JP3192359B2 - Space optical communication equipment - Google Patents

Space optical communication equipment

Info

Publication number
JP3192359B2
JP3192359B2 JP27695695A JP27695695A JP3192359B2 JP 3192359 B2 JP3192359 B2 JP 3192359B2 JP 27695695 A JP27695695 A JP 27695695A JP 27695695 A JP27695695 A JP 27695695A JP 3192359 B2 JP3192359 B2 JP 3192359B2
Authority
JP
Japan
Prior art keywords
optical axis
light
optical
axis direction
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27695695A
Other languages
Japanese (ja)
Other versions
JPH0996767A (en
Inventor
干城 折野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP27695695A priority Critical patent/JP3192359B2/en
Publication of JPH0996767A publication Critical patent/JPH0996767A/en
Application granted granted Critical
Publication of JP3192359B2 publication Critical patent/JP3192359B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光軸合わせのため
の観察手段を備え、空間を媒体として光ビームを投光・
受光する空間光通信装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises an observation means for aligning an optical axis, and emits a light beam using a space as a medium.
The present invention relates to a spatial light communication device that receives light.

【0002】[0002]

【従来の技術】従来、観察手段と光軸ずれ補正手段とを
備え、大気中で投光・受光を行う装置として、特開平5
−133716号公報に開示された空間光通信装置が知
られており、これは2台の同様な通信装置を空間を隔て
て対向設置して双方向での通信を行うものである。
2. Description of the Related Art Conventionally, as an apparatus for projecting and receiving light in the atmosphere, which comprises an observation means and an optical axis deviation correcting means, Japanese Patent Laid-Open Publication No.
2. Description of the Related Art A spatial optical communication device disclosed in JP-A-133716 is known, in which two similar communication devices are installed facing each other across a space to perform bidirectional communication.

【0003】図8は従来例の空間光通信装置の構成図を
示し、架台に設けられた光軸調整台1上に、通信光の送
受を行う通信用光学系2と視準望遠鏡3とが固定され、
通信用光学系2の光軸O1と観察光学系である視準望遠鏡
3の光軸O2とが平行になるように組み立てられている。
FIG. 8 shows a configuration diagram of a conventional spatial optical communication apparatus. A communication optical system 2 for transmitting and receiving communication light and a collimating telescope 3 are placed on an optical axis adjustment table 1 provided on a gantry. Fixed,
The optical axis O1 of the communication optical system 2 and the optical axis O2 of the collimating telescope 3, which is an observation optical system, are assembled in parallel.

【0004】空間光通信装置には、送信光LAと受信光LB
を送受する位置に光軸方向可変部4が設けられ、光軸方
向可変部4内には光軸O1に対し略45度に光軸方向可変
ミラー5が斜設されている。光軸方向可変ミラー5の反
射方向には、偏光ビームスプリッタ6、受光光分岐素子
7、正のパワーを有するレンズ群8、本信号検出用受光
素子9が順次に配列され、受光光分岐素子7の反射方向
には、正のパワーを有するレンズ群10、4分割センサ
11が配列されており、偏光ビームスプリッタ6の入射
方向には、正のパワーを有するレンズ群12、信号発生
部の受光素子として紙面に垂直方向に直線偏光となるレ
ーザー光を発するレーザーダイオード13が配列されて
いる。
[0004] The spatial optical communication apparatus includes a transmission light LA and a reception light LB.
The optical axis direction variable section 4 is provided at a position where the optical axis O1 is transmitted and received, and the optical axis direction variable mirror 5 is inclined in the optical axis direction variable section 4 at approximately 45 degrees with respect to the optical axis O1. In the reflection direction of the optical axis direction variable mirror 5, a polarizing beam splitter 6, a light receiving light splitting element 7, a lens group 8 having a positive power, and a signal detecting light receiving element 9 are sequentially arranged. A lens group 10 having a positive power and a four-divided sensor 11 are arranged in the reflection direction, and a lens group 12 having a positive power and a light receiving element of a signal generation unit are arranged in the incident direction of the polarization beam splitter 6. A laser diode 13 that emits a laser beam that becomes linearly polarized light in a direction perpendicular to the paper surface is arranged.

【0005】4分割センサ11の出力は信号処理部14
に接続され、信号処理部14の出力は光軸方向制御部1
5を介して光軸方向可変部4に接続されている。
[0005] The output of the four-divided sensor 11 is supplied to a signal processing unit 14.
And the output of the signal processing unit 14 is the optical axis direction control unit 1
5 is connected to the optical axis direction variable unit 4.

【0006】偏光ビームスプリッタ6として、例えばS
偏光の光の殆どを反射しP偏光の光の殆どを透過するよ
うな誘電体多層薄膜を、貼り合わせ面に蒸着した光学素
子が用いられている。この偏光ビームスプリッタ6を使
用して、最も効率の良い投光・受光を行うには、送信光
LaをS偏光としたときに受信光LbがP偏光となる関係に
すればよく、また同一構造の送受信装置を対向的に配置
して最も効率の良い投光・受光を行うためには、通信用
光学系2を紙面の後方に向けて垂直方向に対し45度に
傾斜させるようにすればよい。
As the polarizing beam splitter 6, for example, S
An optical element is used in which a dielectric multilayer thin film that reflects most of the polarized light and transmits most of the P-polarized light is deposited on the bonding surface. In order to use the polarizing beam splitter 6 to perform the most efficient light projection / reception, the transmission light
The relationship may be such that the received light Lb becomes P-polarized light when La is S-polarized light. In order to perform the most efficient light-emitting and light-receiving operations by arranging transmitting / receiving devices having the same structure in opposition, communication The optical system 2 for use may be inclined at 45 degrees to the vertical direction toward the rear of the paper.

