JPH08149076A - Optical space communication device - Google Patents

Optical space communication device

Info

Publication number
JPH08149076A
JPH08149076A JP6312390A JP31239094A JPH08149076A JP H08149076 A JPH08149076 A JP H08149076A JP 6312390 A JP6312390 A JP 6312390A JP 31239094 A JP31239094 A JP 31239094A JP H08149076 A JPH08149076 A JP H08149076A
Authority
JP
Japan
Prior art keywords
optical
signal
auxiliary
main signal
auxiliary signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6312390A
Other languages
Japanese (ja)
Inventor
Tetsuo Sakanaka
徹雄 坂中
Nobuo Tsuchiya
伸夫 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6312390A priority Critical patent/JPH08149076A/en
Publication of JPH08149076A publication Critical patent/JPH08149076A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE: To always monitor the operating state of an optical communication device by controlling the direction of a light beam by a simple operation. CONSTITUTION: The light beam received from an opposite party device is made incident on a collimating optical system 38 and separated into the main and auxiliary signals by an optical branching device 39 via a mobile mirror 37 and a deflected beam splitter 36. The main signal reflected by the device 39 is made incident on a photoelectric conversion part 43, detected by a main signal detector 46, and monitored by a level meter 50 via a switch 49. On the other hand, the auxiliary signal transmitted through the device 39 is made incident on four photodetectors of a photoelectric converter 41, undergoes the detection of its vertical/horizontal error signals through an auxiliary signal detector 47, and is monitored by the meter 50 via a switch 49. A mobile mirror driving circuit 48 drives the mirror 37 to control the direction of the light beam based on the detected error signals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気信号から変調した
光信号を自由空間に伝搬させて通信を行う光空間通信装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical space communication apparatus for propagating an optical signal modulated from an electric signal in free space for communication.

【0002】[0002]

【従来の技術】図4は送信機と受信機が一体型の光空間
通信装置である従来例の構成図を示している。入力端子
1から入力された送信用電気信号は増幅器2で適当なレ
ベルに増幅され、補助信号発生器3から発生された補助
信号と合波器4において合波された後に、電気−光変換
器5で光信号に変換される。電気−光変換器5から出射
した光はレンズ6で一旦平行光とされ、偏波方向が紙面
に水平な光が偏光ビームスプリッタ7を透過して可動ミ
ラー8で進行方向を変えて、コリメート光学系9から所
定の拡がり角を持つ光ビームLとして対向する相手側装
置へ送信される。
2. Description of the Related Art FIG. 4 is a block diagram of a conventional example in which a transmitter and a receiver are an integrated optical space communication device. The electric signal for transmission input from the input terminal 1 is amplified to an appropriate level by the amplifier 2, and after being combined with the auxiliary signal generated by the auxiliary signal generator 3 by the multiplexer 4, the electric-optical converter is provided. At 5, it is converted into an optical signal. The light emitted from the electro-optical converter 5 is once converted into parallel light by the lens 6, and the light whose polarization direction is horizontal to the paper surface passes through the polarization beam splitter 7 and the traveling direction is changed by the movable mirror 8 for collimating optics. The light beam L having a predetermined divergence angle is transmitted from the system 9 to the opposing device.

【0003】一方、相手側装置の光ビームは、送信ビー
ムと同じ方向からコリメート光学系9に入射し可動ミラ
ー8で方向を変え、偏波方向が紙面に垂直な光が偏光ビ
ームスプリッタ7の貼り合わせ面で反射されて送信光と
分離され、光分岐器10において受信光の大部分が反射
されてレンズ11を通り光−電気変換器12に集光す
る。
On the other hand, the light beam of the other device is incident on the collimating optical system 9 from the same direction as the transmission beam and is changed in direction by the movable mirror 8, and the light whose polarization direction is perpendicular to the paper surface is pasted on the polarization beam splitter 7. The light is reflected by the mating surfaces and separated from the transmitted light, and most of the received light is reflected by the optical branching device 10 and passes through the lens 11 to be condensed on the optical-electrical converter 12.

【0004】光−電気変換器12で得られた電気信号
は、分波器13で主信号と補助信号に周波数によって分
離され、主信号は増幅器14で増幅され出力端子15か
ら出力されて受信信号となる。また、主信号のレベルは
主信号検波器16で検出され、増幅器14にフィードバ
ックされて自動ゲイン制御が行われる。一方、補助信号
は補助信号検波器17においてそのレベルが検出され
て、レベルメータ18にモニタされる。
An electric signal obtained by the optical-electrical converter 12 is separated into a main signal and an auxiliary signal by a frequency by a demultiplexer 13, and the main signal is amplified by an amplifier 14 and output from an output terminal 15 to receive a received signal. Becomes Further, the level of the main signal is detected by the main signal detector 16 and fed back to the amplifier 14 for automatic gain control. On the other hand, the level of the auxiliary signal is detected by the auxiliary signal detector 17 and monitored by the level meter 18.

