JPH08223116A - Optical space transmission equipment - Google Patents

Optical space transmission equipment

Info

Publication number
JPH08223116A
JPH08223116A JP7026342A JP2634295A JPH08223116A JP H08223116 A JPH08223116 A JP H08223116A JP 7026342 A JP7026342 A JP 7026342A JP 2634295 A JP2634295 A JP 2634295A JP H08223116 A JPH08223116 A JP H08223116A
Authority
JP
Japan
Prior art keywords
optical
optical system
wedge
space transmission
apex angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7026342A
Other languages
Japanese (ja)
Inventor
Koji Suzuki
浩次 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP7026342A priority Critical patent/JPH08223116A/en
Publication of JPH08223116A publication Critical patent/JPH08223116A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE: To adjust the optical axis of an optical space transmission equipment with a high precision by the constitution which has no mechanical mobile parts. CONSTITUTION: An optical axis varying optical device 8 is provided being in contact with a lens ID for transmission and reception on the space transmission line side of the lens ID. With respect to the optical axis varying optical device 8, each of two optical elements has liquid crystal sealed up between two transparent substrates assuming a wedge shape and an arbitrary vertical angle and changes the refractive index of liquid crystal by applying a voltage to transparent electrodes formed in the inside faces of transparent substrates, and vertical angles of wedge shapes are inverted by 180 deg. to compose these optical elements, and optical elements correspond to two orthogonal axial directions in the face perpendicular to the optical axis. The deviation in the optical axis is discriminated from the convergence position information on a position detection element 5 of incident light L2 by a convergence position detection circuit 14 and a CPU 15, and the voltage is controlled based on the discrimination result by a driving circuit 16, thus adjusting the optical axis.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレーザ光を信号用光源と
する光空間伝送装置に関し、更に詳しくは光空間伝送装
置間の光軸の調整に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical space transmitter using laser light as a signal light source, and more particularly to adjustment of an optical axis between the optical space transmitters.

【0002】[0002]

【従来の技術】まず、光空間伝送装置とは、送信側にお
いて送信情報を光の強度変化に変調し、変調した光を受
信側に向かって大気中に出射し、受信側においては前記
送信側から出射した変調光を受け、復調することによ
り、所望の情報信号の伝達を大気空間を介して行うもの
である。
2. Description of the Related Art First of all, an optical space transmission device is a transmission side that modulates transmission information into a change in the intensity of light, emits the modulated light into the atmosphere toward the reception side, and the reception side uses the transmission side. By receiving and demodulating the modulated light emitted from, the desired information signal is transmitted through the atmospheric space.

【0003】即ち、図8に示すように一方の光空間伝送
装置50Aと他方の光空間伝送装置50Bとの間で行わ
れる光空間伝送は、一方の光空間伝送装置50A(又は
50B)から送信信号で変調されたレーザ光をレンズ1
Dを介して出射(出射光L1)し、他方の光空間伝送装
置50B(又は50A)からの同様に変調されたレーザ
光(入射光L2 )をレンズ1Dを介して受光することで
実現される。
That is, as shown in FIG. 8, the optical space transmission performed between one optical space transmission apparatus 50A and the other optical space transmission apparatus 50B is transmitted from one optical space transmission apparatus 50A (or 50B). Lens 1 with laser light modulated by signal
It is realized by emitting (emitted light L1) via D and receiving similarly modulated laser light (incident light L2) from the other optical space transmission device 50B (or 50A) via the lens 1D. .

【0004】図8は送受一体構成の光空間伝送装置を示
しているが、送信機能と受信機能とがそれぞれに分離し
た形態の装置(図示せず)も、今までに多くのものが提
案され、実用化されてきた。
Although FIG. 8 shows an optical space transmission device having a transmission and reception integrated structure, many devices (not shown) in which the transmission function and the reception function are separated from each other have been proposed so far. , Has been put to practical use.

【0005】しかしながら、光ビームはその伝送路であ
る大気中において、雨、霧、微粒子等による吸収を受け
て減衰する為、受信側において十分な光パワーを常に保
証する為には、送信側において多大な光パワーを用意し
なければならなかった。
However, since the light beam is absorbed and attenuated by rain, fog, fine particles, etc. in the atmosphere which is the transmission path, in order to always ensure sufficient optical power on the receiving side, on the transmitting side, I had to prepare a lot of optical power.

【0006】また、大気の揺らぎ、温度勾配の変化等に
よって光ビーム径路が変動し、伝送区間が長くなる程こ
の影響は大きくなる。更に、光空間伝送装置を設置して
いる場所、例えばビルの屋上であっても、周囲の温度変
化によってビルそのものが微小ではあるが変形し、光ビ
ームの出射方向を変動させることになる。従って、光ビ
ームが受信装置から外れないようにする為には光ビーム
の径を大きくする必要があり、この点からも送信側の光
パワーを大きくする必要があった。
Further, the optical beam path fluctuates due to fluctuations in the atmosphere, changes in temperature gradient, etc., and this effect becomes greater as the transmission section becomes longer. Further, even at a place where the optical free space transmission device is installed, for example, on the roof of a building, the building itself is deformed by a change in ambient temperature, although it is minute, and the emission direction of the light beam is changed. Therefore, it is necessary to increase the diameter of the light beam in order to prevent the light beam from coming off the receiving device, and from this point as well, it is necessary to increase the optical power on the transmission side.

【0007】しかし他方では、眼に対する安全対策上か
ら光波長によって単位パワー密度が規制されており、特
に可視光帯域では厳しく、この点からも十分な光パワー
を送信側で用意できるとは限らなかった。
On the other hand, however, the unit power density is regulated by the light wavelength from the viewpoint of eye safety measures, and it is strict especially in the visible light band. From this point, it is not always possible to prepare sufficient light power on the transmitting side. It was

【0008】これらの対策として、本件の出願人等は自
動制御技術を導入し、光ビームが装置の設置場所や伝送
路の状態に関係なく常に相手側装置に到達する機構につ
いて提案してきた。その一例について、図9ないし図1
1を参照して説明する。図9に示す光空間伝送装置は送
信と受信の機能が一体となった構成を採り、全く同じ装
置を対向して設置することにより、双方向の情報伝達を
行うことができるものである。
As countermeasures against these problems, the applicants of the present application have introduced an automatic control technique, and have proposed a mechanism in which a light beam always reaches the partner device regardless of the installation location of the device or the state of the transmission path. An example thereof is shown in FIGS. 9 to 1.
This will be described with reference to FIG. The optical free space transmission apparatus shown in FIG. 9 has a structure in which the functions of transmission and reception are integrated, and by installing the same apparatus facing each other, it is possible to perform bidirectional information transmission.

【0009】図9にその光空間伝送装置の構成ブロック
を示す。まず、前記光空間伝送装置の光学系は光源とな
る半導体レーザ3、レーザビームを平行ビームに変換す
るレンズ1A、光を分離する偏光ビームスプリッタ2
A、レーザビームを略平行光にして出射する為のレンズ
1Bとレンズ1D、入射光を光検出素子4上に集光する
為の偏光ビームスプリッタ2Bとレンズ1C、更に、光
軸調整の為の位置検出素子5と前記位置検出素子5上に
集光するレンズ1Eとを含んで構成されている。上記光
学要素は一体として構成されていて、その構成体は後述
する構造の回動軸を介して装置の筐体に固定されてい
る。
FIG. 9 shows a block diagram of the optical space transmission device. First, the optical system of the optical space transmission device includes a semiconductor laser 3 as a light source, a lens 1A for converting a laser beam into a parallel beam, and a polarization beam splitter 2 for separating light.
A, a lens 1B and a lens 1D for emitting a laser beam into substantially parallel light, a polarizing beam splitter 2B and a lens 1C for converging incident light on the photodetector 4, and further for adjusting the optical axis. The position detecting element 5 and a lens 1E that collects light on the position detecting element 5 are included. The optical element is integrally configured, and its constituent body is fixed to the housing of the apparatus via a rotary shaft having a structure described later.

