JP3206993B2 - Bidirectional optical space transmission equipment - Google Patents

Bidirectional optical space transmission equipment

Info

Publication number
JP3206993B2
JP3206993B2 JP31568092A JP31568092A JP3206993B2 JP 3206993 B2 JP3206993 B2 JP 3206993B2 JP 31568092 A JP31568092 A JP 31568092A JP 31568092 A JP31568092 A JP 31568092A JP 3206993 B2 JP3206993 B2 JP 3206993B2
Authority
JP
Japan
Prior art keywords
light
light beam
transmission
signal
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31568092A
Other languages
Japanese (ja)
Other versions
JPH06152541A (en
Inventor
靖三郎 出藏
徹雄 坂中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP31568092A priority Critical patent/JP3206993B2/en
Publication of JPH06152541A publication Critical patent/JPH06152541A/en
Application granted granted Critical
Publication of JP3206993B2 publication Critical patent/JP3206993B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、遠隔地に対して光無線
で双方向の情報伝送を行う双方向光空間伝送装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-way optical space transmission apparatus for performing two-way information transmission by optical radio to a remote place.

【0002】[0002]

【従来の技術】一般に、遠隔地に対し光無線で双方向の
情報伝送を行う場合に、それぞれの光送信機は互いに相
手側の光受信機の方向に正しく指向され、入射光ビーム
の到来方向を正確に検知する必要がある。更に、情報伝
送が行われている間は、この指向及び検知を正しく維持
するための追尾動作が継続されていなければ、装置への
風、日射、人為的等の各種外的作用により光軸がずれ、
通信が断となる虞れがある。
2. Description of the Related Art In general, when performing bidirectional information transmission by optical radio to a remote place, respective optical transmitters are correctly oriented toward each other's optical receiver, and the arrival direction of an incident light beam. Must be detected accurately. In addition, during the information transmission, unless the tracking operation for maintaining the pointing and the detection correctly is continued, the optical axis may be affected by various external effects such as wind, solar radiation, and artificial influence on the device. Gap,
Communication may be interrupted.

【0003】そのため、従来の双方向光空間伝送装置は
例えば図8に示すように構成され、送信時においては、
送光部1で送信信号(主信号)S1と角度誤差を検出する
ための補助信号(以下、パイロット信号と呼ぶ)Psとを
合成した後に光ビームに変換し、この光ビームを送光部
光学系2、ビームスプリッタ3を介してミラー角度駆動
機構部4により偏向し、送受信レンズ5を介して送信す
る。
For this reason, a conventional two-way optical space transmission apparatus is configured as shown in FIG. 8, for example.
The light transmitting unit 1 combines a transmission signal (main signal) S1 and an auxiliary signal (hereinafter, referred to as a pilot signal) Ps for detecting an angle error, and then converts the combined signal into a light beam. The light is deflected by the mirror angle drive mechanism 4 via the system 2 and the beam splitter 3, and transmitted via the transmission / reception lens 5.

【0004】また受信時においては、受信光を送受信レ
ンズ5、ミラー角度駆動機構部4、ビームスプリッタ3
を通してビームスプリッタ6に導いて2分割し、反射光
は受光部光学系7を介して受光部8により検出される。
更に、透過光は角度誤差検出部光学系9を介して角度誤
差検出部10により誤差信号が検出され、この誤差信号
によりミラー駆動制御部11からミラー角度駆動機構部
4を駆動し、送信光学系の軸と受信光の到来方向とのず
れの程度に伴う誤差信号を検出し、この信号によって制
御サーボ機構を駆動し、送信光学系の軸と到来方向とを
一致させ、その方向に光束を出射する。この操作を対面
するそれぞれの装置で行うことにより、追尾機能を実現
している。
At the time of reception, the receiving light is transmitted and received by a transmission / reception lens 5, a mirror angle driving mechanism 4, a beam splitter 3,
The light is guided to a beam splitter 6 and split into two, and the reflected light is detected by a light receiving unit 8 via a light receiving unit optical system 7.
Further, an error signal of the transmitted light is detected by an angle error detection unit 10 via an angle error detection unit optical system 9, and the mirror drive control unit 11 drives the mirror angle drive mechanism unit 4 based on the error signal, and the transmission optical system Detects an error signal associated with the degree of deviation between the axis of light and the direction of arrival of the received light, drives the control servo mechanism with this signal, matches the axis of the transmission optical system with the direction of arrival, and emits a light beam in that direction. I do. The tracking function is realized by performing this operation on each of the devices facing each other.

【0005】ここで、二次元の角度誤差検出器として
は、図9に示すように4つの象限のそれぞれに同じ特性
の光検出器を配置し、受信光のスポットの位置を各光検
出器の出力の和と差とから求める場合が一般的であり、
4個の光検出器の出力が全て等しくなるように制御を行
う。
Here, as a two-dimensional angle error detector, photodetectors having the same characteristics are arranged in each of the four quadrants as shown in FIG. 9, and the position of the spot of the received light is determined by each photodetector. In general, it is determined from the sum and difference of outputs.
Control is performed so that the outputs of the four photodetectors are all equal.