【0005】一方、受信光の一部は光分岐器10を透過
し、レンズ19を通って4個のホトダイオードから成る
QPD(光−電気変換器)20上に集光され、図5に示
すようなスポットSを結像する。QPD20の各ホトダ
イオードにおいて電気信号に変換された信号はそれぞれ
補助信号検波器21に入り、それぞれの受信光の強度の
差からスポットSの位置を求めることができる。
On the other hand, a part of the received light passes through the optical branching device 10, passes through the lens 19, and is condensed on the QPD (optical-electrical converter) 20 composed of four photodiodes, as shown in FIG. The spot S is imaged. The signal converted into the electric signal in each photodiode of the QPD 20 enters the auxiliary signal detector 21, and the position of the spot S can be obtained from the difference in the intensity of the received light.

【0006】この信号に基づいてミラー駆動回路22は
可動ミラー8を駆動し、QPD20上のスポットSの位
置が中央に至るように、即ちQPD20の各ホトダイオ
ードの出力が等しくなるように可動ミラー8の角度を変
化させる。これによって送信光ビームの方向が変化し、
QPD20上のスポットSの位置が中央にあるときに、
送信光ビームの方向が受信光ビームの方向と一致する。
このようにして、送信光ビームが常に対向する相手側装
置の方向を向くように自動追尾が行われる。
Based on this signal, the mirror drive circuit 22 drives the movable mirror 8 so that the position of the spot S on the QPD 20 reaches the center, that is, the outputs of the photodiodes of the QPD 20 become equal. Change the angle. This changes the direction of the transmitted light beam,
When the position of the spot S on the QPD 20 is in the center,
The direction of the transmitted light beam matches the direction of the received light beam.
In this way, automatic tracking is performed so that the transmitted light beam always faces the opposite device.

【0007】[0007]

【発明が解決しようとする課題】しかしながら上述の従
来例では、光通信の特長である高速、広帯域性を有効に
活用するために、光−電気変換器12に高速応答性を有
する受光素子を使用し、接合容量を小さくするために、
その受光面積を10-2mm2 程度の極めて小さなものと
する必要がある。このため、受光可能な装置の設置角度
誤差も極めて小さくなり、設置時などの方向調節の際
に、操作者はレベルメータ18を見ながら指針の振れ始
めを検知するまで手動で調節を行い、その後で自動追尾
を起動するという操作が必要となる。
However, in the above-mentioned conventional example, in order to effectively utilize the high speed and wide band characteristics which are the features of optical communication, a light receiving element having a high speed response is used for the optical-electrical converter 12. In order to reduce the junction capacitance,
It is necessary to make the light receiving area extremely small, about 10 -2 mm 2 . Therefore, the installation angle error of the device capable of receiving light becomes extremely small, and when adjusting the direction at the time of installation, the operator looks at the level meter 18 and manually adjusts until the start of swinging of the pointer is detected, and then The operation of activating automatic tracking is required.

【0008】しかし、光−電気変換器12の受光可能角
度範囲は極めて狭く、レベルメータ18の指針の振れ位
置を探す操作は困難となる。一方、QPD20の受光面
積は光−電気変換器12の受光面積よりも2桁程度大き
いため、光−電気変換器12が受光してないときに、既
にQPD20は受光して自動追尾が起動可能になってい
るという状態が生じ、しかも操作者にはそれが分からな
いために、レベルメータが振れ始めるまで、無駄に操作
を続行しなければならないという問題が生ずる。
However, the receivable angle range of the optical-electrical converter 12 is extremely narrow, and it becomes difficult to search for the deflection position of the pointer of the level meter 18. On the other hand, the light-receiving area of the QPD 20 is larger than the light-receiving area of the opto-electrical converter 12 by about two orders of magnitude, so when the opto-electrical converter 12 is not receiving light, the QPD 20 has already received light and the automatic tracking can be activated. However, there is a problem in that the operator has to continue the operation unnecessarily until the level meter starts to shake because the operator does not know it.

【0009】このため、主信号検波器16ではなく補助
信号検波器21の出力によりモニタしようとすると、上
述とは逆にQPD20では受光されてレベルメータ18
が正常に振れているにも拘わらず、光−電気変換器12
では受光されてないために、主信号の受信ができないと
いう問題が発生する。
For this reason, if an attempt is made to monitor the output of the auxiliary signal detector 21 instead of the main signal detector 16, contrary to the above, the QPD 20 receives light and the level meter 18
The light-electricity converter 12
However, there is a problem that the main signal cannot be received because the light is not received.

【0010】更に、この従来例では本信号が正常に変調
されているか否かをチェックする機能が存在しないの
で、受信光強度だけでなく本信号のレベルもモニタする
必要がある場合には、対応できないという問題が発生す
る。
Further, in this conventional example, since there is no function for checking whether or not this signal is normally modulated, when not only the received light intensity but also the level of this signal needs to be monitored, it is possible to cope with it. There is a problem that you can not.

【0011】本発明の目的は、上述の問題点を解消し、
方向調節の操作性を改善し、動作状態を監視できる光空
間通信装置を提供することにある。
An object of the present invention is to solve the above problems,
An object of the present invention is to provide an optical space communication device that improves the operability of direction adjustment and can monitor the operating state.

【0012】[0012]

【課題を解決するための手段】上述の目的を達成するた
めの本発明に係る光空間通信装置は、主信号とは異なる
周波数帯の補助信号を生成する補助信号発生器・前記主
信号及び補助信号を合波する合波器・該合波器から出力
される合波信号を光信号に変換する電気−光変換器・前
記主信号を光ビーム状に変換して送出する送信光学系を
有する送信機と、光ビーム状の光信号を受光する受信光
学系・前記光信号を電気信号に変換する光−電気変換器
を有する受信機とを備えた光空間通信装置において、前
記受信光学系に第1の光−電気変換器及び第2の光−電
気変換器の光路を分岐する光分岐器を設け、前記受信機
に前記第1の光−電気変換器で電気信号に変換した主信
号を検波する主信号検波器と前記第2の光−電気変換器
で電気信号に変換した補助信号を検波する補助信号検波
器とを設けたことを特徴とする。
An optical space communication apparatus according to the present invention for achieving the above object is an auxiliary signal generator for generating an auxiliary signal in a frequency band different from that of a main signal. A multiplexer for multiplexing signals, an electro-optical converter for converting a multiplexed signal output from the multiplexer into an optical signal, and a transmission optical system for converting the main signal into a light beam and transmitting the light beam. An optical space communication device comprising a transmitter and a receiving optical system for receiving an optical signal in the form of a light beam and a receiver having an optical-electrical converter for converting the optical signal into an electric signal, in which the receiving optical system is An optical branching device that branches the optical paths of the first optical-electrical converter and the second optical-electrical converter is provided, and the main signal converted into an electrical signal by the first optical-electrical converter is provided to the receiver. Converted to an electrical signal by the main signal detector for detection and the second optical-electrical converter Characterized in that provided an auxiliary signal detector for detecting the auxiliary signal.

【0013】[0013]

【作用】上述の構成を有する光空間通信装置は、補助信
号発生器から主信号と周波数帯を異にする補助信号を発
生して合波器において主信号と合波し、この電気信号を
電気−光変換器で光信号に変換し、送信機の送信光学系
から光ビームとして相手側装置へ送信する。相手側装置
からの受信光ビームは受信機の受信光学系に受信し、受
信光学系に設けた光分岐器により主信号と補助信号を分
離し、主信号を第1の光−電気変換器で電気信号に変換
して主信号検波器により検波し、補助信号を第2の光−
電気変換器で電気信号に変換して補助信号検波器により
検波する。この両信号を監視しながら方向調節を行い光
空間通信を行う。
In the optical space communication device having the above-described structure, the auxiliary signal generator generates an auxiliary signal having a frequency band different from that of the main signal, and the multiplexer combines the main signal with the main signal. -It is converted into an optical signal by the optical converter, and is transmitted from the transmission optical system of the transmitter as a light beam to the partner device. The received light beam from the other device is received by the receiving optical system of the receiver, the main signal and the auxiliary signal are separated by the optical branching device provided in the receiving optical system, and the main signal is converted by the first optical-electrical converter. It is converted into an electrical signal and detected by the main signal detector, and the auxiliary signal is converted to the second optical signal.
The electric signal is converted into an electric signal by the electric converter and detected by the auxiliary signal detector. Optical space communication is performed by adjusting the direction while monitoring both signals.

【0014】[0014]

【実施例】本発明を図1〜図3に図示の実施例に基づい
て詳細に説明する。図1は第1の実施例の構成図を示
し、主信号である送信電気信号の入力端子30の出力が
増幅器31を介して合波器32に接続され、更に合波器
32には主信号の周波数帯より低周波に設定された補助
信号を発生する補助信号発生器33の出力が接続されて
いる。合波器32の出力は半導体レーザー光源や発光ダ
イオード等の発光素子から成る電気−光変換器34に接
続され、電気−光変換器34の前方光路上には、レンズ
35、偏光ビームスプリッタ36、可動ミラー37が順
次に配列され、可動ミラー37の反射方向にコリメート
光学系38が配置され、対向する相手側装置と光ビーム
による送受信が行えるようになっている。そして、これ
らのレンズ35、偏光ビームスプリッタ36、可動ミラ
ー37、コリメート光学系38により送信光学系が形成
されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the embodiments shown in FIGS. FIG. 1 shows a block diagram of the first embodiment, in which an output of an input terminal 30 of a transmission electric signal which is a main signal is connected to a multiplexer 32 via an amplifier 31, and the multiplexer 32 is connected to the main signal. The output of an auxiliary signal generator 33 that generates an auxiliary signal set to a frequency lower than the frequency band of is connected. The output of the multiplexer 32 is connected to an electro-optical converter 34 including a semiconductor laser light source and a light emitting element such as a light emitting diode, and a lens 35, a polarization beam splitter 36, on the front optical path of the electro-optical converter 34. The movable mirrors 37 are sequentially arranged, and a collimating optical system 38 is arranged in the reflection direction of the movable mirror 37, so that transmission and reception with a light beam can be performed with an opposing device on the opposite side. The lens 35, the polarization beam splitter 36, the movable mirror 37, and the collimating optical system 38 form a transmission optical system.

【0015】偏光ビームスプリッタ36の反射方向に
は、ハーフミラーなどの光分岐器39、レンズ40、独
立に作動する4個のホトダイオードなどの受光素子から
成るQPD41が順次に配列され、光分岐器39の反射
方向には、レンズ42、アバランシェホトダイオードや
PINホトダイオードなどの高速応答型発光素子により
広帯域光信号を電気信号に変換する光−電気変換器43
が配置されている。そして、これらのコリメート光学系
38、可動ミラー37、偏光ビームスプリッタ36、光
分岐器43、レンズ40、42により受信光学系が形成
されている。
In the reflection direction of the polarization beam splitter 36, an optical splitter 39 such as a half mirror, a lens 40, and a QPD 41 composed of four independently operating light receiving elements such as photodiodes are sequentially arranged. In the direction of reflection of the light, an optical-electrical converter 43 for converting a wideband optical signal into an electric signal by a lens 42 and a fast response type light emitting element such as an avalanche photodiode or a PIN photodiode.
Is arranged. The collimating optical system 38, the movable mirror 37, the polarization beam splitter 36, the optical splitter 43, and the lenses 40 and 42 form a receiving optical system.

【0016】光−電気変換器43の出力は増幅器44を
介して出力端子45に接続され、増幅器44と出力端子
45の間に主信号検波器46が接続され、主信号検波器
46の信号が増幅器44にフィードバックされ自動ゲイ
ン制御が行われるようになっている。一方、QPD41
の出力は低周波の補助信号を検出する補助信号検波器4
7に接続され、補助信号検波器47の出力は可動ミラー
駆動回路48を介して可動ミラー37に接続されてい
る。また、主信号検波器46と補助信号検波器47の出
力は切換器49を介してレベルメータ50に接続され、
切換器49で両信号を切換えてモニタできるようになっ
ている。
The output of the optical-electrical converter 43 is connected to the output terminal 45 via the amplifier 44, the main signal detector 46 is connected between the amplifier 44 and the output terminal 45, and the signal of the main signal detector 46 is The gain is fed back to the amplifier 44 to perform automatic gain control. On the other hand, QPD41
The output of is an auxiliary signal detector 4 which detects a low frequency auxiliary signal.
7, the output of the auxiliary signal detector 47 is connected to the movable mirror 37 via the movable mirror drive circuit 48. The outputs of the main signal detector 46 and the auxiliary signal detector 47 are connected to the level meter 50 via the switch 49,
Both signals can be switched and monitored by the switch 49.

【0017】図2は補助信号検波器47の構成図を示
し、4つの検波部47a〜47dと7つの演算部51a
〜51gから形成されている。QPD41の4つの受光
素子41a〜41dの出力は、それぞれ補助信号検波器
47の4つの検波部47a〜47dに接続されており、
検波部47aの出力は演算部51aと51bに、検波部
47bの出力は演算部51bと51cに、検波部47c
の出力は演算部51cと51dに、検波部47dの出力
は演算部51aと51dにそれぞれ接続され、演算部5
1aと51cの出力は演算部51eに接続され、演算部
51bと51dの出力は演算部51fと51gに接続さ
れている。これによって、演算部51eの出力は上下方
向の誤差信号を、演算部51fの出力は左右方向の誤差
信号を、演算部51gの出力は光強度信号を表し、これ
らの信号は可動ミラー駆動回路48に送信されるように
なっている。
FIG. 2 is a block diagram of the auxiliary signal detector 47, showing four detectors 47a to 47d and seven calculators 51a.
It is formed from ˜51 g. The outputs of the four light receiving elements 41a to 41d of the QPD 41 are connected to the four detectors 47a to 47d of the auxiliary signal detector 47, respectively.
The output of the detection unit 47a is output to the calculation units 51a and 51b, and the output of the detection unit 47b is output to the calculation units 51b and 51c and the detection unit 47c.
Is connected to the calculation units 51c and 51d, and the output of the detection unit 47d is connected to the calculation units 51a and 51d.
The outputs of 1a and 51c are connected to the arithmetic unit 51e, and the outputs of the arithmetic units 51b and 51d are connected to the arithmetic units 51f and 51g. As a result, the output of the calculation unit 51e represents the vertical error signal, the output of the calculation unit 51f represents the horizontal error signal, and the output of the calculation unit 51g represents the light intensity signal, and these signals are the movable mirror drive circuit 48. It will be sent to.

【0018】入力端子30から送信用電気信号が入力さ
れると、増幅器31で所定レベルに増幅されて合波器3
2に至る。補助信号発生器33からは補助信号が発生さ
れ、合波器32において主信号と合波され、この信号は
電気−光変換器34において光信号に変換されて放射さ
れる。電気−光変換器34に半導体レーザー光源を使用
した場合はその光は偏光しており、偏波方向を紙面と水
平に設定すれば、その光はレンズ35で平行光とされて
偏光ビームスプリッタ36を透過し、可動ミラー37に
反射されてコリメート光学系38に至り、所定の拡がり
角の光ビームに変換されて対向する相手側装置に送信さ
れる。
When an electric signal for transmission is input from the input terminal 30, it is amplified to a predetermined level by the amplifier 31 and is added to the multiplexer 3.
Up to 2. An auxiliary signal is generated from the auxiliary signal generator 33, is combined with the main signal in the combiner 32, and this signal is converted into an optical signal in the electro-optical converter 34 and radiated. When a semiconductor laser light source is used for the electro-optical converter 34, the light is polarized, and if the polarization direction is set to be horizontal to the paper surface, the light is made parallel by the lens 35 and the polarization beam splitter 36 is used. Is transmitted to the collimating optical system 38, is reflected by the movable mirror 37, is converted into a light beam having a predetermined divergence angle, and is transmitted to the opposite device on the opposite side.

【0019】一方、相手側装置からの受信光ビームは送
信光ビームと同じ方向からコリメート光学系38に入射
し、この受信光ビームの偏波方向を紙面と垂直に設定す
れば、この光は偏光ビームスプリッタ36の貼り合わせ
面で反射され、送信光と分離されて光分岐器39に至
る。この受信光ビームの大部分は主信号として光分岐器
39で反射され、レンズ42を介して光−電気変換器4
3に集光されて電気信号に変換され、増幅器44で増幅
され出力端子45から出力される。この主信号は主信号
検波器46で検出され切換器49を切換えることにより
レベルメータ50に指示される。そして、この光の一部
は増幅器44にフィードバックされ、自動的に増幅器4
4のゲイン制御が行われる。
On the other hand, the received light beam from the other device enters the collimating optical system 38 from the same direction as the transmitted light beam, and if the polarization direction of this received light beam is set to be perpendicular to the paper surface, this light is polarized. The light is reflected by the bonding surface of the beam splitter 36, separated from the transmitted light, and reaches the optical splitter 39. Most of the received light beam is reflected by the optical branching device 39 as a main signal, and passes through the lens 42 to the opto-electric converter 4.
The light is condensed at 3, converted into an electric signal, amplified by the amplifier 44, and output from the output terminal 45. The main signal is detected by the main signal detector 46, and the level meter 50 is instructed by switching the switch 49. Then, a part of this light is fed back to the amplifier 44, and the amplifier 4 automatically
4 gain control is performed.

【0020】また、受信光ビームの一部は光分岐器39
を透過して補助信号となり、QPD41に集光してスポ
ットSを結像する。このスポットSは図2に示す4個の
独立した受光素子37a〜36dにそれぞれ分割して受
光され、この受光信号は受光素子41a〜41dのそれ
ぞれに接続された補助信号検波器47の検波部47a〜
47dにより、それぞれ検出値A〜Dとして検出され
る。この検出値A〜Dから演算部51a〜51dにおい
て、それぞれA+B、A+C、C+D、B+Dが求めら
れ、演算部51eにおいて(A+B)−(C+D)が算
出されて、スポットSの左右方向のずれを示す誤差信号
が出力され、演算部51fにおいて(A+C)−(B+
D)が算出されて、スポットSの上下方向のずれを示す
誤差信号が出力され、更に51eにおいて(A+C)+
(B+D)が算出され、スポットSの全体の光信号強度
が出力される。これらのずれ信号は可動ミラー駆動回路
48に送られ、スポットSが中心に至るように可動ミラ
ー37を回転させる制御が行われる。
A part of the received light beam is an optical branching device 39.
To become an auxiliary signal, which is focused on the QPD 41 to form an image of the spot S. The spot S is divided into four independent light receiving elements 37a to 36d shown in FIG. 2 to be received, and the received light signal is detected by the detection section 47a of the auxiliary signal detector 47 connected to each of the light receiving elements 41a to 41d. ~
47d detects the detected values A to D, respectively. A + B, A + C, C + D, and B + D are respectively calculated from the detected values A to D in the calculation units 51a to 51d, and (A + B)-(C + D) is calculated in the calculation unit 51e to shift the lateral deviation of the spot S. The error signal shown is output and (A + C)-(B +
D) is calculated, an error signal indicating the vertical shift of the spot S is output, and (A + C) + at 51e.
(B + D) is calculated, and the optical signal intensity of the entire spot S is output. These shift signals are sent to the movable mirror drive circuit 48, and control is performed to rotate the movable mirror 37 so that the spot S reaches the center.

【0021】なお、各信号A〜Dを検出してから加減算
を行って誤差信号等を得る代りに、先ず交流信号の状態
で加減算を行った後に、各信号を検出して誤差信号等を
得るようにすることもできる。
Instead of detecting each of the signals A to D and then performing addition and subtraction to obtain an error signal or the like, first, addition or subtraction is performed in the state of an AC signal, and then each signal is detected to obtain an error signal or the like. You can also do so.

【0022】本装置を設置する場合等における方向調節
操作は、レベルメータ50を切換器49により補助信号
検波器47側に切換えてから手動で行う。QPD41の
受光素子41a〜41dは受光角度範囲が広いので比較
的容易に光を受信でき、操作者はレベルメータ50の指
針が振れる所まで合わせることができる。このとき、光
−電気変換器43にはまだ光が入射せず主信号は受信さ
れていないが、QPD41が光を受信すれば自動追尾可
能な状態となるので、手動によりスイッチ操作等を行っ
て自動追尾を作動させるようにすれば、送信光ビームと
受信光ビームの角度が一致するように自動的に方向調節
が行われて、送信光ビームは相手側装置の方向を指し、
光−電気変換器43も光を受信する通常の通信状態とな
り方向調節は完了する。
The direction adjustment operation in the case where this apparatus is installed is manually performed after the level meter 50 is switched to the auxiliary signal detector 47 side by the switch 49. Since the light receiving elements 41a to 41d of the QPD 41 have a wide light receiving angle range, they can receive light relatively easily, and the operator can adjust the pointer of the level meter 50 up to the point where it moves. At this time, the light is not yet incident on the optical-electrical converter 43 and the main signal is not received, but if the QPD 41 receives the light, it becomes in a state where it can be automatically tracked. Therefore, a switch operation or the like is manually performed. If automatic tracking is activated, the direction of the transmitted light beam is automatically adjusted so that the angles of the transmitted light beam and the received light beam match, and the transmitted light beam points in the direction of the other device.
The optical-electrical converter 43 also enters a normal communication state for receiving light, and the direction adjustment is completed.

【0023】このように、方向調節が完了した後は振動
や外力等で装置の角度が変動しても、自動追尾機能が働
いてこの通信状態は維持されるので、主信号が確実に受
信されているかどうかを確認するために、切換器49を
主信号検波器46側に切換えて主信号の受信レベルをチ
ェックするようにする。なお、切換器49は手動で操作
してもよいし、自動追尾機能と連動させるようにしても
よい。
In this way, after the direction adjustment is completed, even if the angle of the device changes due to vibration, external force, etc., the automatic tracking function works to maintain this communication state, so that the main signal is reliably received. In order to confirm whether or not it is present, the switch 49 is switched to the main signal detector 46 side to check the reception level of the main signal. The switch 49 may be manually operated or may be linked with the automatic tracking function.

【0024】補助信号検波器47による補助信号のモニ
タは、コリメート光学系38のレンズに入射する光の強
度を示しており、主として相手側装置からの受信光ビー
ムが正常に自装置に到達しているかどうかを判定するた
めのものであり、これに対して主信号検波器46による
主信号のモニタは、自装置が正常に主信号を受信してい
るか否かを判断するためのものである。
The monitor of the auxiliary signal by the auxiliary signal detector 47 shows the intensity of the light incident on the lens of the collimating optical system 38, and the received light beam mainly from the partner device normally reaches its own device. The main signal detector 46 monitors the main signal to determine whether or not the main signal is normally received.

【0025】例えば、主信号のS/N比が低く受信状態
が悪いときに、補助信号からのモニタは相手側装置から
の到達ビーム強度が正常値を指示しているのに、主信号
からのモニタは主信号の受信レベルが正常値よりも低い
ことを指示しているような場合は、自装置の方向調節誤
差やQPD41と光−電気変換器43との間の位置調節
誤差等によって、光−電気変換器43に正常に光が入射
していないか、相手側装置への主信号入力に何らかの異
状があって、送信されてきた主信号自体のレベルが低い
等の原因が考えられる。
For example, when the S / N ratio of the main signal is low and the reception condition is bad, the monitor from the auxiliary signal indicates that the arrival beam intensity from the partner device is a normal value, but When the monitor indicates that the reception level of the main signal is lower than the normal value, the optical adjustment may be performed due to the direction adjustment error of the device itself or the position adjustment error between the QPD 41 and the opto-electric converter 43. -The light is not normally incident on the electrical converter 43, or there is something wrong with the input of the main signal to the other party device, and the level of the transmitted main signal itself may be low.

【0026】このように、切換器49によりレベルメー
タ50を切換えて、容易にこれらモニタの指示を比較す
ることができるので、装置の動作状態の評価を常時正確
に行い、異常時の診断にも容易に対処でき、装置の操作
性や信頼性が向上する。更に、本実施例では図4の従来
例で用いていた分波器13と補助信号検波器17が不要
となるため、装置のコストやサイズの点でも有利にな
る。
As described above, the level meter 50 can be switched by the switch 49 to easily compare the instructions of these monitors, so that the operating state of the apparatus can always be evaluated accurately, and the diagnosis at the time of abnormality can be performed. It can be dealt with easily and the operability and reliability of the device are improved. Further, in this embodiment, the demultiplexer 13 and the auxiliary signal detector 17 used in the conventional example of FIG. 4 are not required, which is advantageous in terms of the cost and size of the device.

【0027】図3は第2の実施例を示し、第1の実施例
に従来例に示した分波器13と補助信号検波器17を設
けた構成とし、その他は第1実施例と同様であり同一符
号は同一部材を示している。即ち、図1の第1の実施例
における光−電気変換器43と増幅器44の間に、周波
数により主信号と補助信号を分離する分波器52が設け
られ、分波器52の出力は補助信号検波器53を介して
切換器54に接続されている。切換器54は第1の実施
例の切換器49に補助信号検波器53からの端子が追加
して設けられて3点切換えとされている。
FIG. 3 shows a second embodiment, which is the same as the first embodiment except that the demultiplexer 13 and the auxiliary signal detector 17 shown in the conventional example are provided in the first embodiment. The same reference numeral indicates the same member. That is, a demultiplexer 52 that separates a main signal and an auxiliary signal according to frequency is provided between the opto-electric converter 43 and the amplifier 44 in the first embodiment of FIG. 1, and the output of the demultiplexer 52 is an auxiliary. It is connected to the switch 54 via the signal detector 53. The switch 54 is provided with an additional terminal from the auxiliary signal detector 53 in addition to the switch 49 of the first embodiment, so that the switch 54 is a three-point switch.

【0028】かくすることにより、光−電気変換器43
に入射する光強度をモニタすることが可能となり、QP
D41に入射する光強度が正常で主信号のレベルが低下
しているような場合でも、調節誤差等により光−電気変
換器43に正常に光が入射していないなどの自装置側の
原因と、主信号に異状があるなどの相手装置側の原因と
を判別することができ、動作状態の評価をより正確に行
うことができる。
By doing so, the optical-electrical converter 43 is formed.
It becomes possible to monitor the intensity of light incident on
Even when the intensity of light incident on D41 is normal and the level of the main signal is lowered, there is a cause on the device side such that light is not normally incident on the optical-electrical converter 43 due to an adjustment error or the like. It is possible to determine the cause of the partner device such as an abnormality in the main signal, and more accurately evaluate the operation state.

【0029】なお、第1、第2の実施例においては、補
助信号検波器47、53と主信号検波器46からの信号
をレベルメータ50でモニタしているが、表示灯や文字
等による表示や音等を利用した方法でモニタしてもよ
い。
In the first and second embodiments, the signals from the auxiliary signal detectors 47 and 53 and the main signal detector 46 are monitored by the level meter 50. You may monitor by the method using sound, sound, etc.

【0030】また、操作者がモニタの指示を見て又は聞
いて操作する代りに、CPU等を装備して操作を自動化
する装置を形成し、モニタ信号を制御用信号として使用
して、スキャンニングなどにより自動的に受信光を補足
した後に、自動追尾動作に移るようにプログラムされた
シーケンスに従って自動運転を行ったり、CPUで異常
を判断した後で処理ルーチンに移って自動運転を行うよ
うにしてもよい。
Instead of the operator watching or listening to the instruction on the monitor to operate, a device for automating the operation is equipped with a CPU or the like, and the monitor signal is used as a control signal for scanning. After automatically supplementing the received light with, for example, the automatic operation is performed according to the sequence programmed to move to the automatic tracking operation, or after the CPU determines the abnormality, the operation routine is moved to the automatic operation. Good.

【0031】更に、これらのモニタ信号は装置内で利用
するだけでなく、別の場所に伝送し、遠隔操作により手
動又は自動で運転する場合の制御用信号として利用する
ことも可能である。
Further, these monitor signals can be used not only in the apparatus but also as a control signal when transmitted to another place and operated manually or automatically by remote control.

【0032】[0032]

【発明の効果】以上説明したように本発明に係る光空間
通信装置は、相手側装置からの受信光を光分岐器により
分離し、主信号を第1の光−電気変換器で検出して主信
号レベルをモニタし、補助信号を第2の光−電気変換器
で検出して誤差信号をモニタすることにより、方向調節
の操作性や操作性が改善され、装置の動作状態の監視が
容易で確実なものとなり、更にコストや容量において有
効な装置を形成することができる。
As described above, in the optical space communication device according to the present invention, the received light from the other device is separated by the optical branching device, and the main signal is detected by the first optical-electrical converter. By monitoring the main signal level and detecting the auxiliary signal by the second optical-electrical converter to monitor the error signal, the operability and the operability of direction adjustment are improved, and the operating state of the device can be easily monitored. This makes it possible to form a device that is more reliable in terms of cost and capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例の構成図である。FIG. 1 is a configuration diagram of a first embodiment.

【図2】補助信号検波器の構成図である。FIG. 2 is a configuration diagram of an auxiliary signal detector.

【図3】第2の実施例の構成図である。FIG. 3 is a configuration diagram of a second embodiment.

【図4】従来例の構成図である。FIG. 4 is a configuration diagram of a conventional example.

【図5】光−電気変換器上のスポットの説明図である。FIG. 5 is an explanatory diagram of spots on an optical-electrical converter.

【符号の説明】[Explanation of symbols]

32 合波器 33 補助信号発生器 34 電気−光変換器 36 偏光ビームスプリッタ 37 可動ミラー 38 コリメート光学系 39 光分岐器 41、43 光−電気変換器 46 主信号検波器 47、53 補助信号検波器 48 ミラー駆動回路 49、54 切換器 50 レベルメータ 52 分波器 32 multiplexer 33 auxiliary signal generator 34 electric-optical converter 36 polarization beam splitter 37 movable mirror 38 collimating optical system 39 optical splitter 41, 43 optical-electrical converter 46 main signal detector 47, 53 auxiliary signal detector 48 mirror drive circuit 49, 54 switching device 50 level meter 52 demultiplexer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 主信号とは異なる周波数帯の補助信号を
生成する補助信号発生器・前記主信号及び補助信号を合
波する合波器・該合波器から出力される合波信号を光信
号に変換する電気−光変換器・前記主信号を光ビーム状
に変換して送出する送信光学系を有する送信機と、光ビ
ーム状の光信号を受光する受信光学系・前記光信号を電
気信号に変換する光−電気変換器を有する受信機とを備
えた光空間通信装置において、前記受信光学系に第1の
光−電気変換器及び第2の光−電気変換器の光路を分岐
する光分岐器を設け、前記受信機に前記第1の光−電気
変換器で電気信号に変換した主信号を検波する主信号検
波器と前記第2の光−電気変換器で電気信号に変換した
補助信号を検波する補助信号検波器とを設けたことを特
徴とする光空間通信装置。
1. An auxiliary signal generator for generating an auxiliary signal in a frequency band different from that of a main signal, a multiplexer for combining the main signal and the auxiliary signal, and an optical combined signal output from the multiplexer. Electric-optical converter for converting into a signal, a transmitter having a transmitting optical system for converting the main signal into a light beam and transmitting the same, a receiving optical system for receiving a light beam-like optical signal, and an electric signal for the optical signal In an optical space communication device including a receiver having an optical-electrical converter for converting into a signal, an optical path of a first optical-electrical converter and a second optical-electrical converter is branched to the receiving optical system. An optical branching device is provided, and a main signal detector that detects a main signal converted into an electric signal by the first optical-electrical converter is provided in the receiver, and an electric signal is converted by the second optical-electrical converter. Optical space communication provided with an auxiliary signal detector for detecting an auxiliary signal apparatus.
【請求項2】 前記受信機は、前記第1の光−電気変換
器で変換された電気信号を主信号及び補助信号に分離す
る分波器と、該分波器で分離された前記主信号を検波す
る主信号検波器と、前記補助信号を検波する補助信号検
波器とを備えた請求項1に記載の光空間通信装置。
2. The receiver includes a demultiplexer for separating the electric signal converted by the first optical-electrical converter into a main signal and an auxiliary signal, and the main signal separated by the demultiplexer. The optical space communication device according to claim 1, further comprising a main signal detector that detects the auxiliary signal and an auxiliary signal detector that detects the auxiliary signal.
【請求項3】 前記送信光学系及び受信光学系は共通の
コリメート光学系を有する請求項1に記載の光空間通信
装置。
3. The optical space communication device according to claim 1, wherein the transmitting optical system and the receiving optical system have a common collimating optical system.
【請求項4】 前記第2の光−電気変換器は複数の受光
素子により構成し、これら複数の受光素子からの電気信
号に基づいて光ビームの送信方向を変化させる光偏向器
を備えた請求項1に記載の光空間通信装置。
4. The second optical-electrical converter comprises an optical deflector configured by a plurality of light receiving elements and changing the transmission direction of a light beam based on electric signals from the plurality of light receiving elements. Item 1. The optical space communication device according to Item 1.
【請求項5】 前記主信号検波器と前記補助信号検波器
の何れか又は双方の検波出力信号をモニタするレベルメ
ータを有する請求項1に記載の光空間通信装置。
5. The optical space communication device according to claim 1, further comprising a level meter for monitoring a detection output signal of either or both of the main signal detector and the auxiliary signal detector.
JP6312390A 1994-11-24 1994-11-24 Optical space communication device Pending JPH08149076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6312390A JPH08149076A (en) 1994-11-24 1994-11-24 Optical space communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6312390A JPH08149076A (en) 1994-11-24 1994-11-24 Optical space communication device

Publications (1)

Publication Number Publication Date
JPH08149076A true JPH08149076A (en) 1996-06-07

Family

ID=18028680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6312390A Pending JPH08149076A (en) 1994-11-24 1994-11-24 Optical space communication device

Country Status (1)

Country Link
JP (1) JPH08149076A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006050029A (en) * 2004-07-30 2006-02-16 Victor Co Of Japan Ltd Optical radio transmitter
JP2009260707A (en) * 2008-04-17 2009-11-05 Fujifilm Corp Laser communication apparatus, laser communication system, and operation control method of the same
WO2021225046A1 (en) * 2020-05-07 2021-11-11 Hapsモバイル株式会社 Optical communication device, program, system, and optical communication method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006050029A (en) * 2004-07-30 2006-02-16 Victor Co Of Japan Ltd Optical radio transmitter
JP4513057B2 (en) * 2004-07-30 2010-07-28 日本ビクター株式会社 Optical transmission system, optical wireless transmitter, and optical transmission method
JP2009260707A (en) * 2008-04-17 2009-11-05 Fujifilm Corp Laser communication apparatus, laser communication system, and operation control method of the same
WO2021225046A1 (en) * 2020-05-07 2021-11-11 Hapsモバイル株式会社 Optical communication device, program, system, and optical communication method
JP2021177595A (en) * 2020-05-07 2021-11-11 Hapsモバイル株式会社 Optical communication device, program, system, and optical communication method
US12096164B2 (en) 2020-05-07 2024-09-17 Softbank Corp. Optical communication device, computer-readable storage medium, system, and optical communication method

Similar Documents

Publication Publication Date Title
EP0653852B1 (en) Free space optical communication system
JP2871702B2 (en) Integrated fiber optical transceiver
JP3311187B2 (en) Bidirectional optical space transmission equipment
US20020131121A1 (en) Transceiver, system, and method for free-space optical communication and tracking
US6507424B2 (en) Optical space communication apparatus
US6493490B1 (en) Method and apparatus for receiving and aligning an optical communications beam with an integrated
US6968133B2 (en) Optical free-space communication apparatus
US6970651B1 (en) High-sensitivity tracking in free-space optical communication systems
US20120230701A1 (en) Optical space communication device, communication method thereof and optical space communication system
JPH08149076A (en) Optical space communication device
JP3902876B2 (en) Optical space communication device
JPS6047524A (en) Optical receiver
JP2001223644A (en) Inter-satellite connection method and system
JP3206993B2 (en) Bidirectional optical space transmission equipment
JPH08223117A (en) Optical space transmission equipment
JP3263263B2 (en) Optical space communication device
JP2850244B2 (en) Optical space communication device
JP2004119721A (en) Wavelength locker element
JP7037371B2 (en) Optical monitor circuit
JPH04119022A (en) Receiver for optical space communication
JP2007049290A (en) Optical space communication device
JP2704987B2 (en) Polarization diversity optical receiving system
JP3368118B2 (en) Optical space communication device
JPH0936809A (en) Optical communication equipment
JPH08163034A (en) Optical communication device