【0007】広帯域化や高速応答が可能な大容量通信を
行う場合には、本信号検出用受光素子9として、例えば
アバランシェフォトダイオードのように有効受光域が直
径1mm以下の小さな素子を使用することが多い。ま
た、4分割センサ11の中心に受光ビームスポットPの
中心が位置したときに、送信光Laが相手側装置Bを受信
可能な強度分布内で照射し、かつ相手装置Bからの受信
光Lbが本信号検出用受光素子9の有効受光域を外れない
ようにするために、装置の組立段階において、本信号検
出用受光素子9と4分割センサ11の受光素子の中心
が、装置正面から見たときにレーザーダイオード13の
発光点と一致するように調整する必要がある。
In the case of performing large-capacity communication capable of achieving a wide band and high-speed response, a small element having an effective light receiving area of 1 mm or less in diameter, such as an avalanche photodiode, is used as the light detecting element 9 for signal detection. There are many. Further, when the center of the light receiving beam spot P is located at the center of the four-divided sensor 11, the transmission light La irradiates the partner device B within the receivable intensity distribution, and the reception light Lb from the partner device B In order to ensure that the effective light receiving area of the signal detecting light receiving element 9 does not deviate from the effective light receiving area, the center of the signal detecting light receiving element 9 and the light receiving element of the four-divided sensor 11 are viewed from the front of the apparatus during the assembly stage of the device. Sometimes it is necessary to make adjustments so as to coincide with the emission point of the laser diode 13.

【0008】レーザーダイオード13からの出射光は、
レンズ群12によりほぼ平行光束となり、偏光ビームス
プリッタ6の境界面で反射され、更に光軸方向可変ミラ
ー5によって反射されて、送信光Laとして装置Aから図
示しない装置Bへ投光される。
The light emitted from the laser diode 13 is
The light is converted into a substantially parallel light beam by the lens group 12, reflected at the boundary surface of the polarization beam splitter 6, further reflected by the optical axis direction variable mirror 5, and projected from the apparatus A to the apparatus B (not shown) as the transmission light La.

【0009】装置Bからの投光光は装置Aに受信光Lbと
して入射し、ミラー5で反射され、偏光ビームスプリッ
タ6を透過して受光光分岐素子7に至る。ここで、全受
光量の約90%は受光光分岐素子7を透過して、レンズ
群8により本信号検出用受光素子9に集光される。ま
た、残りの全受光量の約10%の光束は、受光光分岐素
子7で反射され、レンズ群10により4分割センサ11
に受光される。
The light projected from the device B enters the device A as received light Lb, is reflected by the mirror 5, passes through the polarization beam splitter 6, and reaches the received light splitting element 7. Here, about 90% of the total amount of received light passes through the received light branching element 7 and is condensed by the lens group 8 on the present signal detecting light receiving element 9. The remaining 10% of the total amount of received light is reflected by the received light splitting element 7,
Received.

【0010】4分割センサ11の受光面上での受光ビー
ムスポットPの位置ずれ情報は、信号処理部14を介し
て光軸ずれ補正信号として光軸方向制御部15に送ら
れ、光軸方向制御部15から光軸方向可変部4の駆動部
にミラー駆動用信号が送られる。この信号に基づいて駆
動部のモータが回転し、光軸方向可変ミラー5が図9に
示すように軸Eと軸Fの周りに回動する。
The positional deviation information of the light receiving beam spot P on the light receiving surface of the four-divided sensor 11 is sent to the optical axis direction control unit 15 as an optical axis deviation correction signal via a signal processing unit 14, and the optical axis direction control is performed. The mirror driving signal is sent from the unit 15 to the driving unit of the optical axis direction variable unit 4. Based on this signal, the motor of the drive unit rotates, and the optical axis direction variable mirror 5 rotates around the axes E and F as shown in FIG.

【0011】図10、図11はこのときの4分割センサ
11の受光面上の受光ビームスポットPの動きを示して
おり、可変ミラー5の軸Eの周りの回動は、受光ビーム
スポットPを図10の矢印に示すように受光面の上下方
向に移動させ、可変ミラー5の軸Fの周りの回動は、受
光ビームスポットPを図11の矢印に示すように受光面
の右上45度方向に移動させる。このように、異なる2
方向へ受光ビームスポットPを移動させる操作を繰り返
して、受光ビームスポットPの中心が4分割センサ11
の受光部有効域Sの中央の十字状分離体Tが交差する点
に位置するように制御を行う。
FIGS. 10 and 11 show the movement of the light receiving beam spot P on the light receiving surface of the four-divided sensor 11 at this time, and the rotation of the variable mirror 5 around the axis E moves the light receiving beam spot P. The light receiving surface is moved up and down as shown by the arrow in FIG. 10, and the rotation of the variable mirror 5 about the axis F is performed by moving the light receiving beam spot P in the direction of 45 degrees to the upper right of the light receiving surface as shown by the arrow in FIG. Move to Thus, two different
The operation of moving the light receiving beam spot P in the direction is repeated so that the center of the light receiving beam spot P is
Is controlled so as to be located at a point where the cross-shaped separating body T at the center of the light receiving section effective area S intersects.

【0012】以上のような光軸ずれ補正制御を、空間を
隔てて対向している双方向光通信装置が互いに作動する
ことによって、双方の送信ビームの広がりの中央部が対
向する装置のビーム取込口に常に一致する状態に維持す
ることができる。
The above-described optical axis misalignment correction control is performed by operating the two-way optical communication devices facing each other with a space therebetween so that the center of the spread of both transmission beams is opposite to that of the device. It can be maintained in a state that always matches the entrance.

【0013】このように従来例の空間光通信装置は、対
向して設置して光軸合わせを行う際に、視準望遠鏡3を
覗いて対向装置からのレーザー光Lb又は対向装置からの
位置確認用ストロボ光Lsが、望遠鏡内の十字線が交差す
る点に位置するように、通信用光学系2と視準望遠鏡3
とを一体化した光軸調整台1の姿勢調整機構を使用し
て、水平・垂直の直交2方向のあおり調整を行ってい
る。
As described above, when the conventional spatial optical communication device is installed to face and aligns the optical axis, the collimated telescope 3 is viewed and the laser beam Lb from the facing device or the position from the facing device is confirmed. Communication optical system 2 and collimating telescope 3 so that the strobe light Ls for communication is located at the point where the crosshairs cross in the telescope.
Using the attitude adjustment mechanism of the optical axis adjustment table 1 that integrates the two, the horizontal and vertical tilt adjustments are performed.

【0014】[0014]

【発明が解決しようとする課題】しかしながら、上述の
従来例の空間光通信装置においては、光軸ずれ補正を行
う通信時において、光軸ずれを補正する度に対向設置し
た2台の装置の光軸合わせを行う必要があり、通信用光
学系2の光軸O1と観察光学系3の光軸O2とが平行となる
ように、光軸方向可変ミラー5を初期位置の姿勢に精度
良く復帰させなければならない。しかし、このときに温
度変化等の使用環境により復帰位置に変動が発生する傾
向があり、初期設定した後でも通信用光学系の光軸O1と
観察光学系3の光軸O2との平行性が崩れて、対向設置時
の光軸合わせが不能になるという問題が発生する。
However, in the conventional spatial optical communication apparatus described above, in communication for correcting the optical axis shift, the optical signals of the two devices installed opposite each other are corrected each time the optical axis shift is corrected. It is necessary to perform axis alignment, and the optical axis direction variable mirror 5 is accurately returned to the initial position so that the optical axis O1 of the communication optical system 2 and the optical axis O2 of the observation optical system 3 become parallel. There must be. However, at this time, the return position tends to fluctuate due to a use environment such as a temperature change, and even after the initial setting, the parallelism between the optical axis O1 of the communication optical system and the optical axis O2 of the observation optical system 3 is reduced. This causes a problem that the optical axis cannot be aligned at the time of opposing installation.

【0015】本発明の目的は、上述の問題点を解消し、
対向設置時の光軸合わせを再現性良く確実に行うことが
できる空間光通信装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems,
An object of the present invention is to provide a spatial optical communication device that can surely perform optical axis alignment at the time of facing installation with good reproducibility.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る空間光通信装置は、投光光学系と信号発
生部から成る投光手段及び/又は第1の受光光学系と本
信号検出部から成る受光手段と、第2の受光光学系と受
光ビームスポット位置検出部から成り、対向装置からの
投光光を受光し受光面上の受光ビームスポットの基準位
置から求めた位置ずれ情報に基づいて受信光の光軸と前
記第2の受光光学系の光軸との光軸ずれを検出するする
光軸ずれ検出手段と、該光軸ずれ検出手段により検出さ
れた光軸ずれ情報に基づいて光軸方向可変部へ光軸ずれ
補正信号を送り自装置の投光光軸及び/又は受光光軸の
方向を制御する光軸方向制御手段と、前記対向装置を探
索する観察手段とを有し、前記光軸方向可変部において
前記投光光学系及び/又は前記第1の受光光学系の光軸
と前記第2の受光光学系の光軸と前記観察手段の光学系
の光軸とを平行に配置することにより、これらの全光学
系の光軸方向を平行性を維持しながら変更可能とするこ
とを特徴とする。
A spatial optical communication apparatus according to the present invention for achieving the above object has a light projecting means comprising a light projecting optical system and a signal generating unit and / or a first light receiving optical system. A light receiving means comprising a signal detecting unit, a second light receiving optical system, and a light receiving beam spot position detecting unit for receiving the light projected from the opposing device and detecting a positional deviation obtained from a reference position of the light receiving beam spot on the light receiving surface. Optical axis deviation detecting means for detecting an optical axis deviation between the optical axis of the received light and the optical axis of the second light receiving optical system based on the information, and optical axis deviation information detected by the optical axis deviation detecting means Optical axis direction control means for sending an optical axis deviation correction signal to the optical axis direction variable section based on the optical axis direction control means for controlling the direction of the projecting optical axis and / or the receiving optical axis of the own apparatus, and observation means for searching for the opposing apparatus. Wherein the optical axis direction variable section includes the light projecting optical system and And / or by arranging the optical axis of the first light receiving optical system, the optical axis of the second light receiving optical system, and the optical axis of the optical system of the observation means in parallel to each other, It is characterized in that the direction can be changed while maintaining the parallelism.

【0017】[0017]

【発明の実施の形態】本発明を図1〜図7に図示の実施
例に基づいて詳細に説明する。図1は第1の実施例の構
成図を示し、投光手段、光軸ずれ検出手段、光軸方向制
御手段、観察手段から成る投光装置である。光軸方向可
変部20の背後には投光手段、光軸ずれ検出手段、観察
手段が並列に配列され、投光光軸O3と光軸ずれ検出側の
受光光軸O4と観察手段の光学系の光軸O5とが平行になる
ように配置されており、これら全ての光軸方向は平行性
を維持した状態で同時に変更可能とされている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the embodiments shown in FIGS. FIG. 1 shows a configuration diagram of the first embodiment, which is a light projecting device including light projecting means, optical axis deviation detecting means, optical axis direction control means, and observation means. Behind the optical axis direction variable unit 20, a light projecting means, an optical axis shift detecting means, and an observing means are arranged in parallel, and an optical system of a projecting optical axis O3, a light receiving optical axis O4 on the optical axis shift detecting side and an observing means. Are arranged so as to be parallel to the optical axis O5, and all the optical axis directions can be changed simultaneously while maintaining the parallelism.

【0018】投光手段は発光素子として、直線偏光のレ
ーザーダイオードを含む信号発生部21と正のパワーの
レンズ群22の投光光学系とから成り、光軸ずれ検出手
段は位置検出用受光素子として4分割センサを含む受光
ビームスポット位置検出部23と正のパワーのレンズ群
24の受光光学系とから成り、観察手段は視準望遠鏡2
5により構成されている。そして、受光ビームスポット
位置検出部23の出力は信号処理部26、光軸方向制御
部27を介して光軸方向可変部20に接続されている。
The light projecting means comprises, as light emitting elements, a signal generating section 21 including a linearly polarized laser diode and a light projecting optical system of a lens group 22 having a positive power. And a light receiving optical system of a lens group 24 having a positive power.
5. The output of the light-receiving beam spot position detection unit 23 is connected to the optical axis direction variable unit 20 via the signal processing unit 26 and the optical axis direction control unit 27.

【0019】光軸方向可変部20は図9に示すような2
軸方向に回動制御される1枚のミラー5から成るもの、
図2に示すような2つの回転軸G、Hが直交する方向に
それぞれ1軸回動制御される2枚のミラー28、29か
ら成るもの、又は図3に示すような2枚の透明平行板3
0、31の間に透明液体32が蛇腹状のフィルム33で
密封されて頂角可変制御される液体可変頂角プリズム3
4が使用される。
The optical axis direction changing section 20 has a structure as shown in FIG.
A single mirror 5 that is controlled to rotate in the axial direction;
A mirror composed of two mirrors 28 and 29, each of which is controlled to rotate by one axis in a direction in which two rotation axes G and H are orthogonal to each other as shown in FIG. 2, or two transparent parallel plates as shown in FIG. 3
A liquid variable apex prism 3 in which a transparent liquid 32 is sealed between a bellows-like film 33 and an apex angle is variably controlled between 0 and 31.
4 are used.

【0020】なお、図3の液体可変頂角プリズム34を
使用するときは、透明平行板30又は31から自己の送
信光Laの反射光が戻り、光軸方向制御誤差の原因となる
場合があるので、図4に示すように透明平行板30と3
1を投光光軸O3に対して垂直な状態から最大頂角θ以上
傾けて配置し、投光光と透明平行板30、31とが垂直
にならないようにする。
When the liquid variable apex angle prism 34 shown in FIG. 3 is used, the reflected light of the own transmission light La returns from the transparent parallel plate 30 or 31, which may cause an optical axis direction control error. Therefore, as shown in FIG.
1 is arranged at an angle equal to or more than the maximum apex angle θ from a state perpendicular to the projection optical axis O3 so that the projection light is not perpendicular to the transparent parallel plates 30 and 31.

【0021】このような構成の送信装置を交信相手の対
向装置と光軸合わせをする場合は、先ず視準望遠鏡25
を覗いて、背景光Lhを取り込み、光軸方向可変部20を
駆動して対向装置を検索する。次に、対向装置からのス
トロボ光Lsと光軸合わせを行って受光レベルを確認した
後に、従来例と同様にして光軸方向制御動作を行うよう
にすれば通信可能状態となる。
In order to align the optical axis of the transmitting device having such a configuration with the opposing device of the communication partner, first, the collimating telescope 25 is used.
, The background light Lh is captured, and the optical axis direction variable unit 20 is driven to search for the opposing device. Next, the optical axis is aligned with the strobe light Ls from the opposing device to check the light receiving level, and then the optical axis direction control operation is performed in the same manner as in the conventional example, so that the communication is possible.

【0022】交信中に風や設置場所の振動等により生ず
る装置の揺れに伴い、光軸方向可変部20の駆動部には
光軸方向制御部27による制御が作用し、交信終了時に
は再び光軸合わせ直前の初期位置に設定される。このと
き、初期位置復帰誤差があっても、全ての光学系の光軸
O3、O4、O5の平行性が崩れることはないので、初期位置
復帰精度を上げるための手段を使用することなく、毎回
の光軸合わせを初回と同程度の精度で行うことができ
る。
The control of the optical axis direction control unit 27 acts on the drive unit of the optical axis direction variable unit 20 due to the fluctuation of the apparatus caused by the wind or the vibration of the installation place during the communication. It is set to the initial position just before the alignment. At this time, even if there is an initial position return error, the optical axes of all optical systems
Since the parallelism of O3, O4, and O5 is not lost, the optical axis alignment can be performed each time with the same accuracy as the first time without using a means for improving the initial position return accuracy.

【0023】観察手段として視準望遠鏡25ではなく、
ズームレンズ付きCCDカメラを使用する場合には、広
角側ズーム位置で対向装置を探索してから、望遠側ズー
ム位置でストロボ光Ls又は受光光Lbとの光軸合わせを行
った後に、光軸方向制御動作を行うようにすればよい。
また、位置検出用受光素子として4分割センサの代りに
PSD(Position Sensitive Device)のような非分割型
センサを使用してもよく、発光素子として直線偏光のレ
ーザーダイオードの代りに発光ダイオードを使用しても
よい。更に、投光手段の代りに従来例の本信号検出用受
光素子9と正のパワーを有するレンズ群8とから成る本
信号受光手段を使用して、受信を目的とする空間光通信
装置を構成することもできる。
As the observation means, not the collimating telescope 25,
When using a CCD camera with a zoom lens, search for the opposing device at the wide-angle zoom position, align the optical axis with the strobe light Ls or the received light Lb at the telephoto zoom position, and then adjust the optical axis direction. What is necessary is just to perform a control operation.
In addition, a non-split sensor such as a PSD (Position Sensitive Device) may be used instead of the 4-split sensor as the light-receiving element for position detection, and a light-emitting diode is used as the light-emitting element instead of a linearly polarized laser diode. You may. Further, a spatial optical communication apparatus for receiving is constructed by using a conventional signal receiving means including a conventional signal detecting light receiving element 9 and a lens group 8 having a positive power instead of the light projecting means. You can also.

【0024】図5は第2の実施例の構成図を示し、図1
に本信号を受信する本信号受光手段を追加して、双方向
の通信を行うようにした空間光通信装置である。図1と
同じ符号は同じ部材を表している。光軸方向可変部20
の背後には、投光手段と光軸ずれ検出手段と本信号検出
手段とが並列に配列されており、本信号検出手段の受光
光軸O6上に、正のパワーを有するレンズ群36から成る
受光光学系と、本信号検出部35とが配置されている。
更に、これら通信用光学系群の隙間に第1及び第2の2
枚のミラー37a、37bから成る光路折返部38が配
置され、第1のミラー37aの反射方向に視準望遠鏡2
5が配置されている。この光路折返部38は視準望遠鏡
25の前方に観察光学系の光軸O5に対して45度の傾角
で配置した第1のミラー37aと、光軸方向可変部30
側に通信用光学系の光軸O3、O4、O5に対して45度の傾
角で配置した第2のミラー37bとから構成されてい
る。
FIG. 5 shows the configuration of the second embodiment, and FIG.
The present invention is a spatial optical communication device in which bidirectional communication is performed by adding a main signal receiving means for receiving the main signal. 1 denote the same members. Optical axis direction variable section 20
Behind the lens, the light projecting means, the optical axis deviation detecting means and the present signal detecting means are arranged in parallel, and on the light receiving optical axis O6 of the present signal detecting means, a lens group 36 having a positive power is provided. The light receiving optical system and the main signal detection unit 35 are arranged.
Further, the first and second 2
An optical path turning portion 38 composed of a plurality of mirrors 37a and 37b is arranged, and the collimating telescope 2 is set in the reflection direction of the first mirror 37a.
5 are arranged. The optical path turning section 38 includes a first mirror 37a disposed in front of the collimating telescope 25 at an inclination of 45 degrees with respect to the optical axis O5 of the observation optical system, and the optical axis direction changing section 30.
The second mirror 37b disposed on the side at an inclination of 45 degrees with respect to the optical axes O3, O4, O5 of the communication optical system.

【0025】本実施例のように複数の光学系を並列配置
すれば、光軸方向可変部20が大型化することは避けら
れない。しかし、消費電力及び光軸方向制御の応答性を
考慮すると、光軸方向可変部20を必要最小限の大きさ
に抑える必要がある。従って、光路折返部38は観察光
学系と光軸方向可変部20との間で、通信用光学系側に
延在するように配置されている。また光路折返部38と
して、図6に示すように2つのミラー部が一体化された
平行四辺形の側面を有するプリズム39を使用すること
もできる。
If a plurality of optical systems are arranged in parallel as in this embodiment, it is inevitable that the optical axis direction variable section 20 becomes large. However, in consideration of the power consumption and the responsiveness of the optical axis direction control, it is necessary to reduce the size of the optical axis direction variable unit 20 to a necessary minimum. Therefore, the optical path turning section 38 is disposed between the observation optical system and the optical axis direction variable section 20 so as to extend toward the communication optical system. Further, as the optical path turning portion 38, a prism 39 having a parallelogram side surface in which two mirror portions are integrated as shown in FIG. 6 can be used.

【0026】このような双方向光通信装置を2台対向設
置して光軸合わせをする場合も、第1の実施例と同様な
操作を互いに実行することにより双方向通信可能状態と
なり、毎回の光軸合わせを初回と同程度の精度で行うこ
とができる。
When two such two-way optical communication devices are installed facing each other to perform optical axis alignment, the same operation as in the first embodiment is performed on each other to enable two-way communication. Optical axis alignment can be performed with the same accuracy as the first time.

【0027】図7は第3の実施例の構成図を示し、光ビ
ームの送受信を行う相手装置と対向する位置に光軸方向
可変部40が設けられ、光軸方向可変部40内には、光
軸方向可変ミラー41が通信用光学系の光軸O7に対し4
5度に斜設されている。光軸方向可変ミラー41の反射
方向には、正のパワーを有するレンズと負のパワーを有
するレンズから成り投光光を拡大し受光光を縮小するビ
ームエクスパンダ42、投光光と受光光の何れか一方を
反射し他方を透過する投・受光光分岐部材43、部分反
射ミラー44、正のパワーを有するレンズ群45、本信
号検出部46が順次に配列されている。
FIG. 7 is a block diagram of the third embodiment. An optical axis direction variable section 40 is provided at a position facing a partner apparatus for transmitting and receiving a light beam. The optical axis direction variable mirror 41 is 4
It is inclined at 5 degrees. In the reflection direction of the optical axis direction variable mirror 41, a beam expander 42, which comprises a lens having a positive power and a lens having a negative power, expands the projected light and reduces the received light, A projecting / receiving light splitting member 43 that reflects one of them and transmits the other, a partial reflecting mirror 44, a lens group 45 having positive power, and a main signal detecting unit 46 are sequentially arranged.

【0028】投・受光光分岐部材43の入射方向には、
正のパワーを有するレンズ群47、発光素子としてレー
ザーダイオードを使用した信号発生部48が配列されて
おり、部分反射ミラー44の反射方向には、正のパワー
を有するレンズ群49、4分割センサ50が配列されて
いる。そして、4分割センサ50の出力は信号処理部5
1、光軸方向制御部52を介して光軸方向可変部40に
接続されている。
In the incident direction of the projecting / receiving light branching member 43,
A lens group 47 having a positive power, a signal generating unit 48 using a laser diode as a light emitting element are arranged, and a lens group 49 having a positive power and a four-divided sensor 50 are arranged in the reflection direction of the partial reflection mirror 44. Are arranged. The output of the quadrant sensor 50 is output to the signal processing unit 5.
1. It is connected to the optical axis direction variable unit 40 via the optical axis direction control unit 52.