【0006】例えば、発光素子がレーザーダイオードの
場合には、受信ビームは図10に示すようにレーザーダ
イオードの放射パターンに対応した縦長の二次元ガウス
分布Gとなり、強度が中心の1/e2 である位置を結ぶ
線がビーム境界に内接する。受信ビームの強度分布が均
一な場合には、図10に示すように受信ビームの中心が
受信光学系の中心に対して(X,Y)である位置におい
て、先の4個の光検出器からの出力信号が全て等しくな
れば、受信光学系の軸は受信ビームの到来方向と一致す
る。
[0006] For example, when the light emitting element is a laser diode, receive beams two-dimensional Gaussian distribution G next portrait corresponding to the radiation pattern of the laser diode as shown in FIG. 10, the strength is at the center of the 1 / e 2 A line connecting a certain position inscribes the beam boundary. When the intensity distribution of the reception beam is uniform, the position of the center of the reception beam is (X, Y) with respect to the center of the reception optical system as shown in FIG. Are equal, the axis of the receiving optical system coincides with the arrival direction of the receiving beam.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、受信ビ
ームの強度分布が均一でない場合には、先の4個の光検
出器からの信号が全て等しくなっても、光学系の軸が本
来の到来方向とずれるために、発生する追尾偏差により
送信ビーム光軸の角度誤差が発生し、その量がシステム
設計時における許容値を超過すると、目標とする追尾精
度を実現することができなくなるという問題点がある。
However, if the intensity distribution of the received beam is not uniform, the axis of the optical system will remain in the original direction of arrival even if the signals from the four photodetectors are all equal. When the amount exceeds the allowable value at the time of system design, the target tracking accuracy cannot be achieved. is there.

【0008】また、受信地点における光束のビーム径を
大きく広げることにより、上述の受信ビーム強度分布の
不均一の影響を低減することができるが、受信側に到達
する光束の空間的電力密度が減少し、良好な通信ができ
なくなるという問題点がある。従って、光束径は送受信
電力、伝送距離、及び通信品質を考慮して決定される場
合が一般的である。
[0008] The effect of the above-mentioned non-uniformity of the received beam intensity distribution can be reduced by greatly increasing the beam diameter of the light beam at the receiving point, but the spatial power density of the light beam reaching the receiving side is reduced. However, there is a problem that good communication cannot be performed. Therefore, the light beam diameter is generally determined in consideration of transmission / reception power, transmission distance, and communication quality.

【0009】本発明の目的は、上述の問題点を解消し、
放射強度が均一でない発光素子において高精度な追尾機
能を実現した双方向光空間伝送装置を提供することにあ
る。
An object of the present invention is to solve the above-mentioned problems,
It is an object of the present invention to provide a two-way optical space transmission device which realizes a highly accurate tracking function in a light emitting element having a non-uniform radiation intensity.

【0010】[0010]

【課題を解決するための手段】上述の目的を達成するた
めの本発明に係る双方向光空間伝送装置は、周波数帯域
幅B(Hz)を有する主信号と、周波数帯域幅B(H
z)を有し、角度誤差を検出するためのパイロット信号
とを重畳した信号に基づいて変調された光束を用いて双
方向で情報伝送を行う装置であって、対向して配置され
た装置に向けて送信光束を送り出す送信光学系と、対向
して配置された装置から伝送された光束の一部を受信光
束として装置内に取り込む口径δを有する送受信レンズ
と、該送受信レンズによって取り込まれた受信光束を第
1の光束と第2の光束とに分割する光分割器と、前記第
1の光束を受光して前記主信号を検出する第1の光検出
器と、前記第2の光束を受光し前記パイロット信号に基
づいて受信光束の到来方向と前記送信光学系の光軸との
ずれを示す角度誤差信号を検出する第2の光検出器と、
該第2の光検出器で検出された角度誤差信号に基づいて
受信光束の到来方向と送信光学系の光軸とのずれを補正
する制御手段とを備え、前記送受信レンズが前記送受信
レンズの前面に光束径Dで到達した光束を、光束径δを
有する受信光束として装置内に取り込む絞りの機能を果
たす双方向光空間伝送装置において、前記光分割器は、
受信光束を部分的に反射して前記第2の光検出器に導く
口径dを有する全反射ミラー部と、該全反射ミラー部で
反射された部分を除く受信光束を透過して前記第1の光
検出器に入射させる透過光使用域とを有する部分反射ミ
ラーとから成り、前記全反射ミラー部の口径dが、前記
送受信レンズの前面における光束径Dの1/15倍の上
限値と、δ×(B/B1/2で示される下限値と
の間の範囲にあるように設定したことを特徴とする。。
According to the present invention, there is provided a two-way optical space transmission apparatus comprising: a main signal having a frequency bandwidth B 1 (Hz); a main signal having a frequency bandwidth B 2 (H);
z) is a device that performs bidirectional information transmission using a light flux modulated based on a signal superimposed with a pilot signal for detecting an angle error, and is a device that is disposed opposite to the device. A transmission optical system for transmitting a transmission light beam toward the transmission / reception lens, a transmission / reception lens having an aperture δ for taking a part of a light beam transmitted from a device arranged opposite to the reception light beam into the device, and a reception signal received by the transmission / reception lens. A light splitter that splits a light beam into a first light beam and a second light beam, a first light detector that receives the first light beam and detects the main signal, and receives the second light beam A second photodetector that detects an angle error signal indicating a deviation between the arrival direction of the received light beam and the optical axis of the transmission optical system based on the pilot signal;
Control means for correcting a deviation between the direction of arrival of the received light beam and the optical axis of the transmission optical system based on the angle error signal detected by the second photodetector, wherein the transmission / reception lens is arranged in front of the transmission / reception lens. In a two-way optical space transmission device that functions as a diaphragm that takes in a light beam having a light beam diameter D into the device as a received light beam having a light beam diameter δ, the light splitter includes:
A total reflection mirror portion having an aperture d that partially reflects a received light beam and guides the received light beam to the second photodetector; and a first light beam that transmits the received light beam excluding a portion reflected by the total reflection mirror portion. A partial reflection mirror having a transmission light use area to be incident on the photodetector, wherein the diameter d of the total reflection mirror portion is an upper limit of 1/15 times the light beam diameter D at the front surface of the transmission / reception lens, and δ. × (B 2 / B 1 ) It is characterized in that it is set to be in a range between the lower limit indicated by 1/2 . .