【0010】つぎに、電気回路は半導体レーザ3を変調
された送信信号に応じて駆動するレーザ駆動回路18、
光検出素子4からの出力信号を受ける受光回路19、位
置検出素子5からの出力信号を受ける集光位置検出回路
14、前記集光位置検出回路14の信号にもとづいてモ
ータ駆動回路23を制御するCPU15等から構成され
ている。モータ駆動回路23は光学系を出射光軸に垂直
な面内において直交する2つの軸、例えば水平方向と垂
直方向に回動するX軸モータ24とY軸モータ25と駆
動するものである。
Next, the electric circuit drives a laser driving circuit 18 for driving the semiconductor laser 3 in accordance with the modulated transmission signal,
The light receiving circuit 19 which receives the output signal from the light detecting element 4, the condensing position detecting circuit 14 which receives the output signal from the position detecting element 5, and the motor drive circuit 23 are controlled based on the signals of the condensing position detecting circuit 14. It is composed of a CPU 15 and the like. The motor drive circuit 23 drives the optical system with two axes orthogonal to each other in a plane perpendicular to the emission optical axis, for example, an X-axis motor 24 and a Y-axis motor 25 which rotate in a horizontal direction and a vertical direction.

【0011】上述した光空間伝送装置の動作を簡単に説
明する。送信機としては、伝達すべき情報をレーザ駆動
回路18の前段の回路(図示せず)において送信信号に
変調し、その変調信号に基づき前記レーザ駆動回路18
は半導体レーザ3を駆動してそのレーザ光を前記変調信
号に対応した光強度に変調する。つぎに、前記レーザ光
はレンズ1A、偏光ビームスプリッタ2A、レンズ1B
およびレンズ1Dによって略平行な出射光L1 に変換し
て受信する相手装置に送り出すものである。
The operation of the above-described optical space transmission device will be briefly described. As a transmitter, a circuit (not shown) in the preceding stage of the laser drive circuit 18 modulates information to be transmitted into a transmission signal, and the laser drive circuit 18 is modulated based on the modulation signal.
Drives the semiconductor laser 3 to modulate the laser light to a light intensity corresponding to the modulation signal. Next, the laser light is passed through the lens 1A, the polarization beam splitter 2A, and the lens 1B.
And the lens 1D to convert the light into substantially parallel emitted light L1 and send it to the receiving device.

【0012】受信機としての動作は、相手側装置から送
られてきたレーザ光、即ち入射光L2 をレンズ1Dで受
け、偏光ビームスプリッタ2A、2Bとレンズ1Cを通
して光検出素子4上に集光し、前記光検出素子4により
光信号は電気信号に変換され、受光回路19とそれに続
く後段の回路(図示せず)によって元の情報に復調され
るものである。
The operation as a receiver is that the laser light sent from the other device, that is, the incident light L2 is received by the lens 1D and is condensed on the photodetector 4 through the polarization beam splitters 2A, 2B and the lens 1C. An optical signal is converted into an electric signal by the photo-detecting element 4, and is demodulated into original information by the light receiving circuit 19 and a subsequent circuit (not shown) subsequent thereto.

【0013】ここで、前述した位置検出素子5と回動軸
の構成を説明し、これに基づき上述した光空間伝送装置
の光軸調整方法について説明する。
Here, the structure of the position detecting element 5 and the rotating shaft described above will be described, and the optical axis adjusting method of the above-described optical space transmission device will be described based on this.

【0014】まず、位置検出素子5は図10に示す構成
をしていて、その受光面41は区別された4辺を有する
2次元の広がりを有し、各辺に電極X1 、X2 、Y1 、
Y2が設けられている。各対向する一組の辺を一つの軸
(例えばX軸)の電極とし、これと直交する他の一組の
辺を一方の軸(例えばY軸)の電極とする。
First, the position detecting element 5 has the structure shown in FIG. 10, and the light receiving surface 41 thereof has a two-dimensional spread having four distinct sides, and electrodes X1, X2, Y1, respectively on each side.
Y2 is provided. Each pair of opposite sides is an electrode of one axis (for example, X axis), and the other pair of sides orthogonal to this is an electrode of one axis (for example, Y axis).

【0015】ここで受光面41の中心を原点P0 (0、
0)、光40の集光点をP(X、Y)とし、光の照射に
より生じたX軸、Y軸方向の出力電流をそれぞれ個別に
測定する。即ち電極毎に、電極X1 の出力電流をIX1
、電極X2 の出力電流をIX2 、また電極Y1 の出力
電流をIY1 、電極Y2 の出力電流をIY2 とし、更に
各辺の長さを2D0 とすると、集光点をP1 (X、Y)
は、よく知られているように、 X=D0 (IX2 −IX1 )/(IX2 +IX1 ) Y=D0 (IY2 −IY1 )/(IY2 +IY1 ) として算出される。従って、上述した位置検出素子5か
らの出力電流を演算することにより受光面41の集光位
置を決定することができるものである。
Here, the center of the light receiving surface 41 is the origin P 0 (0,
0), the converging point of the light 40 is P (X, Y), and the output currents in the X-axis and Y-axis directions generated by the light irradiation are individually measured. That is, the output current of the electrode X1 is changed to IX1 for each electrode.
, The output current of the electrode X2 is IX2, the output current of the electrode Y1 is IY1, the output current of the electrode Y2 is IY2, and the length of each side is 2D 0 , the focal point is P 1 (X, Y)
As is well known, is calculated as X = D 0 (IX2 -IX1) / (IX2 + IX1) Y = D 0 (IY2 -IY1) / (IY2 + IY1). Therefore, the focus position of the light receiving surface 41 can be determined by calculating the output current from the position detecting element 5 described above.

【0016】つぎに、回動軸の構成は図11に示すよう
に、光学系を出射光軸に垂直な面内において直交する2
つの軸、例えば水平方向と垂直方向に回動する構造にな
っている。レンズ1Dを含む光学系を搭載した鏡筒30
はY回動軸29を介して内枠31に回動自在に保持さ
れ、前記内枠31はX回動軸28を介して外枠32に回
動自在に保持され、更に、前記外枠32は装置の固定部
(図示せず)に固着されている。X回動軸28にはX軸
歯車26が固着され、外枠32に固定されているX軸モ
ータ24の回転をX回動軸28に伝達する。同様にY回
動軸29にはY軸歯車27が固着され、内枠31に固定
されているY軸モータ25の回転をY回動軸29に伝達
するものである。
Next, as shown in FIG. 11, the structure of the rotation axis is such that the optical system is perpendicular to the exit optical axis in a plane perpendicular to the exit optical axis.
It has a structure in which it rotates about one axis, for example, the horizontal direction and the vertical direction. A lens barrel 30 equipped with an optical system including a lens 1D
Is rotatably held by an inner frame 31 via a Y rotation shaft 29, and the inner frame 31 is rotatably held by an outer frame 32 via an X rotation shaft 28. Is fixed to a fixed portion (not shown) of the device. The X-axis gear 26 is fixed to the X-rotation shaft 28, and the rotation of the X-axis motor 24 fixed to the outer frame 32 is transmitted to the X-rotation shaft 28. Similarly, the Y-axis gear 27 is fixed to the Y-rotation shaft 29, and the rotation of the Y-axis motor 25 fixed to the inner frame 31 is transmitted to the Y-rotation shaft 29.

【0017】さて、前述した光空間伝送装置の光軸調整
は以下のように行われてきた。相手側装置からの送信
光、即ち入射光L2 をレンズ1Dで受け、偏光ビームス
プリッタ2A、2Bとレンズ1Eを通して位置検出素子
5に集光する。集光位置は前述したように位置検出素子
5上でX、Yの座標として認識することができる。この
座標は入射光L2 の入射角と対応するものである。
The optical axis adjustment of the above-described optical space transmission device has been performed as follows. The transmitted light from the partner device, that is, the incident light L2 is received by the lens 1D and is condensed on the position detection element 5 through the polarization beam splitters 2A, 2B and the lens 1E. The condensing position can be recognized as the X and Y coordinates on the position detecting element 5 as described above. This coordinate corresponds to the incident angle of the incident light L2.

【0018】位置検出素子5は装置間の光軸が一致した
ときの入射光L2 が集光する位置にその原点P0 (0、
0)が来るように設定されるべきものである。しかしな
がら、一般的には調整が困難であることかる光軸が一致
したときの集光点PXY0 (X0 、Y0 )を基準位置と
し、その位置をCPU15に記憶しておく。つぎに、光
軸が何らかの原因によりずれた場合、このときの集光位
置P(X、Y)を集光位置検出回路14で検出し、記憶
されている基準の集光点PXY0 (X0 、Y0 )とをCP
U15で比較し、その位置の距離の差に対応した駆動力
でモータ駆動回路23によりX軸モータ24およびY軸
モータ25を駆動し、光学系の光軸を調整するものであ
る。回線を結ぶ2つの装置の各々がこの制御をすること
により光軸を常に一致させて保持することができるもの
である。
The position detecting element 5 has its origin P 0 (0, 0, 0 at the position where the incident light L 2 is condensed when the optical axes of the devices coincide with each other.
0) should be set. However, in general, the focusing point PXY 0 (X 0 , Y 0 ) when the optical axes coincide with each other, which is difficult to adjust, is set as a reference position, and the position is stored in the CPU 15. Next, when the optical axis is deviated for some reason, the focus position P (X, Y) at this time is detected by the focus position detection circuit 14, and the stored reference focus point PXY 0 (X 0). , Y 0 ) and CP
Compared with U15, the X-axis motor 24 and the Y-axis motor 25 are driven by the motor drive circuit 23 by the driving force corresponding to the difference in the position distance, and the optical axis of the optical system is adjusted. By performing this control by each of the two devices connecting the lines, the optical axes can always be held in alignment with each other.

【0019】従って、上述した方法では、光軸の調整が
常時効果的に行われ、光ビームを小さく絞ることができ
る為、送信側の光パワーを狭いビーム内に納めることが
でき、大気中の雨、霧、微粒子等の光吸収による受信装
置における光パワーの減少に対処できる。また、大気の
揺らぎ、温度勾配の変化等による光ビーム径路の変動に
対して自動制御によって光ビームが受信装置から外れな
いようにすることができた。
Therefore, in the above-mentioned method, the optical axis is constantly adjusted effectively, and the light beam can be narrowed down. Therefore, the optical power on the transmitting side can be contained within a narrow beam, and the optical power in the atmosphere can be reduced. It is possible to cope with the reduction of the optical power in the receiving device due to the absorption of light such as rain, fog, and particles. Further, it is possible to prevent the light beam from coming off the receiving device by automatic control with respect to fluctuations in the light beam path due to fluctuations in the atmosphere, changes in temperature gradient, and the like.

【0020】しかし、上述した光軸制御を正確に行う為
には、高精度な回動軸が必要であり、高価で大きな装置
となると共に、光学系全体が常に揺動している為、光学
部材の十分な固定対策が必要となる。また、搬送時にお
ける回動軸の保護の為の機構を必要とし、更に光学系全
体の揺動スペースが必要となる為、装置全体が大きくな
り、重いものになる虞があった。
However, in order to accurately perform the above-mentioned optical axis control, a highly accurate rotating shaft is required, which is an expensive and large device, and the optical system as a whole constantly swings. It is necessary to take sufficient measures to secure the members. In addition, since a mechanism for protecting the rotating shaft during transportation is required and a swing space for the entire optical system is required, the entire apparatus may be large and heavy.

【0021】[0021]

【発明が解決しようとする課題】従って、本発明の課題
は光空間伝送装置の装置間の光軸調整機構を機械的可動
部のない小型で信頼性の高い構成にして、長期間の継続
使用に一層の信頼性を確保すると共に、装置を軽量、小
型化して保守作業を簡素化しようとするものである。
SUMMARY OF THE INVENTION Therefore, the object of the present invention is to make the optical axis adjusting mechanism between the devices of the optical space transmission device small in size and highly reliable without mechanically moving parts so that it can be continuously used for a long period of time. In addition to ensuring further reliability, the device is lightweight and small in size to simplify maintenance work.

【0022】[0022]

【課題を解決するための手段】本発明は以上の点に鑑み
なされたものであって、印加する電圧に応じて光の屈折
率が変化する2つの光学素子を積層した光学装置を、レ
ーザ光の光軸に垂直の面内で直交する2つの軸方向のそ
れぞれに前記光学装置の2つの屈折方向を一致させて配
設し、入射光の入射角度に応じて前記光学装置の屈折率
を制御し、光学系の光軸を調整する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and an optical device in which two optical elements in which the refractive index of light changes according to an applied voltage is laminated is provided. The two refraction directions of the optical device are arranged so as to coincide with each other in two axial directions orthogonal to the optical axis of the optical device, and the refractive index of the optical device is controlled according to the incident angle of incident light. Then, adjust the optical axis of the optical system.

【0023】また、送信されてくる信号中に含まれる相
手側装置へのレーザ光の入射角度情報に基づき前記光学
装置の屈折率を制御して光学系の光軸を調整する。
The optical axis of the optical system is adjusted by controlling the refractive index of the optical device on the basis of the incident angle information of the laser beam on the other device included in the transmitted signal.

【0024】前記光学装置は任意の頂角を有して2枚の
透明基板を接合し、前記透明基板間に液晶を封入して前
記透明基板に設けられた電極間に印加する電圧によって
屈折率が変化する楔状の構成とする。
In the optical device, two transparent substrates having an arbitrary apex angle are bonded to each other, a liquid crystal is sealed between the transparent substrates, and a refractive index is applied by a voltage applied between electrodes provided on the transparent substrate. It has a wedge-shaped configuration in which

【0025】また、前記光学装置は任意の頂角を有して
2枚の透明基板を接合し、前記透明基板間に液晶を封入
して前記透明基板に設けられた電極間に印加する電圧に
よって屈折率が変化する楔状の2つの光学素子を、前記
楔状の頂角を180度反転して面接合した構成として上
記課題を解決する。
In the optical device, two transparent substrates having an arbitrary apex angle are joined to each other, liquid crystal is sealed between the transparent substrates, and a voltage is applied between electrodes provided on the transparent substrates. The above problem is solved by adopting a configuration in which two wedge-shaped optical elements whose refractive indexes are changed are surface-bonded by inverting the wedge-shaped apex angle by 180 degrees.

【0026】[0026]

【作用】前記光学装置を光軸のずれの量に対応して電圧
を印加することにより、屈折率を変化させて光軸の調整
をするので、機械的可動部のない光軸調整装置が実現で
き、高速で高精度の制御をすることができると共に、装
置の構成部品点数が少ないので小型、軽量となり携帯性
にも優れる。更に、製造が容易であり、コストを低減す
ることができると共に、保守作業も簡単になる。
By applying a voltage to the optical device according to the amount of deviation of the optical axis to change the refractive index and adjust the optical axis, an optical axis adjusting device having no mechanically movable portion is realized. In addition to being capable of high-speed and high-precision control, the number of component parts of the device is small, so that the device is small and lightweight, and is excellent in portability. Further, the manufacturing is easy, the cost can be reduced, and the maintenance work can be simplified.

【0027】[0027]

【実施例】本発明の実施例について図1ないし図7を参
照して説明する。まず、本発明の主要構成部を形成する
光軸可変光学装置の原理について図7を参照して説明す
る。前記光軸可変光学装置は液晶に電圧を印加した場合
に液晶の屈折率が変化する特性を利用したものであっ
て、その原理的構成は図7(a)に示すように、平であ
る透明基板11の一方の面に透明電極12を形成し、前
記透明電極12を互いに向き合わせて、その間に液晶1
0を封入し、前記透明電極12間に電圧Vを印加して前
記液晶10の屈折率nを変化させるものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described with reference to FIGS. First, the principle of the optical axis variable optical device forming the main constituent part of the present invention will be described with reference to FIG. The optical axis variable optical device utilizes the characteristic that the refractive index of the liquid crystal changes when a voltage is applied to the liquid crystal, and its principle configuration is flat and transparent as shown in FIG. A transparent electrode 12 is formed on one surface of a substrate 11, the transparent electrodes 12 are opposed to each other, and the liquid crystal 1 is interposed therebetween.
0 is enclosed and a voltage V is applied between the transparent electrodes 12 to change the refractive index n of the liquid crystal 10.

【0028】図7(a)に示す屈折率nはn=sinθ
/sinθn で決定される。図7(b)は印加電圧Vに
対する屈折率nの関係を示す一例であって、電圧がV1
からV2 まで変化させたときに屈折率はn1 (例えば
1.5)からn2 (例えば1.8)まで変化することを
示している。
The refractive index n shown in FIG. 7A is n = sin θ
/ Sin θ n . FIG. 7B shows an example of the relationship between the applied voltage V and the refractive index n.
It is shown that the refractive index changes from n1 (for example, 1.5) to n2 (for example, 1.8) when changing from V2 to V2.

【0029】以下に説明する実施例に用いる前記光軸可
変光学装置は、前記2枚の透明基板11がある任意の頂
角を有して接合されていて、その間に液晶10が封入さ
れている構造であり、更にそれらが複数個組み合わさっ
て構成されている。
In the optical axis variable optical device used in the embodiments described below, the two transparent substrates 11 are bonded together with an arbitrary apex angle, and the liquid crystal 10 is sealed between them. It has a structure, and is constructed by combining a plurality of them.

【0030】実施例1 本発明による光空間伝送装置の第一の実施例の構成につ
いて図1ないし図3を参照して説明する。図1に示す装
置は送受一体構成であって、少なくとも半導体レーザ
3、分岐光学素子6A、6B、送受信用のレンズ1D、
光検出素子4および位置検出素子5Bを含んで構成され
ている。更に前記レンズ1Dの空間伝送路側に密接して
前述した光軸可変光学装置7が配設されている。前記光
軸可変光学装置7は光軸Lに垂直な面内の直交する2つ
の軸方向の構成要素7X(例えば水平方向)および7Y
(例えば垂直方向)とで構成されている。
Embodiment 1 The configuration of the first embodiment of the optical free space transmission apparatus according to the present invention will be described with reference to FIGS. 1 to 3. The apparatus shown in FIG. 1 has a transmission / reception integrated configuration, and includes at least a semiconductor laser 3, branch optical elements 6A and 6B, a transmission / reception lens 1D,
The light detecting element 4 and the position detecting element 5B are included. Further, the above-mentioned optical axis variable optical device 7 is disposed in close contact with the space transmission path side of the lens 1D. The optical axis variable optical device 7 includes two axially orthogonal component elements 7X (for example, horizontal direction) and 7Y in a plane perpendicular to the optical axis L.
(For example, in the vertical direction).

【0031】前記光軸可変光学装置7の構成ユニットは
図2に示すように、2枚の透明基板11は任意の角度θ
0 をもって接合していて、その間に液晶10が封入され
ている。前記透明基板11の向かい合った面に透明電極
12が設けられていて、その電極間に電圧Vが印加され
ている。その動作は光が大気中から透明基板11の一方
に垂直に入射した場合、液晶10を通って他方の透明基
板11に角度θ0 をもって入射し、液晶10による屈折
の効果が加わって角度θ0 +θ1 をもって大気中に出射
する。この時、液晶10の屈折率nは n=sinθ0 /sin(θ0 +θ1 ) となる。
As shown in FIG. 2, the constituent unit of the optical axis variable optical device 7 has two transparent substrates 11 with an arbitrary angle θ.
The liquid crystal 10 is sealed with 0 , and the liquid crystal 10 is sealed between them. Transparent electrodes 12 are provided on the opposite surfaces of the transparent substrate 11, and a voltage V is applied between the electrodes. The operation is such that, when light is vertically incident on one of the transparent substrates 11 from the atmosphere, it is incident on the other transparent substrate 11 through the liquid crystal 10 at an angle θ 0 , and the effect of refraction by the liquid crystal 10 is added to the angle θ 0. It emits to the atmosphere with + θ 1 . At this time, the refractive index n of the liquid crystal 10 is n = sin θ 0 / sin (θ 0 + θ 1 ).

【0032】ここで、θ0 が小さい場合、近似的に n=θ0 /θ0 +θ1 となり、θ0 を3度として、電圧Vを変化させ、その屈
折率nを1.5から1.8まで変化させるとすると、θ
1 は同一方向に1.5度から2.4度まで変化すること
になる。
Here, when θ 0 is small, n = θ 0 / θ 0 + θ 1 is approximated, θ 0 is set to 3 degrees, the voltage V is changed, and the refractive index n is 1.5 to 1. If you change it to 8,
1 changes in the same direction from 1.5 degrees to 2.4 degrees.

【0033】図3は光軸可変光学装置7の構成を示して
いて、同図(a)はX軸方向(例えば水平方向)の光軸
可変光学装置7Xの配置と入射光の屈折方向を、また、
同図(b)はY軸方向(例えば垂直方向)の光軸可変光
学装置7Yの配置と入射光の屈折方向を、更に同図
(c)は前記2つの光学装置を組み合わせた軸可変光学
装置7で光軸の方向を任意に調整できることを示してい
る。
FIG. 3 shows the configuration of the optical axis variable optical device 7. FIG. 3A shows the arrangement of the optical axis variable optical device 7X in the X-axis direction (for example, the horizontal direction) and the refraction direction of incident light. Also,
FIG. 11B shows the arrangement of the optical axis variable optical device 7Y in the Y-axis direction (for example, the vertical direction) and the refraction direction of the incident light, and FIG. 7 shows that the direction of the optical axis can be adjusted arbitrarily.

【0034】前記光軸可変光学装置7の制御は以下に述
べるように行う。まず、相手側装置から送られてくる
光、即ち入射光L1 が光軸可変光学装置7、レンズ1
D、分岐光学素子6A、6Bを通って位置検出素子5に
集光される。前記位置検出素子5において従来例で説明
したように集光位置に対応した信号を出力し、集光位置
検出回路14で信号を処理しCPU15に入力する。前
記CPU15には光軸が一致する時の基準の集光位置情
報が予め記憶されていて、この基準情報と実働中の集光
位置情報とを比較し、その差に応じた信号を駆動回路1
6に入力し、前記駆動回路16は光軸可変光学装置7の
液晶に電圧を加えて、その屈折率を変化し、光軸を調整
する。
The control of the variable optical axis device 7 is performed as described below. First, the light transmitted from the other device, that is, the incident light L1 is the optical axis variable optical device 7 and the lens 1.
The light is focused on the position detection element 5 through D and the branch optical elements 6A and 6B. As described in the conventional example, the position detecting element 5 outputs a signal corresponding to the condensing position, the condensing position detecting circuit 14 processes the signal, and inputs the signal to the CPU 15. Reference light-condensing position information when the optical axes coincide with each other is stored in advance in the CPU 15, the reference information is compared with the actual light-condensing position information, and a signal corresponding to the difference is output to the drive circuit 1.
6, the drive circuit 16 applies a voltage to the liquid crystal of the optical axis variable optical device 7 to change its refractive index and adjust the optical axis.

【0035】本実施例においては、その出射光軸は光軸
可変光学装置7の楔型の構成上、光学系の光軸に対して
ある偏位した角度を有することになる。また、屈折によ
る光軸の変化方向は一方向であり、従って、その中心光
軸は、液晶10の屈折角範囲の中心に定める必要があ
る。
In the present embodiment, the output optical axis has a certain deviated angle with respect to the optical axis of the optical system because of the wedge-shaped structure of the optical axis changing optical device 7. Further, the changing direction of the optical axis due to refraction is one direction, and therefore, the central optical axis thereof needs to be set at the center of the refraction angle range of the liquid crystal 10.

【0036】実施例2 本発明による光空間伝送装置の第二の実施例の構成につ
いて図4ないし図6を参照して説明する。図4に示す装
置は送受一体構成であって、その光学系の構成と電気回
路構成は第一の実施例と、光軸可変光学装置の構造にお
いて異なるものである。従って、同一の構成部について
は同一の符号を付し、その説明は省略する。
Second Embodiment The configuration of a second embodiment of the optical free space transmission apparatus according to the present invention will be described with reference to FIGS. 4 to 6. The apparatus shown in FIG. 4 has a transmission / reception integrated configuration, and the configuration of the optical system and the electrical circuit configuration are different from those of the first embodiment in the configuration of the optical axis variable optical device. Therefore, the same components are designated by the same reference numerals and the description thereof will be omitted.

【0037】本実施例の特徴である光軸可変光学装置8
は図5に示すように、前述した図2に示す光軸可変光学
装置のユニットを1つの構成部材とし、頂角を180度
反転して2つのユニットの面を接合したものである。従
って、光軸を変化させる原理は図7を参照して実施例1
において説明したものと同一である。
Optical axis variable optical device 8 which is a feature of this embodiment.
As shown in FIG. 5, the unit of the optical axis variable optical device shown in FIG. 2 is used as one constituent member, the apex angle is inverted by 180 degrees, and the surfaces of the two units are joined. Therefore, the principle of changing the optical axis will be described with reference to FIG.
Is the same as that described in.

【0038】つぎに、前記光軸可変光学装置8の光軸の
変化について図5を参照して説明する。2枚の透明基板
111と112はある角度θ0 をもって接合していて、
その間に液晶10が封入されている。前記透明基板11
1と112の向かい合った面に透明電極121が設けら
れていて、その電極間に電圧V1 が印加されている。ま
た、2枚の透明基板112と113もある角度θ0 をも
って接合していて、その間に液晶10が封入されてい
る。前記透明基板112と113の向かい合った面に透
明電極122が設けられていて、その電極間に電圧V2
が印加されている。従って、本例の光軸可変光学装置8
の透明基板111と113は平行となっているが、2つ
の頂角θ0 は必ずしも一致する必要はない。
Next, the change of the optical axis of the optical axis changing optical device 8 will be described with reference to FIG. The two transparent substrates 111 and 112 are bonded at an angle θ 0 ,
The liquid crystal 10 is enclosed between them. The transparent substrate 11
A transparent electrode 121 is provided on the opposite surfaces of 1 and 112, and a voltage V1 is applied between the electrodes. Further, the two transparent substrates 112 and 113 are also bonded at an angle θ 0 , and the liquid crystal 10 is sealed between them. A transparent electrode 122 is provided on the opposite surfaces of the transparent substrates 112 and 113, and a voltage V2 is applied between the electrodes.
Is applied. Therefore, the optical axis variable optical device 8 of this example
The transparent substrates 111 and 113 are parallel to each other, but the two apex angles θ 0 do not necessarily match.

【0039】図5は屈折率n2 はn1 よりも大きい場合
の光の屈折を示していて、光が大気中から透明基板11
1に垂直に入射すると、液晶10を通って透明基板11
2に角度θ0 をもって入射し、液晶10による屈折の効
果が加わって角度θ0 −θ21をもって次段ユニットに入
り、更に、透明基板113からは大気中にθ11をもって
出射すると n1 sinθ0 =n2 sinθ212 sin(θ0 −θ21)=sinθ11 となり、角度が小さい場合は近似的に n1 θ0 =n2 θ212 (θ0 −θ21)=θ11 と表すことができる。従って θ11=(n2 −n1 )θ0 を得る。尚、屈折率n2 がn1 よりも小さい場合は、光
の屈折方向は図5に示した方向とは反対になる。
FIG. 5 shows the refraction of light when the refractive index n 2 is larger than n 1.
1 is perpendicularly incident on the transparent substrate 11 through the liquid crystal 10.
2 to enter at an angle theta 0, enter the next stage unit at an angle theta 0 - [theta] 21 subjected to any effect of the refraction by the liquid crystal 10 further includes a transparent substrate 113 when emitted with a theta 11 to the atmosphere n 1 sin [theta 0 = N 2 sin θ 21 n 2 sin (θ 0 −θ 21 ) = sin θ 11 , and when the angle is small, approximately n 1 θ 0 = n 2 θ 21 n 20 −θ 21 ) = θ 11 Can be represented. Therefore, θ 11 = (n 2 −n 1 ) θ 0 is obtained. When the refractive index n 2 is smaller than n 1 , the refraction direction of light is opposite to the direction shown in FIG.

【0040】従って、実施例1と同じく角度θ0 を3度
とし、各素子の印加電圧V1 、V2を変化させて屈折率
1 、n2 をそれぞれ独立して1.5度から1.8度ま
で変化させたとすると、θ11は+0.9度から−0.9
度の範囲で、光軸の両側に変化させることができる。
Therefore, similarly to the first embodiment, the angle θ 0 is set to 3 degrees, and the applied voltages V 1 and V 2 of the respective elements are changed so that the refractive indexes n 1 and n 2 are independently 1.5 to 1.8. Θ 11 changes from +0.9 degrees to −0.9 degrees.
It can be changed to both sides of the optical axis in the range of degrees.

【0041】図6は光軸可変光学装置8の構成を示して
いて、同図(a)はX軸方向(例えば水平方向)の光軸
可変光学装置8Xの配置と入射光の屈折方向を、また、
同図(b)はY軸方向(例えば垂直方向)の光軸可変光
学装置8Yの配置と入射光の屈折方向を、更に同図
(c)は前記2つの光学装置を組み合わせた軸可変光学
装置8で光軸の方向を任意に調整できることを示してい
る。尚、前記光軸可変光学装置8の制御は実施例1にお
いて説明した方法と同一であるが、光学系の光軸を中心
に正の方向と負の方向の両方に光を振ることができ、光
軸は一層制御し易いものとなっている。
FIG. 6 shows the configuration of the optical axis variable optical device 8. FIG. 6A shows the arrangement of the optical axis variable optical device 8X in the X-axis direction (for example, the horizontal direction) and the refraction direction of incident light. Also,
The same figure (b) shows the arrangement of the optical axis variable optical device 8Y in the Y-axis direction (for example, the vertical direction) and the refraction direction of the incident light, and the same figure (c) shows the variable axis optical device in which the two optical devices are combined. 8 shows that the direction of the optical axis can be arbitrarily adjusted. The control of the optical axis variable optical device 8 is the same as the method described in the first embodiment, but the light can be swung in both the positive and negative directions about the optical axis of the optical system, The optical axis is easier to control.

【0042】以上説明した第一および第二の実施例にお
いては光軸のずれを相手側装置からの入射光を位置検出
素子5上に集光し検出して制御したが、他の方法、例え
ば送信する光の相手側装置への入射角度等の情報を、相
手側装置の送信情報に加えて送信させ、それを受光し復
調して、前記情報に基づいて光軸可変光学装置を制御し
ても良い。
In the first and second embodiments described above, the deviation of the optical axis is controlled by collecting and detecting the incident light from the partner device on the position detecting element 5, but another method, for example, Information such as the incident angle of the light to be transmitted to the other device is transmitted in addition to the transmission information of the other device, and the received light is demodulated and the optical axis variable optical device is controlled based on the information. Is also good.

【0043】また、上述した光軸可変光学装置7および
8の透明基板は硝子板の他にアクリル板等のプラスチッ
ク板や、透明なセラミック板を用いても良い。また、透
明基板は可視光の他、赤外や紫外等の波長に対する波長
選択性を有するコート付き基板および有色基板を含むも
のである。更に、前記透明基板は平行平板に限らず、頂
角を持つ光学プリズムや、レンズ効果等、他の光学効果
を有する光学部材で構成しても良い。
Further, as the transparent substrate of the optical axis variable optical devices 7 and 8 described above, a plastic plate such as an acrylic plate or a transparent ceramic plate may be used in addition to the glass plate. Further, the transparent substrate includes a coated substrate and a colored substrate having wavelength selectivity for wavelengths such as infrared rays and ultraviolet rays in addition to visible light. Further, the transparent substrate is not limited to a parallel plate, and may be composed of an optical prism having an apex angle or an optical member having another optical effect such as a lens effect.

【0044】また、封入する液晶はシアノビフェニール
混合系E7に限らず、ネマテック液晶および混合系等、
電気光学効果(電界制御屈折効果)を持つ液晶であれば
これを用いても良い。
The liquid crystal to be sealed is not limited to the cyanobiphenyl mixed system E7, but nematic liquid crystal, mixed system, etc.
Any liquid crystal having an electro-optical effect (electric field control refraction effect) may be used.

【0045】更に、前記光軸可変光学装置7および8を
送信および受信用のレンズの空間伝送路側に配設するこ
とに限らず、光学系の内部に設定しても良い。
Furthermore, the optical axis variable optical devices 7 and 8 are not limited to being arranged on the space transmission path side of the lenses for transmission and reception, but may be set inside the optical system.

【0046】以上説明した光空間伝送装置は送信用と受
信用の光学系を共用したものについて述べたが、送信光
学系と受信光学系がそれぞれ分離して構成されていて、
それらが一筐体に納められている送信受信が一体となっ
た光空間伝送装置に前述した光軸調整用の光学装置を用
いても良く、また、送信機能のみを有する装置と受信機
能のみを有する装置に完全に分離している光空間伝送装
置に用いても良いことは論を待たない。
The optical space transmission apparatus described above has been described as a system in which the optical system for transmission and the optical system for reception are shared, but the transmission optical system and the reception optical system are configured separately from each other.
The optical device for optical axis adjustment described above may be used in the optical space transmission device in which the transmission and reception are integrated in one housing, and only the device having only the transmission function and the reception function may be used. It is needless to say that it may be used in an optical space transmission device that is completely separated from the device that it has.

【0047】[0047]

【発明の効果】本発明によると光空間伝送装置の装置間
の光軸調整機構を機械的可動部のない光学部品で構成す
ることができると共に、光学系の揺動スペースが不要な
為、小型で軽量の光空間伝送装置を実現することができ
る。また、一層の信頼性向上を図ることができ、従って
保守作業を簡素化することができ、長期間の継続使用に
好適である。
As described above, according to the present invention, the optical axis adjusting mechanism between the devices of the optical space transmission device can be constituted by the optical parts having no mechanically movable parts, and the oscillating space of the optical system is unnecessary. Thus, a lightweight optical space transmission device can be realized. Further, the reliability can be further improved, and therefore maintenance work can be simplified, which is suitable for long-term continuous use.

【0048】光学構成要素が少なくなる為、装置内にお
ける光パワーの吸収や光ビームの一部が光学部品から外
れることによるビーム欠損が少なくなり、効率の高い光
伝送をすることができる。
Since the number of optical components is reduced, the beam loss due to the absorption of the optical power in the device and the loss of a part of the optical beam from the optical component is reduced, and the optical transmission can be performed with high efficiency.

【0049】機械的可動部を制御する為に必要であった
電力を削除することができ、従って、電源を小さく構成
することができてバッテリー駆動による携帯性に優れた
装置を実現することができる。
It is possible to eliminate the electric power required for controlling the mechanically movable part, and therefore the power source can be made small, and a battery-operated device having excellent portability can be realized. .

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による光空間伝送装置の第一の実施例
を示すブロック図である。
FIG. 1 is a block diagram showing a first embodiment of an optical free space transmission apparatus according to the present invention.

【図2】 第一の実施例に用いる光軸可変光学装置のユ
ニットの構成と光軸変化について説明する図である。
FIG. 2 is a diagram illustrating a configuration of a unit of an optical axis variable optical device used in the first embodiment and an optical axis change.

【図3】 第一の実施例に用いる光軸可変光学装置によ
る光軸の変化を示す斜視図であって、(a)はX軸方
向、(b)はY軸方向、(c)はX軸、Y軸の合成され
た方向を示す。
3A and 3B are perspective views showing changes in the optical axis by the optical axis variable optical device used in the first embodiment, where FIG. 3A is the X-axis direction, FIG. 3B is the Y-axis direction, and FIG. The combined direction of the axis and the Y-axis is shown.

【図4】 本発明による光空間伝送装置の第二の実施例
を示すブロック図である。
FIG. 4 is a block diagram showing a second embodiment of the optical free space transmission apparatus according to the present invention.

【図5】 第二の実施例に用いる光軸可変光学装置のユ
ニットの構成と光軸変化について説明する図である。
FIG. 5 is a diagram illustrating a configuration of an optical axis variable optical device unit used in a second embodiment and optical axis changes.

【図6】 第二の実施例に用いる光軸可変光学装置によ
る光軸の変化を示す斜視図であって、(a)はX軸方
向、(b)はY軸方向、(c)はX軸、Y軸の合成され
た方向を示す。
6A and 6B are perspective views showing changes in the optical axis by the optical axis variable optical device used in the second embodiment, where FIG. 6A is the X-axis direction, FIG. 6B is the Y-axis direction, and FIG. The combined direction of the axis and the Y-axis is shown.

【図7】 液晶の屈折率の変化について説明する為の特
性図であって、(a)は屈折率測定の模式図を、(b)
は印加電圧と液晶の屈折率の一例を示す。
FIG. 7 is a characteristic diagram for explaining a change in refractive index of liquid crystal, in which (a) is a schematic diagram of refractive index measurement and (b) is a schematic diagram.
Shows an example of the applied voltage and the refractive index of the liquid crystal.

【図8】 光空間伝送装置の伝送状態を説明する為の図
である。
FIG. 8 is a diagram for explaining a transmission state of the optical free space transmission apparatus.

【図9】 従来の光空間伝送装置の一例を示すブロック
図である。
FIG. 9 is a block diagram showing an example of a conventional space optical transmission apparatus.

【図10】 光空間伝送装置のレーザ光出射方向の自動
制御に用いる位置検出素子について説明する為の斜視図
である。
FIG. 10 is a perspective view for explaining a position detection element used for automatic control of a laser light emission direction of an optical space transmission device.

【図11】 光空間伝送装置の光軸の制御に用いる回動
軸の構成ついて説明する為の正面図である。
FIG. 11 is a front view for explaining the configuration of a rotating shaft used for controlling the optical axis of the optical space transmission device.

【符号の説明】[Explanation of symbols]

1A〜1D レンズ 2A、2B 偏光ビームスプリッタ 3 半導体レーザ 4 光検出素子 5 位置検出素子 6A、6B 分岐光学素子 7、8 光軸可変光学装置 10 液晶 11 透明基板 12、121、122 透明電極 14 集光位置検出回路 15 CPU 18 レーザ駆動回路 19 受光回路 23 モータ駆動回路 24 X軸モータ 25 Y軸モータ 26 X軸歯車 27 Y軸歯車 28 X回動軸 29 Y回動軸 31 内枠 32 外枠 1A to 1D Lens 2A, 2B Polarization beam splitter 3 Semiconductor laser 4 Photodetector 5 Position detector 6A, 6B Branch optical element 7, 8 Optical axis variable optical device 10 Liquid crystal 11 Transparent substrate 12, 121, 122 Transparent electrode 14 Condensing Position detection circuit 15 CPU 18 Laser drive circuit 19 Light receiving circuit 23 Motor drive circuit 24 X axis motor 25 Y axis motor 26 X axis gear 27 Y axis gear 28 X rotation axis 29 Y rotation axis 31 Inner frame 32 Outer frame

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光を信号用光源とし、送信信号に
応じて前記レーザ光を変調して外部に出射することによ
り送信を行う送信光学系を含む送信手段と、外部から入
射する変調されたレーザ光を受光すると共に復調して信
号を得る受信光学系を含む受信手段とを含んで構成する
光空間伝送装置において、 印加する電圧に対応して光の屈折率が変化する2つの光
学素子からなり、各々の屈折方向を直交させて積層した
光学装置を、レーザ光の光軸に垂直の面内で直交する2
つの軸方向のそれぞれに、前記光学装置の各々の屈折方
向を一致させて光学系に配設したことを特徴とする光空
間伝送装置。
1. A transmission unit including a transmission optical system that uses laser light as a signal light source, modulates the laser light according to a transmission signal, and emits the modulated laser light to the outside, and modulated light entering from the outside. In an optical space transmission device configured to include a receiving unit including a receiving optical system that receives a laser beam and demodulates it to obtain a signal, in an optical space transmission device, a refractive index of light changes from two optical elements according to an applied voltage. The optical devices formed by stacking the respective refraction directions are orthogonal to each other in a plane perpendicular to the optical axis of the laser light.
An optical space transmission device, characterized in that the optical devices are arranged in the optical system such that the refraction directions of the respective optical devices coincide with each other in each of the two axial directions.
【請求項2】 前記光学装置は、任意の頂角を有して接
合された2枚の透明基板間に液晶が封入され、前記透明
基板に設けられた電極間に印加する電圧に対応して屈折
率が変化する楔状の光学素子で構成したことを特徴とす
る、請求項1に記載の光空間伝送装置。
2. The optical device has a liquid crystal enclosed between two transparent substrates bonded together with an arbitrary apex angle, and corresponds to a voltage applied between electrodes provided on the transparent substrate. The optical space transmission device according to claim 1, wherein the optical space transmission device comprises a wedge-shaped optical element whose refractive index changes.
【請求項3】 前記光学装置は、任意の頂角を有して接
合された2枚の透明基板間に液晶が封入され、前記透明
基板に設けられた電極間に印加する電圧に対応して屈折
率が変化する楔状の2つの光学素子を、前記楔状の頂角
を180度反転して面接合した光学部材で構成したこと
を特徴とする、請求項1に記載の光空間伝送装置。
3. The optical device has a liquid crystal enclosed between two transparent substrates joined with an arbitrary apex angle, and corresponds to a voltage applied between electrodes provided on the transparent substrate. 2. The optical space transmission device according to claim 1, wherein the two wedge-shaped optical elements whose refractive index changes are constituted by optical members that are surface-bonded by inverting the wedge-shaped apex angle by 180 degrees.
【請求項4】 任意の頂角を有して接合された2枚の透
明基板間に液晶が封入され、前記透明基板に設けられた
電極間に印加する電圧に対応して屈折率が変化する楔状
の光学素子で構成した光学装置を送信手段の送信光学系
に用いたことを特徴とする、請求項1に記載の光空間伝
送装置。
4. A liquid crystal is enclosed between two transparent substrates joined together with an arbitrary apex angle, and the refractive index changes according to the voltage applied between the electrodes provided on the transparent substrate. The optical space transmission device according to claim 1, wherein an optical device configured by a wedge-shaped optical element is used for a transmission optical system of a transmission unit.
【請求項5】 任意の頂角を有して接合された2枚の透
明基板間に液晶が封入され、前記透明基板に設けられた
電極間に印加する電圧に対応して屈折率が変化する楔状
の2つの光学素子を、前記楔状の頂角を180度反転し
て面接合した光学部材で構成した光学装置を送信手段の
送信光学系に用いたことを特徴とする、請求項1に記載
の光空間伝送装置。
5. A liquid crystal is sealed between two transparent substrates bonded together with an arbitrary apex angle, and the refractive index changes in accordance with the voltage applied between the electrodes provided on the transparent substrate. 2. An optical device comprising two wedge-shaped optical elements, each of which is composed of an optical member in which the wedge-shaped apex angle is inverted by 180 degrees and surface-bonded is used in a transmission optical system of a transmission means. Optical space transmission equipment.
【請求項6】 任意の頂角を有して接合された2枚の透
明基板間に液晶が封入され、前記透明基板に設けられた
電極間に印加する電圧に対応して屈折率が変化する楔状
の光学素子で構成した光学装置を、送信光学系のレーザ
光出射レンズの空間伝送路側に密接して配設したことを
特徴とする、請求項1に記載の光空間伝送装置。
6. A liquid crystal is sealed between two transparent substrates joined together with an arbitrary apex angle, and the refractive index changes according to the voltage applied between the electrodes provided on the transparent substrate. The optical space transmission device according to claim 1, wherein the optical device configured by a wedge-shaped optical element is disposed in close contact with the laser light emission lens of the transmission optical system on the side of the spatial transmission path.
【請求項7】 任意の頂角を有して接合された2枚の透
明基板間に液晶が封入され、前記透明基板に設けられた
電極間に印加する電圧に対応して屈折率が変化する楔状
の2つの光学素子を前記楔状の頂角を180度反転して
面接合した光学部材で構成した光学装置を、送信光学系
のレーザ光出射レンズの空間伝送路側に密接して配設し
たことを特徴とする、請求項1に記載の光空間伝送装
置。
7. A liquid crystal is enclosed between two transparent substrates bonded with an arbitrary apex angle, and the refractive index changes in accordance with the voltage applied between the electrodes provided on the transparent substrate. An optical device composed of two wedge-shaped optical elements in which the wedge-shaped apex angle is inverted by 180 degrees and surface-bonded to each other is arranged closely to the space transmission path side of the laser light emitting lens of the transmission optical system. The optical space transmission device according to claim 1, wherein:
【請求項8】 任意の頂角を有して接合された2枚の透
明基板間に液晶が封入され、前記透明基板に設けられた
電極間に印加する電圧に対応して屈折率が変化する楔状
の光学素子で構成した光学装置を、受信手段の受信光学
系に用いたことを特徴とする、請求項1に記載の光空間
伝送装置。
8. A liquid crystal is sealed between two transparent substrates joined together with an arbitrary apex angle, and the refractive index changes in accordance with a voltage applied between electrodes provided on the transparent substrate. The optical space transmission device according to claim 1, wherein an optical device configured by a wedge-shaped optical element is used for a receiving optical system of the receiving means.
【請求項9】 任意の頂角を有して接合された2枚の透
明基板間に液晶が封入され、前記透明基板に設けられた
電極間に印加する電圧に対応して屈折率が変化する楔状
の2つの光学素子を前記楔状の頂角を180度反転して
面接合した光学部材で構成した光学装置を、受信手段の
受信光学系に用いたことを特徴とする、請求項1に記載
の光空間伝送装置。
9. A liquid crystal is sealed between two transparent substrates bonded together with an arbitrary apex angle, and the refractive index changes according to a voltage applied between electrodes provided on the transparent substrate. The optical device comprising an optical member in which two wedge-shaped optical elements are surface-bonded by inverting the wedge-shaped apex angle by 180 degrees is used in a receiving optical system of a receiving means. Optical space transmission equipment.
【請求項10】 任意の頂角を有して接合された2枚の
透明基板間に液晶が封入され、前記透明基板に設けられ
た電極間に印加する電圧に対応して屈折率が変化する楔
状の光学素子で構成した光学装置を、受信光学系の受光
レンズの空間伝送路側に密接して配設したことを特徴と
する、請求項1に記載の光空間伝送装置。
10. A liquid crystal is enclosed between two transparent substrates joined together with an arbitrary apex angle, and the refractive index changes in accordance with a voltage applied between electrodes provided on the transparent substrate. 2. The optical space transmission device according to claim 1, wherein the optical device configured by a wedge-shaped optical element is disposed in close contact with the light receiving lens of the receiving optical system on the side of the spatial transmission path.
【請求項11】 任意の頂角を有して接合された2枚の
透明基板間に液晶が封封入され、前記透明基板に設けら
れた電極間に印加する電圧に対応して屈折率が変化する
楔状の2つの光学素子を前記楔状の頂角を180度反転
して面接合した光学部材で構成した光学装置を、受信光
学系の受信レンズの空間伝送路側に密接して配設したこ
とを特徴とする、請求項1に記載の光空間伝送装置。
11. A liquid crystal is sealed between two transparent substrates that are bonded together with an arbitrary apex angle, and the refractive index changes in accordance with the voltage applied between the electrodes provided on the transparent substrate. An optical device composed of two wedge-shaped optical elements that are surface-bonded by inverting the wedge-shaped apex angle by 180 ° is arranged closely to the space transmission path side of the receiving lens of the receiving optical system. The optical space transmission device according to claim 1, which is characterized in that:
【請求項12】 送信光学系と受信光学系を一筐体に設
けた光空間伝送装置において、 任意の頂角を有して接合された2枚の透明基板間に液晶
が封入され、前記透明基板に設けられた電極間に印加す
る電圧に対応して屈折率が変化する楔状の光学素子で構
成した光学装置を前記送信光学系と前記受信光学系のそ
れぞれの光学系に用いたことを特徴とする、請求項1に
記載の光空間伝送装置。
12. In an optical space transmission device having a transmission optical system and a reception optical system provided in one housing, a liquid crystal is sealed between two transparent substrates bonded with an arbitrary apex angle, and the transparent An optical device including a wedge-shaped optical element whose refractive index changes according to a voltage applied between electrodes provided on a substrate is used for each optical system of the transmission optical system and the reception optical system. The optical space transmission device according to claim 1.
【請求項13】 送信光学系と受信光学系を一筐体に設
けた光空間伝送装置において、 任意の頂角を有して接合された2枚の透明基板間に液晶
が封封入され、前記透明基板に設けられた電極間に印加
する電圧に対応して屈折率が変化する楔状の2つの光学
素子を、前記楔状の頂角を180度反転して面接合した
光学部材で構成した光学装置を前記送信光学系と前記受
信光学系のそれぞれの光学系に用いたことを特徴とす
る、請求項1に記載の光空間伝送装置。
13. An optical space transmission device having a transmission optical system and a reception optical system provided in one housing, wherein a liquid crystal is sealed between two transparent substrates bonded with an arbitrary apex angle, An optical device in which two wedge-shaped optical elements whose refractive index changes according to a voltage applied between electrodes provided on a transparent substrate are composed of optical members which are surface-bonded by inverting the wedge-shaped apex angle by 180 degrees. 2. The optical space transmission device according to claim 1, wherein the optical transmission system is used for each optical system of the transmission optical system and the reception optical system.
【請求項14】 送信光学系と受信光学系を一筐体に設
けた光空間伝送装置のそれぞれの光学系の出射レンズと
受光レンズの空間伝送路側に密接して、任意の頂角を有
して接合された2枚の透明基板間に液晶が封入され、前
記透明基板に設けられた電極間に印加する電圧に対応し
て屈折率が変化する楔状の光学素子で構成した光学装置
を前記送信光学系と前記受信光学系のそれぞれの光学系
に配設したことを特徴とする、請求項1に記載の光空間
伝送装置。
14. An optical apex having a transmission optical system and a reception optical system provided in a single housing, each of which has an arbitrary apex angle in close contact with a space transmission path side of an emission lens and a light receiving lens of each optical system. A liquid crystal is enclosed between two transparent substrates bonded together, and an optical device composed of a wedge-shaped optical element whose refractive index changes according to a voltage applied between electrodes provided on the transparent substrate is transmitted. The optical space transmission device according to claim 1, wherein the optical space transmission device is provided in each of an optical system and an optical system of the receiving optical system.
【請求項15】 送信光学系と受信光学系を一筐体に設
けた光空間伝送装置のそれぞれの光学系の出射レンズと
受光レンズの空間伝送路側に密接して、任意の頂角を有
して接合された2枚の透明基板間に液晶が封封入され、
前記透明基板に設けられた電極間に印加する電圧に対応
して屈折率が変化する楔状の2つの光学素子を前記楔状
の頂角を180度反転して面接合した光学部材で構成し
た光学装置を前記送信光学系と前記受信光学系のそれぞ
れの光学系に配設したことを特徴とする、請求項1に記
載の光空間伝送装置。
15. An optical system having a transmission optical system and a reception optical system provided in a single housing is closely contacted with a space transmission path side of an output lens and a light receiving lens of each optical system and has an arbitrary apex angle. The liquid crystal is sealed between the two transparent substrates bonded together,
An optical device composed of two wedge-shaped optical elements whose refractive index changes in response to a voltage applied between electrodes provided on the transparent substrate, which are surface-bonded by inverting the wedge-shaped apex angle by 180 degrees. The optical space transmission device according to claim 1, wherein the optical transmission system is provided in each of the optical systems of the transmission optical system and the reception optical system.
【請求項16】 送信光学系の出射レンズと受信光学系
の入射レンズとを共用する光空間伝送装置において、 任意の頂角を有して接合された2枚の透明基板間に液晶
が封入され、前記透明基板に設けられた電極間に印加す
る電圧に対応して屈折率が変化する楔状の光学素子で構
成した光学装置を用いたことを特徴とする、請求項1に
記載の光空間伝送装置。
16. In an optical space transmission device that shares an emission lens of a transmission optical system and an incidence lens of a reception optical system, liquid crystal is sealed between two transparent substrates that are bonded together with an arbitrary apex angle. 2. The optical space transmission according to claim 1, wherein the optical device comprises a wedge-shaped optical element whose refractive index changes according to a voltage applied between electrodes provided on the transparent substrate. apparatus.
【請求項17】 送信光学系の出射レンズと受信光学系
の入射レンズとを共用する光空間伝送装置において、 任意の頂角を有して接合された2枚の透明基板間に液晶
が封封入され、前記透明基板に設けられた電極間に印加
する電圧に対応して屈折率が変化する楔状の2つの光学
素子を前記楔状の頂角を180度反転して面接合した光
学部材で構成した光学装置を用いたことを特徴とする、
請求項1に記載の光空間伝送装置。
17. In an optical space transmission device that shares an emission lens of a transmission optical system and an incidence lens of a reception optical system, liquid crystal is sealed between two transparent substrates bonded with an arbitrary apex angle. And two wedge-shaped optical elements whose refractive index changes according to the voltage applied between the electrodes provided on the transparent substrate are formed by optical members that are surface-bonded by inverting the wedge-shaped apex angle by 180 degrees. Characterized by using an optical device,
The optical space transmission device according to claim 1.
【請求項18】 送信光学系の出射レンズと受信光学系
の入射レンズとを共用するレンズ構成の光空間伝送装置
の前記共用するレンズの空間伝送路側に密接して、任意
の頂角を有して接合された2枚の透明基板間に液晶が封
入され、前記透明基板に設けられた電極間に印加する電
圧に対応して屈折率が変化する楔状の光学素子で構成し
た光学装置を配設したことを特徴とする、請求項1に記
載の光空間伝送装置。
18. An optical space transmission device having a lens configuration that shares an emission lens of a transmission optical system and an incidence lens of a reception optical system, and has an arbitrary apex angle in close contact with the space transmission path side of the shared lens. A liquid crystal is enclosed between two transparent substrates bonded together, and an optical device composed of wedge-shaped optical elements whose refractive index changes according to a voltage applied between electrodes provided on the transparent substrate is provided. The optical space transmission device according to claim 1, wherein
【請求項19】 送信光学系の出射レンズと受信光学系
の入射レンズとを共用するレンズ構成の光空間伝送装置
の前記共用するレンズの空間伝送路側に密接して、任意
の頂角を有して接合された2枚の透明基板間に液晶が封
封入され、前記透明基板に設けられた電極間に印加する
電圧に対応して屈折率が変化する楔状の2つの光学素子
を前記楔状の頂角を180度反転して面接合した光学部
材で構成した光学装置を配設したことを特徴とする、請
求項1に記載の光空間伝送装置。
19. An optical aerial space transmission device having a lens structure in which an exit lens of a transmission optical system and an entrance lens of a reception optical system are shared, and the optical space transmission device has an apex angle in close contact with a space transmission path side of the shared lens. A liquid crystal is sealed between two transparent substrates bonded together, and two wedge-shaped optical elements whose refractive index changes in response to a voltage applied between electrodes provided on the transparent substrate are provided in the wedge-shaped top. The optical space transmission device according to claim 1, further comprising an optical device configured by an optical member which is surface-bonded by inverting an angle of 180 degrees.
JP7026342A 1995-02-15 1995-02-15 Optical space transmission equipment Pending JPH08223116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7026342A JPH08223116A (en) 1995-02-15 1995-02-15 Optical space transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7026342A JPH08223116A (en) 1995-02-15 1995-02-15 Optical space transmission equipment

Publications (1)

Publication Number Publication Date
JPH08223116A true JPH08223116A (en) 1996-08-30

Family

ID=12190775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7026342A Pending JPH08223116A (en) 1995-02-15 1995-02-15 Optical space transmission equipment

Country Status (1)

Country Link
JP (1) JPH08223116A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223892A (en) * 2009-03-25 2010-10-07 National Institute Of Information & Communication Technology Electromagnetic field probe device
JP2011169680A (en) * 2010-02-17 2011-09-01 National Institute Of Information & Communication Technology Electromagnetic field probe device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223892A (en) * 2009-03-25 2010-10-07 National Institute Of Information & Communication Technology Electromagnetic field probe device
JP2011169680A (en) * 2010-02-17 2011-09-01 National Institute Of Information & Communication Technology Electromagnetic field probe device

Similar Documents

Publication Publication Date Title
CN110646776B (en) Chip-scale LIDAR with a single MEMS scanner in a compact optical package
US9413461B2 (en) High bandwidth optical links for micro-satellite support
US7920794B1 (en) Free space optical communication
US20080056723A1 (en) Multiple access free space laser communication method and apparatus
WO2002073835A1 (en) Transceiver for free-space optical communication system
CN104539372B (en) Long-distance laser atmosphere communication receiving device with fast alignment function and communication method
US11681199B2 (en) Light receive scanner with liquid crystal beamsteerer
JP2001504947A (en) Optical isolator
JP4701454B2 (en) Spatial optical communication method and spatial optical communication apparatus
WO2020043142A1 (en) Apparatus and method for coupling spatial light to optical fiber light for achieving stability of optical axis without position sensor
JPH08223116A (en) Optical space transmission equipment
CN102033330B (en) High speed optical shutter and method of operating thereof and optical devices
US7146105B1 (en) MEMS-based optical wireless communication system
US7532819B1 (en) Refractive multi-beam laser communications terminal
US5500754A (en) Optical transmitter-receiver
JPH08223117A (en) Optical space transmission equipment
JPH08204640A (en) Optical space transmitter
JP3206993B2 (en) Bidirectional optical space transmission equipment
US9939651B1 (en) Wavelength division monolithic optical device
JP2005172704A (en) Photodetection device and optical system
JP3192359B2 (en) Space optical communication equipment
Akbulatov et al. Based on Risley Prisms Fine Acquisition, Pointing and Tracking System of the Free-Space Laser Communication Terminal
RU2027203C1 (en) Laser scanning device
JPH07253559A (en) Bi-directional optical communication device
RU41397U1 (en) OPEN OPTICAL COMMUNICATION TERMINAL