【0029】また、ビームエクスパンダ42と光軸方向
可変ミラー41の間のビームエクスパンダ42の外周付
近に光路折返部53が設けられ、光路折返部53の反射
方向の光軸O8上には観察光学系の視準望遠鏡55が配置
されており、光路折返部53の内部のミラー55は観察
光学系の光軸O8に対し45度の傾角で配置されている。
An optical path turning section 53 is provided near the outer periphery of the beam expander 42 between the beam expander 42 and the optical axis direction variable mirror 41, and an observation is made on the optical axis O8 in the reflection direction of the optical path turning section 53. The collimating telescope 55 of the optical system is arranged, and the mirror 55 inside the optical path turning section 53 is arranged at an inclination of 45 degrees with respect to the optical axis O8 of the observation optical system.

【0030】信号発生部48の発光素子としてレーザー
ダイオードを使用する場合には、発光波長や発光出力に
よっては、眼等の人体に対する安全性の観点から、送信
光の出射口径を大きくして出射照度を所定水準値以下に
抑える必要があり、また遠距離通信時には、伝送空間に
おいて光量の減衰が生じて単位面積当りの受光量が減少
するために、より大きな受信光の入射口径を必要とす
る。このように、入射や出射の口径を大きくすると光軸
方向可変ミラー41が大型化する傾向が生ずるが、消費
電力や光軸方向の制御応答性等を考慮すると、光軸方向
可変ミラー41は最小限の大きさに抑える必要がある。
When a laser diode is used as the light emitting element of the signal generator 48, the emission illuminance may be increased by increasing the emission aperture of the transmission light, depending on the emission wavelength and emission output, from the viewpoint of safety for the human body such as eyes. Must be suppressed to a predetermined level or less, and at the time of long-distance communication, a larger amount of incident aperture of the received light is required because the amount of received light per unit area is reduced due to attenuation of the light amount in the transmission space. As described above, when the diameter of the incident and the outgoing light beams is increased, the size of the optical axis direction variable mirror 41 tends to increase. However, considering the power consumption and the control response in the optical axis direction, the optical axis direction variable mirror 41 has a minimum size. It must be kept to a minimum size.

【0031】従って、本実施例においては、投光光と受
光光の何れか一方を反射し他方を透過する投・受光光分
岐部43を使用して、光軸方向可変部40において投光
光軸と受光光軸を一致させるようにし、ビームエクスパ
ンダ42と光軸方向可変ミラー41の間の外周部に光路
折返部53を配置して、通信用光学系の光軸O7と観察光
学系の光軸O8とが平行となるようにしている。
Therefore, in the present embodiment, the light projecting / receiving light branching section 43 which reflects one of the projected light and the received light and transmits the other is used. The axis and the light receiving optical axis are made to coincide with each other, and the optical path turning portion 53 is arranged on the outer peripheral portion between the beam expander 42 and the optical axis direction variable mirror 41, so that the optical axis O7 of the communication optical system and the observation optical system The optical axis O8 is set to be parallel.

【0032】光路折返部53は光軸ずれ検出側の受信光
Lcを遮光することなく、更に送信光Laの例えばピーク強
度比13.5%以上の有効光束を遮光しない程度に、通
信光光束の中央部に近付けて、背景光Lhを観察光学系側
へ導くようにしている。
The optical path turning section 53 receives light on the optical axis deviation detecting side.
Without blocking Lc, the transmission light La is brought close to the center of the communication light beam so as not to block the effective light beam having a peak intensity ratio of 13.5% or more, for example, and guides the background light Lh to the observation optical system side. Like that.

【0033】また本実施例では、受光光分岐手段として
部分反射ミラー44を使用して、受信光中央部光束Lcを
光軸ずれ検出部50へ導き、受信光周辺部光束Lbを本信
号検出部46へ導いている。更に、光路折返部53のミ
ラー55の反射面は金属膜を蒸着することにより形成し
てもよいが、誘電体薄膜蒸着によって反射面を形成すれ
ば、受信光Lbの遮光量を減らすようにすることができ
る。
Further, in this embodiment, the partial reflection mirror 44 is used as the received light branching means, the central light beam Lc of the received light is guided to the optical axis deviation detecting unit 50, and the received light peripheral light beam Lb is transmitted to the main signal detecting unit. It leads to 46. Further, the reflecting surface of the mirror 55 of the optical path turning portion 53 may be formed by depositing a metal film. However, if the reflecting surface is formed by depositing a dielectric thin film, the amount of blocking of the received light Lb can be reduced. be able to.

【0034】このような双方向光通信装置を2台対向配
置して交信させる場合には、互いに発光波長帯の異なる
発光素子を使用し、分光透過率又は分光反射率特性が逆
転する投・受光光分岐部43により投・受光光を分離す
るとよく、また互いに同一発光波長帯の直線偏光のレー
ザーダイオードを発光素子として使用する場合には、従
来例と同様の分光特性を有する偏光ビームスプリッタ6
を使用して、図7の光学系を紙面後方に垂直方向に対し
て45度に傾斜させた構成にするとよい。
In the case where two such bidirectional optical communication devices are arranged to communicate with each other, light-emitting elements having different emission wavelength bands are used, and light transmission / reception in which spectral transmittance or spectral reflectance characteristics are reversed. It is preferable to separate the projected / received light by the light branching unit 43, and when linearly polarized laser diodes having the same emission wavelength band are used as light emitting elements, the polarization beam splitter 6 having the same spectral characteristics as the conventional example is used.
The optical system of FIG. 7 may be inclined at 45 degrees to the vertical direction at the rear of the page.