【0011】[0011]

【作用】上述の構成を有する双方向光空間伝送装置は、
全反射ミラー部の口径dを、前記送受信レンズの前面に
おける光束径Dの1/15倍の上限値と、δ×(B
1/2で示される下限値との間の範囲にあるよう
に設定することにより、送信ビーム光軸の角度誤差を低
減する。
The two-way optical space transmission apparatus having the above-described configuration is:
The diameter d of the total reflection mirror portion is set to an upper limit value of 1/15 times the luminous flux diameter D in front of the transmission / reception lens, and δ × (B 2 /
B 1 ) The angular error of the optical axis of the transmission beam is reduced by being set to be in a range between the lower limit indicated by .

【0012】[0012]

【実施例】本発明を図1〜図7に図示の実施例に基づい
て詳細に説明する。図1は第1の実施例の構成図であ
り、送光部21には送信信号(主信号)S1及びパイロッ
ト信号Psが入力されている。送光部21の光路上には送
光部光学系22、ビームスプリッタ23、ミラー角度駆
動機構部24が順次に配列され、ミラー角度駆動機構部
24の反射方向には送受信レンズ25が設けられてい
る。また、ビームスプリッタ23の反射方向には、部分
反射ミラー26、主信号受光部光学系27、主信号受光
部(第1の光検出器)28が順次に配列され、部分反射
ミラー26の反射方向には角度誤差検出部光学系29、
角度誤差検出部(第2の光検出器)30が配列されてい
る。更に、角度誤差検出部30の出力はミラー駆動用制
御部31を介してミラー角駆動機構部24に接続されて
いる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the embodiments shown in FIGS. FIG. 1 is a configuration diagram of the first embodiment. A transmission signal (main signal) S1 and a pilot signal Ps are input to a light transmitting unit 21. On the optical path of the light transmitting section 21, a light transmitting section optical system 22, a beam splitter 23, and a mirror angle driving mechanism section 24 are sequentially arranged, and a transmission / reception lens 25 is provided in the reflection direction of the mirror angle driving mechanism section 24. I have. In the reflection direction of the beam splitter 23, a partial reflection mirror 26, a main signal light receiving unit optical system 27, and a main signal light receiving unit (first photodetector) 28 are sequentially arranged. Has an angle error detector optical system 29,
An angle error detector (second photodetector) 30 is arranged. Further, the output of the angle error detection section 30 is connected to the mirror angle drive mechanism section 24 via the mirror drive control section 31.

【0013】なお、部分反射ミラー26は図2、図3に
示すように透過光使用域26a及び全反射ミラー部26
bによって構成され、全反射ミラー部26bには全反射
膜が蒸着されている。透過光使用域26a及び全反射ミ
ラー部26bは共に、主信号受光部光学系27から部分
反射ミラー26を見たときに円形となるように楕円形と
なっている。
As shown in FIGS. 2 and 3, the partial reflection mirror 26 includes a transmitted light use area 26a and a total reflection mirror section 26.
b, and a total reflection film is deposited on the total reflection mirror portion 26b. The transmitted light use area 26a and the total reflection mirror section 26b are both elliptical so as to be circular when the partial reflection mirror 26 is viewed from the main signal receiving section optical system 27.

