JPS6047524A - Optical receiver - Google Patents

Optical receiver

Info

Publication number
JPS6047524A
JPS6047524A JP58155089A JP15508983A JPS6047524A JP S6047524 A JPS6047524 A JP S6047524A JP 58155089 A JP58155089 A JP 58155089A JP 15508983 A JP15508983 A JP 15508983A JP S6047524 A JPS6047524 A JP S6047524A
Authority
JP
Japan
Prior art keywords
light
signal
linearly polarized
local
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58155089A
Other languages
Japanese (ja)
Inventor
Susumu Machida
進 町田
Fumio Kanetani
金谷 文夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58155089A priority Critical patent/JPS6047524A/en
Publication of JPS6047524A publication Critical patent/JPS6047524A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/64Heterodyne, i.e. coherent receivers where, after the opto-electronic conversion, an electrical signal at an intermediate frequency [IF] is obtained
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/614Coherent receivers comprising one or more polarization beam splitters, e.g. polarization multiplexed [PolMux] X-PSK coherent receivers, polarization diversity heterodyne coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/615Arrangements affecting the optical part of the receiver
    • H04B10/6151Arrangements affecting the optical part of the receiver comprising a polarization controller at the receiver's input stage

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To prevent deterioration in S/N ratio and improve transmission performance by making signal light and local oscillation light coincident in electric field direction through polarization, demultiplexing, and multiplexing, performing photodetection and summing up voltages, and changing local oscillation in polarization state. CONSTITUTION:A polarizing demultiplexer and multiplexer 7 separates signal light 11 and local oscillation light 12 into linear polarized light beams 11p, 12s and 11s, 12p which cross each other at right angles, and they are multiplexed into projection light beams 13 and 14. Further, polarizers 9 and 9' make two kinds of linear polarized light beams of the projection light beams 13 and 14 coincident in electric field direction, and a couple of photodetectors 5 and 5' detect individually the projection light beams 13 and 14 which are coincident in electric field direction. Then, a signal processing circuit 10 sums up the voltages of the detectors 5 and 5', and a polarizing modulator 8 is interposed between a local oscillation power source 3 and the multiplexer 7 to change the polarization state of the local oscillation light 12 so that the output of the circuit 10 is maximum.

Description

【発明の詳細な説明】 本発明は光受信装置に関し、光ヘテロダイン方式のもの
に適用して有用である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical receiving device, and is useful when applied to an optical heterodyne type device.

第1図は従来の光受信装置を示す構成図である。同図に
おいて1は光伝送路として使う光ファイバ、2は偏光補
償回路、3は局発光源、4は光ファイバ1から入力され
た信号光と局発光源3の局発光とを合成する合波器、5
は光検波器、6に信号処理回路である。一般に、光ファ
イバ1の信号光の偏光状態は光ファイバの温度、外力等
によって変動するので直接局発光で光検波すると検波出
力が変動する。そこで従来技術では信号光の偏光状態を
検出し、偏光補償回路2で局発光の偏光状態と一致させ
るJ:うに17ている。
FIG. 1 is a block diagram showing a conventional optical receiver. In the figure, 1 is an optical fiber used as an optical transmission line, 2 is a polarization compensation circuit, 3 is a local light source, and 4 is a multiplexer that combines the signal light input from the optical fiber 1 and the local light from the local light source 3. vessel, 5
6 is a photodetector, and 6 is a signal processing circuit. In general, the polarization state of the signal light in the optical fiber 1 varies depending on the temperature of the optical fiber, external force, etc., and therefore, when optically detected using direct local light, the detection output varies. Therefore, in the prior art, the polarization state of the signal light is detected and the polarization compensation circuit 2 matches the polarization state of the local light.

ところでかかる従来技術では信号光の偏光状態を検出す
るのに信号光の一部を用いるため、光検波器5に入射す
る光量が減少し、SN比が劣化する。また、偏光補償回
路2を通過するので信号光の減衰が生じる。さらに、信
号光の偏光状態は光ファイバ1の長さが長くなるほど大
きく変動し、かつ変動周期が短かくなる。したがって、
偏光補償回路2には高速性と大きな補償範囲が要求され
る。しかし高速性及び大きな補償範囲を同時に充足する
ことはできなかった。
However, in this conventional technique, since a part of the signal light is used to detect the polarization state of the signal light, the amount of light incident on the optical detector 5 decreases, and the S/N ratio deteriorates. Furthermore, since the signal light passes through the polarization compensation circuit 2, attenuation of the signal light occurs. Furthermore, the longer the length of the optical fiber 1, the more the polarization state of the signal light fluctuates, and the fluctuation period becomes shorter. therefore,
The polarization compensation circuit 2 is required to have high speed and a large compensation range. However, it has not been possible to simultaneously satisfy high speed and a large compensation range.

即ち、高速性を持った偏光補償回路には電気光学効果、
磁気光学効果を用いた物があるが補償範囲は小さい。一
方機械的に偏光補償を行なうことも可能であるがこの場
合には高速性が失なわれるのである。更に出力信号のS
N比は合波器4に牛透鏡、導波路形合波器等を用いた場
合、合波における損失が3dBとなるので、信号光電力
ヲPS、局発光電力をPLとし、局発光電力が十分大き
くショット雑音限界とするとこの従来の構成におけるS
NをSNoとすると 5No==−!−Ps−!−PL/’Pt、Nst =
Ps/2N2 2 2 となる。ここでNstはショットノイズ成分である。し
たがって、偏光補償回路2等で信号光成分Psが減衰す
ると8N劣化の原因になる。
In other words, a high-speed polarization compensation circuit uses electro-optic effects,
There are products that use the magneto-optical effect, but the compensation range is small. On the other hand, it is also possible to perform polarization compensation mechanically, but in this case, high speed performance is lost. Furthermore, the output signal S
For the N ratio, when a transparent mirror, a waveguide type multiplexer, etc. are used for the multiplexer 4, the loss in multiplexing is 3 dB, so the signal optical power is ``PS'', the local optical power is PL, and the local optical power is PL. If the shot noise limit is sufficiently large, S in this conventional configuration is
If N is SNo, 5No==-! -Ps-! -PL/'Pt, Nst =
It becomes Ps/2N2 2 2 . Here, Nst is a shot noise component. Therefore, if the signal light component Ps is attenuated by the polarization compensation circuit 2 or the like, it causes 8N deterioration.

上述したように、従来技術では偏光補償を行なうことに
よって8N劣化が生じると同時に偏光補償回路2の高速
性、補償範囲が狭まいという欠点がある。
As described above, the prior art has disadvantages in that 8N deterioration occurs due to polarization compensation, and at the same time, the polarization compensation circuit 2 has a high speed and a narrow compensation range.

本発明は上記従来技術に銖み、光受信装置に入力される
信号光の偏光状態に依存せず、高いSN比で光検波を行
う光受信装置を提供することを目的とする。かかる目的
を達成する本発明の第一の構成は、光伝送路から入力さ
れた信号光を、局発光源の局発光で光検波して信号を得
る光受信装置において、信号光及び局発光を夫々互いに
直交する直線偏光に分離するとともに、信号光のうち垂
直成分の直線偏光と局発光のうち水平成分の直線偏光と
を合成して第1の出射光とし且つ信号光のうち水平成分
の直線偏光と局発光のうち垂直成分の直線偏光とを合成
して第2の出射光とする偏光分離合成器と、第1の出射
光に含まれる2種の直線偏光の電界方向を一致させる第
1の偏光子と、第2の出射光に含まれる2種の直線偏光
の電界方向を一致させる第2の偏光子と、電界方向が一
致した第1及び第2の出射光を夫々個別に光検波する一
対の光検波器と、この一対の光検波器からの出力を電圧
加算する信号処理回路と、前記局発光源と偏光分離合成
器の間に挿入されておシ前記信号処理回路の出力が最大
になるように局発光の偏光状態を変化させる偏光変調器
と、を備えたことを特徴とする。また本発明の第二の構
成は、光伝送路から入力された信号光を、局発光源の局
発光で光検波して信号を得る光受信装置において、信号
光及び局発光を夫々分離するとともに分離した一方の信
号光と分離した一方の局発光を合成して第1の出射光と
して送出し且つ分離した他方の信号光と分離した他方の
局発光を合成して第2の出射光として送出する分波器と
、第1の出射光を受けその信号光のうちの垂直成分の直
線偏光及びその局発光のうちの水平成分の直線偏光のみ
を両直線偏光の電界方向が一致した状態で通過させる第
1の偏光子と、第2の出射光を受けその信号光のうちの
水平成分の直線偏光及びその局発光のうちの垂直成分の
直線偏光のみを両直線偏光の電界方向が一致した状態で
通過させる第2の偏光子と、第1及び第2の偏光子を通
過してきた直線偏光を夫々個別に光検波する一対の光検
波器と、この一対の光検波器からの出力を電圧加算する
信号処理回路と、前記局発光源と偏光分離合成器の間に
挿入されておル前記信号処理回路の出力が最大になるよ
うに局発光の偏光状態を変化させる偏光変調器と、全備
えたことを特徴とする。
An object of the present invention is to provide an optical receiver that performs optical detection with a high signal-to-noise ratio without depending on the polarization state of signal light input to the optical receiver. A first configuration of the present invention to achieve such an object is an optical receiving device that obtains a signal by optically detecting a signal light input from an optical transmission line using the local light of a local light source. The linearly polarized vertical component of the signal light is combined with the linearly polarized horizontal component of the local light to form the first output light, and the horizontal component of the signal light is linearly polarized. a polarization separation/synthesizer that combines the polarized light and the linearly polarized vertical component of the local light to produce a second output light; and a first unit that matches the electric field directions of the two types of linearly polarized light included in the first output light a second polarizer that matches the electric field directions of the two types of linearly polarized light included in the second output light, and individually optically detects the first and second output lights with the same electric field directions. A pair of optical detectors are inserted between the local light source and the polarization splitter/combiner, and the output of the signal processing circuit is inserted between the local light source and the polarization splitter/combiner. The present invention is characterized by comprising a polarization modulator that changes the polarization state of the local light so as to maximize the polarization state of the local light. Further, the second configuration of the present invention is an optical receiving device that obtains a signal by optically detecting the signal light input from the optical transmission line using the local light of the local light source, in which the signal light and the local light are separated respectively. One of the separated signal lights and one of the separated local lights are combined and sent out as a first emitted light, and the other separated signal light and the other separated local light are combined and sent out as a second outgoing light. A splitter that receives the first emitted light and passes only the linearly polarized vertical component of the signal light and the linearly polarized horizontal component of the local light with the electric field directions of both linearly polarized lights being the same. A first polarizer receives a second output light and converts only the linearly polarized horizontal component of the signal light and the linearly polarized vertical component of the local light into a state in which the electric field directions of both linearly polarized lights match. a second polarizer that passes through the polarizer, a pair of photodetectors that individually photodetect the linearly polarized light that has passed through the first and second polarizers, and a voltage summation of the outputs from the pair of photodetectors. a polarization modulator that is inserted between the local light source and the polarization splitter/combiner and changes the polarization state of the local light so that the output of the signal processing circuit is maximized; It is characterized by:

以下本発明の実施例を図面に基づき詳細に説明する。Embodiments of the present invention will be described in detail below based on the drawings.

第2図は本発明の実施例を示す。同図において1は光フ
ァイバ、3は局発光源、5,5′は光検波器、7は偏光
分離合成器、8は偏光変調器、9.9′は偏光子、10
は信号処理回路である。
FIG. 2 shows an embodiment of the invention. In the figure, 1 is an optical fiber, 3 is a local light source, 5 and 5' are optical detectors, 7 is a polarization splitter/combiner, 8 is a polarization modulator, 9.9' is a polarizer, and 10
is a signal processing circuit.

第3図は本実施例に用いる偏光分離合成器7の動作を説
明するための説明図である。同図において11は信号光
、12は局発光、13 、1.4にそれぞれ出射光、実
線11p、12pは偏光分離合成器7を直通する信号光
及び局発光の垂直成分の直線偏光、破線113,128
は偏光分離合成器7で反射される信号光及び局発光の水
平成分の直線偏光である。
FIG. 3 is an explanatory diagram for explaining the operation of the polarization splitter/combiner 7 used in this embodiment. In the figure, 11 is the signal light, 12 is the local light, 13 and 1.4 are the emitted lights, respectively, solid lines 11p and 12p are the linearly polarized vertical components of the signal light and the local light that pass directly through the polarization splitter/combiner 7, and the broken line 113 ,128
is the linearly polarized horizontal component of the signal light and local light reflected by the polarization splitter/combiner 7.

次にかかる実施例の動作を説明する。光ファイバ1から
の光受信装置への信号光11は偏光分離合成器7で入射
光の偏光状態に応じて直線偏光lip、IIsに偏光分
離され出射光13゜14になる。一方、局発光も同様に
直線偏光12p12sに偏光分離されて出射光13.1
4になる。したがって出射光13には信号光の直線偏光
lipと局発光の直線偏光12gが゛、また出射光14
には信号光の直線偏光IIsと局発光の直線偏光12p
が含まれている。とのとき、偏光分離合成器7の出射光
13では直線偏光11p。
Next, the operation of this embodiment will be explained. The signal light 11 from the optical fiber 1 to the optical receiving device is polarized by the polarization splitter/combiner 7 into linearly polarized light LIP and IIs according to the polarization state of the incident light, resulting in output light 13°14. On the other hand, the local light is similarly polarized and separated into linearly polarized light 12p12s and output light 13.1
It becomes 4. Therefore, the output light 13 includes the linearly polarized light lip of the signal light and the linearly polarized light 12g of the local light, and the output light 14
The linearly polarized light IIs of the signal light and the linearly polarized light 12p of the local light are
It is included. In this case, the output light 13 of the polarization splitter/combiner 7 is linearly polarized light 11p.

12sが互に直交しているので、直線偏光11p。12s are orthogonal to each other, so linearly polarized light 11p.

12sの電界方向に対し互に45°の角度になるように
偏光子9を設は電界方向を一致させている。一方出射光
14でも同様に偏光子9′を設けて直線偏光11s、1
2pの電界方向を一致させている。この電界方向が一致
した出射光13゜14を光検波器5で光検波し、電気信
号を得る。
The polarizers 9 are arranged at an angle of 45° with respect to the electric field direction of 12s, so that the electric field directions coincide with each other. On the other hand, a polarizer 9' is similarly provided for the output light 14, so that the linearly polarized light 11s, 1
The electric field direction of 2p is made to match. The emitted light 13° 14 having the same electric field direction is optically detected by a photodetector 5 to obtain an electric signal.

それぞれの光検波器5,5′の信号を信号処理回路10
に導き、電圧加算して出力信号を得る。
The signals of the respective photodetectors 5 and 5' are processed by a signal processing circuit 10.
and add the voltages to obtain the output signal.

ここで光検波器に入射する信号光電力をPs。Here, the signal optical power incident on the photodetector is Ps.

局発光電力をPL、光検波器変換効率をKとすると光検
波器出力電力Sは S=に@PsIIPL となる。一般的に光ファイバを長距離伝送した後の出射
光(光受信装置入射光)の偏光状態は変動しているので
偏光分離合成器7で分離された信号光成分も変動するの
で光検波器出力Sも変動する。ここで、入射光電力で規
格化した偏光分離合成器7の出射光13.14の電力を
Aおよび(1−A)、同様に局発光の各電力をBおよび
(1−B)とすると、信号処理回路1゜で電圧710算
された出力電圧を最大にする条件はA=Bとなシ、その
出力電圧に一定になる。したがって出力信号電圧が常に
最大になるように出力電圧の一部を、局発光源3と偏光
分離合成器7間に挿入されている偏光変調器8に帰還さ
せ、局発光の偏光状態を変えて分配比Bを制御すれば入
射光の偏光状態によらず常に出力電圧全一定かつ最大に
保つ事ができる。ここで入射光の偏光状態の変動幅は非
常に太きいが、局発光をBおよび(1−B)に分配する
範囲はoくEl<1であるから局発光の偏光状態は直線
偏光で0〜90度の範囲内で良い。これには電気光学効
果を用いた偏光変調器が使用でき、小形化、高速化、低
損失化ができる。
When the local light power is PL and the photodetector conversion efficiency is K, the photodetector output power S becomes S=@PsIIPL. Generally, after long-distance transmission through an optical fiber, the polarization state of the output light (light incident on the optical receiver) changes, so the signal light component separated by the polarization splitter/combiner 7 also changes, so the optical detector output S also changes. Here, if the power of the output light 13.14 of the polarization splitter/combiner 7 normalized by the incident light power is A and (1-A), and similarly, each power of the local light is B and (1-B), The condition for maximizing the output voltage calculated by voltage 710 in the signal processing circuit 1° is A=B, and the output voltage becomes constant. Therefore, a part of the output voltage is fed back to the polarization modulator 8 inserted between the local light source 3 and the polarization splitter/combiner 7 to change the polarization state of the local light so that the output signal voltage is always the maximum. By controlling the distribution ratio B, it is possible to always keep the output voltage constant and maximum regardless of the polarization state of the incident light. Here, the fluctuation range of the polarization state of the incident light is very wide, but the range in which the local light is distributed to B and (1-B) is ok and El<1, so the polarization state of the local light is linearly polarized light and is 0. It is good within the range of ~90 degrees. A polarization modulator using an electro-optic effect can be used for this purpose, making it possible to reduce the size, speed, and loss.

本実施例においては信号光の損失は偏光子9゜9′を各
偏光方向に対して45度に設テしたことによる3dB(
1)であシ、従来形の合波器4で受ける損失と回当であ
る。また、偏光分離合成器7、偏光子9,9′の通過損
失もわずかである。
In this example, the loss of the signal light is 3 dB(
1) This is the loss and recirculation caused by the conventional multiplexer 4. Furthermore, the transmission loss of the polarization splitter/combiner 7 and the polarizers 9 and 9' is small.

したがって、前記、偏光分離合成器7の信号光に対する
分配比Aを用いて8N比を計算すると合成出力のSN比
は次のようになる。
Therefore, when the 8N ratio is calculated using the distribution ratio A for the signal light of the polarization splitter/combiner 7, the SN ratio of the combined output is as follows.

ここでA−=1.−1:たはA=Oのとき、すなわち信
号光が偏光分離合成器7で分離される時に、一方に全光
量が分配された場合には S/N = Ps/2Nst = SN。
Here A-=1. -1: or when A=O, that is, when the signal light is separated by the polarization splitter/combiner 7 and the total amount of light is distributed to one side, S/N = Ps/2Nst = SN.

となシ従来の光受信装置で信号光損失が無い時のSN比
に相当する。また、分配比Aが百のときは87N = 
28Noとなシ、3dBの改善が行われ、偏光子9,9
′で受けた信号光の損失分を補正できる。
This corresponds to the S/N ratio when there is no loss of signal light in a conventional optical receiver. Also, when the distribution ratio A is 100, 87N =
28No., 3dB improvement was made, polarizer 9,9
It is possible to compensate for the loss of the signal light received at '.

なお本実施例に係る光受信装置の構成部品である偏光分
離合成器7、偏光変調器8、偏光子9は光導波路を用い
て光IC化が可能であシ、小形、高信頼化が達成できる
It should be noted that the polarization splitter/combiner 7, the polarization modulator 8, and the polarizer 9, which are the components of the optical receiver according to this embodiment, can be made into optical ICs using optical waveguides, achieving small size and high reliability. can.

第4図は本発明の他の実施例を示す図で第2図の偏光分
離合成器7の代シに信号光、局発光を共に等分する分波
器15で構成した例である。
FIG. 4 shows another embodiment of the present invention, in which the polarization splitter/combiner 7 of FIG. 2 is replaced by a demultiplexer 15 that equally divides both the signal light and the local light.

この構成例での動作は分波器15で信号光11および局
発光12はその偏光状態に関係なく等分される。そこで
、偏光子9“ g ///を信号光11、局発光12に
対して互に直交する成分が通過するように設置する。つ
まシ偏光子9′からは電界方向が一致した直線偏光11
p、12sが出力され、偏光子9#からは電界方向が一
致した直線偏光11 s * 12 pが出力されるの
である。このようにすると偏光子g // 、 g I
I/の出力光は、第2図の偏光子9.9′の出力光と同
じになる。したがって以後第2図と同じ作用を行なえば
、入射偏光に関係な(最大、一定の出力信号が得られる
。またSN比も同じ値になる。
In operation in this configuration example, the signal light 11 and the local light 12 are divided into equal parts by the demultiplexer 15 regardless of their polarization states. Therefore, the polarizer 9'g/// is installed so that components orthogonal to each other with respect to the signal light 11 and the local light 12 pass through.The linearly polarized light 11 with the same electric field direction is emitted from the polarizer 9'.
P, 12s are outputted, and linearly polarized light 11s*12p with the same electric field direction is outputted from polarizer 9#. In this way, the polarizers g //, g I
The output light of I/ will be the same as the output light of polarizer 9.9' in FIG. Therefore, if the same operation as shown in FIG. 2 is carried out from now on, a constant (maximum) output signal will be obtained that is independent of the incident polarization. Also, the S/N ratio will be the same value.

なお、分配比Aが1か0に近い入射偏光が持続した場合
にはSN比が3dB劣化する。この様な場合には、無限
に回転する半波長板等を第2図の実施例では光ファイバ
1と偏光分離合成器7の間に、第4図の実施例では光フ
ァイバーと分波器15との間に挿入し、分配比Aが。−
になるように制御すればSN比の劣化を補正することが
できる。このような制御は定常的に分配比Aが1かOに
近い時のみ行えば良(高速性は必要としない1、 以上実施例とともに具体的に説明したように、本発明に
よれば受信する信号光に対する処理を(、Tら行なわず
、信°号光の偏光状態の無限の変動に対し高速に応答し
て出力信号を常に一定かつ最大値に保つことができる。
Note that if the incident polarization with a distribution ratio A of 1 or close to 0 persists, the SN ratio deteriorates by 3 dB. In such a case, an infinitely rotating half-wave plate or the like is installed between the optical fiber 1 and the polarization splitter/combiner 7 in the embodiment shown in FIG. 2, and between the optical fiber and the demultiplexer 15 in the embodiment shown in FIG. Insert between and the distribution ratio A is. −
If the control is carried out so that Such control only needs to be performed regularly when the distribution ratio A is close to 1 or O (high speed is not required). Without performing any processing on the signal light, it is possible to respond quickly to infinite fluctuations in the polarization state of the signal light and keep the output signal constant and at a maximum value.

また、信号光の損失が従来形に比べて小さいので出力信
号のSN比が改善される。このような効果から光へテロ
ダイン伝送方式などで受信出力信号が信号光の偏光状態
に依存するような場合には本発明による光受信装置を用
いれば、高性艷な伝送方式が実現できると共に、伝送路
として使用する光ファイバの偏光%性に対する要求が緩
和される利点がある。
Furthermore, since the loss of signal light is smaller than that of the conventional type, the SN ratio of the output signal is improved. Because of these effects, when the received output signal is dependent on the polarization state of the signal light in optical heterodyne transmission systems, etc., by using the optical receiver according to the present invention, a high-performance transmission system can be realized, and the transmission path can be This has the advantage that the requirements for the polarization percentage of the optical fiber used as an optical fiber are relaxed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光受信装置を示す構成図、第2図は第1
の発明の実施例に係る光受信装置を示す構成図、第3図
は本実施例に用いる偏光分離合成器の偏光状態を説明す
るための説明図、第4図は第2の発明の実施例を示す構
成図である。 図 面 中 1は光ファイバ、2は偏光補償回路、3は局発光源、4
は合波器、5.5′は光検波器、6は信号処理回路、7
は偏光分離合成器、8は偏光変調器、9.9’、9”、
9″は偏光子、10は信号処理回路、11は信号光、l
ip、118は信号光の直線偏光、12け局発光、12
T)、12sは局発光の直線偏光、13.14は偏光分
離合成器出力光、15は分波器である。 特許出願人 日本電信電話公社 代理人 弁理士 光 石 士 部(他1名)手続補正書 昭和59年1 月24日 特許庁長官殿 1、 事件の表示 昭和58年 特 許 顯第155089号昭和 年審 
判第 号 2、発明の名称 光受信装置 3 補正をする者 事件との関係 特許出願人 東京都千代田区内幸町−丁目1番6号 (422)日本電信電話公社 郵便番号107 6、補正により増加する発明の数 1 7、補正の対象 明細書の「特許請求の範囲」、「発明の詳細な説明」、
「図面の簡単な説明」の各欄及び図面。 8、補正の内容 (s−1) 明細書の「特許請求の範囲」の欄の記載を
添付別紙の「補正特許請求の範囲」の通シに補正する。 (8−2) 明細書の「発明の詳細な説明」の欄の記載
を次のように補正する。 0)第3頁末行に記載した「偏光状態」ヲ「偏光状態」
と補正する。 (ロ)第7頁3行目〜同頁17行目に記載した「第1の
出射光を受け働・・ことを特徴とする。」を次のように
補正する。「第1の出射光を受けその出射光のうちのあ
る一つの方向に偏波面を有する直線偏光成分のみを通過
させる第1の偏光子と、第2の出射光を受けその出射光
のう゛ち第1の偏光子を通過した直線偏光と直交する方
向の直線偏光成分のみを通過させる第2の偏光子と、第
1及び第2の偏光子を通過してきた直線偏光を夫々個別
に光検波する一対の光検波器と、この一対の光検波器か
らの出力を電圧加算する信号処理回路と、前記局発光源
と偏光分離合成器の間に挿入されてお9前記信号処理回
路の出力が最大に在るように局発光の偏光状態を変化さ
せる偏光変調器と、を備えたことを特徴とする。また本
発明の第三の構成は、光伝送路から入力された信号光を
、局発光源の局発光で光検波して信号を得る光受信装置
において、信号光及び局発光を合波する合波器と、この
合波された光を互いに直交する二つの直線偏光に分離す
る偏波分離器と、分離された二つの直線偏光を夫々個別
に光検波する一対の光検波器と、この一対の光検波器か
らの出力を電圧加算する信号処理回路と、前記局発光源
と偏光分離合成器の間に挿入されておシ前記信号処理回
路の出力が最大になるように局発光の偏光状態を変化さ
せる偏光変調器と、を備えたことを特徴とする。」。 (→ 第9頁9行目に記載した「光検波器5」を「光検
波器5.5”Jと補正する。 0 第12頁16行目と同頁17行目の間に次の文を加
入する。 「 第5図は本発明の更に他の実施例を示す。 この実施例は、第4図の構成において、分波器15を合
波器16で、また偏光子9−91−を検光分離器17で
構成したものである。この構成例での動作は合波器16
で信号光11と局発光12とを合波し、合波光18を得
る。 この合波光18′jk偏光分離器17にて互いに直交す
る直線偏光に分離すると、第2図の偏光子9,91の出
力光と同じになる。したがって、以後第2図と同じ作用
を行なえば入射偏光に関係なく、最大、一定の出力カニ
得らnる。 なお、局発光12の光量が、ショット雑音限界に比べて
十分大きいときには、合波器工6での通過損失は、局発
光に対して大きく、信号光に対して小さくなるようにす
nば、信号光損失が小さくなシSN比が改善できる。」
。 (へ)第13頁2行目に記載した「分波器15との間に
」の後に「、第5図の実施例では光ファイバ1と合波器
16との間に」を加入する。 (8−3) 明細書の「図面の簡単な説明」の欄の記載を次のように
補正する。 0 第14頁5行目と同頁6行目の間に、「第5図は第
3の発明の実施例を示す構成図である。」を挿入する。 ←)第14頁14行目に記載した「15は分波器」の後
に「、16は合波器、17は偏光分補迫特許請求の範囲
 1 通 園 面(第5図) l 逆 補正特許請求の範囲 (1)光伝送路から入力された信号光を、局発光源の局
発光で光検波して信号を得る光受信装置において、信号
光及び局発光を夫々互いに直交する直線偏光に分離する
とともに、信号光のうち垂直成分の直線偏光と局発光の
うち水平成分の直線偏光とを合成して第1の岨射光とし
且つ信号光のうち水平成分の直線偏光と局発光のうち垂
直成分の直線偏光とを合成して第2の出射光とする偏光
分離合成器と、第1の出射光に含まれる2rfjiの直
線偏光の電界方向を一致させる第1の偏光子と、第2の
出射光に含まれる2種の直線偏光の電界方向を一致させ
る第2の偏光子と、電界方向が一致した第1及び第2の
出射光を夫々個別に光検波する一対の光検波器と、この
一対の光検波器からの出力を電圧加算する信号処理回路
と、前記局発光源と偏光分離合成器の間に挿入さnてお
シ前記信号処理回路の出力が最大になるように局発光の
偏光状態を変化させる偏光変調器と、を備えたことを特
徴とする光受信装置。 (2)光伝送路から入力された信号元金、局発光源の局
発光で光検波して18号を得る光受信装置において、信
号光及び局発光を夫々分離するととも和分離し友一方の
信号光と分離した一方の局発光を合成して第1の出射光
として送出し且つ分離した他方の信号光と分離した他方
の局発光を合成して第2の出射光として送出する分波器
偏光子を通過してきた直線偏光を夫々個別に光検波する
一対の光検波器と、この一対の光検波器からの出力を電
圧加算する信号処理回路と。 前記局発光源と偏光分離合成器の間に挿入されてお9前
記信号処理回路の出力が最大になるように局発光の偏光
状態を変化させる偏光変調器と、を備えたことを特徴と
する光受信装置。
Figure 1 is a configuration diagram showing a conventional optical receiver, and Figure 2 is a diagram showing the configuration of a conventional optical receiver.
FIG. 3 is an explanatory diagram for explaining the polarization state of the polarization splitter/combiner used in this embodiment, and FIG. 4 is an embodiment of the second invention. FIG. In the drawing, 1 is the optical fiber, 2 is the polarization compensation circuit, 3 is the local light source, and 4 is the optical fiber.
is a multiplexer, 5.5′ is a photodetector, 6 is a signal processing circuit, and 7
is a polarization separation/synthesizer, 8 is a polarization modulator, 9.9', 9'',
9'' is a polarizer, 10 is a signal processing circuit, 11 is a signal light, l
ip, 118 is linearly polarized signal light, 12 local light, 12
T), 12s is the linearly polarized local light, 13.14 is the output light of the polarization splitter/combiner, and 15 is the demultiplexer. Patent applicant Nippon Telegraph and Telephone Public Corporation agent Patent attorney Shibu Mitsuishi (and one other person) Procedural amendment January 24, 1980 Dear Commissioner of the Japan Patent Office 1 Indication of the case 1982 Patent No. 155089 1972 referee
Judgment No. 2, Name of the invention Optical receiving device 3 Relationship with the case of the person making the amendment Patent applicant 1-6 Uchisaiwai-cho-chome, Chiyoda-ku, Tokyo (422) Nippon Telegraph and Telephone Public Corporation Postal code 107 6, increase due to amendment Number of inventions: 1 7. “Claims” and “Detailed description of the invention” of the specification to be amended;
Each column of "Brief explanation of drawings" and drawings. 8. Contents of the amendment (s-1) The description in the "Claims" column of the specification will be amended to the "Amended Claims" section of the attached appendix. (8-2) The statement in the "Detailed Description of the Invention" column of the specification is amended as follows. 0) "Polarization state" written on the last line of page 3
and correct it. (b) "Characterized by receiving the first emitted light..." written on page 7, line 3 to line 17 of the same page is corrected as follows. ``A first polarizer that receives a first emitted light and allows only a linearly polarized light component having a plane of polarization in one direction of the emitted light to pass; A second polarizer that allows only the linearly polarized light component in a direction orthogonal to the linearly polarized light that has passed through the first polarizer to pass through, and the linearly polarized light that has passed through the first and second polarizers is individually optically detected. A pair of optical detectors, a signal processing circuit that adds voltages of outputs from the pair of optical detectors, and a signal processing circuit that is inserted between the local light source and the polarization splitter/combiner, so that the output of the signal processing circuit is maximized. A third configuration of the present invention is characterized in that it includes a polarization modulator that changes the polarization state of the local light as in In an optical receiver that obtains a signal by optically detecting the local light from the source, there is a multiplexer that combines the signal light and the local light, and a polarization that separates the combined light into two linearly polarized lights that are orthogonal to each other. a separator, a pair of photodetectors that optically detect each of the two separated linearly polarized lights individually, a signal processing circuit that adds voltages to the outputs from the pair of photodetectors, and the local light source and polarization separation. It is characterized by comprising a polarization modulator that is inserted between the combiners and changes the polarization state of the local light so that the output of the signal processing circuit is maximized. (→ Correct “photodetector 5” written on page 9, line 9 to “photodetector 5.5”J. 5 shows still another embodiment of the present invention. In this embodiment, in the configuration of FIG. 4, the demultiplexer 15 is replaced by a multiplexer 16, and the polarizers 9-91- is configured by the analyzer separator 17.The operation in this configuration example is performed by the multiplexer 16.
The signal light 11 and the local light 12 are multiplexed to obtain a multiplexed light 18. When this combined light 18'jk is separated into mutually orthogonal linearly polarized light by the polarization splitter 17, it becomes the same as the output light from the polarizers 9 and 91 in FIG. Therefore, if the same operation as shown in FIG. 2 is carried out thereafter, a constant maximum output can be obtained regardless of the incident polarization. Note that when the amount of light of the local light 12 is sufficiently large compared to the shot noise limit, the transmission loss in the multiplexer 6 is made large for the local light and small for the signal light. Since signal light loss is small, the S/N ratio can be improved. ”
. (f) After "between the demultiplexer 15" written on the second line of page 13, add ", in the embodiment of FIG. 5, between the optical fiber 1 and the multiplexer 16". (8-3) The statement in the "Brief Description of Drawings" column of the specification is amended as follows. 0 Insert "Fig. 5 is a block diagram showing an embodiment of the third invention" between the 5th line of page 14 and the 6th line of the same page. ←) After "15 is a demultiplexer" written on page 14, line 14, "16 is a multiplexer, 17 is a polarization correction patent claim. 1. Going to kindergarten (Figure 5) l. Reverse correction patent Claims (1) In an optical receiver that obtains a signal by optically detecting a signal light input from an optical transmission line using local light from a local light source, the signal light and the local light are separated into mutually orthogonal linearly polarized lights. At the same time, the linearly polarized vertical component of the signal light and the linearly polarized horizontal component of the local light are combined to form the first radiation light, and the linearly polarized horizontal component of the signal light and the vertical component of the local light are combined. a polarization separation/synthesizer that combines the linearly polarized light of a second polarizer that matches the electric field directions of two types of linearly polarized light included in the emitted light; a pair of optical detectors that individually optically detect the first and second emitted lights whose electric field directions match; A signal processing circuit that adds voltages to the outputs from a pair of optical detectors is inserted between the local light source and the polarization splitter/combiner. An optical receiver comprising: a polarization modulator that changes the state of polarization. In the optical receiving device, the signal light and the local light are each separated, and the signal light of the other is combined with the separated local light, and the signal light of the other is combined and sent out as the first output light, and the separated signal light of the other side is combined. a pair of optical detectors that individually optically detect the linearly polarized light that has passed through the demultiplexer polarizer, which combines the local light from the other separated source light and sends it out as second output light; and this pair of optical detectors. a signal processing circuit that adds voltages to outputs from the local light source; and a polarized light that is inserted between the local light source and the polarization separation/combiner and changes the polarization state of the local light so that the output of the signal processing circuit is maximized. An optical receiving device comprising a modulator.

Claims (2)

【特許請求の範囲】[Claims] (1)光伝送路から入力された信号光を、局発光源の局
発光で光検波して信号を得る光受信装置において、信号
光及び局発光を夫々互いに直交する直線偏光に分離する
とともに、信号光のうち垂直成分の直線偏光と局発光の
うち水平成分の直線偏光とを合成して第1の出射光とし
且つ信号光のうち水平成分の直線偏光と局発光のうち垂
直成分の直線偏光とを合成して第2の出射光とする偏光
分離合成器と、第1の出射光に含まれる2種の直線偏光
の電界方向を一致させる第1の偏光子と、第2の出射光
に含まれる2種の直線偏光の電界方向を一致させる第2
の偏光子と、電界方向が一致した第1及び第2の出射光
を夫々個別に光検波する一対の光検波器と、この一対の
光検波器からの出力を電圧加算する信号処理回路と、前
記局発光源と偏光分離合成器の間に挿入されておシ前記
信号処理回路の出力が最大になるように局発光の偏光状
態を変化させる偏光変調器と、を備えたことを特徴とす
る光受信装置。
(1) In an optical receiving device that obtains a signal by optically detecting a signal light input from an optical transmission line using the local light of a local light source, the signal light and the local light are separated into mutually orthogonal linearly polarized light, and The linearly polarized vertical component of the signal light and the linearly polarized horizontal component of the local light are combined to form a first output light, and the linearly polarized horizontal component of the signal light and the linearly polarized vertical component of the local light are combined. a polarization separation/synthesizer that combines the two types of linearly polarized light to produce a second output light; a first polarizer that matches the electric field directions of two types of linearly polarized light included in the first output light; A second method that matches the electric field directions of the two types of linearly polarized light included.
a pair of photodetectors that individually optically detect the first and second emitted lights having the same electric field direction, and a signal processing circuit that adds voltages of outputs from the pair of photodetectors; A polarization modulator inserted between the local light source and the polarization separation/combiner for changing the polarization state of the local light so that the output of the signal processing circuit is maximized. Optical receiver.
(2) 光伝送路から入力された信号光を、局発光源の
局発光で光検波して信号を得る光受信装置において、信
号光及び局発光を夫々分離するとともに分離した一方の
信号光と分離した一方の局発光を合成して第1の出射光
として送出し且つ分離した他方の信号光と分離した他方
の局発光を合成して第2の出射光として送出する分波器
と、第1の出射光を受けその信号光のうちの垂直成分の
直線偏光及びその局発光のうちの水平成分の直線偏光の
みを両直線偏光の電界方向が一致した状態で通過させる
第1の偏光子と、第2の出射光を受けその信号光のうち
の水平成分の直線偏光及びその局発光のうちの垂直成分
の直線偏光のみを両直&1個光の電界方向が一致した状
態で通過させる第2の偏光子と、第1及び第2の偏光子
を通過してきた直線偏光を夫々個別に光検波する一対の
光検波器と、この一対の光検波器からの出力を電圧加算
する信号処理回路と、前記局発光源と偏光分離合成器の
間に挿入されており前記信号処理回路の出力が最大にな
るように局発光の偏光状態を変化させる偏光変調器と、
を備えたことを特徴とする光受信装置。
(2) In an optical receiving device that obtains a signal by optically detecting the signal light input from the optical transmission line using the local light of a local light source, the signal light and the local light are separated, and one of the separated signal lights and the other are separated. a splitter that combines one of the separated local light beams and sends it out as a first output light, and combines the other separated signal light and the other separated local light beam and sends it out as a second output light; a first polarizer that receives the emitted light of the signal light and passes only the linearly polarized vertical component of the signal light and the linearly polarized horizontal component of the local light with the electric field directions of both linearly polarized lights being the same; , which receives the second emitted light and passes only the linearly polarized horizontal component of the signal light and the linearly polarized vertical component of the local light with the electric field directions of the two and one lights being the same. a pair of photodetectors that individually optically detect the linearly polarized light that has passed through the first and second polarizers, and a signal processing circuit that adds voltages to outputs from the pair of photodetectors. , a polarization modulator that is inserted between the local light source and the polarization splitter/combiner and changes the polarization state of the local light so that the output of the signal processing circuit is maximized;
An optical receiving device characterized by comprising:
JP58155089A 1983-08-26 1983-08-26 Optical receiver Pending JPS6047524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58155089A JPS6047524A (en) 1983-08-26 1983-08-26 Optical receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58155089A JPS6047524A (en) 1983-08-26 1983-08-26 Optical receiver

Publications (1)

Publication Number Publication Date
JPS6047524A true JPS6047524A (en) 1985-03-14

Family

ID=15598403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58155089A Pending JPS6047524A (en) 1983-08-26 1983-08-26 Optical receiver

Country Status (1)

Country Link
JP (1) JPS6047524A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986007513A1 (en) * 1985-06-06 1986-12-18 British Telecommunications Public Limited Company Coherent optical receivers
EP0260745A1 (en) * 1986-09-17 1988-03-23 Koninklijke Philips Electronics N.V. Device for optical heterodyne detection of an optical signal beam and optical transmission system provided with such a device
JPS63257341A (en) * 1987-04-14 1988-10-25 Nec Corp Method and equipment for optical homodyne detection optical communication
US4817206A (en) * 1986-04-10 1989-03-28 Cselt- Centro Studi E Laboratori Telecomunicazioni S.P.A. Optical-fiber transmission system with polarization modulation and heterodyne coherent detection
JPH01209431A (en) * 1988-02-17 1989-08-23 Kokusai Denshin Denwa Co Ltd <Kdd> Optical reception system for polarization diversity
US5003625A (en) * 1988-06-10 1991-03-26 U.S. Philips Corporation Optical heterodyne detection and integrated optical component suitable for use in such a device
EP0456365A2 (en) * 1990-04-27 1991-11-13 AT&T Corp. Optical hybrid for coherent detection systems
FR2663482A1 (en) * 1990-06-14 1991-12-20 Northern Telecom Ltd OPTICAL MIXER, HETERODYNE RECEPTOR AND HETERODYNE OPTICAL DETECTION METHOD.
JP2010029513A (en) * 2008-07-30 2010-02-12 Seirin Kk Acupuncture and moxibustion needle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986007513A1 (en) * 1985-06-06 1986-12-18 British Telecommunications Public Limited Company Coherent optical receivers
US4817206A (en) * 1986-04-10 1989-03-28 Cselt- Centro Studi E Laboratori Telecomunicazioni S.P.A. Optical-fiber transmission system with polarization modulation and heterodyne coherent detection
EP0260745A1 (en) * 1986-09-17 1988-03-23 Koninklijke Philips Electronics N.V. Device for optical heterodyne detection of an optical signal beam and optical transmission system provided with such a device
JPS63257341A (en) * 1987-04-14 1988-10-25 Nec Corp Method and equipment for optical homodyne detection optical communication
JPH01209431A (en) * 1988-02-17 1989-08-23 Kokusai Denshin Denwa Co Ltd <Kdd> Optical reception system for polarization diversity
US5003625A (en) * 1988-06-10 1991-03-26 U.S. Philips Corporation Optical heterodyne detection and integrated optical component suitable for use in such a device
EP0456365A2 (en) * 1990-04-27 1991-11-13 AT&T Corp. Optical hybrid for coherent detection systems
FR2663482A1 (en) * 1990-06-14 1991-12-20 Northern Telecom Ltd OPTICAL MIXER, HETERODYNE RECEPTOR AND HETERODYNE OPTICAL DETECTION METHOD.
JP2010029513A (en) * 2008-07-30 2010-02-12 Seirin Kk Acupuncture and moxibustion needle

Similar Documents

Publication Publication Date Title
US6604871B2 (en) Method and apparatus for compensating for polarization mode dispersion (PMD) using a Mach-Zender interferometer
US7154659B1 (en) Optical depolarizers and DGD generators based on optical delay
JPS6047524A (en) Optical receiver
GB2304203A (en) A light amplifier having a multi-stage optical isolator
JPH0572777B2 (en)
US5056887A (en) Optical mixing device
JP2008276043A (en) Variable optical attenuator, receiver with built-in variable optical attenuator and optical attenuation method
JP2001053684A (en) Optical pulse timing detecting circuit and optical time- division multiplexing device
EP0322893A2 (en) A polarization diversity optical receiving apparatus
JPS60242435A (en) Polarization diversity optical receiver
KR19990027461A (en) Optical circulator and wavelength splitter of integrated optical amplifier for bidirectional communication
JP2001311972A (en) Optical switch device and method for operating the same
EP0260745A1 (en) Device for optical heterodyne detection of an optical signal beam and optical transmission system provided with such a device
JPS63135829A (en) Optical heterodyne detector
US5841573A (en) Backward light cutting-off apparatus having transmitting light detecting stages and method for detecting transmitting light using the apparatus
GB2214381A (en) Optical phase-diversity receivers
JPH07281229A (en) Optical polarization controller
JPH01108534A (en) Optical type heterodyne or homodyne detector for optical signal beam
JP3237624B2 (en) Laser oscillation wavelength monitor
JPH05181035A (en) Optical demultiplexing and branching device
JP2704987B2 (en) Polarization diversity optical receiving system
GB2199713A (en) Optical communication system
JP2004119721A (en) Wavelength locker element
US20040008993A1 (en) Polarization mode dispersion compensation module
JPS5913434A (en) Method of optical heterodyne detection