【0035】本実施例においても第1の実施例と同様
に、光軸方向可変部40において、観察光学系の光軸O8
を通信用光学系の光軸O7と平行になるように配置してい
るので、光軸方向可変部40の大きさを最小限に抑えな
がら、交信する対向装置との光軸合わせを常に初回と同
程度の精度で行うことができる。
In the present embodiment, similarly to the first embodiment, the optical axis direction variable section 40 controls the optical axis O8 of the observation optical system.
Is arranged so as to be parallel to the optical axis O7 of the communication optical system, so that the size of the optical axis direction variable section 40 is minimized, and the optical axis alignment with the opposing device with which communication is performed is always the first time. It can be performed with similar accuracy.

【0036】[0036]

【発明の効果】以上説明したように本発明に係る空間光
通信装置は、光軸方向可変部において、観察光学系の光
軸を通信用光学系の光軸と平行になるように配置するこ
とにより、光軸方向可変部の初期位置復帰誤差が発生し
ていても、交信する相手装置との対向設置時の光軸合わ
せを常に初回と同程度の精度で行うことができるので、
確実な光軸合わせを行って再現性が良好な通信を実施す
ることができる。
As described above, in the spatial optical communication apparatus according to the present invention, the optical axis direction variable section is arranged so that the optical axis of the observation optical system is parallel to the optical axis of the communication optical system. Thereby, even if an initial position return error of the optical axis direction variable unit occurs, the optical axis alignment at the time of the opposing installation with the communication partner device can always be performed with the same accuracy as the first time,
Communication with good reproducibility can be performed by performing reliable optical axis alignment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施例の投光装置の構成図である。FIG. 1 is a configuration diagram of a light projecting device of a first embodiment.

【図2】光軸方向可変ミラーの斜視図である。FIG. 2 is a perspective view of an optical axis direction variable mirror.

【図3】液体可変頂角プリズムの側面図である。FIG. 3 is a side view of a liquid variable apex angle prism.

【図4】液体可変頂角プリズムの配置の説明図である。FIG. 4 is an explanatory diagram of an arrangement of a liquid variable apex angle prism.

【図5】第2の実施例の双方向通信装置の構成図であ
る。
FIG. 5 is a configuration diagram of a two-way communication device according to a second embodiment.

【図6】光軸方向可変プリズムの側面図である。FIG. 6 is a side view of the optical axis direction variable prism.

【図7】第3の実施例の双方向通信装置の構成図であ
る。
FIG. 7 is a configuration diagram of a two-way communication device according to a third embodiment.

【図8】従来例の構成図である。FIG. 8 is a configuration diagram of a conventional example.

【図9】光軸方向可変ミラーの斜視図である。FIG. 9 is a perspective view of an optical axis direction variable mirror.

【図10】4分割センサの正面図である。FIG. 10 is a front view of a quadrant sensor.

【図11】4分割センサの正面図である。FIG. 11 is a front view of a four-divided sensor.

【符号の説明】[Explanation of symbols]

20、40 光軸方向可変部 21、48 信号発生部 23、50 受光ビームスポット位置検出部 25、55 視準望遠鏡 26、51 信号処理部 27、52 光軸方向制御部 35、46 本信号検出部 38、53 光路折返部 41 光軸方向可変ミラー 42 ビームエクスパンダ 43 投・受光光分岐部 44 部分反射ミラー 20, 40 Optical axis direction variable section 21, 48 Signal generation section 23, 50 Received beam spot position detection section 25, 55 Collimated telescope 26, 51 Signal processing section 27, 52 Optical axis direction control section 35, 46 Main signal detection section 38, 53 Optical path turning section 41 Optical axis direction variable mirror 42 Beam expander 43 Projecting / receiving light branching section 44 Partial reflection mirror

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02B 26/08 H04B 10/10 H04B 10/105 H04B 10/22 G03B 5/00 Continued on the front page (58) Fields surveyed (Int.Cl. 7 , DB name) G02B 26/08 H04B 10/10 H04B 10/105 H04B 10/22 G03B 5/00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 投光光学系と信号発生部から成る投光手
段及び/又は第1の受光光学系と本信号検出部から成る
受光手段と、第2の受光光学系と受光ビームスポット位
置検出部から成り、対向装置からの投光光を受光し受光
面上の受光ビームスポットの基準位置から求めた位置ず
れ情報に基づいて受信光の光軸と前記第2の受光光学系
の光軸との光軸ずれを検出するする光軸ずれ検出手段
と、該光軸ずれ検出手段により検出された光軸ずれ情報
に基づいて光軸方向可変部へ光軸ずれ補正信号を送り自
装置の投光光軸及び/又は受光光軸の方向を制御する光
軸方向制御手段と、前記対向装置を探索する観察手段と
を有し、前記光軸方向可変部において前記投光光学系及
び/又は前記第1の受光光学系の光軸と前記第2の受光
光学系の光軸と前記観察手段の光学系の光軸とを平行に
配置することにより、これらの全光学系の光軸方向を平
行性を維持しながら変更可能とすることを特徴とする空
間光通信装置。
1. A light projecting means comprising a light projecting optical system and a signal generating section and / or a light receiving means comprising a first light receiving optical system and a main signal detecting section; a second light receiving optical system and a light receiving beam spot position detection. And an optical axis of the received light and an optical axis of the second light-receiving optical system based on positional deviation information obtained from the reference position of the light-receiving beam spot on the light-receiving surface by receiving the light projected from the opposing device. Optical axis deviation detecting means for detecting the optical axis deviation of the optical axis deviation detecting means for transmitting an optical axis deviation correcting signal to the optical axis direction variable section based on the optical axis deviation information detected by the optical axis deviation detecting means; An optical axis direction control unit that controls a direction of an optical axis and / or a received optical axis; and an observation unit that searches for the opposing device. The optical axis of the first light receiving optical system, the optical axis of the second light receiving optical system, A spatial optical communication apparatus characterized in that by arranging the optical axes of the optical systems of the observation means in parallel with each other, it is possible to change the optical axis directions of all these optical systems while maintaining parallelism.
【請求項2】 前記光軸方向可変部はそれぞれに1つの
回転軸を有しこれらの回転軸が互いに直交する2つのミ
ラーを所定の間隔に配置し、前記光軸方向制御手段によ
り前記2つのミラーをそれぞれの回転軸の周りに回動し
て光軸方向を制御する請求項1に記載の空間光通信装
置。
2. The optical axis direction changing section has two mirrors each having one rotation axis, and these two rotation axes are arranged at a predetermined interval, and the two rotation axes are orthogonal to each other. The spatial optical communication device according to claim 1, wherein the optical axis direction is controlled by rotating the mirror around each rotation axis.
【請求項3】 前記光軸方向可変部は互いに直交する2
つの回転軸を有する1つのミラーを前記光軸方向制御手
段により前記2つの回転軸の周りに回動して光軸方向を
制御する請求項1に記載の空間光通信装置。
3. The optical axis direction variable sections are orthogonal to each other.
The spatial optical communication device according to claim 1, wherein one mirror having one rotation axis is rotated around the two rotation axes by the optical axis direction control means to control the optical axis direction.
【請求項4】 前記光軸方向可変部は間に透明液体を密
封した2つの透明部材の成す角を可変して光軸方向を制
御する請求項1に記載の空間光通信装置。
4. The spatial optical communication device according to claim 1, wherein the optical axis direction variable section controls an optical axis direction by changing an angle formed by two transparent members sealing a transparent liquid therebetween.
【請求項5】 前記観察光学系と前記光軸方向可変部と
の間に、背景光を前記観察光学系へ導く光路折返手段を
備えた請求項1に記載の空間光通信装置。
5. The spatial optical communication device according to claim 1, further comprising an optical path turning unit for guiding background light to the observation optical system between the observation optical system and the optical axis direction variable unit.
【請求項6】 投光光と受光光の何れか一方を反射させ
他方を透過させる投・受光光分岐手段を有し、前記光軸
方向可変部において投光光軸と受光光軸とを一致させ前
記観察光学系の光軸を前記2つの光軸と平行に配置する
ことにより、全光学系の光軸方向を平行性を維持しなが
ら同時に変更可能とした請求項5に記載の空間光通信装
置。
6. A light-projecting / receiving light branching means for reflecting one of light-emitting light and light-receiving light and transmitting the other light, and the light-projecting optical axis and the light-receiving optical axis coincide in the optical axis direction variable section. 6. The spatial optical communication according to claim 5, wherein the optical axes of the observation optical systems are arranged in parallel with the two optical axes so that the optical axis directions of all the optical systems can be changed simultaneously while maintaining the parallelism. apparatus.
JP27695695A 1995-09-29 1995-09-29 Space optical communication equipment Expired - Fee Related JP3192359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27695695A JP3192359B2 (en) 1995-09-29 1995-09-29 Space optical communication equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27695695A JP3192359B2 (en) 1995-09-29 1995-09-29 Space optical communication equipment

Publications (2)

Publication Number Publication Date
JPH0996767A JPH0996767A (en) 1997-04-08
JP3192359B2 true JP3192359B2 (en) 2001-07-23

Family

ID=17576761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27695695A Expired - Fee Related JP3192359B2 (en) 1995-09-29 1995-09-29 Space optical communication equipment

Country Status (1)

Country Link
JP (1) JP3192359B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258751A (en) * 2007-04-02 2008-10-23 Funai Electric Co Ltd Remote controller
JP6119896B1 (en) * 2016-03-18 2017-04-26 日本電気株式会社 Optical module and optical transmission system
CN113949443B (en) * 2021-09-29 2023-01-06 中国科学院西安光学精密机械研究所 High-precision rapid installation and adjustment method of laser communication test system

Also Published As

Publication number Publication date
JPH0996767A (en) 1997-04-08

Similar Documents

Publication Publication Date Title
US5627669A (en) Optical transmitter-receiver
US3992629A (en) Telescope cluster
US4760407A (en) Laser printing apparatus with device for combining a plurality of optical beams provided with an integral-order wave plate
JPH021633A (en) Light spatial transmission equipment
US10859348B1 (en) System for active telescope alignment, focus and beam control
US6222678B1 (en) Automatic survey instrument
JP3192359B2 (en) Space optical communication equipment
JPH05133716A (en) Bi-directional spatial optical communication device
US5500754A (en) Optical transmitter-receiver
JP4446087B2 (en) Photodetector and photodetection system using the same
JP3093237B2 (en) Optical communication terminal
JP2002196270A (en) Laser lithography system
EP0658987A1 (en) Optical space communication apparatus
JP3220344B2 (en) Space optical communication equipment
JP2518066B2 (en) Laser beam direction control device
US5541701A (en) Eye direction detecting apparatus of camera view finder
JP2006023626A (en) Collimation adjusting mechanism, and optical antenna system and collimation adjusting method using same
JPH0888602A (en) Space optical communication equipment
JP3870197B2 (en) Optical space transmission equipment
JP2606227B2 (en) Light transmission device
JP2000275043A (en) Tracking device for automatic survey machine
JPH0346582A (en) Laser beam direction controller
JPH04370783A (en) Distance measuring apparatus
JPH05134207A (en) Two-way spatial optical communication device
RU41397U1 (en) OPEN OPTICAL COMMUNICATION TERMINAL

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees