 101 送信レンズ 102 受信レンズ 104 送信光学系 105 受信光学系 106 出射方向検出光学系 1A-1F Lens 2A, 2B Polarization beam splitter 3 Semiconductor laser 4 Photodetection element 5, 5A, 5B Position detection element 6A, 6B Half mirror 8 Optical system case 9 Device case 14, 14A, 14B Condensing position detection circuit 15 , 201 CPU 18 Laser drive circuit 19 Light receiving circuit 20 Circuit part 23, 204 Motor drive circuit 24, 24A, 24B X axis motor 25, 25A, 25B Y axis motor 26 X axis gear 27 Y axis gear 28 X rotation axis 29 Y Rotating shaft 31 Inner frame 32 Outer frame 101 Transmission lens 102 Reception lens 104 Transmission optical system 105 Reception optical system 106 Emission direction detection optical system

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 半導体レーザを信号用光源とし、伝送信
号に対応して前記半導体レーザのレーザ光を変調して外
部に出射することにより送信を行う送信手段と、外部か
ら入射する変調されたレーザ光を受光すると共に復調し
て伝送信号を得る受信手段とを含んで構成され、 対向する一対の装置の一方を自装置とし、他方を相手装
置として空間伝送路を形成する送受一体構成の光空間伝
送装置において、 送信光学系と受信光学系とをそれぞれ個別に構成すると
共に、 前記送信光学系を、送信用レーザ光の光軸に垂直な面内
の直交する2つの軸方向に回動する回動機構を介して光
学系筐体に保持し、 前記受信光学系を、前記受信光学系の光軸を前記送信光
学系の光軸と略一致させて前記光学系筐体に固定し、 更に、前記光学系筐体を、前記受信光学系の光軸に垂直
な面内の直交する2つの軸方向に回動する回動機構を介
して装置筐体に保持したことを特徴とする光空間伝送装
置。
1. A semiconductor laser as a signal light source, transmitting means for transmitting by modulating the laser light of the semiconductor laser according to a transmission signal and emitting the modulated laser light to the outside, and a modulated laser incident from the outside. An optical space that is configured to include a receiving unit that receives light and demodulates it to obtain a transmission signal. One of a pair of opposing devices is its own device, and the other is a partner device to form a spatial transmission path, forming a space transmission path. In the transmission device, a transmission optical system and a reception optical system are individually configured, and the transmission optical system is rotated in two orthogonal axial directions in a plane perpendicular to the optical axis of the transmission laser light. Held in an optical system housing via a moving mechanism, and fixing the receiving optical system to the optical system housing by making the optical axis of the receiving optical system substantially coincide with the optical axis of the transmitting optical system, The optical system housing is Manabu based optical atmospheric link system, characterized in that held in the orthogonal apparatus housing via a pivoting mechanism that pivots the two axial plane perpendicular to the optical axis of the.
【請求項2】 前記送信光学系から出射するレーザ光の
出射角度を検出する検出装置を前記送信光学系と前記光
学系筐体との間に設けたことを特徴とする、請求項1に
記載の光空間伝送装置。
2. A detection device for detecting an emission angle of laser light emitted from the transmission optical system is provided between the transmission optical system and the optical system casing. Optical space transmission equipment.
【請求項3】 前記受信光学系に、相手装置からのレー
ザ光の自装置に対する位置ずれ情報を検出する検出装置
を設けたことを特徴とする、請求項1に記載の光空間伝
送装置。
3. The optical space transmission device according to claim 1, wherein the receiving optical system is provided with a detection device for detecting positional deviation information of laser light from a partner device with respect to the own device.
【請求項4】 請求項3に記載の検出装置で検出した相
手装置からのレーザ光の自装置に対する位置ずれ情報を
変調し送信信号に付加する装置を設けると共に、 相手装置からの送信信号に付加されている、相手装置に
対する自装置からのレーザ光の位置ずれ情報を再生する
装置を設けることを特徴とする、請求項1に記載の光空
間伝送装置。
4. A device for modulating the position deviation information of the laser beam from the partner device detected by the detecting device according to claim 3 with respect to the own device and adding the modulated signal to the transmission signal is added to the transmission signal from the partner device. 2. The optical space transmission device according to claim 1, further comprising a device for reproducing the positional deviation information of the laser beam from the device itself to the partner device.
【請求項5】 前記受信光学系の光軸制御は、自装置と
相手装置間の光軸が一致した時の相手装置からのレーザ
光の自装置に対する入射角度を基準入射角度とし、光軸
がずれた入射レーザ光の入射角度と前記基準入射角度と
の偏差量に応じて装置筐体に対する光学系筐体を、前記
受信光学系の光軸に垂直な面内の直交する2つの軸方向
に回動して制御することを特徴とする、請求項1に記載
の光空間伝送装置。
5. The optical axis control of the receiving optical system is based on an incident angle of laser light from the partner device to the own device when the optical axes of the own device and the partner device are coincident with each other. The optical system casing with respect to the device casing is arranged in two axial directions orthogonal to each other in a plane perpendicular to the optical axis of the receiving optical system according to the deviation amount between the incident angle of the shifted incident laser light and the reference incident angle. The optical space transmission device according to claim 1, wherein the optical space transmission device is rotated and controlled.
【請求項6】 前記送信光学系を送信用レーザ光の光軸
に垂直な面内の直交する2つの軸方向に、それぞれ個別
に走査し、 前記走査による相手装置への自装置からのレーザ光の位
置ずれ情報を、相手装置からの送信信号を復調して得る
と共に、 前記位置ずれ情報に基づいて前記送信光学系の光軸を制
御することを特徴とする、請求項1に記載の光空間伝送
装置。
6. The transmission optical system is individually scanned in two axial directions orthogonal to each other in a plane perpendicular to the optical axis of the transmission laser light, and the laser light from the own device to the partner device by the scanning is obtained. 2. The optical space according to claim 1, wherein the positional deviation information is obtained by demodulating a transmission signal from a partner device, and the optical axis of the transmission optical system is controlled based on the positional deviation information. Transmission equipment.
【請求項7】 前記送信光学系から出射する正常な光軸
時のレーザ光の、前記光学系筐体に対する出射角度を検
出して記憶し、 前記受信光学系に入射する相手装置からの正常な光軸時
のレーザ光の入射角度を検出して記憶し、 正常な光軸時の出射するレーザ光の出射角度と入射する
レーザ光の入射角度との相対的関係を算出して記憶する
と共に、 急激な外乱に対しては前記相対的関係を保持するように
前記送信光学系を前記光学系筐体に対して制御すること
を特徴とする、請求項1に記載の光空間伝送装置。
7. The normal angle from a partner device that detects and stores the emission angle of the laser beam on the normal optical axis emitted from the transmission optical system with respect to the optical system casing and enters the reception optical system. The incident angle of the laser beam at the optical axis is detected and stored, and the relative relationship between the emitted angle of the emitted laser beam and the incident angle of the incident laser beam at the normal optical axis is calculated and stored. The optical space transmission device according to claim 1, wherein the transmission optical system is controlled with respect to the optical system housing so as to maintain the relative relationship with respect to a sudden disturbance.
【請求項8】 前記送信光学系の送信用レンズと前記受
信光学系の受信用レンズを非球面レンズで構成したこと
を特徴とする、請求項1に記載の光空間伝送装置。
8. The optical space transmission device according to claim 1, wherein the transmitting lens of the transmitting optical system and the receiving lens of the receiving optical system are aspherical lenses.
【請求項9】 前記送信光学系の送信用レンズを前記受
信光学系の受信用レンズよりも小さい口径としたことを
特徴とする、請求項1に記載の光空間伝送装置。
9. The optical space transmission device according to claim 1, wherein the transmitting lens of the transmitting optical system has a diameter smaller than that of the receiving lens of the receiving optical system.
【請求項10】 前記送信光学系の光軸制御周波数帯域
が前記受信光学系の光軸制御周波数帯域よりも高いこと
を特徴とする、請求項1に記載の光空間伝送装置。
10. The optical space transmission device according to claim 1, wherein an optical axis control frequency band of the transmission optical system is higher than an optical axis control frequency band of the reception optical system.
JP7020562A 1995-02-08 1995-02-08 Optical space transmission equipment Pending JPH08223117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7020562A JPH08223117A (en) 1995-02-08 1995-02-08 Optical space transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7020562A JPH08223117A (en) 1995-02-08 1995-02-08 Optical space transmission equipment

Publications (1)

Publication Number Publication Date
JPH08223117A true JPH08223117A (en) 1996-08-30

Family

ID=12030617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7020562A Pending JPH08223117A (en) 1995-02-08 1995-02-08 Optical space transmission equipment

Country Status (1)

Country Link
JP (1) JPH08223117A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003057221A1 (en) * 2002-01-07 2003-07-17 Quantumbeam Limited Optical free space signalling system
JP2005229277A (en) * 2004-02-12 2005-08-25 Victor Co Of Japan Ltd Optical radio transmitter
GB2414549A (en) * 2004-05-27 2005-11-30 Fire Beam Company Ltd A light beam alarm having a control which aligns its transmitter with its receiver
JP2011191250A (en) * 2010-03-16 2011-09-29 Mitsubishi Denki Tokki System Kk Underwater distance measurement system
JP2011196955A (en) * 2010-03-23 2011-10-06 Japan Agengy For Marine-Earth Science & Technology Laser transmission/reception system for measuring underwater distance, laser stick, and method of measuring underwater distance
JP2013211731A (en) * 2012-03-30 2013-10-10 Outstanding Technology:Kk Underwater divergent light communication device
JP2018170647A (en) * 2017-03-30 2018-11-01 東洋電機株式会社 Spatial optical transmission device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003057221A1 (en) * 2002-01-07 2003-07-17 Quantumbeam Limited Optical free space signalling system
JP2005229277A (en) * 2004-02-12 2005-08-25 Victor Co Of Japan Ltd Optical radio transmitter
JP4599847B2 (en) * 2004-02-12 2010-12-15 日本ビクター株式会社 Optical wireless transmission device
GB2414549A (en) * 2004-05-27 2005-11-30 Fire Beam Company Ltd A light beam alarm having a control which aligns its transmitter with its receiver
GB2414549B (en) * 2004-05-27 2006-10-11 Fire Beam Company Ltd A light beam alarm
JP2011191250A (en) * 2010-03-16 2011-09-29 Mitsubishi Denki Tokki System Kk Underwater distance measurement system
JP2011196955A (en) * 2010-03-23 2011-10-06 Japan Agengy For Marine-Earth Science & Technology Laser transmission/reception system for measuring underwater distance, laser stick, and method of measuring underwater distance
JP2013211731A (en) * 2012-03-30 2013-10-10 Outstanding Technology:Kk Underwater divergent light communication device
JP2018170647A (en) * 2017-03-30 2018-11-01 東洋電機株式会社 Spatial optical transmission device

Similar Documents

Publication Publication Date Title
US6335811B1 (en) Optical space communication apparatus
JP4729104B2 (en) Acquisition, indication, and tracking architecture for laser communications
US20020131121A1 (en) Transceiver, system, and method for free-space optical communication and tracking
US7920794B1 (en) Free space optical communication
US6462846B1 (en) Shared telescope optical communication terminal
US6507424B2 (en) Optical space communication apparatus
WO1999020002A1 (en) Space optical transmission apparatus and space optical transmission method
US6522440B1 (en) Inter-satellite optical link track sensor
US9450670B1 (en) Position sensor for a fast steering mirror
JPH08223117A (en) Optical space transmission equipment
US20040208597A1 (en) Free-Space optical transceiver link
US5237166A (en) Optical atmospheric link apparatus with light path correction
JPH08204640A (en) Optical space transmitter
US7146105B1 (en) MEMS-based optical wireless communication system
CA2325114C (en) Method and arrangement for establishing a connection between satellites
JP2001203641A (en) Spatial light transmission unit
JP4508352B2 (en) Optical space transmission system
JP2007036940A (en) Optical radio transmitter, light-transmitting unit and light-receiving unit
JP3206993B2 (en) Bidirectional optical space transmission equipment
JPH08204644A (en) Optical space transmitter and its optical axis alignment method
JPH07312578A (en) Optical space transmitter
JPH08149076A (en) Optical space communication device
JPH08223116A (en) Optical space transmission equipment
JPH08149077A (en) Optical space communication device
JP3027964B2 (en) Driving axis alignment error measurement method for intersatellite optical communication equipment