JP2000295180A - Optical communication equipment - Google Patents

Optical communication equipment

Info

Publication number
JP2000295180A
JP2000295180A JP11102930A JP10293099A JP2000295180A JP 2000295180 A JP2000295180 A JP 2000295180A JP 11102930 A JP11102930 A JP 11102930A JP 10293099 A JP10293099 A JP 10293099A JP 2000295180 A JP2000295180 A JP 2000295180A
Authority
JP
Japan
Prior art keywords
light receiving
light
communication device
optical communication
hyperboloid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11102930A
Other languages
Japanese (ja)
Other versions
JP3649621B2 (en
Inventor
Toyohisa Matsuda
豊久 松田
Yoshiro Tanaka
義朗 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP10293099A priority Critical patent/JP3649621B2/en
Publication of JP2000295180A publication Critical patent/JP2000295180A/en
Application granted granted Critical
Publication of JP3649621B2 publication Critical patent/JP3649621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To attain ease of communication with an opposite party with high reliability by attaining optical communication in multi-azimuth. SOLUTION: A reception section 3 consists of a downward convex reception reflection mirror 2a that is placed in a way that an outer plane of one hyperboloid of two-sheet hyperboloids is directed downward, a reception lens 13 that collects an infrared ray reflected by the reception reflection mirror 2a and a CCD area sensor 14 or the like that is placed under the reception lens 13 to receive the infrared ray collected by the reception lens 13. A transmission section 4 consists of a light source 19 that emits an infrared ray and is placed at an uppermost part of the transmission section 4, a liquid crystal shutter 18 to select an emitted position of the infrared ray from the light source 19, a transmission lens 17 that collects the infrared ray emitted from the liquid crystal shutter 18, and an upward convex transmission reflection mirror 2b that is placed in a way that the outer plane of the other hyperboloid of the two-sheet hyperboloids is directed upward.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光で情報のやり取
りを行う光通信装置に関し、特に複写機やプリンタなど
の画像形成装置やそれらの複合機と、PCや携帯端末と
の間で赤外線通信を行う光通信装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical communication apparatus for exchanging information by light, and more particularly to an infrared communication between an image forming apparatus such as a copying machine or a printer or a multifunction machine thereof, and a PC or a portable terminal. The present invention relates to an optical communication device that performs the following.

【0002】[0002]

【従来の技術】近年、複写機、プリンタなどの画像形成
装置やそれらの複合機と、PCや携帯端末との間で赤外
線を用いた光通信が盛んに行われている。例えば、特開
平9−244774号公報には、通信ユニットを搭載し
たレーザプリンタにおいて、この通信ユニットの通信方
向を切換手段によって可変とし、レーザプリンタとその
通信相手であるホストコンピュータとの相対位置関係に
自由度を持たせる構成が開示されている。また、特開平
9−307502号公報には、PCと携帯端末との間で
赤外線通信を行う場合に、互いに相手の赤外線通信装置
の位置を検出し、自身の赤外線通信装置の光軸を駆動装
置によって変更および調整する構成が開示されている。
2. Description of the Related Art In recent years, optical communication using infrared rays has been actively performed between an image forming apparatus such as a copying machine and a printer or a multifunction machine thereof, and a PC or a portable terminal. For example, Japanese Patent Application Laid-Open No. Hei 9-244774 discloses that in a laser printer equipped with a communication unit, the communication direction of the communication unit is made variable by switching means, and the relative positional relationship between the laser printer and a host computer as a communication partner is determined. A configuration for providing a degree of freedom is disclosed. Japanese Patent Application Laid-Open No. 9-307502 discloses that, when infrared communication is performed between a PC and a portable terminal, the position of the other infrared communication device is detected and the optical axis of the own infrared communication device is driven. A configuration that is changed and adjusted by the above is disclosed.

【0003】[0003]

【発明が解決しようとする課題】このような従来の光通
信装置では、光通信を行おうとする画像形成装置などの
機器の配置が変更されるたびに、また新たな機器と光通
信を行おうとするたびに、通信可能な方向の調整を行う
ことになる。しかしながら、特開平9−244774号
公報の通信ユニットでは、手探りで方向の調整を行うた
め作業に時間がかかるとともに、その位置合わせ精度は
低い。また、特開平9−307502号公報の赤外線通
信装置では、水平方向の限られた方位に対してしか相手
通信機の位置を検出することができず、例えば赤外線通
信装置が複写機やプリンタなどの機器に固定搭載されて
いる場合には、後方にある相手通信機を検出しようとす
れば機器ごと後方に向きを変えて検知可能範囲に収める
という作業を行わなければならないといった不都合が生
じる。このように、従来の光通信装置を用いるとセッテ
ィング作業の低能率化を招く。また、通信方向の調整を
機械的に行うため、装置構成が複雑になりやすいととも
に長期間の使用による機械的疲労などの問題がある。
In such a conventional optical communication apparatus, every time the arrangement of an apparatus such as an image forming apparatus for performing optical communication is changed, an attempt is made to perform optical communication with a new apparatus. Each time, the communication direction is adjusted. However, in the communication unit disclosed in Japanese Patent Application Laid-Open No. 9-244774, the operation is time-consuming because the direction is adjusted by groping, and the positioning accuracy is low. In the infrared communication device disclosed in Japanese Patent Application Laid-Open No. 9-307502, the position of the partner communication device can be detected only in a limited horizontal direction. In the case where the communication device is fixedly mounted on the device, there is an inconvenience that, in order to detect a partner communication device located behind the device, it is necessary to perform an operation of changing the direction of the device to the rear and keeping it within a detectable range. As described above, the use of the conventional optical communication device causes a reduction in the efficiency of the setting operation. In addition, since the adjustment of the communication direction is performed mechanically, the device configuration tends to be complicated, and there are problems such as mechanical fatigue due to long-term use.

【0004】本発明は、上記従来の問題点に鑑みなされ
たものであって、多方位への光通信を可能として、相手
へ通信を容易にかつ信頼性が高く行うことができる光通
信装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and provides an optical communication apparatus which enables optical communication in multiple directions and can easily and highly reliably communicate with a partner. The purpose is to provide.

【0005】[0005]

【課題を解決するための手段】請求項1の発明は、光を
用いて多方向のデータ通信を行うことが可能な光通信装
置において、多方位からの光を位置が固定された状態で
受信する多方位受信手段と、多方位受信手段による光の
受信方向に基づいて、位置が固定された状態で多方位の
うち所定の方向に光を送信することが可能な多方位送信
手段と、を有し、前記多方位受信手段により相手送信機
の発信位置を求め、前記多方位送信手段により相手送信
機の発信位置に向けて送信することを特徴とする。
According to a first aspect of the present invention, there is provided an optical communication apparatus capable of performing multidirectional data communication using light, wherein light from multiple directions is received in a fixed position. Multi-directional receiving means, and multi-directional transmitting means capable of transmitting light in a predetermined direction among the multi-directional directions in a fixed position based on the light receiving direction of the multi-directional receiving means. The multi-directional receiving means obtains the transmission position of the partner transmitter, and the multi-directional transmission means transmits the transmission position toward the transmission position of the partner transmitter.

【0006】請求項2の発明は、請求項1記載の光通信
装置であって、前記多方位受信手段が、2葉双曲面のう
ち1方の双曲面の形状を有して、相手通信機からの光を
反射する凸状受信用反射ミラーと、前記2葉双曲面のう
ち他方の双曲面の形状を有し、中心が他方の双曲面の焦
点に配された凸状受信用レンズと、該受信用レンズで集
光された光を検出する受光部と、をこの順に配置したこ
とを特徴とする。
According to a second aspect of the present invention, in the optical communication apparatus according to the first aspect, the multidirectional receiving means has a shape of one of two hyperboloids, and A convex receiving reflecting mirror that reflects light from the lens, a convex receiving lens having the shape of the other hyperboloid of the two-lobed hyperboloid, and a center disposed at the focal point of the other hyperboloid, And a light receiving section for detecting light collected by the receiving lens is arranged in this order.

【0007】請求項3の発明は、請求項1記載の光通信
装置であって、前記多方位送信手段は、2葉双曲面のう
ち1方の双曲面の形状を有して、相手通信機へ光を反射
する凸状送信用反射ミラーと、前記2葉双曲面のうち他
方の双曲面の形状を有し、中心が他方の双曲面の焦点に
配された凸状送信用レンズと、該送信用レンズに向けて
面上の所定位置の光を選択的に通過させるシャッター
と、該シャッターに向けて発光する光源部と、をこの順
に配置したことを特徴とする。
According to a third aspect of the present invention, in the optical communication apparatus according to the first aspect, the multi-directional transmitting unit has a shape of one of the two-lobe hyperboloids. A convex transmitting reflecting mirror for reflecting light to the light, a convex transmitting lens having the shape of the other hyperboloid of the two-lobe hyperboloid, and a center disposed at the focal point of the other hyperboloid; A shutter for selectively transmitting light at a predetermined position on a surface toward a transmission lens and a light source unit for emitting light toward the shutter are arranged in this order.

【0008】請求項4の発明は、請求項1記載の光通信
装置であって、前記多方位受信手段は、2葉双曲面のう
ち1方の双曲面の形状を有して、相手通信機からの光を
反射する凸状受信用反射ミラーと、前記2葉双曲面のう
ち他方の双曲面の形状を有し、中心が他方の双曲面の焦
点に配された凸状受信用レンズと、該受信用レンズで集
光された光を検出する受光部と、をこの順に配置する。
そして、前記多方位送信手段は、2葉双曲面のうち1方
の双曲面の形状を有して、相手通信機へ光を反射する凸
状送信用反射ミラーと、前記2葉双曲面のうち他方の双
曲面の形状を有し、中心が他方の双曲面の焦点に配され
た凸状送信用レンズと、該送信用レンズに向けて面上の
所定位置の光を選択的に通過させるシャッターと、該シ
ャッターに向けて発光する光源部と、をこの順に配置し
たことを特徴とする。
According to a fourth aspect of the present invention, in the optical communication apparatus according to the first aspect, the multi-directional receiving means has a shape of one of the two-lobe hyperboloids. A convex receiving reflecting mirror that reflects light from the lens, a convex receiving lens having the shape of the other hyperboloid of the two-lobed hyperboloid, and a center disposed at the focal point of the other hyperboloid, And a light receiving section for detecting light collected by the receiving lens are arranged in this order.
The multidirectional transmitting means has a shape of one hyperboloid of the two-lobed hyperboloid, and has a convex transmission reflecting mirror for reflecting light to a partner communication device; A convex transmitting lens having the shape of the other hyperboloid, the center of which is arranged at the focal point of the other hyperboloid, and a shutter for selectively passing light at a predetermined position on the surface toward the transmitting lens And a light source unit that emits light toward the shutter are arranged in this order.

【0009】請求項5の発明は、請求項4記載の光通信
装置であって、前記受信用反射ミラーの回転対称軸と、
前記送信用反射ミラーの回転対称軸とがともに同軸上に
配置されていることを特徴とする。
According to a fifth aspect of the present invention, there is provided the optical communication device according to the fourth aspect, wherein: a rotationally symmetric axis of the receiving reflecting mirror;
The transmission reflection mirror may be coaxially arranged with a rotationally symmetric axis of the transmission reflection mirror.

【0010】請求項6の発明は、請求項5記載の光通信
装置であって、前記送信用反射ミラーと前記受信用反射
ミラーとを2葉双曲面を形成する位置に近接して配置し
たことを特徴とする。
According to a sixth aspect of the present invention, in the optical communication device according to the fifth aspect, the transmitting reflecting mirror and the receiving reflecting mirror are arranged close to a position where a two-lobe hyperboloid is formed. It is characterized by.

【0011】請求項7の発明は、請求項6記載の光通信
装置であって、同軸を略鉛直方向に向け、前記多方位送
信手段を上部側に前記多方位受信手段を下部側に互いに
隣接するように設け、前記多方位送信手段の最下部に反
射ミラーを双曲面の外面が上向きになるよう配置し、前
記多方位受信手段の最上部に反射ミラーを双曲面の外面
が下向きになるよう配置したことを特徴とする。
According to a seventh aspect of the present invention, in the optical communication apparatus according to the sixth aspect, the coaxial direction is substantially vertical, and the multidirectional transmitting means is adjacent to the upper side and the multidirectional receiving means is adjacent to the lower side. The reflection mirror is arranged at the bottom of the multi-directional transmission means so that the outer surface of the hyperboloid faces upward, and the reflection mirror is provided at the top of the multi-direction reception means such that the outer surface of the hyperboloid faces downward. It is characterized by being arranged.

【0012】請求項8の発明は、請求項1ないし7のい
ずれかに記載の光通信装置であって、前記多方位送信手
段と前記多方位受信手段とが互いの相対位置が固定され
て設置される場合、前記多方位受信手段の受光部におけ
る最大受光位置の空間座標、受光強度および受光強度分
布を前記多方位送信手段のシャッターを開く空間座標と
相手通信機の送信アドレスとに対応させることを特徴と
する。
The invention according to claim 8 is the optical communication apparatus according to any one of claims 1 to 7, wherein the multidirectional transmitting means and the multidirectional receiving means are installed with their relative positions fixed. In this case, the spatial coordinates of the maximum light receiving position, the received light intensity, and the received light intensity distribution in the light receiving unit of the multi-directional receiving unit are made to correspond to the spatial coordinates of opening the shutter of the multi-directional transmitting unit and the transmission address of the other party communication device. It is characterized by.

【0013】請求項9の発明は、光を用いて多方向のデ
ータ通信を行うことが可能な光通信装置において、相手
通信機から送信された光の水平方向の送信方位を検知す
る第1受光部と、該第1受光部で検知された水平方向の
送信方位を基に仰角方向を検知して光の最大受光方向を
決定する第2受光部とを備える受信部と、最大受光方向
に向けて光を送信する送信部と、を有することを特徴と
する。
According to a ninth aspect of the present invention, there is provided an optical communication apparatus capable of performing multi-directional data communication using light, wherein the first light receiving unit detects a horizontal transmission direction of light transmitted from a partner communication device. And a second light receiving unit that detects an elevation angle direction based on the horizontal transmission azimuth detected by the first light receiving unit to determine a maximum light receiving direction of light. And a transmission unit for transmitting light.

【0014】請求項10の発明は、請求項9記載の光通
信装置であって、前記第1受光部および前記第2受光部
は、それぞれ相手通信機からの赤外線に対して最大受光
方向から傾斜した位置に受光面が配置される複数の受光
素子を有することを特徴とする。
According to a tenth aspect of the present invention, in the optical communication device according to the ninth aspect, the first light receiving portion and the second light receiving portion are each inclined from a maximum light receiving direction with respect to an infrared ray from a partner communication device. Characterized by having a plurality of light receiving elements in which a light receiving surface is arranged at the specified position.

【0015】請求項11の発明は、請求項10記載の光
通信装置であって、前記第1受光部は、水平面内で回転
する例えば円柱形状の受光部であって、側面の同一の高
さに複数の受光素子を有し、前記第2受光部は、前記第
1受光部の上方の全方位に対して首振り可動な載頭円錐
形状の受光部であって、円錐面の同一の高さに複数の受
光素子を有することを特徴とする。
According to an eleventh aspect of the present invention, in the optical communication device according to the tenth aspect, the first light receiving portion is, for example, a cylindrical light receiving portion that rotates in a horizontal plane, and has the same height on the side surface. A plurality of light receiving elements, and the second light receiving section is a frusto-conical light receiving section swingable in all directions above the first light receiving section, and has the same height as the conical surface. Further, it is characterized by having a plurality of light receiving elements.

【0016】請求項12の発明は、請求項11記載の光
通信装置であって、前記第1受光部の受光素子を広指向
性センサーとし、前記第2受光部の受光素子を狭指向性
センサーとすることを特徴とする。
According to a twelfth aspect of the present invention, in the optical communication device according to the eleventh aspect, the light receiving element of the first light receiving unit is a wide directional sensor and the light receiving element of the second light receiving unit is a narrow directional sensor. It is characterized by the following.

【0017】請求項13の発明は、請求項11又は12
記載の光通信装置であって、前記第2受光部の載頭円錐
の中心軸上に、中心軸に沿って赤外線を送信する送信部
が設けられていることを特徴とする。
The invention of claim 13 is the invention of claim 11 or 12
The optical communication device according to claim 1, wherein a transmission unit that transmits infrared rays along a central axis of the mounting cone of the second light receiving unit is provided.

【0018】請求項14の発明は、請求項9ないし13
のいずれかに記載の光通信装置であって、前記第1受光
部の向きと、前記第2受光部の向きとを検知する受光部
方位検知部を有することを特徴とする。
The invention of claim 14 is the invention of claims 9 to 13
The optical communication device according to any one of the above, further comprising a light receiving unit direction detecting unit that detects a direction of the first light receiving unit and a direction of the second light receiving unit.

【0019】請求項15の発明は、請求項14記載の光
通信装置であって、前記第1受光部および第2受光部の
向きおよび赤外線通信可能領域を表示する表示装置を有
する、または、該表示装置に接続されることを特徴とす
る。
According to a fifteenth aspect of the present invention, there is provided the optical communication device according to the fourteenth aspect, further comprising a display device for displaying the directions of the first light receiving portion and the second light receiving portion and the infrared communicable area. It is characterized by being connected to a display device.

【0020】請求項16の発明は、請求項15記載の光
通信装置であって、前記表示装置に相手通信機との相対
位置を表示することを特徴とする。
According to a sixteenth aspect of the present invention, there is provided the optical communication device according to the fifteenth aspect, wherein the display device displays a relative position with respect to a partner communication device.

【0021】請求項17の発明は、請求項15又は16
記載の光通信装置であって、前記表示装置は、第2受光
部が受光した赤外線信号強度を表示することを特徴とす
る。
The invention of claim 17 is the invention of claim 15 or 16
The optical communication device according to claim 1, wherein the display device displays an infrared signal intensity received by the second light receiving unit.

【0022】請求項18の発明は、請求項9ないし17
のいずれかに記載の光通信装置であって、前記第1受光
部、第2受光部、および送信部を位置決めする位置決め
手段を有することを特徴とする。
The invention of claim 18 is the invention of claims 9 to 17
The optical communication device according to any one of the above, further comprising positioning means for positioning the first light receiving unit, the second light receiving unit, and the transmitting unit.

【0023】請求項19の発明は、請求項18記載の光
通信装置であって、一旦交信した相手通信機の例えばI
Pアドレスに、交信した際の第1受光部、第2受光部お
よび送信部の位置コードを対応させて記録し、次回以降
の通信においてアドレスを指定すれば、それに対応する
位置コードを読み出して、前記位置決め手段により自動
位置合わせを行うことを特徴とする。
According to a nineteenth aspect of the present invention, there is provided the optical communication device according to the eighteenth aspect, wherein, for example, the I / O device of the partner communication device with which the communication has been performed.
The position code of the first light receiving unit, the second light receiving unit, and the transmitting unit at the time of communication is recorded in association with the P address, and if an address is specified in the next and subsequent communications, the corresponding position code is read out. The automatic positioning is performed by the positioning means.

【0024】[0024]

【発明の実施の形態】以下、本発明の実施の形態を図面
を用いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0025】<第1実施形態>図1は、本発明に係る光
通信装置の第1実施形態を示す構成図である。光通信装
置(多方位受信装置)1は、内部が中空の円柱状をな
し、上部が送信部4、下部が受信部3となっている。円
柱の中央部は透明となっており、その中央部の内部に反
射ミラー2を備えている。こうして、光通信装置1は、
位置が固定された状態で多方位の相手通信機10との間
で赤外線による双方向のデータ通信が行えるようになっ
ている。この光通信装置1は、プリンタ7やPC(パー
ソナルコンピュータ)6に搭載されるものであり、相手
通信機10から送られた赤外線を受信部3の反射ミラー
2で反射して受信し、通信機制御部5による制御に従っ
て、受信したデータをプリンタ7やPC6に送るととも
に、プリンタ7やPC6からのデータを通信機制御部5
による制御に従って、送信部4から反射ミラー2を介し
て相手通信機10に送信する。
<First Embodiment> FIG. 1 is a configuration diagram showing a first embodiment of the optical communication apparatus according to the present invention. The optical communication device (multidirectional receiving device) 1 has a hollow cylindrical shape inside, and an upper portion is a transmitting portion 4 and a lower portion is a receiving portion 3. The central portion of the column is transparent, and a reflection mirror 2 is provided inside the central portion. Thus, the optical communication device 1
In a state where the position is fixed, bidirectional data communication by infrared rays can be performed with the multidirectional communication device 10. The optical communication device 1 is mounted on a printer 7 or a PC (personal computer) 6, and receives infrared light transmitted from a partner communication device 10 by reflecting it on a reflection mirror 2 of a receiving unit 3. In accordance with the control by the control unit 5, the received data is sent to the printer 7 or the PC 6, and the data from the printer 7 or the PC 6 is transmitted to the communication unit control unit 5.
Is transmitted from the transmission unit 4 to the partner communication device 10 via the reflection mirror 2 in accordance with the control of

【0026】光通信装置1の受信部(多方位受信手段)
3は、図2に示すように、2葉双曲面の一方の双曲面の
外面が下方を向くようにして相手通信機10から送信さ
れた赤外線を反射するように受信部3の最上部に設けら
れた下方凸状受信用反射ミラー2aと、受信用反射ミラ
ー2aで反射された赤外線を集光するように受信用反射
ミラー2aの下方に設けられた受信用レンズ13と、受
信用レンズ13によって集光された赤外線を受光するよ
う受信用レンズ13の下方に設けられたCCDエリアセ
ンサー(CCD受光部)14とから構成される。
Receiving section (multidirectional receiving means) of optical communication apparatus 1
As shown in FIG. 2, reference numeral 3 is provided at the top of the receiving unit 3 so as to reflect the infrared ray transmitted from the partner communication device 10 such that the outer surface of one of the two-lobe hyperboloid faces downward. The receiving convex mirror 2a, the receiving lens 13 provided below the receiving mirror 2a so as to collect infrared rays reflected by the receiving mirror 2a, and the receiving lens 13 A CCD area sensor (CCD light receiving unit) 14 is provided below the receiving lens 13 so as to receive the collected infrared rays.

【0027】また、光通信装置の送信部(多方位送信手
段)4は、赤外線を放射し最上部に設けられた光源19
と、光源19から放射された赤外線の出射位置を選択す
るために光源の下方に設けられたデジタル面発光部とし
ての液晶シャッター18と、液晶シャッター18から出
射された赤外線を集光するように液晶シャッター18の
下方に設けられた送信用レンズ17と、送信用レンズ1
7で集光された赤外線を反射して相手通信機10へ導く
ために2葉双曲面の他方の双曲面の外面が上方を向くよ
うにして送信部4の最下部に設けられた上方凸状送信用
反射ミラー2bとから構成される。
The transmitting section (multidirectional transmitting means) 4 of the optical communication apparatus emits infrared light and emits light from a light source 19 provided at the top.
A liquid crystal shutter 18 as a digital surface light emitting unit provided below the light source for selecting an emission position of the infrared light emitted from the light source 19, and a liquid crystal so as to collect the infrared light emitted from the liquid crystal shutter 18. The transmission lens 17 provided below the shutter 18 and the transmission lens 1
An upper convex portion provided at the lowermost portion of the transmitting section 4 so that the outer surface of the other hyperboloid of the two-lobe hyperboloid faces upward in order to reflect the infrared light collected at 7 and guide it to the communication device 10 of the other party. And a transmission reflection mirror 2b.

【0028】上記の構成の光通信装置1において、受信
用反射ミラー2aと送信用反射ミラー2bとの回転対称
軸は同軸上に配置され、さらに受信用レンズ13の中心
は送信用反射ミラー(他方の双曲面)2bの焦点の位置
に、また送信用レンズ17の中心は受信用反射ミラー
(一方の双曲面)2aの焦点の位置に配置されている。
反射ミラー2a,2bで反射された光は、必ずレンズ1
3,17に集光されているので、多方位からの受光も、
多方位への発光も可能となる。さらに、CCDエリアセ
ンサー14と受信用レンズ13との間の距離と、液晶シ
ャッター18と送信用レンズ17との間の距離は、等し
く設定されている。ここで、図2に示すように、前記回
転対称軸(光軸)に平行で、光軸受信用反射ミラー2a
からCCDエリアセンサー14への方向をAとし、前記
回転対称軸に平行で、送信用反射ミラー2bから光源1
9への方向をBとする。
In the optical communication device 1 having the above configuration, the rotationally symmetric axes of the receiving reflection mirror 2a and the transmission reflection mirror 2b are arranged coaxially, and the center of the receiving lens 13 is located at the transmission reflection mirror (the other end). The center of the transmitting lens 17 is located at the focal point of the receiving reflecting mirror (one hyperbolic surface) 2a.
The light reflected by the reflection mirrors 2a and 2b must be
Because it is focused on 3, 17
Light emission in multiple directions is also possible. Further, the distance between the CCD area sensor 14 and the receiving lens 13 and the distance between the liquid crystal shutter 18 and the transmitting lens 17 are set to be equal. Here, as shown in FIG. 2, an optical bearing credit reflecting mirror 2a is parallel to the rotational symmetry axis (optical axis).
A is a direction from the transmission mirror 2b to the CCD area sensor 14, and is parallel to the rotational symmetry axis.
The direction to 9 is B.

【0029】次に、受信部と送信部の相手通信機10に
対する送受信動作について説明する。まず、図3は、C
CDエリアセンサーの受光強度分布を示す説明図であ
り、図4は、液晶シャッター18のシャッター位置を示
す説明図である。図3及び図4において、光軸方向をz
軸とし、それに垂直な平面をxy平面とする。そして、
図中A,Bは図2のA,B方向を示す。
Next, the transmitting and receiving operations of the receiving unit and the transmitting unit with respect to the partner communication device 10 will be described. First, FIG.
FIG. 4 is an explanatory diagram showing a light receiving intensity distribution of the CD area sensor, and FIG. 4 is an explanatory diagram showing a shutter position of the liquid crystal shutter 18. 3 and 4, the optical axis direction is z
An axis is defined, and a plane perpendicular to the axis is defined as an xy plane. And
A and B in the figure indicate the A and B directions in FIG.

【0030】図3に、相手通信機10が送信した赤外線
を受信用反射ミラー2aで反射し、受信用レンズ13で
集光して得たCCDエリアセンサー14上の受光強度分
布を示す。受光する赤外線は、xy平面上で最大の受光
強度となる点Pi(xi,yi)を中心にして幅を有し
た強度分布となる。受信部3は、例えばこの強度分布に
おいて所定のしきい値以上の強度で受光した領域を受光
領域とする。平面上の最大受光強度点Pi(xi,y
i)は、相手通信機10の位置と1対1には対応してい
ないので、受光強度分布の形状から、送信されてきた赤
外線が受信用反射ミラー2aのどの部分で反射されたか
を計算し、点Piと計算された反射点とから相手通信機
10の赤外線出射方向を求める。さらに、相手通信機1
0の赤外線発光強度を予めデータとして保持しておき、
点Pi(xi,yi)における受光強度から、相手通信
機10の赤外線出射位置からの距離を求める。これによ
り、受信部3は相手通信機10の赤外線出射位置を算出
することができる。
FIG. 3 shows a received light intensity distribution on the CCD area sensor 14 obtained by reflecting the infrared light transmitted by the other party's communication device 10 on the reflection mirror 2a for reception and condensing it by the lens 13 for reception. The infrared light to be received has an intensity distribution having a width around the point Pi (xi, yi) having the maximum light receiving intensity on the xy plane. The receiving unit 3 sets, for example, a region where light is received at an intensity equal to or higher than a predetermined threshold in the intensity distribution as a light receiving region. The maximum received light intensity point Pi (xi, y on the plane)
Since i) does not correspond one-to-one with the position of the other party's communication device 10, it is calculated from the shape of the received light intensity distribution which part of the receiving mirror 2a is reflected. , The infrared emission direction of the partner communication device 10 is determined from the point Pi and the calculated reflection point. Further, the other party's communication device 1
Infrared emission intensity of 0 is stored in advance as data,
From the light receiving intensity at the point Pi (xi, yi), the distance from the infrared emission position of the partner communication device 10 is obtained. Thereby, the receiving unit 3 can calculate the infrared emission position of the partner communication device 10.

【0031】そして、図4に示すように、受信部3で求
めた相手通信機10の赤外線出射位置に基づいて、送信
部4の液晶シャッター18におけるxy平面上の点Po
(x0,y0)を選択して開くことにより、相手通信機
10の赤外線出射位置と赤外線受光位置とがほぼ同一箇
所にある場合に、相手通信機10へ正確に赤外線を送信
することができる。送信部3には、液晶シャッター18
のどの部分を開けばどの方向に赤外線が送信されるかと
いうデータが予め格納されている。また、液晶シャッタ
ー18上の点Po(x0,y0)を決定して双方向通信
を行うに際して、相手通信機10のアドレスを相手通信
機10の赤外線出射位置として光通信装置に格納してお
けば、次回以降の同じ相手通信機10との通信におい
て、このIPアドレスに従って送信方向を決定すること
ができる。
Then, as shown in FIG. 4, a point Po on the xy plane of the liquid crystal shutter 18 of the transmitting unit 4 is determined based on the infrared emission position of the partner communication device 10 obtained by the receiving unit 3.
By selecting and opening (x0, y0), it is possible to transmit infrared rays to the other party's communication device 10 accurately when the infrared emission position and the infrared reception position of the other party's communication device 10 are substantially the same. The transmission unit 3 includes a liquid crystal shutter 18.
The data indicating in which direction the infrared ray is transmitted when the portion is opened is stored in advance. Further, when the point Po (x0, y0) on the liquid crystal shutter 18 is determined and the two-way communication is performed, the address of the partner communication device 10 may be stored in the optical communication device as the infrared emission position of the partner communication device 10. The transmission direction can be determined according to this IP address in the communication with the same partner communication device 10 from the next time.

【0032】なお、本実施の形態の光通信装置1は、光
源19が送信部4の最上部に設けられるとともに、CC
Dエリアセンサー14が受信部3の最下部に設けられて
いるため、両者が最も離れる構成となっており、光源1
9で生じた熱がCCDエリアセンサー14に伝わりにく
く、CCDエリアセンサー14に悪影響を及ぼすことを
極力防止することができる。また、受信用反射ミラー2
aの回転対称軸と、送信用反射ミラー2bの回転対称軸
とが同軸上にあるとともに、受信用反射ミラー2aと送
信用反射ミラー2bとが近接して2葉双局面をなしてい
るため、送信部4と受信部3とが互いに相手の赤外線光
路に対して死角を作らず、通信の妨害を防ぐことができ
る。
In the optical communication device 1 according to the present embodiment, the light source 19 is provided at the top of the
Since the D area sensor 14 is provided at the lowermost part of the receiving unit 3, the two are arranged farthest apart from each other.
The heat generated in 9 is not easily transmitted to the CCD area sensor 14, and it is possible to prevent the adverse effect on the CCD area sensor 14 as much as possible. Also, the receiving reflection mirror 2
Since the rotationally symmetric axis of a and the rotationally symmetric axis of the transmission reflection mirror 2b are coaxial, and the reception reflection mirror 2a and the transmission reflection mirror 2b are close to each other and form a two-leaf dual surface, The transmitting unit 4 and the receiving unit 3 do not form a blind spot with respect to each other's infrared light path, so that communication interruption can be prevented.

【0033】また、光通信装置を、図5に示すような多
方位送受信装置21,31のように構成することもでき
る。多方位送受信装置21は、送信部24を多方位送受
信装置1の送信部4と同一の構成とし、受信部23の最
下部から、受信用反射ミラー、受信用レンズ、CCDエ
リアセンサーの順に配置したものである。多方位送受信
装置31は、送信部34を最下部から、送信用反射ミラ
ー、送信用レンズ、液晶シャッター、光源部の順に配置
し、受信部33を多方位送受信装置21の受信部23と
同一の構成としたものである。これらの光通信装置の構
成によっても、多方位送受信装置1と同様の光通信を行
うことができる。
Also, the optical communication device can be configured as multidirectional transmission / reception devices 21 and 31 as shown in FIG. In the multidirectional transmission / reception device 21, the transmission unit 24 has the same configuration as the transmission unit 4 of the multidirectional transmission / reception device 1, and from the bottom of the reception unit 23, a reception reflection mirror, a reception lens, and a CCD area sensor are arranged in this order. Things. In the multi-directional transmission / reception device 31, the transmission unit 34 is arranged from the bottom in the order of the transmission reflection mirror, the transmission lens, the liquid crystal shutter, and the light source unit, and the reception unit 33 is the same as the reception unit 23 of the multi-directional transmission / reception device 21. It is configured. Even with the configuration of these optical communication devices, optical communication similar to that of the multidirectional transmission / reception device 1 can be performed.

【0034】次に、上記の光通信装置1を用いた光通信
の手順について図6のフローチャートを用いて説明す
る。光通信を行うに先立って、光通信装置1は、その受
信部3が相手通信機10からの赤外線を受信することが
できるように、相手通信機10に対する相対位置が粗調
整されているものとする。
Next, an optical communication procedure using the optical communication device 1 will be described with reference to a flowchart of FIG. Prior to performing the optical communication, the optical communication device 1 is assumed to have its relative position with respect to the partner communication device 10 roughly adjusted so that the receiver 3 can receive infrared rays from the partner communication device 10. I do.

【0035】S1で光通信装置が受信待機状態にあり、
S2で相手局としての相手通信機10から呼び出しの赤
外線送信があると、S3で光通信装置1はその相手通信
機10との交信コードを保有しているか否か、すなわち
直ちに交信可能か否かを判断する。交信コードを保有し
ていれば、相手通信機のアドレスを保有しているので、
S5でこれを呼び出して方位コードとして用い、S6で
送信方位を設定する。S3で交信コードを保有していな
ければ、この相手通信機とは初めての交信であるので、
CCDエリアセンサー14上の最大受光強度位置、受光
強度分布、および受光強度を測定して相手通信機10の
位置を検知する。相手通信機10の位置を検知すると、
S6で送信方位の設定を行い、液晶シャッター18上の
適切な位置のシャッターを開く。そして、S7でデータ
の送受信を行い、S8で相手局のアドレスを方位コード
として格納する。これが終了すると、S1に戻って再び
受信待機状態となる。
At S1, the optical communication device is in a reception standby state,
In step S2, when there is an infrared transmission of a call from the partner communication device 10 as the partner station, in step S3, the optical communication device 1 determines whether or not it has a communication code with the partner communication device 10, that is, whether communication is possible immediately. Judge. If you have the communication code, you have the address of the other communication device.
In S5, this is called and used as the direction code, and in S6, the transmission direction is set. If the communication code is not held in S3, this is the first communication with the partner communication device.
The position of the partner communication device 10 is detected by measuring the maximum received light intensity position, the received light intensity distribution, and the received light intensity on the CCD area sensor 14. When the position of the communication device 10 is detected,
In step S6, the transmission direction is set, and the shutter at an appropriate position on the liquid crystal shutter 18 is opened. Then, data transmission / reception is performed in S7, and the address of the partner station is stored as a direction code in S8. When this is completed, the process returns to S1 to be in the reception standby state again.

【0036】<第2実施形態>図7は、本発明に係る光
通信装置の第2実施形態を示す外観図である。図8は、
第2実施形態である光通信装置の構成図であり、(a)
は断面図、(b)は側面図である。光通信装置(送受信
装置)41は、第1受光部42、第2受光部43、送信
部44、および制御装置45から構成され、PC(パー
ソナルコンピュータ)6に接続されている。第1受光部
42は、光通信装置41の台座上に設けられる水平面内
で回転可能な円柱上の回転体51であり、その側面の同
一の高さにフォトダイオードなどの複数の受光素子52
が側面を取り巻くように取り付けられている。これらの
受光素子52は広指向性のセンサーである。この第1受
光部42は、相手通信機から送信された赤外線が水平面
上でどの方位角の方向から到達するかを、赤外線を受光
することによって大まかに検知するものである。
<Second Embodiment> FIG. 7 is an external view showing a second embodiment of the optical communication apparatus according to the present invention. FIG.
It is a block diagram of the optical communication apparatus which is 2nd Embodiment, (a)
Is a sectional view, and (b) is a side view. The optical communication device (transmission / reception device) 41 includes a first light receiving unit 42, a second light receiving unit 43, a transmission unit 44, and a control device 45, and is connected to a PC (personal computer) 6. The first light receiving unit 42 is a rotating body 51 on a cylinder provided on a base of the optical communication device 41 and rotatable in a horizontal plane, and a plurality of light receiving elements 52 such as photodiodes at the same height on the side surface.
Is attached so as to surround the side. These light receiving elements 52 are sensors having a wide directivity. The first light receiving section 42 roughly detects from which azimuth angle the infrared ray transmitted from the partner communication device arrives on the horizontal plane by receiving the infrared ray.

【0037】第2受光部43は、第1受光部42の上方
に設けられた載頭円錐形状の受光部であり、その円錐面
の同一の高さにフォトダイオードなどの複数の受光素子
54が円錐面を取り巻くように取り付けられている。こ
れら受光素子54は狭指向性のセンサーである。この第
2受光部43は裁頭円錐53の裏側の軸を中心として、
第1受光部42の上方の全天方位にわたって首振り可能
となっている。第1受光部42で検知した水平方向に対
して仰角方向に移動させることにより、最大受光位置を
探し、相手通信機からの赤外線送信方向を正確に検知す
る。送信部44は、図2左図に示すように、第2受光部
43の載頭円錐53の中心軸上に配置されており、赤外
LEDなどの発光源55およびコリメートレンズ56が
設けられている。制御装置45は、外部のPC6から指
令が与えられることにより、第1受光部42および第2
受光部43の回転軸を所定の位置にモータなどで駆動す
るための制御を行う。なお、制御装置45を省略し、摘
みなどの移動部材を設けて手動で第1受光部42および
第2受光部43を移動させるようにしてもよい。
The second light receiving section 43 is a mounting cone-shaped light receiving section provided above the first light receiving section 42. A plurality of light receiving elements 54 such as photodiodes are provided at the same height of the conical surface. It is attached so as to surround the conical surface. These light receiving elements 54 are sensors with narrow directivity. The second light receiving section 43 is centered on the axis on the back side of the truncated cone 53.
The head can be swung in all directions above the first light receiving unit 42. By moving in the elevation direction with respect to the horizontal direction detected by the first light receiving unit 42, the maximum light receiving position is searched, and the direction of infrared transmission from the partner communication device is accurately detected. As shown in the left diagram of FIG. 2, the transmission unit 44 is disposed on the central axis of the mounting cone 53 of the second light receiving unit 43, and is provided with a light source 55 such as an infrared LED and a collimating lens 56. I have. The control device 45 receives the command from the external PC 6 and thereby controls the first light receiving unit 42 and the second light receiving unit 42.
The control for driving the rotation axis of the light receiving unit 43 to a predetermined position by a motor or the like is performed. Note that the control device 45 may be omitted, and a moving member such as a knob may be provided to manually move the first light receiving unit 42 and the second light receiving unit 43.

【0038】上記の構成の光通信装置41による通信方
向の調整は、まず図2左図に示すように、位置合わせの
粗調整として第1受光部42を回転させ、例えば紙面右
側から送信されてくる赤外線を受光・検知して、水平面
内における方位角調整を行う。次いで、位置合わせの微
調整として同図右図に示すように、第2受光部43を第
1受光部42で求めた方位角に向けておき、鉛直方向に
首振りを行って仰角調整を行い、最大受光位置を求め
る。この最大受光位置が相手通信機の発光源の方向であ
り、同時に相手通信機への送信が最も効率よく行われる
方向でもある。従って、送信部44については改めて位
置合わせを行う必要がない。
The adjustment of the communication direction by the optical communication device 41 having the above configuration is performed by first rotating the first light receiving section 42 as a coarse adjustment of the alignment as shown in the left diagram of FIG. It receives and detects incoming infrared rays and adjusts the azimuth in the horizontal plane. Next, as a fine adjustment of the alignment, as shown in the right diagram of FIG. 10, the second light receiving unit 43 is directed to the azimuth angle obtained by the first light receiving unit 42, and the head is swung vertically to adjust the elevation angle. And the maximum light receiving position. This maximum light receiving position is the direction of the light emitting source of the other communication device, and at the same time, the direction in which transmission to the other communication device is most efficiently performed. Therefore, there is no need for the transmission unit 44 to perform the positioning again.

【0039】上記の粗調整および微調整の位置合わせに
ついて説明する。図9(a)に示すように、第2受光部
43の受光素子54は裁頭円錐面上に設けられているた
め、受光素子54全てが送信されてきた赤外線にして受
光面が直交することはなく、直交方向からある角度だけ
傾斜している。
The positioning of the above-described coarse adjustment and fine adjustment will be described. As shown in FIG. 9A, since the light receiving element 54 of the second light receiving unit 43 is provided on a frusto-conical surface, all the light receiving elements 54 should be orthogonal to the received infrared light. However, it is inclined by a certain angle from the orthogonal direction.

【0040】今、左右対称に配置された2つの受光素子
54R,54Lについて考える。受光素子54Rの受光
面が直交面から−θ1の角度だけ傾斜し、受光素子54
Lの受光面が直交面から−θ2の角度だけ傾斜している
ものとする(0°<θ1,θ2<90°)と、受光素子
54Rと受光素子54Lとの受光強度が等しく、かつそ
の強度が最も大きくなるように第2受光部43を移動さ
せたときに、送信赤外線の中心軸が載頭円錐53の中心
軸と一致し、最大受光位置となる。このときは当然θ1
=θ2となるが、調整完了直前の微調整過程においてθ
1≠θ2のとき、受光素子54R,54Lの単位面積当
たりの受光強度はそれぞれおよそPcosθ1、Pco
sθ2(Pは直交面における単位面積当たりの受光強
度)であるから、両者の受光量差を強調することができ
る。従って、最後の微調整を正確に行うことができる。
第1受光部42においても同様の原理である。また、本
実施形態においては、受光素子を取り付ける面を赤外線
送信方向に対する直交面から後方に傾斜させたが、これ
に限ることなく図9(b)に示すように、直交面の前方
に傾斜させてもよい。この場合も同様の効果を得ること
ができる。
Now, consider two light receiving elements 54R, 54L arranged symmetrically. The light receiving surface of the light receiving element 54R is inclined from the orthogonal plane by an angle of -θ1,
Assuming that the light receiving surface of L is inclined from the orthogonal plane by an angle of -θ2 (0 ° <θ1, θ2 <90 °), the light receiving intensity of the light receiving element 54R and the light receiving element 54L are equal and the intensity is the same. When the second light receiving unit 43 is moved so that is the largest, the central axis of the transmitted infrared ray coincides with the central axis of the mounting cone 53, and the maximum light receiving position is reached. In this case, of course θ1
= Θ2, but in the fine adjustment process immediately before the adjustment is completed, θ
When 1 ≠ θ2, the light receiving intensities per unit area of the light receiving elements 54R and 54L are approximately Pcos θ1 and Pcos, respectively.
Since sθ2 (P is the received light intensity per unit area in the orthogonal plane), the difference in the amount of received light between the two can be emphasized. Therefore, the last fine adjustment can be performed accurately.
The same principle applies to the first light receiving unit 42. Further, in the present embodiment, the surface on which the light receiving element is mounted is inclined rearward from the plane orthogonal to the infrared transmission direction. However, the present invention is not limited to this, and as shown in FIG. You may. In this case, the same effect can be obtained.

【0041】また、第1受光部42および第2受光部4
3にそれらが向いている方位を検知するポテンショメー
タ・エンコーダなどの受光部方位検知部を設けておき、
図10に示すように、光通装置に設けた表示装置、また
は外部のPCやプリンタなどの機器に設けた表示装置
に、受光部方位検知部で検知した光通信装置の送受信位
置と相手通信機との相対位置を検知した結果を表示する
ようにすれば、位置合わせ効率が向上する。同図(a)
は調整前の様子であり、表示画面の中央を最大受光位
置、すなわち送信部の位置とし、通信可能範囲61およ
び相手通信機62の位置を表示している。なお、相手通
信機の位置62は、相手通信機からの赤外線の少なくと
も一部が光通信装置に届くような範囲に入ってから表示
される。横軸は水平方向の方位角63、縦軸は仰角64
を表す。この表示画面を見ながら、第1受光部42およ
び第2受光部43の角度調整63,64を行い、同図
(b)に示すように、相手通信機の表示が通信可能範囲
の中心に一致するようにする。また、図示していない
が、その調整過程において光通信装置の受光強度を表示
するようにすれば、いっそう調整効率が高まる。
The first light receiving section 42 and the second light receiving section 4
3 is provided with a light-receiving unit direction detection unit such as a potentiometer / encoder that detects the direction in which they face,
As shown in FIG. 10, the transmission / reception position of the optical communication device detected by the light receiving unit azimuth detecting unit and the counterpart communication device are displayed on the display device provided in the optical communication device or the display device provided in an external PC or printer. If the result of detecting the relative position with respect to is displayed, the positioning efficiency is improved. FIG.
Shows the state before the adjustment. The center of the display screen is the maximum light receiving position, that is, the position of the transmitting unit, and the communicable range 61 and the position of the communication partner 62 are displayed. In addition, the position 62 of the other party's communication device is displayed after at least a part of the infrared rays from the other party's communication device enters the optical communication device. The horizontal axis is the horizontal azimuth angle 63, and the vertical axis is the elevation angle 64.
Represents While viewing the display screen, the angle adjustment 63 and 64 of the first light receiving unit 42 and the second light receiving unit 43 are performed, and the display of the other party's communication device coincides with the center of the communicable range as shown in FIG. To do it. Although not shown, if the received light intensity of the optical communication device is displayed in the adjustment process, the adjustment efficiency is further increased.

【0042】次に、調整過程を図11に示すフローチャ
ートに従って説明する。ここでは、予め相手通信機が発
する赤外線の少なくとも一部が光通信装置に届く状態に
なっているものとする。S11で光通信装置41が受信
待機状態にあり、S12で相手局(相手通信機)から呼
び出しがあると、S13で第1受光部42による方位角
調整を行い、S14で第2受光部43による仰角調整を
行う。S15でさらに第2受光部43による仰角の微調
整を行い、S16で最大受光位置が求まって受信準備が
完了すると送信可能になる。S17でデータ通信を行
い、S18で相手局のIPアドレスとそのときの方位コ
ードを対応付けて記録して終了する。以上の処理に伴
い、S12では表示装置に相手局の位置を表示し、S1
3〜S15では調整状況・方位・仰角を表示し、S16
では相手局のアドレスおよび送受信の際の方位コードを
表示する。
Next, the adjustment process will be described with reference to the flowchart shown in FIG. Here, it is assumed that at least a part of the infrared ray emitted from the other party's communication device reaches the optical communication device in advance. In step S11, the optical communication device 41 is in a reception standby state, and in step S12, when there is a call from a partner station (partner communication device), the azimuth adjustment is performed by the first light receiving unit 42 in step S13, and the azimuth adjustment is performed by the second light receiving unit 43 in step S14. Perform elevation adjustment. In S15, the elevation angle is finely adjusted by the second light receiving unit 43. When the maximum light receiving position is determined in S16 and the preparation for reception is completed, transmission becomes possible. In S17, data communication is performed, and in S18, the IP address of the partner station and the azimuth code at that time are recorded in association with each other, and the process ends. Along with the above processing, the position of the partner station is displayed on the display device in S12, and in S1
In 3 to S15, the adjustment status, azimuth and elevation angle are displayed, and in S16
Displays the address of the partner station and the azimuth code at the time of transmission / reception.

【0043】次に、上述の処理にて記憶した相手通信機
のアドレスを用いて調整を行う処理を図12のフローチ
ャートで説明する。S21で相手局が受信待機状態にあ
り、S22で相手通信機から呼び出しがあると、光通信
装置41は記憶しているアドレスに従って位置コードを
読み出す。S23で第1受光部42による方位角調整を
行い、S24で第2受光部43による仰角調整を行う。
S25でさらに第2受光部43による仰角の微調整を行
い、S26で受信の準備が完了すると送信可能となる。
S27でデータの送受信を行い、S28で相手局のアド
レスとそのときの位置コードを確認して記録し、処理を
終了する。以上の処理に伴い、S22では表示装置に相
手局の位置を表示し、S23〜S25では調整状況・方
位・仰角を表示し、S26では相手局のアドレスおよび
送受信の際の方位コードを表示する。
Next, a process for performing adjustment using the address of the other party's communication device stored in the above process will be described with reference to the flowchart of FIG. In step S21, the partner station is in a reception standby state, and in step S22, when there is a call from the partner communication device, the optical communication device 41 reads the position code according to the stored address. In S23, the azimuth adjustment by the first light receiving unit 42 is performed, and in S24, the elevation angle adjustment by the second light receiving unit 43 is performed.
In S25, the elevation angle is finely adjusted by the second light receiving unit 43. When preparation for reception is completed in S26, transmission becomes possible.
Data transmission and reception are performed in S27, the address of the partner station and the position code at that time are confirmed and recorded in S28, and the process is terminated. Along with the above processing, the position of the partner station is displayed on the display device in S22, the adjustment status / azimuth / elevation angle is displayed in S23 to S25, and the address of the partner station and the direction code for transmission / reception are displayed in S26.

【0044】[0044]

【発明の効果】請求項1の発明によれば、多方位受信手
段は位置を変えることなく多方位からの赤外線を受信
し、その受信方向に基づいて、多方位送信手段が位置を
変えることなく多方位のうち所定の方向に向けて赤外線
を送信する。従って、この送信方向を受信方向に等しく
することにより、相手通信機との間における双方向光通
信の通信方向を容易に決定することができる。また、多
方位受信手段および多方位送信手段とはともに位置が固
定されたままであるので、長期間の使用による機械的疲
労がなく、信頼性の高い光通信装置となる。
According to the first aspect of the present invention, the multidirectional receiving means receives infrared rays from multiple directions without changing the position, and the multidirectional transmitting means does not change the position based on the receiving direction. Infrared is transmitted in a predetermined direction in multiple directions. Therefore, by making the transmission direction equal to the reception direction, the communication direction of the bidirectional optical communication with the partner communication device can be easily determined. In addition, since the positions of both the multi-directional receiving unit and the multi-directional transmitting unit remain fixed, there is no mechanical fatigue due to long-term use, and a highly reliable optical communication device is obtained.

【0045】請求項2及び4の発明によれば、2葉双曲
面のうち1方の双曲面の形状を有するアンテナとしての
反射ミラーと、2葉双曲面のうち他方の双曲面の形状を
有し中心が他方の双曲面の焦点に配されたレンズとを有
しているので、反射ミラーで反射された赤外線信号をレ
ンズを通して受光部で受信することができる。そのた
め、相手通信機が送信した赤外線が双曲面上のどこかに
到達すればよく、多方位の受信を容易に行うことが可能
となる。
According to the second and fourth aspects of the present invention, there is provided a reflecting mirror as an antenna having one of the hyperboloid shapes of the two-lobe hyperboloid and the other hyperboloid of the two-lobe hyperboloid. Since the center has a lens disposed at the focal point of the other hyperboloid, the infrared signal reflected by the reflection mirror can be received by the light receiving unit through the lens. Therefore, it is sufficient that the infrared ray transmitted from the other party's communication device reaches somewhere on the hyperboloid, and it is possible to easily perform multidirectional reception.

【0046】請求項3及び4の発明によれば、2葉双曲
面のうち1方の双曲面の形状を有する送信用反射ミラー
と、前記2葉双曲面のうち他方の双曲面の形状を有し中
心が他方の双曲面の焦点に配された送信用レンズと、該
送信用レンズに向けて面上の所定位置の光を選択的に通
過させるシャッターと、該シャッターに向けて発光する
光源部とをゆうしているので、受信手段で求めた相手送
信機の位置からその位置に対応するシャッターを開い
て、そこから出射した光を反射ミラーによって、目的の
相手送信機へ容易に送信できる。
According to the third and fourth aspects of the present invention, the transmission reflecting mirror has a shape of one hyperboloid of the two-lobe hyperboloid and the other of the two-lobe hyperboloid has the shape of the other hyperboloid. A transmitting lens whose center is located at the focal point of the other hyperboloid, a shutter for selectively passing light at a predetermined position on the surface toward the transmitting lens, and a light source unit for emitting light toward the shutter Thus, the shutter corresponding to the position of the partner transmitter determined by the receiving means is opened, and the light emitted therefrom can be easily transmitted to the target partner transmitter by the reflection mirror.

【0047】請求項4の発明によれば、相手通信機が発
信した赤外線の受光部における受光位置は、相手通信機
の発信位置と1対1に対応しているので、受光位置から
相手送信機の発信位置を容易に検知することが可能とな
る。そして、その検知結果に基づいて多方位送信手段の
送信方向を決定することにより、相手送信機との双方向
の光通信が行える。
According to the fourth aspect of the present invention, since the light receiving position of the infrared ray transmitted by the other party's communication device in the light receiving portion corresponds to the transmission position of the other party's communication device on a one-to-one basis, the light receiving position is determined from the light receiving position. Can be easily detected. Then, by determining the transmission direction of the multi-directional transmission means based on the detection result, bidirectional optical communication with the partner transmitter can be performed.

【0048】請求項5の発明によれば、光通信装置の2
つの反射ミラーの回転対称軸を同軸上に配置すること
で、回転対称軸に垂直な平面座標上で同一点からの送受
信となり、多方位送信手段と多方手段が互いに相手の通
信を妨害する(送信光路上または受信光路上に死角がで
きる)ことがないので、的確に相手通信機と多方位の双
方向通信を行うことが可能となる。
According to the invention of claim 5, the optical communication device 2
By arranging the rotationally symmetric axes of the two reflection mirrors on the same axis, transmission and reception are performed from the same point on a plane coordinate perpendicular to the rotationally symmetric axis, and the multi-directional transmission means and the multi-directional means interfere with each other's communication (transmission Since there is no blind spot on the optical path or the receiving optical path), it is possible to accurately perform multidirectional bidirectional communication with the partner communication device.

【0049】請求項6の発明によれば、2つの反射ミラ
ーの回転対称軸が同軸上にあって、さらに2つの反射ミ
ラーを近接する位置に配置することで、2つの反射ミラ
ーのそれぞれに対する相手送信機の位置関係がほぼ同じ
となって送信光路と受信光路とが接近するため、相手通
信機の送受信アンテナに対して死角ができにくい。
According to the sixth aspect of the present invention, the two reflection mirrors are coaxial with each other in the rotationally symmetric axis, and the two reflection mirrors are arranged at positions close to each other, so that the two reflection mirrors are opposed to each other. Since the transmitting optical path and the receiving optical path are close to each other with the positional relationship of the transmitter being almost the same, it is difficult to form a blind spot with respect to the transmitting / receiving antenna of the partner communication apparatus.

【0050】請求項7の発明によれば、2つの反射ミラ
ーの回転対称軸が同軸上にあって、2つの反射ミラーを
近接する配置の光通信装置において、同軸を略鉛直方向
に向けて上部側に多方位送信手段を、下部側に多方位受
信手段を互いに隣接するように設ける。そして、多方位
送信手段の最下部に反射ミラーを双曲面の外面が上向き
になるよう配置するとともに、多方位受信手段の最上部
に反射ミラーを双曲面の外面が下向きになるよう配置す
る。これにより、多方位送信手段の送信発光面部と、多
方位受信手段のCCD受光部とが最も離れる構成とな
り、送信発光面部で発生する熱がCCD受光部に伝わり
にくくなり、CCD受光部の動作異常を防止することが
できる。
According to the seventh aspect of the present invention, in the optical communication apparatus in which the rotational reflection axes of the two reflecting mirrors are on the same axis and the two reflecting mirrors are arranged close to each other, the upper part of the optical communication apparatus is oriented substantially vertically. The multidirectional transmission means is provided on the side and the multidirectional reception means is provided on the lower side so as to be adjacent to each other. The reflecting mirror is arranged at the lowermost part of the multidirectional transmitting means so that the outer surface of the hyperboloid faces upward, and the reflecting mirror is arranged at the uppermost part of the multidirectional receiving means so that the outer surface of the hyperboloid faces downward. As a result, the transmission light-emitting surface of the multi-directional transmission means and the CCD light-receiving part of the multi-directional reception means become the most distant, so that the heat generated in the transmission light-emitting surface is less likely to be transmitted to the CCD light-receiving part, resulting in abnormal operation of the CCD light-receiving part. Can be prevented.

【0051】請求項8の発明によれば、多方位送信手段
と多方位受信手段との相対位置が固定されて設置される
場合、多方位受信手段の受光部における最大受光位置の
空間座標、受光強度およ該受光強度分布を、多方位送信
手段のシャッターを開く空間座標に対応させ、かつ相手
通信機の送信アドレスに対応させるので、光通信装置の
送信条件を容易に設定することが可能となる。
According to the eighth aspect of the present invention, when the relative position between the multi-directional transmitting means and the multi-directional receiving means is fixed, the spatial coordinates of the maximum light receiving position in the light receiving section of the multi-directional receiving means, the light receiving Since the intensity and the received light intensity distribution correspond to the spatial coordinates at which the shutter of the multi-directional transmission unit is opened and correspond to the transmission address of the other communication device, it is possible to easily set the transmission conditions of the optical communication device. Become.

【0052】請求項9の発明によれば、第1受光部によ
って、相手通信機から送信された赤外線の水平方向の送
信方位を検知することにより、まず相手通信機の大まか
な方位を知ることができる。続いて第2受光部によっ
て、仰角方向の送信方位を検知することにより、赤外線
の最大受光方向、すなわち相手通信機の正確な方向を決
定することができる。そして、検知された最大受光方向
に向けて送信部が赤外線を送信するので、最適な送受信
方位の設定が行われ、良好な赤外線双方向通信を可能と
する。くする効果があるので、位置合わせが容易にな
る。
According to the ninth aspect of the present invention, the first light receiving unit detects the horizontal transmission direction of the infrared ray transmitted from the partner communication device, so that the rough orientation of the partner communication device can be first known. it can. Subsequently, by detecting the transmission azimuth in the elevation direction by the second light receiving unit, it is possible to determine the maximum infrared light receiving direction, that is, the accurate direction of the partner communication device. Then, since the transmitting unit transmits the infrared ray toward the detected maximum light receiving direction, the optimal transmission / reception azimuth is set, and good infrared two-way communication is enabled. The effect is that the alignment is facilitated.

【0053】請求項10の発明によれば、少なくとも2
個の受光素子を使用して両者の受光量の差から相手通信
機の方向を推定することができる。特に2個の受光素子
の受光面が赤外線の最大受光方向に対し−90°から9
0°までの間の傾斜角θを持つようにすると、一方の受
光素子と他方の受光素子との傾斜角が異なるときに最大
受光量のcosθの成分は両者の受光量の差を大きくす
る効果があるので、位置合わせが容易となる。
According to the tenth aspect, at least 2
The direction of the partner communication device can be estimated from the difference between the amounts of received light using the two light receiving elements. In particular, the light-receiving surfaces of the two light-receiving elements should be between -90 ° and 9 ° with respect to the maximum infrared light receiving direction.
When the tilt angle between one light receiving element and the other light receiving element is different, the component of cos θ of the maximum light receiving amount increases the difference between the light receiving amounts of the two when the tilt angle between one light receiving element and the other light receiving element is different. , The alignment becomes easy.

【0054】請求項11の発明によれば、第1受光部に
より相手送信機に対する水平面内での方位角を検出し、
第2受光部により相手通信機に対する仰角を求めること
により、全天方位の信号を受信し、受信した方位に送信
することが可能となる。
According to the eleventh aspect of the present invention, the azimuth angle in the horizontal plane with respect to the partner transmitter is detected by the first light receiving unit.
By obtaining the elevation angle with respect to the communication device of the other party by the second light receiving unit, it is possible to receive a signal in all omnidirectional directions and transmit the signal in the received direction.

【0055】請求項12の発明によれば、第1受光部の
受光素子が広指向性センサーであるので、赤外線受光の
粗調整を迅速に行うことができ、また第2受光部の受光
素子が狭指向性センサーであるので、赤外線受光の微調
整を高精度に行うことができる。
According to the twelfth aspect of the present invention, since the light receiving element of the first light receiving section is a wide directivity sensor, coarse adjustment of infrared light reception can be performed quickly, and the light receiving element of the second light receiving section is provided. Since it is a narrow directional sensor, fine adjustment of infrared light reception can be performed with high accuracy.

【0056】請求項13の発明によれば、第2受光部の
載頭円錐の中心軸上に、中心軸に沿って赤外線を送信す
る送信部が設けられているので、第1受光部および第2
受光部を用いて検知した相手通信機の方向に向けて、本
機側から送信光を的確に送信することが可能となる。
According to the thirteenth aspect of the present invention, since the transmitting section for transmitting infrared rays along the central axis is provided on the center axis of the mounting cone of the second light receiving section, the first light receiving section and the second light receiving section are provided. 2
The transmission light can be accurately transmitted from the main unit side toward the direction of the partner communication unit detected using the light receiving unit.

【0057】請求項14の発明によれば、第1受光部お
よび第2受光部の移動量を検知するポテンショメータ・
エンコーダーなどの受光部方位検知部を取り付けること
で、本光通信装置と相手通信機との相対位置を数値化す
ることが可能となる。
According to the fourteenth aspect of the present invention, the potentiometer for detecting the amount of movement of the first light receiving unit and the second light receiving unit.
By attaching a light-receiving unit direction detection unit such as an encoder, it is possible to digitize the relative position between the optical communication device and the partner communication device.

【0058】請求項15の発明によれば、方位調整をよ
り解り易く正確にする上で、相手の方位と受信した信号
の強度を表示することでより簡単に方位調整を行うこと
が可能となる。
According to the fifteenth aspect, in order to make the azimuth adjustment easier and more accurate, the azimuth adjustment can be performed more easily by displaying the azimuth of the other party and the strength of the received signal. .

【0059】請求項16の発明によれば、方位調整をよ
り解り易く正確にする上で、相手通信機との相対位置を
表示することでより方位差が明確になり図を見ながら簡
単に方位調整を行うことが可能となる。
According to the sixteenth aspect of the present invention, in order to make the direction adjustment easier to understand and accurate, displaying the relative position with respect to the other party's communication device makes the direction difference clearer and makes it easier to view the direction while looking at the figure. Adjustment can be performed.

【0060】請求項17の発明によれば、方位調整をよ
り解り易く正確にする上で、相手通信機のからの赤外線
受信信号の強度を円等を用いて図示することで、通信可
能範囲が明確になり図を見ながらその円の中に入る様に
調整を行うことが可能となる。
According to the seventeenth aspect of the invention, in order to make the azimuth adjustment easier to understand and accurate, the intensity of the infrared reception signal from the partner communication device is illustrated using a circle or the like, so that the communicable range is increased. It becomes clear and it is possible to make adjustments so as to fall within the circle while looking at the figure.

【0061】請求項18の発明によれば、第1受光部や
第2受光部、場合によっては送信部の方位回転部に摘み
やモータの位置決め手段を取付ることで、本光通信装置
を相手通信機の方向へ設定することが可能となる。
According to the eighteenth aspect of the present invention, the optical communication device can be connected to the first light receiving unit or the second light receiving unit, or, in some cases, by attaching knobs or motor positioning means to the azimuth rotating unit of the transmitting unit. It is possible to set in the direction of the communication device.

【0062】請求項19の発明によれば、相手通信機の
例えばIPアドレスと、相手通信機と交信したところの
位置コードとを対応させて記録しておくことにより、送
受信方向を自動で位置決めすることができるので、位置
決めが極めて迅速かつ容易になる。
According to the nineteenth aspect of the present invention, the transmission / reception direction is automatically positioned by recording, for example, the IP address of the partner communication device and the position code at the point of communication with the partner communication device. The positioning is very quick and easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る光通信装置の第1実施形態を示す
概略構成図である。
FIG. 1 is a schematic configuration diagram illustrating a first embodiment of an optical communication device according to the present invention.

【図2】第1実施形態である光通信装置を示す構成図で
ある。
FIG. 2 is a configuration diagram illustrating an optical communication device according to the first embodiment.

【図3】CCDエリアセンサーの受光強度分布を示す説
明図である。
FIG. 3 is an explanatory diagram showing a light reception intensity distribution of a CCD area sensor.

【図4】液晶シャッター18のシャッター位置を示す説
明図である。
FIG. 4 is an explanatory diagram showing a shutter position of a liquid crystal shutter 18.

【図5】第1実施形態である光通信装置の他の例を示す
構成図である。
FIG. 5 is a configuration diagram illustrating another example of the optical communication device according to the first embodiment.

【図6】第1実施形態である光通信装置を用いた光通信
の手順を示すフローチャートである。
FIG. 6 is a flowchart illustrating a procedure of optical communication using the optical communication device according to the first embodiment.

【図7】本発明に係る光通信装置の第2実施形態を示す
外観図である。
FIG. 7 is an external view showing a second embodiment of the optical communication device according to the present invention.

【図8】第2実施形態である光通信装置の構成図であ
る。
FIG. 8 is a configuration diagram of an optical communication device according to a second embodiment.

【図9】第2受光部の受光阻止の取付角と相手通信機の
発光源の方向検出を示す説明図である。
FIG. 9 is an explanatory diagram showing a mounting angle of a second light receiving unit for blocking light reception and a direction detection of a light emitting source of a partner communication device.

【図10】表示装置の表示内容を示す説明図である。FIG. 10 is an explanatory diagram showing display contents of a display device.

【図11】相手通信機の発光源の方向調整を示すフロー
チャートである。
FIG. 11 is a flowchart illustrating the adjustment of the direction of the light emitting source of the partner communication device.

【図12】IPアドレスを用いた相手通信機の発光源の
方向調整を示すフローチャートである。
FIG. 12 is a flowchart illustrating a direction adjustment of a light emitting source of a partner communication device using an IP address.

【符号の説明】[Explanation of symbols]

1 光通信装置(多方位送受信装置) 2 反射ミラー 3 受信部 4 送信部 5 通信機制御部 6 PC 7 プリンター 10 相手通信機 13,17 レンズ 14 CCDエリアセンサー 18 液晶シャッター 19 光源 DESCRIPTION OF SYMBOLS 1 Optical communication apparatus (multidirectional transmission / reception apparatus) 2 Reflection mirror 3 Receiving part 4 Transmission part 5 Communication device control part 6 PC 7 Printer 10 Opponent communication device 13, 17 Lens 14 CCD area sensor 18 Liquid crystal shutter 19 Light source

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H087 KA22 TA01 TA03 TA06 5K002 AA05 AA07 BA21 DA05 FA04 GA01 GA07 9A001 BB04 CZ05 JJ12 JJ35 KK42 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2H087 KA22 TA01 TA03 TA06 5K002 AA05 AA07 BA21 DA05 FA04 GA01 GA07 9A001 BB04 CZ05 JJ12 JJ35 KK42

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 光を用いて多方向のデータ通信を行うこ
とが可能な光通信装置において、 多方位からの光を位置が固定された状態で受信する多方
位受信手段と、 多方位受信手段による光の受信方向に基づいて、位置が
固定された状態で多方位のうち所定の方向に光を送信す
ることが可能な多方位送信手段と、を有し、 前記多方位受信手段により相手送信機の発信位置を求
め、前記多方位送信手段により相手送信機の発信位置に
向けて送信することを特徴とする光通信装置。
An optical communication apparatus capable of performing multidirectional data communication using light, comprising: multidirectional receiving means for receiving light from multiple directions in a fixed position; and multidirectional receiving means. And a multi-directional transmitting means capable of transmitting light in a predetermined direction among the multi-directional directions in a state where the position is fixed, based on the receiving direction of the light by the multi-directional receiving means. An optical communication device, wherein a transmission position of a transmitter is obtained, and transmission is performed by the multidirectional transmission means toward a transmission position of a partner transmitter.
【請求項2】 前記多方位受信手段は、 2葉双曲面のうち1方の双曲面の形状を有して、相手通
信機からの光を反射する凸状受信用反射ミラーと、 前記2葉双曲面のうち他方の双曲面の形状を有し、中心
が他方の双曲面の焦点に配された凸状受信用レンズと、 該受信用レンズで集光された光を検出する受光部と、を
この順に配置したことを特徴とする請求項1記載の光通
信装置。
2. The multi-directional receiving means has a shape of one hyperboloid of the two-lobed hyperboloid, and a convex receiving reflection mirror for reflecting light from a communication partner device; A convex receiving lens having the shape of the other hyperboloid among the hyperboloids, the center of which is arranged at the focal point of the other hyperboloid, and a light receiving unit that detects light collected by the receiving lens, The optical communication device according to claim 1, wherein the optical communication devices are arranged in this order.
【請求項3】 前記多方位送信手段は、 2葉双曲面のうち1方の双曲面の形状を有して、相手通
信機へ光を反射する凸状送信用反射ミラーと、 前記2葉双曲面のうち他方の双曲面の形状を有し、中心
が他方の双曲面の焦点に配された凸状送信用レンズと、 該送信用レンズに向けて面上の所定位置の光を選択的に
通過させるシャッターと、 該シャッターに向けて発光する光源部と、をこの順に配
置したことを特徴とする請求項1記載の光通信装置。
3. The multi-directional transmission means has a shape of one hyperboloid of the two-lobe hyperboloid, and reflects a convex transmission reflection mirror for reflecting light to a partner communication device; A convex transmitting lens having the shape of the other hyperboloid of the curved surfaces, the center of which is disposed at the focal point of the other hyperboloid; and selectively transmitting light at a predetermined position on the surface toward the transmitting lens. 2. The optical communication device according to claim 1, wherein a shutter that passes therethrough and a light source unit that emits light toward the shutter are arranged in this order.
【請求項4】 前記多方位受信手段は、 2葉双曲面のうち1方の双曲面の形状を有して、相手通
信機からの光を反射する凸状受信用反射ミラーと、 前記2葉双曲面のうち他方の双曲面の形状を有し、中心
が他方の双曲面の焦点に配された凸状受信用レンズと、 該受信用レンズで集光された光を検出する受光部と、を
この順に配置し、 前記多方位送信手段は、 2葉双曲面のうち1方の双曲面の形状を有して、相手通
信機へ光を反射する凸状送信用反射ミラーと、 前記2葉双曲面のうち他方の双曲面の形状を有し、中心
が他方の双曲面の焦点に配された凸状送信用レンズと、 該送信用レンズに向けて面上の所定位置の光を選択的に
通過させるシャッターと、 該シャッターに向けて発光する光源部と、をこの順に配
置したことを特徴とする請求項1記載の光通信装置。
4. The multi-directional receiving means has a shape of one hyperboloid of the two-lobe hyperboloid, and reflects a convex reception mirror for reflecting light from the other communication device; A convex receiving lens having the shape of the other hyperboloid among the hyperboloids, the center of which is arranged at the focal point of the other hyperboloid, and a light receiving unit that detects light collected by the receiving lens, The multidirectional transmitting means has a shape of one hyperboloid of the two-lobe hyperboloid, and reflects a convex transmission reflection mirror for reflecting light to a partner communication device; A convex transmitting lens having the shape of the other hyperboloid among the hyperboloids and having a center located at the focal point of the other hyperboloid; and selectively transmitting light at a predetermined position on the surface toward the transmitting lens. And a light source unit that emits light toward the shutter is arranged in this order. 1 optical communication device as claimed.
【請求項5】 前記受信用反射ミラーの回転対称軸と、
前記送信用反射ミラーの回転対称軸とがともに同軸上に
配置されていることを特徴とする請求項4記載の光通信
装置。
5. A rotationally symmetric axis of the reflection mirror for reception,
The optical communication device according to claim 4, wherein both the rotationally symmetric axis of the transmitting reflection mirror and the rotationally symmetric axis are coaxially arranged.
【請求項6】 前記送信用反射ミラーと前記受信用反射
ミラーとを2葉双曲面を形成する位置に近接して配置し
たことを特徴とする請求項5記載の光通信装置。
6. The optical communication device according to claim 5, wherein the transmission reflection mirror and the reception reflection mirror are arranged close to a position where a two-lobe hyperboloid is formed.
【請求項7】 同軸を略鉛直方向に向け、前記多方位送
信手段を上部側に前記多方位受信手段を下部側に互いに
隣接するように設け、前記多方位送信手段の最下部に反
射ミラーを双曲面の外面が上向きになるよう配置し、前
記多方位受信手段の最上部に反射ミラーを双曲面の外面
が下向きになるよう配置したことを特徴とする請求項6
記載の光通信装置。
7. The multi-directional transmitting means is provided on the upper side, and the multi-directional receiving means is provided adjacent to each other on the lower side, and a reflection mirror is provided at the lowermost part of the multi-directional transmitting means. 7. The hyperbolic surface is arranged so that its outer surface faces upward, and a reflection mirror is arranged at the top of the multidirectional receiving means so that the outer surface of the hyperbolic surface faces downward.
An optical communication device according to claim 1.
【請求項8】 前記多方位送信手段と前記多方位受信手
段とが互いの相対位置が固定されて設置される場合、前
記多方位受信手段の受光部における最大受光位置の空間
座標、受光強度および受光強度分布を前記多方位送信手
段のシャッターを開く空間座標と相手通信機の送信アド
レスとに対応させることを特徴とする請求項1ないし7
のいずれかに記載の光通信装置。
8. When the multidirectional transmitting means and the multidirectional receiving means are installed with their relative positions fixed, spatial coordinates of the maximum light receiving position in the light receiving section of the multidirectional receiving means, light receiving intensity and 8. A method according to claim 1, wherein the received light intensity distribution is made to correspond to a spatial coordinate at which a shutter of said multi-directional transmission means is opened and a transmission address of a communication partner.
The optical communication device according to any one of the above.
【請求項9】 光を用いて多方向のデータ通信を行うこ
とが可能な光通信装置において、 相手通信機から送信された光の水平方向の送信方位を検
知する第1受光部と、該第1受光部で検知された水平方
向の送信方位を基に仰角方向を検知して光の最大受光方
向を決定する第2受光部とを備える受信部と、 最大受光方向に向けて光を送信する送信部と、を有する
ことを特徴とする光通信装置。
9. An optical communication device capable of performing multidirectional data communication using light, comprising: a first light receiving unit for detecting a horizontal transmission direction of light transmitted from a partner communication device; A receiving unit including a second light receiving unit that detects an elevation angle direction based on a horizontal transmission azimuth detected by one light receiving unit and determines a maximum light receiving direction; and transmits light toward the maximum light receiving direction. An optical communication device comprising: a transmission unit.
【請求項10】 前記第1受光部および前記第2受光部
は、それぞれ相手通信機からの赤外線に対して最大受光
方向から傾斜した位置に受光面が配置される複数の受光
素子を有することを特徴とする請求項9記載の光通信装
置。
10. The apparatus according to claim 1, wherein each of the first light receiving unit and the second light receiving unit includes a plurality of light receiving elements each having a light receiving surface arranged at a position inclined from a maximum light receiving direction with respect to infrared rays from a partner communication device. The optical communication device according to claim 9, wherein:
【請求項11】 前記第1受光部は、水平面内で回転す
る円柱形状の受光部であって、側面の同一の高さに複数
の受光素子を有し、 前記第2受光部は、前記第1受光部の上方の全方位に対
して首振り可動な載頭円錐形状の受光部であって、円錐
面の同一の高さに複数の受光素子を有することを特徴と
する請求項10記載の光通信装置。
11. The first light receiving unit is a columnar light receiving unit that rotates in a horizontal plane, and has a plurality of light receiving elements at the same height on a side surface. 11. A light receiving section having a frusto-conical shape movable in all directions above one light receiving section, wherein the light receiving section has a plurality of light receiving elements at the same height of a conical surface. Optical communication device.
【請求項12】 前記第1受光部の受光素子を広指向性
センサーとし、前記第2受光部の受光素子を狭指向性セ
ンサーとすることを特徴とする請求項11記載の光通信
装置。
12. The optical communication device according to claim 11, wherein the light receiving element of the first light receiving section is a wide directional sensor, and the light receiving element of the second light receiving section is a narrow directional sensor.
【請求項13】 前記第2受光部の載頭円錐の中心軸上
に、中心軸に沿って赤外線を送信する送信部が設けられ
ていることを特徴とする請求項11又は12記載の光通
信装置。
13. The optical communication according to claim 11, wherein a transmission unit for transmitting infrared rays along the central axis is provided on the central axis of the mounting cone of the second light receiving unit. apparatus.
【請求項14】 前記第1受光部の向きと、前記第2受
光部の向きとを検知する受光部方位検知部を有すること
を特徴とする請求項9ないし13のいずれか記載の光通
信装置。
14. The optical communication apparatus according to claim 9, further comprising a light receiving unit direction detecting unit that detects a direction of the first light receiving unit and a direction of the second light receiving unit. .
【請求項15】 前記第1受光部および第2受光部の向
きおよび赤外線通信可能領域を表示する表示装置を有す
る、または、該表示装置に接続されることを特徴とする
請求項14記載の光通信装置。
15. The light according to claim 14, further comprising a display device for displaying directions of the first light receiving portion and the second light receiving portion and an infrared communicable area, or being connected to the display device. Communication device.
【請求項16】 前記表示装置に相手通信機との相対位
置を表示することを特徴とする請求項15記載の光通信
装置。
16. The optical communication device according to claim 15, wherein the display device displays a relative position with respect to the other communication device.
【請求項17】 前記表示装置は、第2受光部が受光し
た赤外線信号強度を表示することを特徴とする請求項1
5又は16記載の光通信装置。
17. The display device according to claim 1, wherein the display unit displays the intensity of the infrared signal received by the second light receiving unit.
17. The optical communication device according to 5 or 16.
【請求項18】 前記第1受光部、第2受光部、および
送信部を位置決めする位置決め手段を有することを特徴
とする請求項9ないし17のいずれかに記載の光通信装
置。
18. The optical communication device according to claim 9, further comprising a positioning unit that positions the first light receiving unit, the second light receiving unit, and the transmitting unit.
【請求項19】 一旦交信した相手通信機のアドレス
に、交信した際の第1受光部、第2受光部および送信部
の位置コードを対応させて記録し、次回以降の通信にお
いてアドレスを指定すれば、それに対応する位置コード
を読み出して、前記位置決め手段により自動位置合わせ
を行うことを特徴とする請求項18記載の光通信装置。
19. A position code of the first light receiving unit, the second light receiving unit, and the transmitting unit at the time of communication is recorded in association with the address of the communication device with which communication has been once performed, and the address is designated in the next and subsequent communication. 19. The optical communication apparatus according to claim 18, wherein a position code corresponding to the read code is read out, and the automatic positioning is performed by the positioning means.
JP10293099A 1999-04-09 1999-04-09 Optical communication device Expired - Fee Related JP3649621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10293099A JP3649621B2 (en) 1999-04-09 1999-04-09 Optical communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10293099A JP3649621B2 (en) 1999-04-09 1999-04-09 Optical communication device

Publications (2)

Publication Number Publication Date
JP2000295180A true JP2000295180A (en) 2000-10-20
JP3649621B2 JP3649621B2 (en) 2005-05-18

Family

ID=14340568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10293099A Expired - Fee Related JP3649621B2 (en) 1999-04-09 1999-04-09 Optical communication device

Country Status (1)

Country Link
JP (1) JP3649621B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1233345A1 (en) * 2001-02-09 2002-08-21 Sharp Kabushiki Kaisha Imaging system, program used for controlling image data in the same system, method for correcting distortion of captured images in the same system, and recording medium storing procedures for such a method
GB2384635A (en) * 2002-01-28 2003-07-30 Phillip Andrew Haley Infrared CCD video camera optical communication system
JP2005229277A (en) * 2004-02-12 2005-08-25 Victor Co Of Japan Ltd Optical radio transmitter
KR100794988B1 (en) * 2002-07-24 2008-01-16 강성준 Apparatus and method for infrared channel analysis using pictures processing algorithm

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1233345A1 (en) * 2001-02-09 2002-08-21 Sharp Kabushiki Kaisha Imaging system, program used for controlling image data in the same system, method for correcting distortion of captured images in the same system, and recording medium storing procedures for such a method
US7058235B2 (en) 2001-02-09 2006-06-06 Sharp Kabushiki Kaisha Imaging systems, program used for controlling image data in same system, method for correcting distortion of captured image in same system, and recording medium storing procedures for same method
GB2384635A (en) * 2002-01-28 2003-07-30 Phillip Andrew Haley Infrared CCD video camera optical communication system
KR100794988B1 (en) * 2002-07-24 2008-01-16 강성준 Apparatus and method for infrared channel analysis using pictures processing algorithm
JP2005229277A (en) * 2004-02-12 2005-08-25 Victor Co Of Japan Ltd Optical radio transmitter
JP4599847B2 (en) * 2004-02-12 2010-12-15 日本ビクター株式会社 Optical wireless transmission device

Also Published As

Publication number Publication date
JP3649621B2 (en) 2005-05-18

Similar Documents

Publication Publication Date Title
CN101153795B (en) Laser scanner
EP1174682A2 (en) Position determination system
CN102906594B (en) Method and apparatus for using gestures to control laser tracker
US11536568B2 (en) Target instrument and surveying system
WO2002033963A1 (en) Iris imaging device
JPH11125525A (en) Method and apparatus for probing target of ground surveying device
JP6753961B2 (en) A method for comparing the received beam incident on the laser receiver with the rotating laser beam
JPH09250927A (en) Surveying system
US20060114966A1 (en) Device for contact-free measurement of temperature
EP3077768A2 (en) Distance measurement instrument with scanning function
US11656338B2 (en) Retroreflector with sensor
TWI678555B (en) Communication system and communication method
KR102270254B1 (en) Multi-lateration laser tracking apparatus and method using initial position sensing function
US9450670B1 (en) Position sensor for a fast steering mirror
JP2000295180A (en) Optical communication equipment
CN110927697B (en) Retroreflector including fisheye lens
CN111323134A (en) Infrared temperature measuring device
EP4063787A1 (en) Surveying system
CN212110353U (en) Infrared temperature measuring device
US5241557A (en) Laser focus compensating sensing and imaging device
KR20100026093A (en) Optical scanner
JPH1174845A (en) Slave set for optical radio communication system
JP2014098586A (en) Distance direction automatic measurement device having two-system optical system
JP4379161B2 (en) Optical transmitter
JP3732629B2 (en) Slave unit of optical wireless communication system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees