JPH05183515A - Optical space transmitter - Google Patents

Optical space transmitter

Info

Publication number
JPH05183515A
JPH05183515A JP3347506A JP34750691A JPH05183515A JP H05183515 A JPH05183515 A JP H05183515A JP 3347506 A JP3347506 A JP 3347506A JP 34750691 A JP34750691 A JP 34750691A JP H05183515 A JPH05183515 A JP H05183515A
Authority
JP
Japan
Prior art keywords
light
light receiving
receiving element
signal
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3347506A
Other languages
Japanese (ja)
Inventor
Katsunori Chihara
勝則 千原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3347506A priority Critical patent/JPH05183515A/en
Publication of JPH05183515A publication Critical patent/JPH05183515A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To surely specify a reception direction based on each output level difference of a light receiving element by sending a light for direction adjust ment to a comparatively wide angle area and using plural light receiving elements arranged spatially different locations so as to detect the light, thereby facilitating the reception of the projection light for direction adjustment. CONSTITUTION:A light sent from a light emitting element 3 over a comparatively narrow angular area is received by a light receiving element 9 to regenerate a transmission signal and a light 30 set over a comparatively wider angular area than the projection angular area of the light emitting element 3 from the direction adjustment light emitting element 12 is received by a direction detection light receiving element array 26 in which plural light receiving elements 21-24 are arranged at different locations and the light receiving direction of the light receiving element 9 is controlled through a servo control circuit 40 based on the level difference of the signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は光空間伝送装置に係
り、特に赤外線を用いて音声信号を空間伝送するワイヤ
レススピーカ等に適用して投光部と受光部の角度調整を
効率的に行なうに好適な光空間伝送装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical space transmission device, and more particularly to an optical space transmission device, which is applied to a wireless speaker for spatially transmitting an audio signal by using infrared rays so as to efficiently adjust an angle between a light emitting portion and a light receiving portion. The present invention relates to a suitable optical space transmission device.

【0002】[0002]

【従来の技術】図5はかかる従来の光空間伝送装置の概
略構成図である。図において、31は外部からの音声信
号を受け付ける音声入力回路、32は音声入力回路31
から入力されたアナログ音声信号をディジタル音声信号
に変換するA/D変換回路、33はA/D変換回路32
からのディジタル音声信号を増幅して変調回路34に与
える入出力部である。1は変調回路34で光伝送に適し
た形に変調され信号成分を含む赤外線を投光する発光
部、11は発光部1からの投光赤外線6を受光する受光
部である。発光部1において、3は発光赤外線4を発生
する発光素子、5は発光素子3からの発光赤外線4を集
光し投光赤外線6として空間に投光するための投光用集
光レンズである。また、受光部11において、7は空間
から投光赤外線6を集光して受光赤外線8として受け取
るための受光用集光レンズ、9は受光用集光レンズ7を
通じて受光赤外線8を受光して信号成分を得る受光素子
である。また、2は受光部11において受光素子9が受
光して得た信号成分を増幅する前置増幅器、13は発光
部1側の変調回路34で変調をかけられた信号を復調し
てディジタル音声信号を得るための復調回路、14はこ
のディジタル音声信号を取り出すための入出力部、15
は入出力部14から取り出されたディジタル音声信号を
アナログ音声信号に変換するD/A変換回路、16はア
ナログ音声信号を増幅して音声信号として外部に出力す
るための音声出力回路、17は復調回路13で得たディ
ジタル音声信号のレベルを検出してレベルに応じた信号
出力を行なうためのレベル比較器、19は受光部11の
受光角度を上下方向または左右方向に首振り動作させる
方向変更駆動機構、18は方向変更駆動機構19に駆動
信号を与える方向変更駆動回路、41はレベル検出器1
7で検出された信号レベルが一番高くなるように方向変
更駆動回路18に制御信号を与える山登りサーボ制御回
路41である。
2. Description of the Related Art FIG. 5 is a schematic block diagram of such a conventional optical space transmission device. In the figure, 31 is a voice input circuit that receives a voice signal from the outside, and 32 is a voice input circuit 31.
An A / D conversion circuit for converting an analog audio signal input from the digital audio signal, 33 is an A / D conversion circuit 32
It is an input / output unit that amplifies the digital audio signal from and supplies it to the modulation circuit 34. Reference numeral 1 denotes a light emitting unit that projects infrared light including a signal component that is modulated by the modulation circuit 34 into a form suitable for optical transmission, and 11 is a light receiving unit that receives the projected infrared light 6 from the light emitting unit 1. In the light emitting section 1, 3 is a light emitting element for generating a light emitting infrared ray 4, and 5 is a light projecting condenser lens for collecting the light emitting infrared ray 4 from the light emitting element 3 and projecting it into a space as a light projecting infrared ray 6. .. Further, in the light receiving section 11, 7 is a light receiving condenser lens for collecting the projected infrared ray 6 from the space and receiving it as a received infrared ray 8, and 9 is a signal for receiving the received infrared ray 8 through the light receiving condenser lens 7. It is a light receiving element that obtains a component. Reference numeral 2 is a preamplifier that amplifies the signal component obtained by the light receiving element 9 in the light receiving section 11, and 13 is a digital audio signal obtained by demodulating the signal modulated by the modulation circuit 34 on the light emitting section 1 side. A demodulation circuit for obtaining the digital audio signal, an input / output unit 14 for extracting the digital audio signal,
Is a D / A conversion circuit for converting a digital audio signal taken out from the input / output unit 14 into an analog audio signal, 16 is an audio output circuit for amplifying the analog audio signal and outputting it as an audio signal to the outside, 17 is demodulation A level comparator for detecting the level of the digital audio signal obtained by the circuit 13 and outputting a signal according to the level, and 19 is a direction changing drive for swinging the light-receiving angle of the light-receiving unit 11 vertically or horizontally. Mechanism, 18 is a direction changing drive circuit for giving a drive signal to the direction changing drive mechanism 19, 41 is the level detector 1
The hill-climbing servo control circuit 41 applies a control signal to the direction changing drive circuit 18 so that the signal level detected in 7 becomes the highest.

【0003】図6は受光部11の外観図であるが、図に
も示すように、受光部11は受光窓20の方向を自由に
変化できるように方向変更駆動機構19を介して台部に
載せられており、上下方向および水平方向の向きを方向
変更駆動回路18からの駆動信号により変化できるよう
になっている。
FIG. 6 is an external view of the light receiving portion 11, but as shown in the figure, the light receiving portion 11 is mounted on the base through a direction changing drive mechanism 19 so that the direction of the light receiving window 20 can be freely changed. It is mounted so that the vertical and horizontal directions can be changed by a drive signal from the direction changing drive circuit 18.

【0004】以上述べたような構成において、次にその
動作を説明する。
The operation of the above-described structure will be described below.

【0005】発光部1側において入力された音声信号は
音声入力回路31で適宜レベルに増幅されA/D変換回
路32に与えられる。A/D変換回路32においてアナ
ログ音声信号はディジタル音声信号に変換され入出力部
33を通じて変調回路34に出力される。変調回路34
においてディジタル音声信号は伝送に適した形に変調さ
れ発光素子3に与えられる。その結果、発光素子3は変
調を受けた形で発光赤外線4を発生し投光用集光レンズ
5を通じて投光赤外線6を限られた角度領域の空間に送
出する。
A voice signal input on the side of the light emitting unit 1 is amplified to a proper level by a voice input circuit 31 and given to an A / D conversion circuit 32. The analog audio signal is converted into a digital audio signal in the A / D conversion circuit 32 and output to the modulation circuit 34 through the input / output unit 33. Modulation circuit 34
At, the digital audio signal is modulated into a form suitable for transmission and given to the light emitting element 3. As a result, the light emitting element 3 generates the emitted infrared ray 4 in a modulated form and sends the projected infrared ray 6 to the space of a limited angle region through the light projecting condenser lens 5.

【0006】受光部11側においては発光部1が空間に
射出した投光赤外線6を受光用集光レンズ7を用いて集
光し得られた受光赤外線8を受光素子9で受光する。そ
の結果、受光素子9からは変調された受光信号が得られ
るが、この信号は前置増幅器2で増幅され、復調回路1
3で復調されディジタル音声信号が得られる。このディ
ジタル音声信号は入出力部14を通じてD/A変換回路
15に出力されここでアナログ音声信号に変換される。
このアナログ音声信号は音声出力回路16により増幅さ
れ音声信号として、例えばスピーカ等に出力される。
On the side of the light receiving portion 11, the light receiving infrared ray 8 obtained by condensing the projected infrared ray 6 emitted from the light emitting portion 1 into the space by using the light receiving condenser lens 7 is received by the light receiving element 9. As a result, a modulated light receiving signal is obtained from the light receiving element 9, but this signal is amplified by the preamplifier 2 and the demodulation circuit 1
Demodulated in 3 to obtain a digital voice signal. This digital voice signal is output to the D / A conversion circuit 15 through the input / output unit 14 and converted into an analog voice signal here.
The analog audio signal is amplified by the audio output circuit 16 and output as an audio signal to, for example, a speaker.

【0007】一方、復調回路13で得られたディジタル
音声信号はレベル検出器17に与えられる。レベル検出
器17は復調回路13で復調されたディジタル音声信号
のレベルを検出して、このレベルに応じた信号を出力す
る。この信号は山登りサーボ制御回路41に与えられ
る。
On the other hand, the digital voice signal obtained by the demodulation circuit 13 is given to the level detector 17. The level detector 17 detects the level of the digital audio signal demodulated by the demodulation circuit 13 and outputs a signal corresponding to this level. This signal is given to the hill-climbing servo control circuit 41.

【0008】山登りサーボ制御回路41はレベル検出器
17からの信号レベルをモニタしながら方向変更駆動回
路18を通じて方向変更駆動機構19に駆動信号を与
え、受光部11の方向を変更するが、この時に信号レベ
ルが高くなる方向であれば制御方向と判断し、信号レベ
ルが低く成る方向であれば非制御方向と判断しながらレ
ベル検出器17の信号レベルが一番高いところにくるよ
うに周知の山登りサーボ制御を実施する。
While the hill-climbing servo control circuit 41 monitors the signal level from the level detector 17, it gives a drive signal to the direction change drive mechanism 19 through the direction change drive circuit 18 to change the direction of the light receiving portion 11. At this time, When the signal level is high, it is judged as the control direction, and when the signal level is low, it is judged as the non-control direction, so that the signal level of the level detector 17 is the highest. Perform servo control.

【0009】なお、受光部11における受信状態は受光
部11の受光窓20が正確に発光部1の方を向いている
か否かに大きく依存しており、受信状態が悪いと良好な
音声信号を再現することができない。このため、受光部
11においては方向変更駆動機構19を通じてレベル検
出器17で検出される信号レベルが一番高くなるような
方向に受光方向を変化させるので、常に最良の受信状態
に保持することができる。
The receiving state of the light receiving section 11 largely depends on whether or not the light receiving window 20 of the light receiving section 11 accurately faces the light emitting section 1, and if the receiving state is poor, a good voice signal is produced. It cannot be reproduced. Therefore, in the light receiving section 11, the light receiving direction is changed through the direction changing drive mechanism 19 to the direction in which the signal level detected by the level detector 17 becomes the highest, so that the best receiving state can be always maintained. it can.

【0010】[0010]

【発明が解決しようとする課題】従来の光空間伝送装置
は以上のように、発光素子3から投光用集光レンズ5を
通じて限られた空間に投光された伝送信号を含む投光赤
外線6を受光用集光レンズ7を通じて受光素子9で電気
信号に変換し、これをレベル検出に用いるように構成さ
れているので、山登りサーボ制御回路41により方向変
更駆動回路18、方向変更駆動機構19を通じて受光部
11を動かしながら最適な受信方向に制御する場合、投
光赤外線6の投光角度領域が限られておりしかも比較的
レベルの低い伝送信号を用いることになるため、方向の
特定が難しく方向調整に時間を要するという問題があっ
た。さらに、発光素子3は信号伝送のために広帯域であ
りこのために発光出力が小さく、また受光素子9も広帯
域であるが故に受信感度が小さいという問題があり、そ
のまま方向検出と方向制御のために用いるには不適切で
ある。
As described above, the conventional optical space transmission apparatus has a projection infrared ray 6 containing a transmission signal projected from the light emitting element 3 through the light projecting condenser lens 5 into a limited space. Is configured to be converted into an electric signal by the light receiving element 9 through the light receiving condensing lens 7 and used for level detection. Therefore, the hill climbing servo control circuit 41 causes the direction change drive circuit 18 and the direction change drive mechanism 19 to operate. When controlling the receiving direction while moving the light receiving unit 11, it is difficult to specify the direction because the projection angle region of the projected infrared rays 6 is limited and a relatively low level transmission signal is used. There was a problem that adjustment took time. Further, the light emitting element 3 has a wide band for signal transmission, and therefore the light emission output is small, and the light receiving element 9 also has a wide band, so that there is a problem that the receiving sensitivity is small. Not suitable for use.

【0011】この発明は上記ような問題点を解消するた
めになされたもので、帯域が狭い代わりに高出力の発光
素子により方向調整用の光を比較的広い角度領域に送信
すると共にこれを空間的に異なる位置に複数個配置され
た受光素子で検出することにより方向調整用の投光光の
受信を容易にして受光素子の各出力レベル差から受信方
向の特定を確実にすることで応答性および制御性に優れ
た光空間伝送装置を得ることを目的とする。
The present invention has been made in order to solve the above-mentioned problems. Instead of a narrow band, a high-power light emitting element transmits light for direction adjustment to a relatively wide angle region, and at the same time, it is used as a space. By detecting multiple light-receiving elements that are placed at different positions, it is easy to receive the projection light for direction adjustment, and the output direction difference of each light-receiving element ensures the identification of the receiving direction. Another object of the present invention is to obtain an optical space transmission device having excellent controllability.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の光空間伝送装置は、伝送信号に基づ
き変調された光を投光手段により投光し、この投光され
た光を受光手段により受光して復調する光空間伝送装置
において、前記変調された光の変調帯域よりも変調帯域
が狭く、かつ投光角度が広い光を投光する第2投光手段
と、この第2投光手段からの光を空間的に異なる位置に
配置された複数の受光素子で受光し得られた複数の信号
間のレベル差を検出する第2受光手段と、この第2受光
手段にて得られたレベル差に基づき前記受光手段の受光
方向を制御する制御手段とを有することを特徴とする。
In order to achieve the above object, an optical space transmission device according to a first aspect of the present invention projects light modulated based on a transmission signal by a light projecting means, and projects the light. In an optical space transmission device that receives light by a light receiving means and demodulates it, a second light projecting means that projects light having a narrower modulation band than the modulated band of the modulated light and a wide projection angle. Second light receiving means for detecting a level difference between a plurality of signals obtained by receiving light from the second light emitting means by a plurality of light receiving elements arranged at spatially different positions, and the second light receiving means. And a control means for controlling the light receiving direction of the light receiving means based on the level difference thus obtained.

【0013】また、上記目的を達成するために、請求項
2記載の光空間伝送装置は、伝送信号に基づき変調され
た光を投光手段により投光し、この投光された光を受光
手段により受光して復調する光空間伝送装置において、
前記変調された光の変調帯域よりも変調帯域が狭く、か
つ投光角度が広い光を投光する第2投光手段と、この第
2投光手段からの光を空間的に異なる位置に配置された
複数の受光素子で受光し得られた複数の信号間のレベル
差を検出する第2受光手段と、この第2受光手段にて得
られたレベル差に基づき前記受光手段の受光方向を検出
する方向検出手段とを有することを特徴とする。
In order to achieve the above object, an optical space transmission device according to a second aspect of the present invention projects light modulated based on a transmission signal by a light projecting means, and receives the projected light. In an optical space transmission device that receives and demodulates by
Second light projecting means for projecting light having a wider modulation band and a wider light projecting angle than the modulated band of the modulated light, and the light from the second light projecting means are arranged at spatially different positions. Second light receiving means for detecting a level difference between a plurality of signals received by the plurality of light receiving elements, and a light receiving direction of the light receiving means based on the level difference obtained by the second light receiving means And a direction detecting unit that operates.

【0014】[0014]

【作用】前述したように、発光素子からは高帯域で投光
角度が限られた光が出射するために受光素子の方向を移
動させて最適な受光方向を調整するのが困難であるた
め、本発明では方向調整用の光を別個に設け、この光を
受光して受光手段の方向調整を行うものである。
As described above, it is difficult to move the direction of the light receiving element to adjust the optimum light receiving direction because the light emitting element emits light in a high band with a limited projection angle. In the present invention, the light for adjusting the direction is separately provided, and the light is received to adjust the direction of the light receiving means.

【0015】すなわち、第2投光手段からは狭帯域で広
投光角度の光が投光されるため、この光を受光してレベ
ルの方向依存性を容易に検出することができ、しかも第
2の受光手段には空間的に異なる位置に複数の受光素子
が配置されており、これらの受光素子にて得られる信号
のレベル差は第2投光手段からの光の投光方向に応じて
変化するため、このレベル差に応じて受光方向を検知
し、また最適受光方向に受光手段を自動制御することが
できる。
That is, since the second light projecting means projects light in a narrow band and at a wide light projecting angle, it is possible to receive the light and easily detect the direction dependency of the level. A plurality of light receiving elements are arranged at spatially different positions in the second light receiving means, and the level difference between the signals obtained by these light receiving elements depends on the light projecting direction of the light from the second light projecting means. Since it changes, the light receiving direction can be detected according to the level difference, and the light receiving means can be automatically controlled in the optimum light receiving direction.

【0016】[0016]

【実施例】以下、図面を参照しながらこの発明の実施例
を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1はこの発明の一実施例に係る光空間伝
送装置の概略構成図である。図において、12は発光部
1の内部において発光素子3の近傍に取り付けられ方向
調整用赤外線光30を比較的広い角度領域に投光送出す
る方向調整用発光素子、26は受光部11において受光
素子9の近傍に取り付けられ方向調整用赤外線光30を
4つの受光素子、つまり第1受光素子21、第2受光素
子22、第3受光素子23、第4受光素子24で受光し
てそれぞれを電気信号に変換する方向検出用受光素子ア
レイである。また、25は方向調整用発光素子12から
射出された方向調整用赤外線光30を方向検出用受光素
子アレイ26に導くための方向検出用レンズである。そ
して、10は方向調整用発光素子12に帯域の狭い適宜
形式の変調をかけて発光させる変調回路、27は前記変
調回路の動作をオン/オフするためのスイッチ、28は
方向検出用受光素子アレイ26で受光された光信号を増
幅する前置増幅器群、29は前置増幅器群を通じて得ら
れた受光信号を復調する復調回路群、40は復調回路群
29で得られた複数の復調信号のレベル差に基づいてそ
れぞれのレベル差が無くなるように方向変更駆動回路1
8に制御信号を出力するサーボ制御回路40である。
FIG. 1 is a schematic configuration diagram of an optical space transmission apparatus according to an embodiment of the present invention. In the figure, reference numeral 12 is a light emitting element for adjusting direction, which is attached inside the light emitting section 1 in the vicinity of the light emitting element 3 to project and transmit the infrared light 30 for direction adjustment to a relatively wide angle region, and 26 is a light receiving element in the light receiving section 11. The infrared light 30 for adjusting direction, which is attached in the vicinity of 9, is received by four light receiving elements, that is, the first light receiving element 21, the second light receiving element 22, the third light receiving element 23, and the fourth light receiving element 24, and each is received as an electric signal. It is a light receiving element array for direction detection that is converted into. Reference numeral 25 is a direction detecting lens for guiding the direction adjusting infrared light 30 emitted from the direction adjusting light emitting element 12 to the direction detecting light receiving element array 26. Reference numeral 10 is a modulation circuit for causing the direction adjusting light emitting element 12 to emit light by applying a modulation of a proper band having a narrow band, 27 is a switch for turning on / off the operation of the modulation circuit, and 28 is a direction detecting light receiving element array. A preamplifier group that amplifies the optical signal received by 26, 29 is a demodulation circuit group that demodulates the received light signal obtained through the preamplifier group, and 40 is the levels of a plurality of demodulated signals obtained by the demodulation circuit group 29. Direction changing drive circuit 1 so that the respective level differences are eliminated based on the difference
8 is a servo control circuit 40 that outputs a control signal.

【0018】以上述べたような構成において、次にその
動作を図2に示した方向検出用受光素子アレイ26の説
明図に従って説明する。ちなみに、図2において示すよ
うに、方向検出用受光素子アレイ26を構成する第1受
光素子21、第2受光素子22、第3受光素子23、第
4受光素子24は第1受光素子21と第2受光素子22
が水平方向に異なる位置に配置され、第3受光素子23
と第4受光素子24が垂直方向に異なる位置に配置さ
れ、第1受光素子21と第3受光素子23、第3受光素
子23と第2受光素子22、第2受光素子22と第4受
光素子24、第4受光素子24と第1受光素子21がそ
れぞれ斜め方向にくるように配置されている。そして、
方向検出用レンズ25による方向調整用赤外線光30の
方向検出用光像35との関係により(A)、(B)、
(C)、(D)、(E)の状態が示されている。
The operation of the above-described structure will be described below with reference to the direction detection light-receiving element array 26 shown in FIG. By the way, as shown in FIG. 2, the first light receiving element 21, the second light receiving element 22, the third light receiving element 23, and the fourth light receiving element 24, which constitute the direction detecting light receiving element array 26, are the same as the first light receiving element 21 and the first light receiving element 21. 2 light receiving element 22
Are arranged at different positions in the horizontal direction, and the third light receiving element 23
And the fourth light receiving element 24 are arranged at different positions in the vertical direction, and the first light receiving element 21 and the third light receiving element 23, the third light receiving element 23 and the second light receiving element 22, the second light receiving element 22 and the fourth light receiving element 24, the 4th light receiving element 24, and the 1st light receiving element 21 are arrange | positioned so that it may each come in a diagonal direction. And
(A), (B), depending on the relationship between the direction-adjusting infrared image 30 and the direction-detecting optical image 35 by the direction-detecting lens 25,
The states of (C), (D), and (E) are shown.

【0019】さて、発光部1側において入力された音声
信号は音声入力回路31で適宜レベルに増幅されA/D
変換回路32に与えられる。A/D変換回路32におい
てアナログ音声信号はディジタル音声信号に変換され入
出力部33を通じて変調回路34に出力される。変調回
路34においてディジタル音声信号は伝送に適した形に
変調され発光素子3に与えられる。その結果、発光素子
3は変調を受けた形で発光赤外線4を発生し投光用集光
レンズ5を通じて投光赤外線6を限られた角度領域の空
間に送出する。
The audio signal input on the side of the light emitting unit 1 is amplified to a proper level by the audio input circuit 31 and then A / D.
It is given to the conversion circuit 32. The analog audio signal is converted into a digital audio signal in the A / D conversion circuit 32 and output to the modulation circuit 34 through the input / output unit 33. In the modulation circuit 34, the digital audio signal is modulated into a form suitable for transmission and given to the light emitting element 3. As a result, the light emitting element 3 generates the emitted infrared ray 4 in a modulated form and sends the projected infrared ray 6 to the space of a limited angle region through the light projecting condenser lens 5.

【0020】一方、発光素子3の近傍に取り付けられた
方向調整用発光素子12はスイッチ36をオンしている
間のみ変調回路10により変調を受けながら点灯して発
光素子3による投光赤外線6の投光角度領域よりも比較
的広い角度領域に方向調整用赤外線光30として投光送
出する。なお、この場合の光の出力レベルは狭帯域の変
調しかかかっていないため比較的強いレベルとされる。
On the other hand, the direction adjusting light emitting element 12 mounted in the vicinity of the light emitting element 3 is lit while being modulated by the modulation circuit 10 only while the switch 36 is on, and the infrared ray 6 projected by the light emitting element 3 is emitted. The direction adjusting infrared light 30 is projected and transmitted to an angle region relatively wider than the light projecting angle region. The light output level in this case is relatively strong because it is only modulated in a narrow band.

【0021】これに対して、受光部11側においては発
光部1が空間に射出した投光赤外線6を受光用集光レン
ズ7を用いて比較的狭い角度領域から集光し得られた受
光赤外線8を受光素子9で受光する。その結果、受光素
子9からは変調された受光信号が得られるが、この信号
は復調回路13で復調されディジタル音声信号が得られ
る。このディジタル音声信号は入出力部14を通じてD
/A変換回路15に出力され、ここでアナログ音声信号
に変換される。このアナログ音声信号はさらに音声出力
回路16により増幅され音声信号として、例えばスピー
カ等に出力される。
On the other hand, on the side of the light receiving section 11, the light receiving infrared ray obtained by condensing the projected infrared ray 6 emitted from the light emitting section 1 into the space from the relatively narrow angle region by using the light receiving condenser lens 7. 8 is received by the light receiving element 9. As a result, a modulated light receiving signal is obtained from the light receiving element 9, and this signal is demodulated by the demodulation circuit 13 to obtain a digital voice signal. This digital voice signal is passed through the input / output unit 14 to D
It is output to the A / A conversion circuit 15 and converted into an analog audio signal here. This analog audio signal is further amplified by the audio output circuit 16 and output as an audio signal to, for example, a speaker.

【0022】一方、受光素子9の近傍に取り付けられた
方向検出用受光素子アレイ26は投光赤外線6の角度領
域よりも比較的広い角度領域に投光赤外線6よりも比較
的強いレベルで投光されている方向調整用赤外線光30
を第1受光素子21、第2受光素子22、第3受光素子
23、第4受光素子24を通じて受光するが、この受光
信号は前置増幅器群28で4系統それぞれに増幅され、
復調回路群29においてそれぞれ復調検波されサーボ制
御回路40に与えられる。サーボ制御回路40は復調回
路群29で復調されたディジタル音声信号のレベルどう
しを比較して、それぞれのレベル差が一番小さくなるよ
うな方向の制御信号を方向変更駆動回路18に送出す
る。
On the other hand, the direction-detecting light-receiving element array 26 mounted in the vicinity of the light-receiving element 9 emits light at a relatively stronger level than the infrared ray 6 in an angle area relatively wider than the angle area of the infrared ray 6. Infrared light 30 for direction adjustment
Is received through the first light receiving element 21, the second light receiving element 22, the third light receiving element 23, and the fourth light receiving element 24. This light receiving signal is amplified by the preamplifier group 28 into four systems,
Demodulation detection is performed in the demodulation circuit group 29, and the demodulated detection is applied to the servo control circuit 40. The servo control circuit 40 compares the levels of the digital audio signals demodulated by the demodulation circuit group 29 and sends a control signal to the direction changing drive circuit 18 in a direction such that the respective level differences are the smallest.

【0023】今、方向調整用赤外線光30による方向検
出用受光素子アレイ26上の方向検出用光像35が図2
(B)または(C)のような状態であったとする。この
場合は第3受光素子23と第4受光素子24で検出され
る光のレベルは変わらず、第1受光素子21と第2受光
素子22で検出されるレベルに差を生じている。つま
り、受光部11の方向が左右方向で正しくないことを示
している。そこで、サーボ制御回路40は方向変更駆動
回路18に第1受光素子21と第2受光素子22の出力
のレベル差に応じて右方向または左方向への制御信号を
与える。その結果、方向変更駆動回路18は方向変更駆
動機構19に左右方向の回転駆動信号を与え、受光部1
1は左右方向に首を振り、方向検出用光像35が図2
(A)の状態になって第1受光素子21と第2受光素子
22の検出レベル差が無くなるとサーボ制御回路40か
らの指令に基づいて停止する。一方、方向調整用赤外線
光30による方向検出用受光素子アレイ26上の方向検
出用光像35が図2(D)または(E)のような状態で
あったとする。この場合は第1受光素子21と第2受光
素子22で検出される光のレベルは変わらず、第3受光
素子23と第4受光素子24で検出されるレベルに差を
生じている。つまり、受光部11の方向が上下方向で正
しくないことを示している。そこで、サーボ制御回路4
0は方向変更駆動回路18に第3受光素子23と第4受
光素子24の出力のレベル差に応じて上方向または下方
向への制御信号を与える。その結果、方向変更駆動回路
18は方向変更駆動機構19に上下方向の回転駆動信号
を与え、受光部11は上下方向に首を振り、方向検出用
光像35が図2(A)の状態になって第3受光素子23
と第4受光素子24の検出レベル差が無くなるとサーボ
制御回路40からの指令に基づいて停止する。以上のよ
うな制御は、左右と上下の両方で向きが正しくない場合
も同様に行なわれるものであり、最終的には第1受光素
子21と第2受光素子22のレベル差を無くすと共に第
3受光素子23と第4受光素子24のレベル差を無くす
ような方向に制御が行なわれる。
Now, the direction detecting light image 35 on the direction detecting light receiving element array 26 by the direction adjusting infrared light 30 is shown in FIG.
It is assumed that the state is (B) or (C). In this case, the levels of light detected by the third light receiving element 23 and the fourth light receiving element 24 do not change, and there is a difference in the levels detected by the first light receiving element 21 and the second light receiving element 22. That is, it indicates that the direction of the light receiving unit 11 is incorrect in the left-right direction. Therefore, the servo control circuit 40 gives the direction change drive circuit 18 a control signal to the right or to the left depending on the level difference between the outputs of the first light receiving element 21 and the second light receiving element 22. As a result, the direction changing drive circuit 18 gives the direction changing drive mechanism 19 a rotation drive signal in the left-right direction, and the light receiving unit 1
1 shakes the head in the left-right direction, and the direction detection optical image 35 is shown in FIG.
When the state of (A) is reached and the detection level difference between the first light receiving element 21 and the second light receiving element 22 disappears, the operation is stopped based on a command from the servo control circuit 40. On the other hand, it is assumed that the direction detection light image 35 on the direction detection light receiving element array 26 by the direction adjustment infrared light 30 is in a state as shown in FIG. 2D or 2E. In this case, the levels of the light detected by the first light receiving element 21 and the second light receiving element 22 do not change, and there is a difference in the levels detected by the third light receiving element 23 and the fourth light receiving element 24. That is, it indicates that the direction of the light receiving unit 11 is incorrect in the vertical direction. Therefore, the servo control circuit 4
0 gives the direction change drive circuit 18 an upward or downward control signal according to the level difference between the outputs of the third light receiving element 23 and the fourth light receiving element 24. As a result, the direction change drive circuit 18 gives a vertical direction rotation drive signal to the direction change drive mechanism 19, the light receiving unit 11 swings its head in the up and down direction, and the direction detection optical image 35 becomes the state of FIG. 2 (A). The third light receiving element 23
When there is no difference in the detection levels of the fourth light receiving element 24 and the fourth light receiving element 24, the operation is stopped based on a command from the servo control circuit 40. The above control is similarly performed when the orientations are not correct in both the left and right sides and the top and bottom sides. Finally, the level difference between the first light receiving element 21 and the second light receiving element 22 is eliminated and the third control is performed. The control is performed in such a direction as to eliminate the level difference between the light receiving element 23 and the fourth light receiving element 24.

【0024】以上のような制御が終了した段階で、スイ
ッチ27により変調回路10の動作を停止することによ
り、本来伝送すべき信号の伝送に妨害を与えないように
する。
When the control as described above is completed, the operation of the modulation circuit 10 is stopped by the switch 27 so that the transmission of the signal to be originally transmitted is not disturbed.

【0025】受光部11における伝送信号の受信状態は
受光部11が正確に発光部1の方を向いているか否かに
大きく依存しており、受信状態が悪いと良好な音声信号
を再現することができない。これに対して、本実施例の
構成によれば、発光素子3から比較的狭い空間角度領域
に投光された伝送信号とは別の比較的広い領域に投光さ
れ狭い変調帯域のレベルの強い方向調整用赤外線光30
を方向検出用受光素子アレイ26で電気信号に変換し、
これを方向制御に用い、サーボ制御回路40を通じて受
光部11の上下左右方向の角度を制御することにより、
最良の受信状態を得ることができる。つまり、受光部1
1の向きを動かしながら最適な受信方向に制御する場
合、方向調整用赤外線光30の検出が容易となり方向の
特定が確実であり、方向制御を簡単に実施できるという
利点がある。また、方向調整が終了した後はスイッチ2
7により変調回路10の動作を停止させ方向調整用発光
素子12の発光を止めることにより電力消費の低減や混
変調等による正規の伝送信号への影響の低減を図ること
ができる。
The receiving state of the transmission signal in the light receiving section 11 depends largely on whether or not the light receiving section 11 is accurately facing the light emitting section 1, and if the receiving state is poor, a good voice signal should be reproduced. I can't. On the other hand, according to the configuration of the present embodiment, the level of the narrow modulation band is high because the light emitting element 3 projects a relatively wide area different from the transmission signal projected in a relatively narrow spatial angle area. Infrared light 30 for direction adjustment
Is converted into an electric signal by the light receiving element array 26 for direction detection,
By using this for direction control and controlling the angle of the light receiving unit 11 in the vertical and horizontal directions through the servo control circuit 40,
The best reception condition can be obtained. That is, the light receiving unit 1
When the direction 1 is moved and controlled to the optimum receiving direction, the direction adjusting infrared light 30 can be easily detected, the direction can be specified with certainty, and the direction control can be easily performed. After the direction adjustment is completed, switch 2
By stopping the operation of the modulation circuit 10 and stopping the light emission of the direction adjusting light emitting element 12 by 7, it is possible to reduce the power consumption and the influence on the regular transmission signal due to the intermodulation or the like.

【0026】なお、上記実施例では方向調整用発光素子
12を変調回路10により狭い帯域で変調しながら点灯
させるような構成を例示したが、外部の光によるノイズ
を考慮しなくてもよければ、直流的に点灯させるように
しても同様の効果を得ることができる。また、上記実施
例では方向調整用発光素子12から方向調整用赤外線光
30を得るためにレンズを用いない構成を例示している
が、投光用集光レンズ5よりも広い範囲に投光できるよ
うなレンズを適用してもよい。一方、受光部11側では
方向検出用受光素子アレイ26の前に方向検出用レンズ
25を配置しているが、受光部11が方向調整用発光素
子12の方向を向いたときに方向検出用受光素子アレイ
26の第1受光素子21、第2受光素子22、第3受光
素子23、第4受光素子24に入射する光が均一になる
ようなマスクを配置しても同様の効果を得ることができ
る。
In the above embodiment, the direction adjusting light emitting element 12 is lit while being modulated by the modulation circuit 10 in a narrow band. However, if it is not necessary to consider noise due to external light, The same effect can be obtained even if the lights are turned on in a direct current manner. Further, in the above embodiment, the lens is not used to obtain the direction adjusting infrared light 30 from the direction adjusting light emitting element 12, but it is possible to project a wider range than the light projecting condenser lens 5. Such a lens may be applied. On the other hand, although the direction detecting lens 25 is disposed in front of the direction detecting light receiving element array 26 on the side of the light receiving section 11, when the light receiving section 11 faces the direction adjusting light emitting element 12, the direction detecting light receiving light is received. The same effect can be obtained by arranging a mask that makes the light incident on the first light receiving element 21, the second light receiving element 22, the third light receiving element 23, and the fourth light receiving element 24 of the element array 26 uniform. it can.

【0027】なお、上記実施例では方向検出用受光素子
アレイ26の第1受光素子21、第2受光素子22、第
3受光素子23、第4受光素子24を1個の方向検出用
レンズ25の後ろにまとめて配置した構成を例示した
が、図3に示すように、十字形に第1受光素子21、第
2受光素子22、第3受光素子23、第4受光素子24
を離して配置し、それぞれの素子の前に第1の集光レン
ズ36、第2の集光レンズ37、第3の集光レンズ3
8、第4の集光レンズ39を設けて、受光用集光レンズ
7を通じて受光素子9に最も良好に投光赤外線6が受光
される状態の時に、第1受光素子21、第2受光素子2
2、第3受光素子23、第4受光素子24に受光される
方向調整用赤外線光30のレベルが等しくなるように調
整配置してもよく、同様効果を得ることができる。ま
た、図4に示すように、方向検出用受光素子アレイ26
を構成する第1受光素子21、第2受光素子22、第3
受光素子23、第4受光素子24を受光素子9を取り囲
むように十字型に配置してもよく同様の効果を得ること
ができる。この場合、発光部1側で発光素子3と方向調
整用発光素子12が十分に近くに配置されていれば、受
光用集光レンズ7と第1の集光レンズ36、第2の集光
レンズ37、第3の集光レンズ38、第4の集光レンズ
39を1個のレンズで構成することも可能である。この
場合、受光用集光レンズ7を通じて受光素子9に最も良
好に投光赤外線6が受光される状態の時に、第1受光素
子21、第2受光素子22、第3受光素子23、第4受
光素子24の受光レベルが等しくなるようにそれぞれの
素子を配置する必要がある。
In the above embodiment, the first light receiving element 21, the second light receiving element 22, the third light receiving element 23, and the fourth light receiving element 24 of the direction detecting light receiving element array 26 are included in one direction detecting lens 25. Although the configuration in which they are collectively arranged behind is illustrated, as shown in FIG. 3, the first light receiving element 21, the second light receiving element 22, the third light receiving element 23, and the fourth light receiving element 24 are cross-shaped.
And the first condenser lens 36, the second condenser lens 37, and the third condenser lens 3 in front of the respective elements.
8. When the fourth condensing lens 39 is provided and the projected infrared rays 6 are best received by the light receiving element 9 through the light receiving condensing lens 7, the first light receiving element 21 and the second light receiving element 2
2, the third light receiving element 23 and the fourth light receiving element 24 may be adjusted and arranged so that the levels of the direction adjusting infrared light 30 received are the same, and the same effect can be obtained. Further, as shown in FIG. 4, the light receiving element array 26 for direction detection is used.
The first light receiving element 21, the second light receiving element 22, and the third light receiving element
The light receiving element 23 and the fourth light receiving element 24 may be arranged in a cross shape so as to surround the light receiving element 9, and the same effect can be obtained. In this case, if the light emitting element 3 and the direction adjusting light emitting element 12 are arranged sufficiently close to each other on the side of the light emitting unit 1, the light receiving condenser lens 7, the first condenser lens 36, and the second condenser lens It is also possible to configure 37, the third condenser lens 38, and the fourth condenser lens 39 with one lens. In this case, the first light receiving element 21, the second light receiving element 22, the third light receiving element 23, and the fourth light receiving are received when the projected infrared rays 6 are best received by the light receiving element 9 through the light receiving condensing lens 7. It is necessary to arrange each element so that the light receiving level of the element 24 becomes equal.

【0028】なお、上記各実施例では方向検出用受光素
子アレイ26の各第1受光素子21、第2受光素子2
2、第3受光素子23、第4受光素子24にレベル差を
付けるために方向調整用赤外線光30の光像の位置を検
出する構成を例示したが、第1受光素子21、第2受光
素子22、第3受光素子23、第4受光素子24の受光
角度に上下左右で差を持たせることによりレンズやマス
クを使うことなく方向検出を行なうことも可能である。
つまり、図7の説明図に示すように、方向調整用発光素
子12からの方向調整用赤外線光30は第1受光素子2
1、第2受光素子22、第3受光素子23、第4受光素
子24のそれぞれに垂直に入射した場合が最も高い検出
レベルを得ることができるが、それぞれの受光素子に角
度を付けてあるため、すべての素子が最適な角度となら
なければそれぞれの出力レベル差をなくすことができ
ず、その方向は1つしかない。このため、各受光素子の
レベル差から方向調整用赤外線光30の出射方向を特定
することができる。
In each of the above embodiments, the first light receiving element 21 and the second light receiving element 2 of the direction detecting light receiving element array 26 are used.
Although the configuration in which the position of the optical image of the direction adjusting infrared light 30 is detected in order to make the level difference between the second and third light receiving elements 23 and 24, the first light receiving element 21 and the second light receiving element are illustrated. By making the light receiving angles of 22, 22, the third light receiving element 23, and the fourth light receiving element 24 different in the vertical and horizontal directions, it is possible to detect the direction without using a lens or a mask.
That is, as shown in the explanatory view of FIG. 7, the direction adjusting infrared light 30 from the direction adjusting light emitting element 12 is emitted from the first light receiving element 2.
The highest detection level can be obtained when vertically incident on each of the first, second light receiving element 22, the third light receiving element 23, and the fourth light receiving element 24, but since each light receiving element is angled. If all the elements do not have an optimum angle, it is impossible to eliminate the difference in output level between them and there is only one direction. Therefore, the emission direction of the direction adjusting infrared light 30 can be identified from the level difference between the light receiving elements.

【0029】なお、上記実施例では音声信号を光空間伝
送する場合を例にとって説明したが、他の種類の信号、
例えば映像信号やコンピュータ用の制御信号、データ信
号等を伝送するような装置に適用しても良く同様の効果
を得ることができる。
In the above embodiment, the case where the audio signal is transmitted in the optical space is explained as an example, but other kinds of signals,
For example, it may be applied to a device that transmits a video signal, a control signal for a computer, a data signal, etc., and the same effect can be obtained.

【0030】また、上記実施例では方向検出用受光素子
アレイ26を構成する第1受光素子21、第2受光素子
22、第3受光素子23、第4受光素子24のレベル差
をサーボ制御回路40に与えて受光部11の方向を制御
する構成を例示したが、復調回路群29の出力を表示し
て手動にて受光部11の方向を調整するような構成とし
てもよい。
In the above embodiment, the servo control circuit 40 determines the level difference among the first light receiving element 21, the second light receiving element 22, the third light receiving element 23, and the fourth light receiving element 24 which form the direction detecting light receiving element array 26. However, the direction of the light receiving unit 11 may be manually adjusted by displaying the output of the demodulation circuit group 29.

【0031】[0031]

【発明の効果】以上述べたように、この発明によれば、
光伝送信号の他に方向調整用の光を光伝送信号が投光さ
れる角度領域よりも広い角度領域に投光するように構成
し、この光を複数の受光素子で受光するように構成した
ので、それぞれのレベル差から光伝送信号の発光源の方
向特定が容易であり、受信部の方向調整を簡略または自
動化できる効果がある。
As described above, according to the present invention,
In addition to the optical transmission signal, direction adjusting light is configured to be projected to an angle area wider than the angular area where the optical transmission signal is projected, and the light is configured to be received by a plurality of light receiving elements. Therefore, it is easy to identify the direction of the light emitting source of the optical transmission signal from the level difference, and the direction adjustment of the receiving unit can be simplified or automated.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係る光空間伝送装置の概
略構成図である。
FIG. 1 is a schematic configuration diagram of an optical space transmission device according to an embodiment of the present invention.

【図2】方向検出用受光素子アレイの説明図である。FIG. 2 is an explanatory diagram of a direction detecting light receiving element array.

【図3】方向検出用受光素子アレイの他の例の説明図で
ある。
FIG. 3 is an explanatory diagram of another example of the direction detection light-receiving element array.

【図4】方向検出用受光素子アレイの更に他の例の説明
図である。
FIG. 4 is an explanatory diagram of still another example of the direction detection light-receiving element array.

【図5】従来の光空間伝送装置の概略構成図である。FIG. 5 is a schematic configuration diagram of a conventional space optical transmission apparatus.

【図6】受光部の外観図である。FIG. 6 is an external view of a light receiving unit.

【図7】方向検出用受光素子アレイの別の例の説明図で
ある。
FIG. 7 is an explanatory diagram of another example of the direction detection light-receiving element array.

【符号の説明】[Explanation of symbols]

1 発光部 2 前置増幅器 3 発光素子 4 発光赤外線 5 投光用集光レンズ 6 投光赤外線 7 受光用集光レンズ 8 受光赤外線 9 受光素子 10 変調回路 11 受光部 12 方向調整用発光素子 13 復調回路 14 入出力部 15 D/A変換回路 16 音声出力回路 17 レベル検出器 18 方向変更駆動回路 19 方向変更駆動機構 20 受光窓 21 第1受光素子 22 第2受光素子 23 第3受光素子 24 第4受光素子 25 方向検出用レンズ 26 方向検出用受光素子アレイ 27 スイッチ 28 前置増幅器群 29 復調回路群 30 方向調整用赤外線光 31 音声入力回路 32 A/D変換回路 33 入出力部 34 変調回路 35 方向検出用光像 36 第1の集光レンズ 37 第2の集光レンズ 38 第3の集光レンズ 39 第4の集光レンズ 40 サーボ制御回路 41 山登りサーボ制御回路 1 Light Emitting Unit 2 Preamplifier 3 Light Emitting Element 4 Light Emitting Infrared 5 Light Emitting Condensing Lens 6 Light Emitting Infrared 7 Light Receiving Condensing Lens 8 Light Receiving Infrared 9 Light Receiving Element 10 Modulation Circuit 11 Light Receiving Section 12 Direction Adjustment Light Emitting Element 13 Demodulation Circuit 14 Input / output unit 15 D / A conversion circuit 16 Audio output circuit 17 Level detector 18 Direction changing drive circuit 19 Direction changing drive mechanism 20 Light receiving window 21 First light receiving element 22 Second light receiving element 23 Third light receiving element 24 Fourth Light receiving element 25 Direction detecting lens 26 Direction detecting light receiving element array 27 Switch 28 Preamplifier group 29 Demodulation circuit group 30 Direction adjustment infrared light 31 Voice input circuit 32 A / D conversion circuit 33 Input / output section 34 Modulation circuit 35 direction Optical image for detection 36 First condensing lens 37 Second condensing lens 38 Third condensing lens 39 Fourth condensing lens 4 The servo control circuit 41 hill climbing servo control circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 伝送信号に基づき変調された光を投光手
段により投光し、この投光された光を受光手段により受
光して復調する光空間伝送装置において、 前記変調された光の変調帯域よりも変調帯域が狭く、か
つ投光角度が広い光を投光する第2投光手段と、 この第2投光手段からの光を空間的に異なる位置に配置
された複数の受光素子で受光し得られた複数の信号間の
レベル差を検出する第2受光手段と、 この第2受光手段にて得られたレベル差に基づき前記受
光手段の受光方向を制御する制御手段と、 を有することを特徴とする光空間伝送装置。
1. An optical space transmission device in which light modulated on the basis of a transmission signal is projected by a light projecting means, and the projected light is received by a light receiving means and demodulated, wherein the modulated light is modulated. A second light projecting means for projecting light having a narrower modulation band and a wider light projecting angle than the band, and a plurality of light receiving elements for arranging light from the second light projecting means at spatially different positions. A second light receiving means for detecting a level difference between a plurality of signals received and received; and a control means for controlling a light receiving direction of the light receiving means based on the level difference obtained by the second light receiving means. An optical space transmission device characterized by the above.
【請求項2】 伝送信号に基づき変調された光を投光手
段により投光し、この投光された光を受光手段により受
光して復調する光空間伝送装置において、 前記変調された光の変調帯域よりも変調帯域が狭く、か
つ投光角度が広い光を投光する第2投光手段と、 この第2投光手段からの光を空間的に異なる位置に配置
された複数の受光素子で受光し得られた複数の信号間の
レベル差を検出する第2受光手段と、 この第2受光手段にて得られたレベル差に基づき前記受
光手段の受光方向を検出する方向検出手段と、 を有することを特徴とする光空間伝送装置。
2. An optical space transmission device in which light modulated on the basis of a transmission signal is projected by a light projecting means, and the projected light is received by a light receiving means and demodulated, wherein the modulated light is modulated. A second light projecting means for projecting light having a narrower modulation band and a wider light projecting angle than the band, and a plurality of light receiving elements for arranging light from the second light projecting means at spatially different positions. A second light receiving means for detecting a level difference between a plurality of signals received and received; and a direction detecting means for detecting a light receiving direction of the light receiving means based on the level difference obtained by the second light receiving means. An optical space transmission device having.
JP3347506A 1991-12-27 1991-12-27 Optical space transmitter Pending JPH05183515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3347506A JPH05183515A (en) 1991-12-27 1991-12-27 Optical space transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3347506A JPH05183515A (en) 1991-12-27 1991-12-27 Optical space transmitter

Publications (1)

Publication Number Publication Date
JPH05183515A true JPH05183515A (en) 1993-07-23

Family

ID=18390688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3347506A Pending JPH05183515A (en) 1991-12-27 1991-12-27 Optical space transmitter

Country Status (1)

Country Link
JP (1) JPH05183515A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229277A (en) * 2004-02-12 2005-08-25 Victor Co Of Japan Ltd Optical radio transmitter
US7257282B2 (en) 2003-01-06 2007-08-14 Canon Kabushiki Kaisha Process of information transmission in optical circuit device and optical circuit device therefor
US7643755B2 (en) 2003-10-13 2010-01-05 Noble Peak Vision Corp. Optical receiver comprising a receiver photodetector integrated with an imaging array
JP2013125975A (en) * 2011-12-13 2013-06-24 Nippon Telegr & Teleph Corp <Ntt> Loudspeaker device
JP2013187794A (en) * 2012-03-09 2013-09-19 Seiko Epson Corp Virtual image display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7257282B2 (en) 2003-01-06 2007-08-14 Canon Kabushiki Kaisha Process of information transmission in optical circuit device and optical circuit device therefor
US7643755B2 (en) 2003-10-13 2010-01-05 Noble Peak Vision Corp. Optical receiver comprising a receiver photodetector integrated with an imaging array
JP2005229277A (en) * 2004-02-12 2005-08-25 Victor Co Of Japan Ltd Optical radio transmitter
JP4599847B2 (en) * 2004-02-12 2010-12-15 日本ビクター株式会社 Optical wireless transmission device
JP2013125975A (en) * 2011-12-13 2013-06-24 Nippon Telegr & Teleph Corp <Ntt> Loudspeaker device
JP2013187794A (en) * 2012-03-09 2013-09-19 Seiko Epson Corp Virtual image display device

Similar Documents

Publication Publication Date Title
US20020131121A1 (en) Transceiver, system, and method for free-space optical communication and tracking
JPH05183515A (en) Optical space transmitter
JP2001191286A (en) Soccer robot controlling system using ir module
JP4320889B2 (en) Position detection system and position detection method for detecting relative positional relationship between transmitter and receiver of infrared remote control, and infrared remote control receiver
JP3995925B2 (en) Image display device
JP2005269036A (en) Optical wireless transmission system and optical wireless transmitter
JP2829941B2 (en) Optical space transmission equipment
JPH0937357A (en) Remote control system with position detecting function
JPH098735A (en) Infrared transmitter, infrared receiver and infrared transmission system
JP2753960B2 (en) Point type wireless adjustment device and adjustment method thereof
JPH07131422A (en) Optical axis alignment method for optical radio transmission equipment
JPH09331295A (en) Method for adjusting optical axis of optical radio transmitter
JP2007334191A (en) Projection apparatus, range finding processing method, and program
JP2000321530A (en) Laser pointer and presentation system
JPH04123674A (en) Remote control system for video camera device
JP2003209520A (en) Transmitter, receiver and signal axis alignment method
JPH04243331A (en) Optical wireless transmitter
JPH05183514A (en) Optical space transmitter
JP2004173090A (en) Device for detecting light incoming direction and optical radio receiver
JP3104046B2 (en) Optical space transmission apparatus and optical space transmission method
JP2005252976A (en) Optical transmission system
JP2004135326A (en) Optical wireless transmission equipment
JP2008141520A (en) Optical radio video/audio signal transmitter, receiver, and transmission system
JPH0763608A (en) Reflected light detector
JPH0669886A (en) Light space transmission device