【0014】また、パイロット信号Psは角度誤差検出用
のものであり、パイロット信号Psとしては送信信号帯域
外の例えば正弦波等の狭帯域の信号が用いられる。これ
により、角度誤差信号の所要のS/N比を得るために必
要な光信号出力を低減することができる。
The pilot signal Ps is for detecting an angle error, and a narrow band signal such as a sine wave outside the transmission signal band is used as the pilot signal Ps. As a result, it is possible to reduce an optical signal output required to obtain a required S / N ratio of the angle error signal.

【0015】送信信号(主信号)S1は送光部21におい
て、パイロット信号Psと重畳された後に光信号に変換さ
れ、送光部光学系22、ビームスプリッタ23を透過し
てミラー角度駆動機構部24により偏向され、送受信レ
ンズ25によって集光されて送信される。
The transmission signal (main signal) S1 is converted into an optical signal after being superimposed on the pilot signal Ps in the light transmitting section 21, and transmitted through the light transmitting section optical system 22 and the beam splitter 23 to be transmitted to the mirror angle driving mechanism section. The light is deflected by 24, condensed by a transmission / reception lens 25, and transmitted.

【0016】受信時においては、相手装置からの光信号
は送受信レンズ25、ミラー角度駆動機構部24を介し
てビームスプリッタ23を反射し、部分反射ミラー26
によって2光束に分割される。部分反射ミラー26を透
過した第1の光束(主信号検出用光束)は、主信号受光
部光学系27を介して主信号受光部(第1の検出器)2
8によって検出され受信信号S2となる。また、部分反射
ミラー26を反射した第2の光束は角度誤差検出部光学
系29を介して、角度誤差検出部(第2の光検出器)3
0によって角度誤差が検出される。この角度誤差はミラ
ー駆動用制御部31に入力され、ミラー角度駆動機構部
24を駆動して光軸と受信信号S2の入射方向とを一致さ
せる。
At the time of reception, the optical signal from the partner device is reflected by the beam splitter 23 via the transmission / reception lens 25 and the mirror angle drive mechanism 24, and is reflected by the partial reflection mirror 26.
Is split into two light beams. The first light beam (main signal detection light beam) transmitted through the partial reflection mirror 26 is passed through the main signal light receiving portion optical system 27 to the main signal light receiving portion (first detector) 2.
8 and becomes a received signal S2. The second light flux reflected by the partial reflection mirror 26 is passed through an angle error detection unit optical system 29 to an angle error detection unit (second light detector) 3.
An angle error of 0 is detected. This angle error is input to the mirror drive control section 31 and drives the mirror angle drive mechanism section 24 to make the optical axis coincide with the incident direction of the reception signal S2.

【0017】図4は部分反射ミラー26を用いて受信ビ
ームを2分割する際の詳細な説明図であり、送受信レン
ズ25の前面に到達する受信ビームB及び全反射ミラー
部26bを示してある。また、図5は受信ビームの光束
径Dと全反射ミラー部26bの口径(即ち、全反射ミラ
ー部26bによって反射される第2の光束の光束径)d
の比D/dを一定とし、受信ビームBの中心(X,Y)
のYをパラメータとし、Xに対する相対受信電力差、つ
まり4個の象限に配置された光検出器の受信電力をP1〜
P4とした時の{(P1+P4)−(P2+P3)}/(P1+P2+P3+
P4)の値の関係を示すグラフ図である。この場合に、任
意のXの値に対してY=0のときに最も相対受信電力差
が大きくなる。
FIG. 4 is a detailed explanatory diagram when the reception beam is divided into two using the partial reflection mirror 26, and shows the reception beam B reaching the front surface of the transmission / reception lens 25 and the total reflection mirror portion 26b. FIG. 5 shows the light beam diameter D of the received beam and the aperture of the total reflection mirror portion 26b (that is, the light beam diameter of the second light beam reflected by the total reflection mirror portion 26b) d.
, And the center (X, Y) of the reception beam B
And the relative received power difference with respect to X, that is, the received power of the photodetectors arranged in the four quadrants is defined as P1 to
{(P1 + P4)-(P2 + P3)} / (P1 + P2 + P3 +
It is a graph which shows the relationship of the value of P4). In this case, the relative received power difference becomes largest when Y = 0 for an arbitrary value of X.

【0018】また、XをパラメータとしたときのYに対
する相対受信電力差{(P1+P2)−(P3+P4)}/(P1+P2
+P3+P4)の関係も同様の傾向があるが、受信ビームは
垂直横モードよりも平行横モードの方が強度分布勾配が
大きいために、相対受信電力差は前述のYをパラメータ
としXに対する値よりも小さくなる。
Further, a relative received power difference with respect to Y when X is a parameter {(P1 + P2)-(P3 + P4)} / (P1 + P2
+ P3 + P4) also has the same tendency, but since the received beam has a greater intensity distribution gradient in the parallel transverse mode than in the vertical transverse mode, the relative received power difference is larger than the value for X using the aforementioned Y as a parameter. Become smaller.

【0019】受信ビームBの強度が二次元のガウス分布
である場合に、角度誤差検出部(第2の光検出器)30
にある4個の光検出器の中心に受信ビームのスポットの
中心が合った時に相対受信電力差が生じ、この相対受信
電力差により発生する誤差信号により制御サーボ機構を
駆動し、誤差信号の値が0となるようにミラー角度駆動
機構部24を制御する。
When the intensity of the reception beam B has a two-dimensional Gaussian distribution, the angle error detector (second photodetector) 30
When the center of the spot of the receiving beam is aligned with the center of the four photodetectors in the above, a relative reception power difference is generated, and the control servo mechanism is driven by an error signal generated by the relative reception power difference, and the value of the error signal Is controlled to be 0.

【0020】このとき、受信ビームBのスポットの中心
は4個の光検出器の中心からΔxだけずれており、この
Δxは角度誤差検出部光学系29の焦点距離及び光検出
器上での受信ビームBのスポット径が既知であれば、受
信ビーム本来の到来方向と受信光学系、即ち送光方向と
の角度誤差量と対応する。この角度誤差量はそのまま追
尾システムの追尾偏差となり、4個の光検出器と発光素
子との光軸アライメント誤差、4個の光検出器の感度の
アンバランス等、追尾偏差を生ずる他の要因と併せて、
追尾制御系で発生する追尾偏差は追尾精度と大きく関連
しており、追尾偏差の許容値はシステム設計時に算出さ
れている。従って、角度誤差量に関してはその許容値以
下となるように、受信ビームの光束径Dに対する全反射
ミラー部26bの口径dを決定する必要がある。
At this time, the center of the spot of the reception beam B is shifted from the center of the four photodetectors by Δx, and this Δx is the focal length of the angle error detection section optical system 29 and the reception on the photodetectors. If the spot diameter of the beam B is known, it corresponds to the angle error amount between the original arrival direction of the reception beam and the reception optical system, that is, the light transmission direction. This angle error amount becomes the tracking deviation of the tracking system as it is, other factors that cause the tracking deviation, such as the optical axis alignment error between the four photodetectors and the light emitting elements, and the imbalance in the sensitivity of the four photodetectors. together,
The tracking deviation generated in the tracking control system is greatly related to the tracking accuracy, and the allowable value of the tracking deviation is calculated at the time of designing the system. Therefore, it is necessary to determine the diameter d of the total reflection mirror portion 26b with respect to the light beam diameter D of the reception beam so that the angle error amount is equal to or less than the allowable value.

【0021】図6はX軸に対する前述の角度誤差量のグ
ラフ図であり、相対受信電力差が最も大きくなるY=0
において比D/dをパラメータとし、角度誤差検出部光
学系29の焦点距離を200mm、光検出器に入射する
受信ビームのスポット径をこのシステムにおける一般的
な値と考えられる150μmとする。光軸アライメント
誤差及び感度のアンバランスの実現可能値を考え合わせ
ると、精度の追尾機能が必要な双方向光空間伝送システ
ムにおいては、受信ビームの強度分布が不均一であるこ
とによる角度誤差量の許容値は20μrad 以下であり、
つまり比D/dが15以上である必要がある。例えば、
送受信電力や伝送距離及び通信品質を考慮した受信ビー
ムの光束径Dを1mとすると、アンテナから本装置内を
光軸方向に見たときの全反射ミラー部26bの口径dの
上限値は66.7mmとなる。
FIG. 6 is a graph showing the above-mentioned angle error amount with respect to the X axis.
, The ratio D / d is used as a parameter, the focal length of the angle error detection unit optical system 29 is set to 200 mm, and the spot diameter of the reception beam incident on the photodetector is set to 150 μm which is considered to be a general value in this system. Considering the realizable values of the optical axis alignment error and the sensitivity imbalance, in a two-way optical space transmission system that requires an accuracy tracking function, the amount of angular error due to the non-uniform intensity distribution of the received beam is considered. The tolerance is less than 20 μrad,
That is, the ratio D / d needs to be 15 or more. For example,
Assuming that the beam diameter D of the received beam in consideration of transmission / reception power, transmission distance, and communication quality is 1 m, the upper limit of the diameter d of the total reflection mirror portion 26b when the inside of the device is viewed from the antenna in the optical axis direction is 66. 7 mm.

【0022】更に、全反射ミラー部26bの口径dの下
限値は、主信号とパイロット信号のそれぞれの受信部の
光検出器、負荷抵抗、及び増幅器の雑音指数が等しい場
合には、帯域幅の比によって決定される。ここで送受信
レンズ25は、この送受信レンズ25の前面に光束径D
で到達した光束を受信光束として装置内に取り込む際の
絞りの機能を果たしている。つまり、送受信レンズ25
の口径をδとすると、受信光束の光束径もδとなる。送
受信レンズ25で受光した光束は、全反射ミラー部26
bを除いた透過光使用域26aを透過するものとする。
また、主信号の帯域幅をB(Hz)、パイロット信号の
帯域幅をB(Hz)とすると、パイロット号のS/N値
を主信号と等しくするために必要な光信号出力は主信号
のB/B倍となる。
Further, the lower limit value of the aperture d of the total reflection mirror section 26b is set to a value corresponding to the bandwidth of the main signal and the pilot signal when the photodetector, load resistance, and noise figure of the amplifier are equal to each other. Determined by the ratio. Here, the transmitting / receiving lens 25 has a light flux diameter D on the front surface of the transmitting / receiving lens 25.
This serves as a diaphragm when the light beam arriving at step (1) is taken into the apparatus as a received light beam. That is, the transmission / reception lens 25
Let δ be the aperture of, the light beam diameter of the received light beam also becomes δ. The light beam received by the transmission / reception lens 25 is transmitted to the total reflection mirror unit 26.
It is assumed that the light passes through the transmitted light use area 26a excluding b.
If the bandwidth of the main signal is B 1 (Hz) and the bandwidth of the pilot signal is B 2 (Hz), the optical signal output required to make the S / N value of the pilot signal equal to the main signal is the main signal. B 2 / B 1 times the signal.

【0023】従って、送受信レンズ25の口径δに対す
る全反射ミラー部26bの口径dの比は、(B
1/2 以上である必要がある。例えば、B
100MHz、Bを10KHz、送受信レンズ25の口径
δを10cmとすると、送受信レンズ25から本装置内
を光軸方向に見たときの全反射ミラー部26bの口径d
の下限値は1mmとなる。
Accordingly, the ratio of the diameter d of the total reflection mirror portion 26b to the diameter δ of the transmission / reception lens 25 is (B 2 /
B 1 ) It is necessary to be 以上 or more. For example, the B 1 100 MHz, the B 2 10 KHz, if the diameter δ of the receiving lens 25 and 10 cm, diameter d of the total reflection mirror portion 26b when the in the apparatus as viewed in the optical axis direction from the transmitting and receiving lenses 25
Is 1 mm.

【0024】なお、主信号受光部(第1の光検出器)2
8及び角度誤差検出部(第2の光検出器)30の光検出
器や回路構成が変れば、それに応じて下限値は変化する
が、これらの構成を決定すれば下限値は容易に算出でき
る。例えば、受光部28の光検出器を増倍率が100で
あるアバランシェフォトダイオード、角度誤差検出部3
0の光検出器をPINフォトダイオードとし、主信号及
びパイロット信号Psのそれぞれの受信回路内の増幅器の
雑音指数が同一であるとし、Bが100MHz、B
10KHzで送受信レンズ25の口径δが10cmとする
と、全反射ミラー部26bの口径dの下限値は10mm
となる。このようにして、送受信レンズ25から本装置
内を光軸方向に見た時の全反射ミラー部26bの口径d
の上限値及び下限値を決定することができる。
The main signal receiving section (first photodetector) 2
If the photodetector and the circuit configuration of the angle error detector 8 and the angle error detection section (second photodetector) 30 change, the lower limit changes accordingly. However, if these configurations are determined, the lower limit can be easily calculated. . For example, an avalanche photodiode with a multiplication factor of 100 and an angle error detector 3
0 of the photodetector is a PIN photodiode, the noise figure of the amplifier in each reception circuit of the main signal and the pilot signal Ps is set to be the same, B 1 is 100 MHz, the diameter of the receiving lens 25 B 2 is at 10 KHz [delta] Is 10 cm, the lower limit of the diameter d of the total reflection mirror 26 b is 10 mm.
Becomes Thus, the diameter d of the total reflection mirror portion 26b when the inside of the apparatus is viewed in the optical axis direction from the transmission / reception lens 25.
Can be determined.

【0025】送受信レンズ25によって取り込まれた受
信光を部分反射ミラー26において2分割し、角度誤差
検出部光学系29に導く全反射ミラー部26bの口径d
の上限値及び下限値の決定方法について説明したが、図
7に示すように角度誤差検出部光学系29を送受信レン
ズ25とは別個に設けてもよい。即ち、角度誤差検出部
光学系29のレンズ口径を前述の全反射ミラー部26b
の口径dと同様にすることにより、同様の効果を得るこ
とができる。また、この場合には送受信レンズ25と角
度誤差検出部光学系29の光軸合わせは困難となるが、
送受信レンズ25が取り込んだ受信光が全て主信号検出
部に導かれるため、図1における実施例に比べて受信光
信号出力を更に有効に利用することができる。
The received light captured by the transmission / reception lens 25 is split into two by the partial reflection mirror 26, and the aperture d of the total reflection mirror 26b guided to the angle error detection unit optical system 29.
Although the method of determining the upper limit value and the lower limit value has been described, the angle error detection unit optical system 29 may be provided separately from the transmission / reception lens 25 as shown in FIG. That is, the lens aperture of the angle error detection unit optical system 29 is set to the aforementioned total reflection mirror unit 26b.
The same effect can be obtained by making the diameter d the same. In this case, it is difficult to align the optical axes of the transmission / reception lens 25 and the angle error detection unit optical system 29.
Since all of the received light captured by the transmission / reception lens 25 is guided to the main signal detection unit, the output of the received light signal can be used more effectively than in the embodiment in FIG.

【0026】[0026]

【発明の効果】以上説明したように本発明に係る双方向
光空間伝送装置は、角度誤差検出部に受信光を導く光学
系口径の上限値を受信地点における光束径の1/15倍
とし、下限値を送受信レンズの主信号帯域幅に対するパ
イロット信号帯域幅の平方根倍とすることにより、放射
パターンの強度分布が均一でない発光素子を用いても、
高精度の追尾機能を実現することができる。
As described above, in the two-way optical space transmission apparatus according to the present invention, the upper limit of the aperture of the optical system for guiding the received light to the angle error detector is set at 1/15 of the beam diameter at the receiving point. By setting the lower limit value to be the square root of the pilot signal bandwidth with respect to the main signal bandwidth of the transmission / reception lens, even when using a light emitting element whose intensity distribution of the radiation pattern is not uniform,
A highly accurate tracking function can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment.

【図2】部分反射ミラーの断面図である。FIG. 2 is a sectional view of a partial reflection mirror.

【図3】部分反射ミラーの平面図である。FIG. 3 is a plan view of a partial reflection mirror.

【図4】受信ビームの中心と全反射ミラー部の説明図で
ある。
FIG. 4 is an explanatory diagram of a center of a reception beam and a total reflection mirror unit.

【図5】Xに対する相対受信電力差のグラフ図である。FIG. 5 is a graph showing a relative received power difference with respect to X.

【図6】Xに対する角度誤差量のグラフ図である。FIG. 6 is a graph showing an angle error amount with respect to X;

【図7】他の実施例の構成図である。FIG. 7 is a configuration diagram of another embodiment.

【図8】従来例の構成図である。FIG. 8 is a configuration diagram of a conventional example.

【図9】従来の二次元の角度誤差検出器の説明図であ
る。
FIG. 9 is an explanatory diagram of a conventional two-dimensional angle error detector.

【図10】レーザーダイオードの放射パターンの説明図
である。
FIG. 10 is an explanatory diagram of a radiation pattern of a laser diode.

【符号の説明】[Explanation of symbols]

21 送光部 22 送光部光学系 23 ビームスプリッタ 24 ミラー角度駆動機構部 25 送受信レンズ 26 部分反射ミラー 27 受光部光学系 28 受光部 29 角度誤差検出部光学系 30 角度誤差検出部 31 ミラー駆動用制御部 DESCRIPTION OF SYMBOLS 21 Light transmission part 22 Light transmission part optical system 23 Beam splitter 24 Mirror angle drive mechanism part 25 Transmission / reception lens 26 Partial reflection mirror 27 Light reception part optical system 28 Light reception part 29 Angle error detection part optical system 30 Angle error detection part 31 Mirror drive Control unit

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H04B 10/00 - 10/28 H04J 14/00 - 14/08 G02B 7/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) H04B 10/00-10/28 H04J 14/00-14/08 G02B 7/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 周波数帯域幅B (Hz)を有する主信号
と、周波数帯域幅B (Hz)を有し、角度誤差を検出す
るためのパイロット信号とを重畳した信号に基づいて変
調された光束を用いて双方向で情報伝送を行う装置であ
って、対向して配置された装置に向けて送信光束を送り
出す送信光学系と、対向して配置された装置から伝送さ
れた光束の一部を受信光束として装置内に取り込む口径
δを有する送受信レンズと、該送受信レンズによって取
り込まれた受信光束を第1の光束と第2の光束とに分割
する光分割器と、前記第1の光束を受光して前記主信号
を検出する第1の光検出器と、前記第2の光束を受光し
前記パイロット信号に基づいて受信光束の到来方向と前
記送信光学系の光軸とのずれを示す角度誤差信号を検出
する第2の光検出器と、該第2の光検出器で検出された
角度誤差信号に基づいて受信光束の到来方向と送信光学
系の光軸とのずれを補正する制御手段とを備え、前記送
受信レンズが前記送受信レンズの前面に光束径Dで到達
した光束を、光束径δを有する受信光束として装置内に
取り込む絞りの機能を果たす双方向光空間伝送装置にお
いて、前記光分割器は、受信光束を部分的に反射して前
記第2の光検出器に導く口径dを有する全反射ミラー部
と、該全反射ミラー部で反射された部分を除く受信光束
を透過して前記第1の光検出器に入射させる透過光使用
域とを有する部分反射ミラーとから成り、前記全反射ミ
ラー部の口径dが、前記送受信レンズの前面における光
束径Dの1/15倍の上限値と、δ×(B /B
1/2 で示される下限値との間の範囲にあるように設定
したことを特徴とする双方向光空間伝送装置。
1. A main signal having a frequency bandwidth B 1 (Hz)
And has a frequency bandwidth B 2 (Hz), and detects an angular error.
Signal based on the signal superimposed with the pilot signal for
A device that performs bidirectional information transmission using modulated light beams.
To transmit the transmitted light beam to the device
Outgoing transmission optics and transmitted from opposing devices.
Aperture that takes in a part of the emitted light flux into the device as a received light flux
a transmitting / receiving lens having δ, and
Splits the received light beam into a first light beam and a second light beam
A light splitter for receiving the first light flux and the main signal
And a first photodetector for detecting the second light flux.
The direction of arrival and the direction of arrival of the received light beam based on the pilot signal
Detects angle error signal indicating deviation from optical axis of transmission optical system
A second photodetector, and a second photodetector detected by the second photodetector.
Arrival direction of received light beam and transmission optics based on angle error signal
Control means for correcting deviation from the optical axis of the system.
The receiving lens reaches the front of the transmitting and receiving lens with the luminous flux diameter D.
Into the device as a received light beam having a light beam diameter δ
A two-way optical space transmission device that functions as an aperture
The light splitter partially reflects the received light beam and
A total reflection mirror portion having an aperture d leading to the second photodetector;
And the received light flux excluding the portion reflected by the total reflection mirror section
Use of transmitted light that transmits light and enters the first photodetector
And a partial reflection mirror having an area.
The aperture d of the lens unit is the light in front of the transmitting / receiving lens.
The upper limit of 1/15 times the bundle diameter D, and δ × (B 2 / B 1 )
Set to be in the range between the lower limit indicated by 1/2
Bidirectional optical atmospheric link system, characterized in that the.
JP31568092A 1992-10-30 1992-10-30 Bidirectional optical space transmission equipment Expired - Fee Related JP3206993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31568092A JP3206993B2 (en) 1992-10-30 1992-10-30 Bidirectional optical space transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31568092A JP3206993B2 (en) 1992-10-30 1992-10-30 Bidirectional optical space transmission equipment

Publications (2)

Publication Number Publication Date
JPH06152541A JPH06152541A (en) 1994-05-31
JP3206993B2 true JP3206993B2 (en) 2001-09-10

Family

ID=18068271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31568092A Expired - Fee Related JP3206993B2 (en) 1992-10-30 1992-10-30 Bidirectional optical space transmission equipment

Country Status (1)

Country Link
JP (1) JP3206993B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2684721B2 (en) * 1988-10-31 1997-12-03 三菱マテリアル株式会社 Surface-coated tungsten carbide-based cemented carbide cutting tool and its manufacturing method
US5223332A (en) * 1990-05-31 1993-06-29 Praxair S.T. Technology, Inc. Duplex coatings for various substrates
CN1322688C (en) * 2005-01-10 2007-06-20 中国科学院上海光学精密机械研究所 Space laser communication motion double-terminal long distance transmission analog device
JP4645326B2 (en) * 2005-06-30 2011-03-09 日本ビクター株式会社 Light emitting / receiving device and transmitting / receiving device
KR100720364B1 (en) * 2006-01-11 2007-05-23 삼성전자주식회사 Apparatus and method for heater control in air conditioner

Also Published As

Publication number Publication date
JPH06152541A (en) 1994-05-31

Similar Documents

Publication Publication Date Title
US5594580A (en) Optical space communication apparatus
US5465170A (en) Alignment adjusting system for use in optical system of optical transceiver
RU2212763C2 (en) Open optical communication system
JP2007533239A (en) Device for improving reception in optical networks
EP0977070B1 (en) Telescope with shared optical path for an optical communication terminal
US11405106B2 (en) Setup for receiving an optical data signal
US6968133B2 (en) Optical free-space communication apparatus
US11476933B1 (en) Free space optical communication terminal with rotatable dispersive optical component
EP0911996B1 (en) Optical space communication apparatus
US11909439B2 (en) Wavefront sensor with inner detector and outer detector
US6690888B1 (en) Method for establishing and maintaining optical, open-air communications link
US20040208597A1 (en) Free-Space optical transceiver link
JPH08265263A (en) Bidirectional optical spatial transmitter
JP3206993B2 (en) Bidirectional optical space transmission equipment
US6751422B2 (en) Spatial light communication equipment comprising angle error detection and alignment units
CN111693257B (en) Array collimation laser parameter detection device
JPH10239600A (en) Compensating optical device, optical space communication device using it, laser range finder, and laser finishing machine
JP2000147311A (en) Positioning method in optical waveguide coupling device and optical waveguide coupling device realized by the method
JP2001292105A (en) Optical space transmission device
JP3093237B2 (en) Optical communication terminal
RU2272358C1 (en) Two-way optical communication device
US11652548B1 (en) Free space optical communication terminal with chromatic Risley prism pair
JP2001094513A (en) Bidirectional optical spatial transmission device
US20030016420A1 (en) Method and apparatus for aligning a light beam onto an optical fiber core
JP3027964B2 (en) Driving axis alignment error measurement method for intersatellite optical communication equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees