JP4029402B2 - Optical axis adjustment device for optical wireless transmission device - Google Patents

Optical axis adjustment device for optical wireless transmission device Download PDF

Info

Publication number
JP4029402B2
JP4029402B2 JP2003189057A JP2003189057A JP4029402B2 JP 4029402 B2 JP4029402 B2 JP 4029402B2 JP 2003189057 A JP2003189057 A JP 2003189057A JP 2003189057 A JP2003189057 A JP 2003189057A JP 4029402 B2 JP4029402 B2 JP 4029402B2
Authority
JP
Japan
Prior art keywords
optical
optical axis
wireless transmission
light
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003189057A
Other languages
Japanese (ja)
Other versions
JP2005026930A (en
Inventor
忠 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2003189057A priority Critical patent/JP4029402B2/en
Publication of JP2005026930A publication Critical patent/JP2005026930A/en
Application granted granted Critical
Publication of JP4029402B2 publication Critical patent/JP4029402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、送信機が送信する光信号の光軸を受信機に向けて光無線伝送を行う光無線伝送装置の光軸調整装置に関する。
【0002】
【従来の技術】
従来より、光を用いて情報の空間伝送を行う光無線伝送技術がある。この光無線伝送には、一般に赤外光が用いられ、その発光素子としては、発光ダイオードやレーザダイオードなどの半導体発光素子が用いられている。このような光無線伝送において、送受信間距離を十分にとりたい場合は、受信装置側に十分な光レベルの信号を入射させるために、送信装置より発する光ビームの出射角を鋭く、すなわち狭く絞る必要があるので、送信装置及び受信装置の光軸を合わせなくてはならない。そこで、出射角の狭い光ビームを用いることや、光ビームが目に見えない赤外光を用いることなどから、光無線伝送装置の光軸合わせは大変煩わしい作業となる。そこで、従来より、この光軸合わせを容易に行えるような光無線伝送装置の提案がなされている。
【0003】
その1つの例として下記の特許文献1には、送信装置から可視光をピンポイントに絞って信号伝送用の赤外光と同一光軸、あるいは平行光軸にして一緒に送り、受信装置側に設けた可視光反射手段に当て、その可視光反射手段により反射された可視光を操作者が見ながら送信装置の光軸調整を行う光無線伝送装置が開示されている。また、この他の技術としては送信装置に照準機を設置して、その照準機を見ながら光軸を合わせる光無線伝送装置や、受信装置側に受光レベル検出用測定機を接続して2人一組で光軸合わせを行う光無線伝送装置もある。また、下記の特許文献2で開示されるように受信機側に光軸調整用の光源を用いて、送信機からの送信光の受信レベル情報を折り返し、それに応じて光軸を合わせるものもある。
【0004】
【特許文献1】
特開昭62−110339号公報
【特許文献2】
特開平7−131422号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上述の特許文献1で開示されたような光無線伝送装置は、送信装置に光無線伝送の目的以外に使用する可視光を発生させる構成を必要としている。また、送受信装置間の距離を十分にとりたい場合などは、この可視光の発光出力を十分大きいものにしなくてはならず、また、その構成を追加する必要があるため、送信装置のコストアップとなってしまう上に、装置が大型になってしまう。これは、送信装置に照準機を設置する場合も同じである。
【0006】
また、可視光の光軸や、照準機の照準と、信号伝送用の赤外光の光軸とを厳密に合わせておく必要があることもコストアップとなる。また、受光レベル検出用測定機を受信装置に接続して2人一組で行う場合においても、受光レベル検出用測定機を用意する必要があったり、人手を要するなどの欠点があった。このように、従来の光無線伝送装置は、光軸合わせを簡単化しようとすると、送受信装置のコストアップや、大型化となってしまい、逆に送受信装置のコストダウンや、小型化を行おうとすると、光軸合わせの作業に手間が掛かるなどの欠点を有していた。
【0007】
また、特許文献2で開示された光無線伝送装置は、前述のように光伝送する情報を乗せる指向角の狭い光信号を送信する第一の光学送信手段の他に、検出した光信号の受信レベル信号に応じた受信情報を送受信間で送受する手段を有し、送信側で受信情報を取り出すことにより、簡単な光軸合わせの方法を実現しているが、モータのような比較的高価な電気的駆動手段を用いるほかに、具体的にどのように光軸を駆動するのが最適であるかといった提案が欠けている。また、ステッピングモータやDCモータのような比較的高価な部品を用い、受光レベルの情報をこれらの制御に利用した光軸合わせの方法は、当然のことながらコストアップを招く。
【0008】
また、モータを用いない従来の光軸合わせ機構は、軸が回転するだけの機構であり、光軸が合った位置で手を離しても位置は定まらず、わずかな外乱要因により、合わせた光軸が再びずれる可能性が高いものであった。また、微調整に際しても、移動量の把握は操作する人間の感覚に頼ったものであり、レベルモニタを利用する場合であっても指先の細かな操作が必要で、光軸合わせの最終的な段階での微調整は簡便なものとは言えなかった。
【0009】
以上のように、従来の光軸合わせは、装置が大型であったり、2人掛かりで人手が必要であったり、比較的コスト高な駆動手段に頼ったものであったり、指先の細かな操作を要求されるものであったという課題があった。
【0010】
そこで本発明は、上記の点に着眼してなされたものであり、簡素な構成及び操作で光無線伝送の光軸を簡単に合わせることができる光無線伝送装置の光軸調整装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は上記目的を達成するために、相手先に光軸を手動で合わせる回転機構の回転角度単位を必ず相手先の視野内に入るようにしたものである。
すなわち本発明によれば、光信号を送信する光学送信手段を備えた送信機と、前記光信号を受信する光学受信手段を備えた受信機とを有し、前記光学送信手段と前記光学受信手段の間の光軸を光通信の相手先に手動で合わせる無線伝送装置の光軸調整装置において、
前記光学送信手段及び/又は前記光学受信手段の光軸を水平方向Xと垂直方向Yに所定の角度単位で回転させる2軸の回転機構を備え、
相手先に対する送信又は受信可能な角度をφとし、前記2軸の回転機構の水平方向Xと垂直方向Yの回転角度単位をそれぞれΔθx、Δθyとすると、
Δθx2+Δθy2≦φ2
であることを特徴とする光無線伝送装置の光軸調整装置が提供される。
【0012】
【発明の実施の形態】
以下、添付図面を参照して本発明の光軸合わせ方法を利用した光無線伝送装置の実施の形態について説明する。図1は本発明の光無線伝送装置の一実施の形態を示す概略構成図である。
【0013】
図1に示すように本発明による光無線伝送装置は、送信機1と受信機2からなり、映像表示部4から離れた場所にある映像制御部3の映像信号を、映像制御部3側に設けられた送信機1と映像表示部4側に設けられた受信機2により光無線伝送して映像表示部4に映し出すシステムである。送信機1からは映像信号が光信号に変換されて出力され、出力された光信号は一定の放射角の範囲B(−B/2〜+B/2)内において所定の強度を保つ。一方、受信機2においては、送信機1より出力された光信号を受ける受光素子が受信可能な受信光指向角A(−A/2〜+A/2)を有する。光伝送を実現するには、送信機1側の光信号の送信光放射角Bの範囲内に受信機2を捕らえ、かつ、受信機2の受光素子が送信光を受信可能な受信光指向角Aの範囲内に送信機1を捕らえる必要がある。光無線伝送における光軸合わせとは、上記のような状態を作り出すことである。
【0014】
図2は、本発明の光無線伝送装置の送信機1と受信機2の概略構成図である。送信機1、受信機2のそれぞれには、映像信号を変換した光信号を送受信するための送信光発光素子11、送信光受光素子21とは別に、光軸を合わせる手段として光軸合わせ用の発光素子12、22と複数の受光素子13、23を備え、互いに相手の光軸合わせ用発光信号を、複数の受光素子13、23からなる受光手段により受光し、受光レベルを検出し、比較して得た信号を、図3に示すような光軸合わせのための光軸調整方向表示部30に表示する機能を備える。光軸合わせに際しては、人間(操作者)がこの表示情報を見ながら送信機1、受信機2の軸を調整する。
【0015】
図3は、本発明における光無線伝送装置の送信機1、受信機2の光軸調整方向表示部30の例を示す。本発明においては光軸調整方向表示部30を送信機1、受信機2に設けたが、光軸合わせを行いながら確認できる形態であればよい。また、送信機1、受信機2共に、設置面に垂直な回転軸Opを有するパン方向Xと、設置面に平行な回転軸Otを有するチルト方向Yの2軸の回転機構を有する。
【0016】
図4は、本発明の光無線伝送装置の送信機1より送信光が出力され、送信光放射角B内に受信機2を捕らえている状態を示す図であり、また、図5で説明する送信光放射角Bの状態を示してある。図5は、送信光から出力された送信光放射角BのスポットSと受信機2の位置関係を示す図である。送信機1の光軸調整方向表示部30に従い、人手で送信機1のパン方向Xとチルト方向Yの回転機構を操作する際に、パン方向X、チルト方向Yの各回転角度単位(単位回転角とも言う)Δθx、Δθyが送信光放射角Bに対して大きい場合、図5中の送信光放射角BのスポットSのようにパン、チルトいずれの方向に動かしても受信機2を捕らえられない状態が生ずる可能性がある。このような場合、送信機1又は受信機2の設置位置を微妙に移動させないと光軸を合わせられないので使い勝手は非常に悪いものとなる。
【0017】
また、パン・チルトの回転機構が本発明によるような単位回転角の連続回転による逐次移動と静止が可能な機構でなく、無段階に回転する機構であった場合、最終段階での微調整において、操作する人間の感覚に頼ったものになり、光軸が合う範囲を広くとってあれば十分可能であるが、精度が要求される調整であるほど、困難な調整になる。
【0018】
図6は、本発明による送信機1の送信光放射角B、パン・チルト方向の単位回転角Δθx、Δθyの関係を表す図であり、図5と視点の方向が同じである。図6に示すように、パン・チルト方向に最小移動単位つまりそれぞれ単位回転角Δθx、Δθyだけ回転させた場合に、各位置における送信光放射角BのスポットSの間に死角が無いように設定すれば、必ず送信光放射角BのスポットSで受信機2を捕らえられる。このように死角が無いようにするには、送信光の放射角をB、前記光学送信手段を駆動する2軸の回転機構のそれぞれの回転角度単位をΔθx、Δθyとすると、
Δθx2+Δθy2≦B2
を満たせばよい。本実施の形態においては、パン・チルト方向の単位回転角Δθx、Δθyを、回転機構の機械的誤差と振動の影響を考慮して、送信光放射角Bの半分の値に設定してある。
【0019】
本発明による光無線伝送装置が備える回転機構は、単位回転角Δθx、Δθy基準で定量的に手動で回転することができるので、いったん光軸が合った後に調整により再びずれた場合に、再び光軸がずれた状態になるまでに回した単位回転角Δθx、Δθy分を戻すことにより、光軸があった状態を速やかに復元できる。また、パン・チルト両方向について、光軸が合った状態で、単位回転角Δθx、Δθyで何回、回したかを知ることにより、光軸が合う範囲の中でも最も理想的に近い状態にできる。これは送信機1、受信機2共同様のことが言える。
【0020】
図7は、本発明の光無線伝送装置の送信機1より出力された送信光を受信機1の受光素子21が受光可能な受信光指向角A内に捕らえている状態の図である。また、図8と図9で説明する受信可能な受信光指向角Aのスポットを表す図の視点方向を示してある。
【0021】
図8は、本発明の光無線伝送装置の受信機2の受光素子21が有する受信光指向角A(図7参照)のスポットSと送信機1の位置関係を示す図である。受信機2の光軸調整方向表示部30に従い、人手で受信機2のパン方向Xとチルト方向Yの回転機構を操作する際にパン方向X、チルト方向Yの回転角度単位Δθx、Δθyが受信光指向角Aに対して大きい場合、図8中の受信光指向角AのスポットSのようにパン・チルトいずれの方向に動かしても送信機1を捕らえられない状態が生ずる可能性がある。このような場合、送信機1又は受信機2の設置位置を微妙に移動させないと光軸を合わせられないので使い勝手は非常に悪いものとなる。
【0022】
図9は、本発明の光無線伝送装置の受信機2の受信光指向角A、パン・チルト方向の単位回転角Δθx、Δθyの関係を表す図であり、図8と視点の方向は同じである。図9に示すように、パン・チルト方向に最小移動単位つまり単位回転角Δθx、Δθyだけ回転させた場合に各位置における受信光指向角AのスポットSの間に死角が無いように設定すれば、必ず受信光指向角AのスポットSが送信機1を捕らえられる。このように死角が無いようにするには、受信光指向角をA、前記受光手段を駆動する2軸の回転機構のそれぞれの回転角度単位をΔθx、Δθyとすると、
Δθx2+Δθy2≦A2
を満たせばよい。本実施の形態においては、パン・チルト方向の単位回転角Δθx、Δθyを、回転機構の機械的誤差と振動の影響を考慮して、受信光指向角Aの半分の値に設定してある。
【0023】
図10は本発明の光無線伝送装置の受信機2のパン・チルトの回転機構の概略図である。パン・チルトの回転機構の構造は送信機1と同じである。パン方向Xの回転機構40は、受光素子21を搭載した可動部41をアーム部44を介して支持するベース部42にあり、チルト方向Yの回転機構43は可動部41の内部にある。パン方向Xの回転は後述するロータ50を指で回してもよいし、可動部41を直接回してもよい。チルト方向Yの回転は可動部41を直接回す。
【0024】
図11は図10で示したパン方向Xの回転機構40であるロータ50とラッチ部51〜54を示す図である。ロータ50とラッチ部51〜54で構成する構造は、パン方向Xとチルト方向Yで同じである。ロータ50とラッチ部51〜54は樹脂製の部品である。ロータ50は受光素子21を搭載した可動部41に固定されており、一方、ラッチ部51〜54はベース部42に固定されている。ロータ50の内側に形成された凹部55の数は、所望の回転角度単位Δθxにより決まり、本実施の形態においては100個の凹部55が形成されている。4箇所のラッチ部51〜54はロータ50の内側に形成された凹部55に樹脂の弾性で付勢されており、ロータ50を静止、固定できる。
【0025】
ロータ50がいずれかの方向(±X)に回転すると、樹脂の弾性により各ラッチ部51〜54が付勢されていた凹部55から離れ、更にロータ50を回転すると移動してきた新たな凹部55に収まり、これを繰り返す。本実施の形態においては、ラッチ部51とラッチ部53、ラッチ部52とラッチ部54は回転中心Opに対して対称な位置にあり、ラッチ部51とラッチ部53に樹脂の弾性を与える樹脂バネの機能形状が線aに関して対称な形状である。同様にラッチ部52とラッチ部54に樹脂の弾性を与える樹脂バネの機能形状も線bに関して対称な形状である。
【0026】
以上のように樹脂バネ部の形態を定めたので、ロータ50とラッチ部51〜54の一体部品、回転軸Opの3点の部品で構成する回転機構により、ロータ50の回転方向による各ラッチ部51〜54の感触の差を相殺でき、回転方向によらない均一な操作感が得られる。また、各ラッチ部51〜54が回転軸Opに関して対称な位置に配置してあるので、ロータ50をバランス良く安定した状態で静止させることができる。
【0027】
【発明の効果】
以上説明したように本発明によれば、相手先に光軸を手動で合わせる回転機構の回転角度単位を必ず相手先の視野内に入るようにしたので、簡素な構成及び操作で光無線伝送装置の光軸を簡単に合わせることができる。
【図面の簡単な説明】
【図1】本発明の光無線伝送装置の一実施の形態を示す概略構成図である。
【図2】本発明の光無線伝送装置の送信機と受信機の概略構成図である。
【図3】本発明の光無線伝送装置の送信機、受信機の光軸合わせの情報表示部を示す構成図である。
【図4】本発明の光無線伝送装置の送信光放射角内に受信機を捕らえている状態を示す説明図である。
【図5】本発明の光無線伝送装置の送信光放射角のスポットと受信機の位置関係を示す説明図である。
【図6】本発明の光無線伝送装置の送信機の送信光放射角と、パン・チルト方向の単位回転角の関係を表す図である。
【図7】本発明の光無線伝送装置の受信光指向角内に送信機を捕らえている状態を示す説明図である。
【図8】本発明の光無線伝送装置の受信光指向角のスポットと送信機の位置関係を示す説明図である。
【図9】本発明の光無線伝送装置の受信機の受信光指向角と、パン・チルト方向の単位回転角の関係を表す図である。
【図10】本発明の光無線伝送装置の受信機のパン・チルトの回転機構の概略図である。
【図11】本発明の光無線伝送装置の受信機に搭載しているパン方向の回転機構の概略図である。
【符号の説明】
1 送信機
2 受信機
3 映像制御部
4 映像表示部
11、12、22 発光素子(送信光発光素子)
13、21、23 受光素子(送信光受光素子)
30 光軸調整方向表示部
40 パン方向回転機構
41 可動部
42 ベース部
43 チルト方向回転機構
44 アーム部
50 ロータ
51〜54 ラッチ部
55 凹部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical axis adjustment device for an optical wireless transmission device that performs optical wireless transmission with an optical axis of an optical signal transmitted by a transmitter directed toward a receiver.
[0002]
[Prior art]
Conventionally, there is an optical wireless transmission technology that performs spatial transmission of information using light. In general, infrared light is used for the optical wireless transmission, and a semiconductor light emitting element such as a light emitting diode or a laser diode is used as the light emitting element. In such optical wireless transmission, when it is desired to provide a sufficient distance between transmission and reception, it is necessary to narrow the output angle of the light beam emitted from the transmission device sharply, that is, to narrow it so that a signal with a sufficient light level is incident on the reception device side. Therefore, the optical axes of the transmission device and the reception device must be aligned. Therefore, alignment of the optical axis of the optical wireless transmission apparatus is a very troublesome operation because a light beam having a narrow emission angle is used or infrared light whose light beam is invisible is used. Therefore, conventionally, there has been proposed an optical wireless transmission apparatus that can easily perform this optical axis alignment.
[0003]
As an example, Patent Document 1 below discloses that the visible light from the transmission device is focused on the same optical axis as the signal transmission infrared light or parallel optical axis and sent together to the reception device side. An optical wireless transmission device is disclosed in which an operator adjusts the optical axis of a transmission device while observing visible light reflected by the visible light reflection means and being applied to the provided visible light reflection means. As another technique, an optical sight transmitter is installed in the transmitter and the optical axis is adjusted while looking at the sight, or a measuring device for detecting the received light level is connected to the receiver side. There is also an optical wireless transmission device that performs optical axis alignment in one set. In addition, as disclosed in Patent Document 2 below, there is a type that uses a light source for adjusting the optical axis on the receiver side to fold back the reception level information of the transmission light from the transmitter and adjust the optical axis accordingly. .
[0004]
[Patent Document 1]
JP-A-62-110339 [Patent Document 2]
Japanese Patent Laid-Open No. 7-131422
[Problems to be solved by the invention]
However, the optical wireless transmission device as disclosed in the above-described Patent Document 1 requires a configuration that causes the transmission device to generate visible light used for purposes other than optical wireless transmission. In addition, when it is desired to keep a sufficient distance between the transmitting and receiving devices, the visible light emission output must be made sufficiently large, and it is necessary to add the configuration, thereby increasing the cost of the transmitting device. In addition, the device becomes large. This is the same when a sighting machine is installed in the transmission device.
[0006]
Further, it is necessary to strictly match the optical axis of visible light, the aim of the sighting device, and the optical axis of infrared light for signal transmission. In addition, even when the measurement device for detecting the received light level is connected to the receiving device and the measurement is performed by one person, there are disadvantages such as the need to prepare the measured device for detecting the received light level and the need for manpower. As described above, when the conventional optical wireless transmission device attempts to simplify the optical axis alignment, the cost of the transmission / reception device increases and the size of the transmission / reception device increases. Conversely, the cost of the transmission / reception device decreases and the size of the transmission / reception device decreases. As a result, there is a drawback that it takes time and effort to align the optical axis.
[0007]
In addition, the optical wireless transmission device disclosed in Patent Document 2 receives a detected optical signal in addition to the first optical transmission unit that transmits an optical signal having a narrow directivity angle for carrying information to be transmitted as described above. It has a means to send and receive reception information according to the level signal between transmission and reception, and by extracting the reception information on the transmission side, a simple optical axis alignment method is realized, but it is relatively expensive like a motor Besides using electrical drive means, there is a lack of proposals on how to optimally drive the optical axis. In addition, the optical axis alignment method using relatively expensive parts such as a stepping motor and a DC motor and using the light reception level information for these controls naturally increases the cost.
[0008]
In addition, the conventional optical axis alignment mechanism that does not use a motor is a mechanism that simply rotates the axis, and even if you release your hand when the optical axis is aligned, the position will not be determined. The axis was likely to shift again. Also, for fine adjustment, grasping the amount of movement relies on the human sense of operation, and even when using a level monitor, detailed operation of the fingertips is necessary, and the final optical axis alignment is necessary. Fine adjustment at the stage was not easy.
[0009]
As described above, the conventional optical axis alignment is a large-sized device, requires two people and requires manual operation, relies on relatively expensive driving means, or has a small fingertip operation. There was a problem that was required.
[0010]
Accordingly, the present invention has been made with the above points in mind, and provides an optical axis adjustment device for an optical wireless transmission device that can easily align the optical axis of optical wireless transmission with a simple configuration and operation. With the goal.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is such that the rotation angle unit of the rotation mechanism for manually aligning the optical axis with the other party is always within the field of view of the other party.
That is, according to the present invention, the optical transmitter includes an optical transmitter that transmits an optical signal, and a receiver that includes an optical receiver that receives the optical signal, and the optical transmitter and the optical receiver. In the optical axis adjustment device of the wireless transmission device for manually adjusting the optical axis between the optical communication partner,
A biaxial rotation mechanism for rotating the optical axis of the optical transmission means and / or the optical reception means in a predetermined angle unit in a horizontal direction X and a vertical direction Y;
If the angle at which transmission or reception is possible with respect to the other party is φ, and the rotation angle units in the horizontal direction X and vertical direction Y of the biaxial rotation mechanism are Δθx and Δθy, respectively,
Δθx 2 + Δθy 2 ≦ φ 2
An optical axis adjusting device for an optical wireless transmission device is provided.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of an optical wireless transmission apparatus using the optical axis alignment method of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram showing an embodiment of an optical wireless transmission apparatus according to the present invention.
[0013]
As shown in FIG. 1, the optical wireless transmission apparatus according to the present invention includes a transmitter 1 and a receiver 2, and transmits a video signal from a video control unit 3 located away from the video display unit 4 to the video control unit 3 side. This is a system in which a transmitter 1 provided and a receiver 2 provided on the video display unit 4 side are optically wirelessly transmitted and displayed on the video display unit 4. The video signal is converted into an optical signal and output from the transmitter 1, and the output optical signal maintains a predetermined intensity within a certain radiation angle range B (−B / 2 to + B / 2). On the other hand, the receiver 2 has a received light directivity angle A (−A / 2 to + A / 2) that can be received by the light receiving element that receives the optical signal output from the transmitter 1. In order to realize optical transmission, the receiving light directivity angle at which the receiver 2 is captured within the range of the transmission light emission angle B of the optical signal on the transmitter 1 side and the light receiving element of the receiver 2 can receive the transmission light. It is necessary to capture the transmitter 1 within the range of A. Optical axis alignment in optical wireless transmission is to create the state as described above.
[0014]
FIG. 2 is a schematic configuration diagram of the transmitter 1 and the receiver 2 of the optical wireless transmission apparatus of the present invention. Each of the transmitter 1 and the receiver 2 is used for optical axis alignment as means for aligning the optical axis separately from the transmission light emitting element 11 and the transmission light receiving element 21 for transmitting and receiving an optical signal converted from a video signal. The light-emitting elements 12 and 22 and the plurality of light-receiving elements 13 and 23 are provided, and each other's light-emitting signal for optical axis alignment is received by the light-receiving means comprising the plurality of light-receiving elements 13 and 23, and the light reception level is detected and compared 3 is provided with a function of displaying the obtained signal on the optical axis adjustment direction display unit 30 for optical axis alignment as shown in FIG. At the time of optical axis alignment, a human (operator) adjusts the axes of the transmitter 1 and the receiver 2 while viewing this display information.
[0015]
FIG. 3 shows an example of the optical axis adjustment direction display unit 30 of the transmitter 1 and the receiver 2 of the optical wireless transmission apparatus according to the present invention. In the present invention, the optical axis adjustment direction display unit 30 is provided in the transmitter 1 and the receiver 2, but any form that can be confirmed while performing optical axis alignment may be used. Further, both the transmitter 1 and the receiver 2 have a biaxial rotation mechanism of a pan direction X having a rotation axis Op perpendicular to the installation surface and a tilt direction Y having a rotation axis Ot parallel to the installation surface.
[0016]
FIG. 4 is a diagram showing a state in which transmission light is output from the transmitter 1 of the optical wireless transmission apparatus of the present invention, and the receiver 2 is captured within the transmission light radiation angle B, and will be described with reference to FIG. The state of the transmission light radiation angle B is shown. FIG. 5 is a diagram illustrating a positional relationship between the spot S of the transmission light radiation angle B output from the transmission light and the receiver 2. When the rotation mechanism of the pan direction X and tilt direction Y of the transmitter 1 is manually operated according to the optical axis adjustment direction display unit 30 of the transmitter 1, each rotation angle unit (unit rotation) of the pan direction X and tilt direction Y When Δθx and Δθy are larger than the transmission light radiation angle B, the receiver 2 can be captured even if it is moved in either the pan or tilt directions as in the spot S of the transmission light radiation angle B in FIG. May occur. In such a case, since the optical axis cannot be adjusted unless the installation position of the transmitter 1 or the receiver 2 is moved delicately, the usability is very bad.
[0017]
In addition, when the pan / tilt rotation mechanism is not a mechanism capable of sequential movement and stationary by continuous rotation of a unit rotation angle as in the present invention, but a mechanism that rotates steplessly, fine adjustment at the final stage It is possible to rely on the human sense of operation, and a wide range where the optical axes match is sufficient. However, the more accurate the adjustment is, the more difficult the adjustment is.
[0018]
FIG. 6 is a diagram showing the relationship between the transmission light radiation angle B and the unit rotation angles Δθx and Δθy in the pan / tilt direction of the transmitter 1 according to the present invention, and the viewpoint direction is the same as FIG. As shown in FIG. 6, when the panning / tilting direction is rotated by the minimum movement unit, that is, the unit rotation angles Δθx and Δθy, there is no dead angle between the spots S of the transmission light radiation angle B at each position. If this is the case, the receiver 2 is always captured by the spot S at the transmission light radiation angle B. In order to eliminate the blind spot in this way, assuming that the radiation angle of the transmission light is B and the rotation angle units of the biaxial rotation mechanism that drives the optical transmission means are Δθx and Δθy,
Δθx 2 + Δθy 2 ≦ B 2
Should be satisfied. In the present embodiment, the unit rotation angles Δθx and Δθy in the pan / tilt direction are set to a half value of the transmission light radiation angle B in consideration of the mechanical error of the rotation mechanism and the influence of vibration.
[0019]
Since the rotation mechanism provided in the optical wireless transmission device according to the present invention can be manually rotated quantitatively based on the unit rotation angles Δθx and Δθy, once the optical axis is aligned and then shifted again by adjustment, By returning the unit rotation angles Δθx and Δθy that are rotated until the axis is shifted, the state where the optical axis is present can be quickly restored. In addition, by knowing how many times the unit rotation angles Δθx and Δθy have been rotated in the pan and tilt directions with the optical axes aligned, it is possible to obtain the most ideal state within the range where the optical axes are aligned. The same can be said for the transmitter 1 and the receiver 2.
[0020]
FIG. 7 is a diagram showing a state in which the transmission light output from the transmitter 1 of the optical wireless transmission apparatus of the present invention is captured within the reception light directivity angle A that can be received by the light receiving element 21 of the receiver 1. Further, FIG. 8 and FIG. 9 illustrate the viewpoint directions of the drawings representing the receivable received light directivity angle A spots described with reference to FIGS.
[0021]
FIG. 8 is a diagram showing the positional relationship between the spot S of the received light directivity angle A (see FIG. 7) and the transmitter 1 included in the light receiving element 21 of the receiver 2 of the optical wireless transmission apparatus of the present invention. According to the optical axis adjustment direction display unit 30 of the receiver 2, the rotation angle units Δθx and Δθy of the pan direction X and the tilt direction Y are received when the pan mechanism X and the tilt direction Y of the receiver 2 are manually operated. If it is larger than the light directivity angle A, there is a possibility that the transmitter 1 cannot be captured even if it is moved in either the pan or tilt direction, as in the spot S of the reception light directivity angle A in FIG. In such a case, since the optical axis cannot be adjusted unless the installation position of the transmitter 1 or the receiver 2 is moved delicately, the usability is very bad.
[0022]
FIG. 9 is a diagram showing the relationship between the received light directivity angle A and the unit rotation angles Δθx and Δθy in the pan / tilt direction of the receiver 2 of the optical wireless transmission apparatus of the present invention, and the direction of the viewpoint is the same as FIG. is there. As shown in FIG. 9, when the panning / tilting direction is rotated by the minimum movement unit, that is, the unit rotation angles Δθx and Δθy, it is set so that there is no blind spot between the spots S of the received light directivity angle A at each position. The spot S at the reception light directivity angle A is always captured by the transmitter 1. In order to eliminate the blind spot in this way, if the reception light directivity angle is A and the rotation angle units of the biaxial rotation mechanism that drives the light receiving means are Δθx and Δθy,
Δθx 2 + Δθy 2 ≦ A 2
Should be satisfied. In the present embodiment, the unit rotation angles Δθx and Δθy in the pan / tilt direction are set to half the received light directivity angle A in consideration of the mechanical error of the rotation mechanism and the influence of vibration.
[0023]
FIG. 10 is a schematic diagram of a pan / tilt rotation mechanism of the receiver 2 of the optical wireless transmission apparatus of the present invention. The structure of the pan / tilt rotation mechanism is the same as that of the transmitter 1. The rotation mechanism 40 in the pan direction X is in the base portion 42 that supports the movable portion 41 on which the light receiving element 21 is mounted via the arm portion 44, and the rotation mechanism 43 in the tilt direction Y is in the movable portion 41. The rotation in the pan direction X may be performed by rotating a rotor 50 described later with a finger or by directly rotating the movable portion 41. The rotation in the tilt direction Y turns the movable part 41 directly.
[0024]
FIG. 11 is a diagram showing the rotor 50 and the latch portions 51 to 54 which are the rotation mechanism 40 in the pan direction X shown in FIG. The structure constituted by the rotor 50 and the latch portions 51 to 54 is the same in the pan direction X and the tilt direction Y. The rotor 50 and the latch portions 51 to 54 are resin parts. The rotor 50 is fixed to the movable part 41 on which the light receiving element 21 is mounted, while the latch parts 51 to 54 are fixed to the base part 42. The number of recesses 55 formed inside the rotor 50 is determined by a desired rotation angle unit Δθx, and in this embodiment, 100 recesses 55 are formed. The four latch portions 51 to 54 are urged by the elasticity of the resin in the recesses 55 formed inside the rotor 50, so that the rotor 50 can be stationary and fixed.
[0025]
When the rotor 50 rotates in any direction (± X), the latch portions 51 to 54 are separated from the energized concave portions 55 by the elasticity of the resin, and when the rotor 50 is further rotated, the new concave portions 55 that have moved are moved. Fit and repeat. In the present embodiment, the latch part 51 and the latch part 53, and the latch part 52 and the latch part 54 are in symmetrical positions with respect to the rotation center Op, and the resin spring that gives the resin part elasticity to the latch part 51 and the latch part 53. Are functionally symmetric with respect to the line a. Similarly, the functional shape of the resin spring that gives resin elasticity to the latch portion 52 and the latch portion 54 is also symmetrical with respect to the line b.
[0026]
Since the form of the resin spring portion is determined as described above, each latch portion according to the rotation direction of the rotor 50 is formed by a rotation mechanism constituted by an integral part of the rotor 50 and the latch parts 51 to 54 and three parts of the rotation shaft Op. The difference in feel of 51 to 54 can be offset, and a uniform operation feeling independent of the rotation direction can be obtained. Moreover, since each latch part 51-54 is arrange | positioned in the symmetrical position with respect to the rotating shaft Op, the rotor 50 can be made still in a stable state with good balance.
[0027]
【The invention's effect】
As described above, according to the present invention, since the rotation angle unit of the rotation mechanism for manually aligning the optical axis with the other party is always within the field of view of the other party, the optical wireless transmission device can be simply configured and operated. Can be easily aligned.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of an optical wireless transmission apparatus of the present invention.
FIG. 2 is a schematic configuration diagram of a transmitter and a receiver of the optical wireless transmission apparatus of the present invention.
FIG. 3 is a block diagram showing an optical axis alignment information display section of the transmitter and receiver of the optical wireless transmission apparatus of the present invention.
FIG. 4 is an explanatory diagram showing a state where a receiver is caught within a transmission light emission angle of the optical wireless transmission device of the present invention.
FIG. 5 is an explanatory diagram showing a positional relationship between a spot of a transmission light radiation angle and a receiver of the optical wireless transmission apparatus of the present invention.
FIG. 6 is a diagram illustrating a relationship between a transmission light emission angle of a transmitter of an optical wireless transmission apparatus according to the present invention and a unit rotation angle in a pan / tilt direction.
FIG. 7 is an explanatory diagram showing a state where a transmitter is caught within the reception light directivity angle of the optical wireless transmission device of the present invention.
FIG. 8 is an explanatory diagram showing a positional relationship between a spot of a received light directivity angle and a transmitter of an optical wireless transmission apparatus according to the present invention.
FIG. 9 is a diagram showing the relationship between the received light directivity angle of the receiver of the optical wireless transmission apparatus of the present invention and the unit rotation angle in the pan / tilt direction.
FIG. 10 is a schematic view of a pan / tilt rotation mechanism of the receiver of the optical wireless transmission apparatus of the present invention.
FIG. 11 is a schematic view of a pan direction rotation mechanism mounted on the receiver of the optical wireless transmission apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Transmitter 2 Receiver 3 Image | video control part 4 Image | video display part 11, 12, 22 Light emitting element (transmission light light emitting element)
13, 21, 23 Light receiving element (transmitting light receiving element)
30 Optical axis adjustment direction display part 40 Pan direction rotation mechanism 41 Movable part 42 Base part 43 Tilt direction rotation mechanism 44 Arm part 50 Rotors 51 to 54 Latch part 55 Recessed part

Claims (2)

光信号を送信する光学送信手段を備えた送信機と、前記光信号を受信する光学受信手段を備えた受信機とを有し、前記光学送信手段と前記光学受信手段の間の光軸を光通信の相手先に手動で合わせる無線伝送装置の光軸調整装置において、
前記光学送信手段及び/又は前記光学受信手段の光軸を水平方向Xと垂直方向Yに所定の角度単位で回転させる2軸の回転機構を備え、
相手先に対する送信又は受信可能な角度をφとし、前記2軸の回転機構の水平方向Xと垂直方向Yの回転角度単位をそれぞれΔθx、Δθyとすると、
Δθx2+Δθy2≦φ2
であることを特徴とする光無線伝送装置の光軸調整装置。
A transmitter having an optical transmission means for transmitting an optical signal; and a receiver having an optical reception means for receiving the optical signal, wherein the optical axis between the optical transmission means and the optical reception means is optical In the optical axis adjustment device of the wireless transmission device that is manually adjusted to the communication partner,
A biaxial rotation mechanism for rotating the optical axis of the optical transmission means and / or the optical reception means in a predetermined angle unit in a horizontal direction X and a vertical direction Y;
If the angle at which transmission or reception is possible with respect to the other party is φ, and the rotation angle units in the horizontal direction X and vertical direction Y of the biaxial rotation mechanism are Δθx and Δθy, respectively,
Δθx 2 + Δθy 2 ≦ φ 2
An optical axis adjusting device for an optical wireless transmission device.
前記回転機構の1軸の回転機構は、
回転軸を中心として対称になるように固定された複数のラッチ部と、
前記回転軸の回りを回転可能なロータを備え、
前記ロータには、前記複数のラッチ部が係合可能であって、前記回転角度単位Δθx、Δθyに応じたピッチの凹部が形成されていることを特徴とする請求項1に記載の光無線伝送装置の光軸調整装置。
The one-axis rotation mechanism of the rotation mechanism is
A plurality of latches fixed so as to be symmetric about the rotation axis;
A rotor capable of rotating around the rotation axis;
2. The optical wireless transmission according to claim 1, wherein the plurality of latch portions can be engaged with the rotor, and concave portions having a pitch corresponding to the rotation angle units Δθx and Δθy are formed. The optical axis adjustment device of the device.
JP2003189057A 2003-06-30 2003-06-30 Optical axis adjustment device for optical wireless transmission device Expired - Fee Related JP4029402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003189057A JP4029402B2 (en) 2003-06-30 2003-06-30 Optical axis adjustment device for optical wireless transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003189057A JP4029402B2 (en) 2003-06-30 2003-06-30 Optical axis adjustment device for optical wireless transmission device

Publications (2)

Publication Number Publication Date
JP2005026930A JP2005026930A (en) 2005-01-27
JP4029402B2 true JP4029402B2 (en) 2008-01-09

Family

ID=34187385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003189057A Expired - Fee Related JP4029402B2 (en) 2003-06-30 2003-06-30 Optical axis adjustment device for optical wireless transmission device

Country Status (1)

Country Link
JP (1) JP4029402B2 (en)

Also Published As

Publication number Publication date
JP2005026930A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
US6832044B2 (en) Iris imaging apparatus
KR100703930B1 (en) Personal display with vision tracking
JP4829765B2 (en) Image display device and image display system
JP3984018B2 (en) 3D image detection apparatus and 3D image detection adapter
CN108431583A (en) System and method for the feedback control in scanning projector
JP4228132B2 (en) Position measuring device
NO340256B1 (en) Projection display device and projection display device
WO2008151287A1 (en) A mini-scope for multi-directional imaging
JP6053171B2 (en) Scanning projection apparatus and portable projection apparatus
JP2016210259A (en) Head-up display
JP4029402B2 (en) Optical axis adjustment device for optical wireless transmission device
JP2016103028A (en) Scanning projector and handheld projection device
JP4462048B2 (en) Spatial optical transmission system and optical receiver
JP2010226217A (en) Head mount display
KR100663195B1 (en) Polarized light filter driving apparatus for optical science microscope
JP2007068108A (en) Optical spatial transmission apparatus
JP4599847B2 (en) Optical wireless transmission device
JP2000214517A (en) Image pickup device and image display device
JP2000214517A5 (en)
CN112556663A (en) Measuring device and measuring device system
JP3077190B2 (en) Optical space transmission equipment
JP3649621B2 (en) Optical communication device
WO2007010980A1 (en) Optical scanner, image display, method for adjusting position of reflective mirror of optical scanner or image display, and method for detecting swinging state.
JP7439764B2 (en) Video display device
JP3038884B2 (en) Optical space transmission equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071004

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees