JP2005045763A - Optical radio transmission apparatus - Google Patents

Optical radio transmission apparatus Download PDF

Info

Publication number
JP2005045763A
JP2005045763A JP2004086875A JP2004086875A JP2005045763A JP 2005045763 A JP2005045763 A JP 2005045763A JP 2004086875 A JP2004086875 A JP 2004086875A JP 2004086875 A JP2004086875 A JP 2004086875A JP 2005045763 A JP2005045763 A JP 2005045763A
Authority
JP
Japan
Prior art keywords
optical
transmitter
signal
receiver
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004086875A
Other languages
Japanese (ja)
Inventor
Hidetoshi Naruki
秀敏 成木
Keiichi Kaneko
敬一 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2004086875A priority Critical patent/JP2005045763A/en
Publication of JP2005045763A publication Critical patent/JP2005045763A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To manually align the optical axis of the transmission light of a transmitter side by an inexpensive, simple and small configuration. <P>SOLUTION: In a receiver 22, a reception level detecting circuit 18 detects the reception level of a signal received by a first optical receiving means 15, and transmits a signal corresponding to this result, e.g. by a voltage to a light-emitting driver 20. The receiving state of the first optical transmission signal transmitted from a transmitter 1 in the receiver is displayed for the transmitter by using a second optical signal by a second optical transmitting means 25. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、送信機が送信する指向性を有する光信号の光軸を受信機に向けて光無線伝送を行う光無線伝送装置に関する。   The present invention relates to an optical wireless transmission apparatus that performs optical wireless transmission by directing an optical axis of a directional optical signal transmitted from a transmitter toward a receiver.

従来より、光を用いて情報の空間伝送を行う光無線伝送技術がある。この光無線伝送には、一般に赤外光が用いられ、その発光素子としては、発光ダイオードやレーザダイオードなどの半導体発光素子が用いられている。このような光無線伝送において、送受信間距離を十分にとりたい場合は、受信装置側に十分な光レベルの信号を入射させるために、送信装置より発する光ビームの出射角を鋭く、すなわち狭く絞る必要があるので、送信装置及び受信装置の光軸を合わせなくてはならない。そこで、出射角の狭い光ビームを用いることや、光ビームが目に見えない赤外光を用いることなどから、光無線伝送装置の光軸合わせは大変煩わしい作業となる。そこで、従来より、この光軸合わせを容易に行えるような光無線伝送装置の提案がなされている。   Conventionally, there is an optical wireless transmission technology that performs spatial transmission of information using light. In general, infrared light is used for the optical wireless transmission, and a semiconductor light emitting element such as a light emitting diode or a laser diode is used as the light emitting element. In such optical wireless transmission, when it is desired to provide a sufficient distance between transmission and reception, it is necessary to narrow the output angle of the light beam emitted from the transmission device sharply, that is, to narrow it so that a signal with a sufficient light level is incident on the reception device side. Therefore, the optical axes of the transmission device and the reception device must be aligned. Therefore, alignment of the optical axis of the optical wireless transmission apparatus is a very troublesome operation because a light beam having a narrow emission angle is used or infrared light whose light beam is invisible is used. Therefore, conventionally, there has been proposed an optical wireless transmission apparatus that can easily perform this optical axis alignment.

その1つの例として下記の特許文献1には、受信装置側で送信装置から送信された光信号のレベルを検出してその受信レベル情報をパイロット信号に乗せて送信装置に送信し、送信装置側でその受信レベル情報をモニタに表示して受信レベルが最大になるように手動で送信光の光軸を合わせる方法が提案されている。
特開平7−131422号公報
As an example, Patent Document 1 below discloses that the level of an optical signal transmitted from a transmission device is detected on the reception device side, and the reception level information is transmitted on the pilot signal to the transmission device. Thus, a method has been proposed in which the received light level information is displayed on a monitor and the optical axis of the transmitted light is manually adjusted so as to maximize the received level.
JP-A-7-131422

しかしながら、上記従来例では、受信側に受信レベルを変調して送信側に送信する手段を設けるとともに、送信側に受信レベル情報を復調してモニタリングする手段を設けるので、高価となるという問題点がある。   However, in the above conventional example, the receiving side is provided with means for modulating the reception level and transmitting to the transmitting side, and the transmitting side is provided with means for demodulating and monitoring the reception level information, which is expensive. is there.

本発明は上記従来例の問題点に鑑み、安価、簡単、小型の構成で送信側の送信光の光軸を手動で合わせることができる光無線伝送装置を提供することを目的とする。   An object of the present invention is to provide an optical wireless transmission apparatus that can manually adjust the optical axis of transmission light on the transmission side with a low-cost, simple, and compact configuration in view of the problems of the conventional example.

本発明は上記目的を達成するために、受信側に受信レベルに応じた強度レベルで発光する発光手段のみを備え、送信側ではこの強度レベルに応じて光軸を手動で合わせるようにしたものである。   In order to achieve the above object, the present invention comprises only a light emitting means for emitting light at an intensity level corresponding to the reception level on the receiving side, and the transmitting side manually adjusts the optical axis according to this intensity level. is there.

すなわち本発明によれば、指向性を有する光信号を送信する第1の光学送信手段を有する送信機と、前記光信号を受信して電気信号に変換する第1の光学受信手段を有する受信機とを備えた光無線伝送装置であって、
前記送信機は、
前記第1の光学送信手段の光軸を手動で合わせるための光軸調整機構を有し、
前記受信機は、
前記第1の光学受信手段により受信した信号のレベルに応じた強度レベルで発光する第2の光学送信手段を備え、
前記強度レベルに応じて前記第1の光学送信手段の光軸を手動で合わせるようにした光無線伝送装置が提供される。
That is, according to the present invention, a transmitter having first optical transmission means for transmitting an optical signal having directivity, and a receiver having first optical reception means for receiving the optical signal and converting it into an electrical signal. An optical wireless transmission device comprising:
The transmitter is
An optical axis adjustment mechanism for manually adjusting the optical axis of the first optical transmission means;
The receiver
A second optical transmitter that emits light at an intensity level corresponding to the level of the signal received by the first optical receiver;
An optical wireless transmission apparatus is provided in which the optical axis of the first optical transmission means is manually adjusted in accordance with the intensity level.

また本発明によれば、指向性を有する光信号を送信する第1の光学送信手段を有する送信機と、前記光信号を受信して電気信号に変換する第1の光学受信手段を有する受信機とを備えた光無線伝送装置であって、
前記送信機は、
前記第1の光学送信手段の光軸を手動で合わせるための光軸調整機構を有し、
前記受信機は、
前記第1の光学受信手段の位置を中心としてその回りに配置されて前記光信号を受信する第2の複数の光学受信手段と、
前記第2の複数の光学受信手段のそれぞれの近傍に配置され、前記第2の複数の光学受信手段のそれぞれにより受信したレベルに応じた強度レベルで発光する第2の複数の光学送信手段を備え、
前記第2の複数の光学送信手段の各強度レベルが同じになるように前記第1の光学送信手段の光軸を手動で合わせるようにした光無線伝送装置が提供される。
According to the invention, a transmitter having a first optical transmission means for transmitting an optical signal having directivity, and a receiver having a first optical reception means for receiving the optical signal and converting it into an electrical signal. An optical wireless transmission device comprising:
The transmitter is
An optical axis adjustment mechanism for manually aligning the optical axis of the first optical transmission means;
The receiver
A plurality of second optical receiving means arranged around the position of the first optical receiving means for receiving the optical signal;
A plurality of second optical transmitters arranged near each of the second plurality of optical receivers and emitting light at an intensity level corresponding to the level received by each of the second plurality of optical receivers; ,
An optical wireless transmission device is provided in which the optical axis of the first optical transmission means is manually aligned so that the intensity levels of the second plurality of optical transmission means are the same.

本発明によれば、受信側に受信レベルに応じた強度レベルで発光する発光手段のみを備え、送信側ではこの強度レベルに応じて光軸を手動で合わせるようにしたので、安価、簡単、小型の構成で送信側の送信光の光軸を手動で合わせることができる。   According to the present invention, only the light emitting means that emits light at the intensity level corresponding to the reception level is provided on the reception side, and the optical axis is manually adjusted according to the intensity level on the transmission side. With this configuration, the optical axis of the transmission light on the transmission side can be manually adjusted.

<実施の形態1>
以下、図面を参照して本発明の好ましい実施の形態1について説明する。図1は本発明に係る光無線伝送装置の実施の形態1を示すブロック図である。
<Embodiment 1>
A preferred embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing Embodiment 1 of an optical wireless transmission apparatus according to the present invention.

まず、実施の形態1に係る光無線伝送装置における送信機1について説明する。送信機1は送信信号処理回路2によって、ここには記載されていない外部のデータ発生機器から送られる信号(例えば映像信号)を受信し、送信機1で送信する信号形式に変換して発光素子ドライバ3へ送り、第1の光送信手段(例えば、LEDやLD及び集光レンズなどで構成される)4により、指向性を有し、出射角が1〜5度程度と比較的狭い送信光として受信機22へ向けて空間伝送する。   First, the transmitter 1 in the optical wireless transmission apparatus according to the first embodiment will be described. The transmitter 1 receives a signal (for example, a video signal) transmitted from an external data generation device not described here by the transmission signal processing circuit 2, converts the signal into a signal format to be transmitted by the transmitter 1, and the light emitting element. Transmitted to the driver 3 and transmitted by a first light transmitting means (for example, composed of an LED, an LD, a condenser lens, etc.) 4 having directivity and a relatively narrow emission angle of about 1 to 5 degrees. As a spatial transmission toward the receiver 22.

また、この送信機1は受信機22の光軸調整用に搭載した第2の光送信手段25によって送信される第2の光信号を基に、第1の光送信手段4の光軸を容易に手合わせできるパン回転機構26及びチルト回転機構27を備えている。ここで、第1の光送信手段4の光軸を手動で動かす際に図示しないスイッチの情報により、映像信号ではなく安定して発光するためのデータを制御部11が出力してもよい。   Further, the transmitter 1 can easily set the optical axis of the first optical transmission unit 4 based on the second optical signal transmitted by the second optical transmission unit 25 mounted for adjusting the optical axis of the receiver 22. A pan rotation mechanism 26 and a tilt rotation mechanism 27 that can be manually adjusted to each other. Here, when manually moving the optical axis of the first optical transmission unit 4, the control unit 11 may output data for stably emitting light instead of a video signal based on information of a switch (not shown).

次に、上記光無線伝送装置における受信機22について説明する。受信機22は送信機1の第1の光送信手段4によって空間伝送される第1の光送信信号を、例えば数十度程度の比較的広い入射角で受光するため、第1の光受信手段(たとえばPDやAPD及び集光レンズなどで構成される)15によって受信し、受光回路16で電気的に増幅するなどの処理を加え、受信信号処理回路17によってここでは記載されていない外部機器(例えば受像装置など)に送信するための信号に変換して、外部機器へデータを送信する。   Next, the receiver 22 in the optical wireless transmission apparatus will be described. The receiver 22 receives the first optical transmission signal spatially transmitted by the first optical transmission unit 4 of the transmitter 1 with a relatively wide incident angle of, for example, several tens of degrees. An external device (for example, constituted by a PD, an APD, and a condensing lens) that is received by 15 and electrically amplified by the light receiving circuit 16 is added, and is not described here by the received signal processing circuit 17 For example, the signal is converted to a signal to be transmitted to an image receiving device or the like, and the data is transmitted to the external device.

この受信機22はまた、送信機1の第1の光送信手段4の光軸を調整するために第2の光送信手段(例えばLED又はこれにレンズを加えたもの)25によって、送信機1に対しての第2の光送信信号(一般にこのような光をパイロット光などとも称している)を送信(発光)する。さらに、第1の光受信手段15で受信した信号の受信レベルを受信レベル検出回路18でレベル検出し、その結果に応じた、例えば電圧による信号を発光素子ドライバ20に送ることで、第2の光送信手段25により第2の光送信信号を用いて、受信機22での送信機1から送られてくる第1の光送信信号の受信状態を送信機1に対して表示している。   The receiver 22 is also connected to the transmitter 1 by a second light transmitting means (for example, an LED or a lens added thereto) 25 to adjust the optical axis of the first light transmitting means 4 of the transmitter 1. A second optical transmission signal (generally referred to as pilot light or the like) is transmitted (emitted). Further, the reception level of the signal received by the first light receiving means 15 is detected by the reception level detection circuit 18, and a signal based on the result, for example, a voltage is sent to the light emitting element driver 20, whereby the second The reception state of the first optical transmission signal sent from the transmitter 1 at the receiver 22 is displayed on the transmitter 1 by using the second optical transmission signal by the optical transmission means 25.

次に上記光無線伝送装置においての光軸合わせ方法の概要について説明する。室内などで光伝送を行う場合は、送信機1、受信機22の距離はせいぜい数十m程度であるので、まず、受信機22の第1の光受信手段15の受光素子は、例えば指向角が数十度程度の比較的低い指向性を有するもので、送信機1の方向に目分量で合わせられる。送信機1からは、映像信号などが光信号に変換されて第1の光信号が出力される。受信機22では、この第1の光信号が受信されて電気信号に変換され、外部に映像信号などのデータとして出力されるとともに、この第1の光信号の受信レベルが検出される。   Next, an outline of the optical axis alignment method in the optical wireless transmission apparatus will be described. When optical transmission is performed indoors or the like, the distance between the transmitter 1 and the receiver 22 is about several tens of meters at most. First, the light receiving element of the first light receiving means 15 of the receiver 22 is, for example, a directivity angle Has a relatively low directivity of about several tens of degrees, and can be adjusted in the direction of the transmitter 1 by a scale. The transmitter 1 converts a video signal or the like into an optical signal and outputs a first optical signal. The receiver 22 receives this first optical signal, converts it into an electrical signal, outputs it as data such as a video signal to the outside, and detects the reception level of this first optical signal.

この受信レベルを情報として表示したパイロット信号が、送信機1の不図示の操作者に認識される。そして、送信機1のパン回転機構26及びチルト回転機構27を動かすことにより、パイロット信号の点灯、消灯、あるいは点灯レベルの強弱が認識され、この情報により第1の光送信手段4の光軸を受信機22へ手動で合わせる。   A pilot signal indicating the reception level as information is recognized by an operator (not shown) of the transmitter 1. Then, by moving the pan rotation mechanism 26 and the tilt rotation mechanism 27 of the transmitter 1, the turning on / off of the pilot signal or the strength of the lighting level is recognized. Manually adjust to receiver 22.

<実施の形態2>
次に本発明の好ましい実施の形態2について添付図面を参照しながら詳細に説明する。図2は、本発明の手動による光軸合わせ方法を実現するための光無線伝送装置の実施の形態2を示すブロック図であり、本発明の光無線伝送装置を構成する送信機1及び受信機22の各構成ブロック図が記載されている。
<Embodiment 2>
Next, a preferred second embodiment of the present invention will be described in detail with reference to the accompanying drawings. FIG. 2 is a block diagram showing a second embodiment of the optical wireless transmission apparatus for realizing the manual optical axis alignment method of the present invention, and a transmitter 1 and a receiver constituting the optical wireless transmission apparatus of the present invention. 22 is a block diagram of each component.

送信機1の構成は実施の形態1と同じであるので説明は省略し、受信機22について説明する。実施の形態1との違いは第1の光受信手段15とは別に、第2の光受信手段23a〜23d、さらに、第2の光受信手段23a〜23dごとに受光/発光回路24a〜24d及び第2の光送信手段25a〜25dを有することである。第2の光受信手段23a〜23dは任意の位置に設置でき、それぞれに対するレベルに応じて複数個の第2の光送信手段25a〜25dが独立してパイロット光を発光するため、例えば図3に示すように第1の光受信手段15の周りのおおむね4箇所に設けることによりその中心の第1の光受信手段15に手合わせが簡単に行える。   Since the configuration of the transmitter 1 is the same as that of the first embodiment, a description thereof will be omitted, and the receiver 22 will be described. The difference from the first embodiment is that, apart from the first light receiving means 15, the second light receiving means 23a to 23d, and the light receiving / light emitting circuits 24a to 24d and the second light receiving means 23a to 23d respectively. It has 2nd optical transmission means 25a-25d. The second optical receivers 23a to 23d can be installed at arbitrary positions, and the plurality of second optical transmitters 25a to 25d independently emit pilot light according to the level with respect to each of them. As shown in the figure, by providing at approximately four positions around the first light receiving means 15, the first light receiving means 15 at the center can be easily aligned.

ここで、手動で送信機1を動かす際に、図示しないスイッチの情報により、映像信号ではなく安定して発光するためのデータを制御部11が出力してもよく、第2の光受信手段23a〜23dの特性に合わせて、低レートの情報を伝送してもよい。この場合、特に低コストの受光素子で第2の光受信手段23a〜23dを実現できるため、装置全体の低コスト化に寄与することができる。   Here, when the transmitter 1 is manually moved, the control unit 11 may output data for stably emitting light instead of the video signal based on information of a switch (not shown), and the second light receiving unit 23a. In accordance with the characteristics of ˜23d, low rate information may be transmitted. In this case, the second light receiving means 23a to 23d can be realized with a low-cost light receiving element, which can contribute to the cost reduction of the entire apparatus.

<実施の形態3>
次に本発明の好ましい実施の形態3について添付図面を参照しながら詳細に説明する。図4は、本発明の手動による光軸合わせ方法を実現するための光無線伝送装置の実施の形態3を示すブロック図であり、本発明の光無線伝送装置を構成する送信機1及び受信機22の各構成ブロック図が記載されている。
<Embodiment 3>
Next, a preferred third embodiment of the present invention will be described in detail with reference to the accompanying drawings. FIG. 4 is a block diagram showing Embodiment 3 of the optical wireless transmission apparatus for realizing the manual optical axis alignment method of the present invention. The transmitter 1 and the receiver constituting the optical wireless transmission apparatus of the present invention are shown in FIG. 22 is a block diagram of each component.

送信機1の構成は実施の形態1と同じであるので説明は省略し、受信機22について説明する。受信機22は送信機1の第1の光送信手段4によって空間伝送される第1の光送信信号を実施の形態1と同様に比較的広い入射角で受光するため、第1の光受信手段(たとえばPDやAPD及び集光レンズなどで構成される)15によって受信し、受光回路16で電気的に増幅するなどの処理を加え、受信信号処理回路17によって、ここでは記載されていない外部機器(例えば受像装置など)に送信するための信号に変換して、外部機器へデータを送信する。   Since the configuration of the transmitter 1 is the same as that of the first embodiment, a description thereof will be omitted, and the receiver 22 will be described. Since the receiver 22 receives the first optical transmission signal spatially transmitted by the first optical transmission means 4 of the transmitter 1 at a relatively wide incident angle as in the first embodiment, the first optical reception means (For example, a PD, APD, and a condensing lens) are received by 15 and subjected to processing such as electrical amplification by the light receiving circuit 16, and an external device not described here by the received signal processing circuit 17. The data is converted into a signal to be transmitted to (for example, an image receiving device) and the data is transmitted to the external device.

この受信機22はまた、送信機1の第1の光送信手段4の光軸を調整するために光学目視手段28を有している。光学目視手段28は、受光量に応じて可視的な情報を表示するものであり、例えば、赤外線センサカードなどを用いることができる。したがって、受信機22は、光学目視手段28によって、送信機1に対して可視的な情報を提供することができる。光学目視手段28は、送信機1から送信される第1の光送信信号の照射方向による照射位置の状態を目視的に表示することにより、送信機1の操作者に対してこの目視情報を提供するものである。   The receiver 22 also has an optical viewing means 28 for adjusting the optical axis of the first optical transmission means 4 of the transmitter 1. The optical viewing means 28 displays visible information according to the amount of received light, and for example, an infrared sensor card can be used. Therefore, the receiver 22 can provide visible information to the transmitter 1 by the optical viewing means 28. The optical viewing means 28 provides the visual information to the operator of the transmitter 1 by visually displaying the state of the irradiation position according to the irradiation direction of the first optical transmission signal transmitted from the transmitter 1. To do.

次に、実施の形態3に係る光無線伝送装置における光軸合わせ方法の概要について説明する。室内などで光伝送を行う場合は、送信機1、受信機22の距離は、せいぜい数十m程度であるので、まず、受信機22の第1の光受信手段15の受光素子は、実施の形態1同様に比較的低い指向性を有するもので、送信機1の方向に目分量で合わせられる。送信機1からは、映像信号などが光信号に変換されて第1の光信号が出力される。受信機22では、この第1の光信号が受信されて電気信号に変換され、外部に映像信号などのデータとして出力されるとともに、この第1の光信号の受信状態が光学目視手段28により可視的に表示される。   Next, an outline of the optical axis alignment method in the optical wireless transmission apparatus according to the third embodiment will be described. When optical transmission is performed indoors, the distance between the transmitter 1 and the receiver 22 is at most about several tens of meters. Therefore, first, the light receiving element of the first light receiving means 15 of the receiver 22 is Similar to the first embodiment, it has a relatively low directivity, and is adjusted in the direction of the transmitter 1 with a scale. The transmitter 1 converts a video signal or the like into an optical signal and outputs a first optical signal. In the receiver 22, the first optical signal is received and converted into an electric signal, and is output to the outside as data such as a video signal. The reception state of the first optical signal is visible by the optical viewing means 28. Displayed.

すなわち、光学目視手段28が赤外線センサカードである場合、図4、図5に示すように、光学目視手段28が第1の光受信手段15の周囲を囲み、かつ第1の光受信手段15から放射外方に2次元的に広がるよう配置され、赤外線センサカードの表面に送信機1からの送信光である赤外線が照射されると、赤外線センサカードは、赤外線に反応してこれを可視光として発光する。したがって、送信機1の不図示の操作者から見ると、送信機1からの赤外線の光が第1の光受信手段15を正しく照射しなければ、赤外線センサカードは発光しない。ここで正しく照射するとは、送信光の指向角が1.2度のとき、送信機1から10m離れた場所での光スポットの半径は約10cmであり、この光スポットが赤外線センサカードに当たることを言うものとする。そこで赤外線センサカードの表面を見ながら送信機1のパン回転機構26及びチルト回転機構27を動かすことにより、第1の光送信手段4の光軸を受信機22へ手動で合わせる。すなわち、正しく照射されると、赤外線センサカードが淡い光を出すので、操作者はこれを目視することで、送信機1が受信機22に適切に向いていることを確認することができるのである。   That is, when the optical viewing means 28 is an infrared sensor card, as shown in FIGS. 4 and 5, the optical viewing means 28 surrounds the first light receiving means 15, and from the first light receiving means 15. The infrared sensor card is arranged so as to spread two-dimensionally outward, and when the infrared ray that is the transmission light from the transmitter 1 is irradiated on the surface of the infrared sensor card, the infrared sensor card reacts with the infrared ray to convert it into visible light. Emits light. Therefore, when viewed from an operator (not shown) of the transmitter 1, the infrared sensor card does not emit light unless the infrared light from the transmitter 1 properly irradiates the first light receiving means 15. Correct irradiation here means that when the directivity angle of the transmitted light is 1.2 degrees, the radius of the light spot at a location 10 m away from the transmitter 1 is about 10 cm, and this light spot hits the infrared sensor card. Say it. Therefore, the optical axis of the first optical transmission means 4 is manually adjusted to the receiver 22 by moving the pan rotation mechanism 26 and the tilt rotation mechanism 27 of the transmitter 1 while looking at the surface of the infrared sensor card. In other words, the infrared sensor card emits faint light when properly illuminated, and the operator can confirm that the transmitter 1 is properly facing the receiver 22 by viewing it. .

実施の形態3では、光学目視手段28として、赤外線センサカードを利用しているが、これに限られず、受光量に応じて可視的な情報を表示するものであれば、他の素子を用いることができる。   In the third embodiment, an infrared sensor card is used as the optical viewing means 28. However, the present invention is not limited to this, and other elements may be used as long as visible information is displayed according to the amount of received light. Can do.

なお、上述の各実施の形態において説明した光無線伝送装置の送信機、受信機の構成は、本発明の技術思想を説明するための一例を示したものであり、その構成は、適宜変更可能である。   The configurations of the transmitter and the receiver of the optical wireless transmission apparatus described in each of the above embodiments are examples for explaining the technical idea of the present invention, and the configurations can be changed as appropriate. It is.

本発明に係る光無線伝送装置の実施の形態1を示すブロック図である。1 is a block diagram showing a first embodiment of an optical wireless transmission apparatus according to the present invention. 本発明に係る光無線伝送装置の実施の形態2を示すブロック図である。It is a block diagram which shows Embodiment 2 of the optical wireless transmission apparatus which concerns on this invention. 図2の受信機の正面図の一例である。It is an example of the front view of the receiver of FIG. 本発明に係る光無線伝送装置の実施の形態3を示すブロック図である。It is a block diagram which shows Embodiment 3 of the optical wireless transmission apparatus which concerns on this invention. 図4の受信機の正面図の一例である。It is an example of the front view of the receiver of FIG.

符号の説明Explanation of symbols

1 送信機
2 送信信号処理回路
3 発光素子ドライバ
4 第1の光送信手段
11 制御部
15 第1の光受信手段
16 受光回路
17 受信信号処理回路
18 受信レベル検出回路
20 発光素子ドライバ
22 受信機
23a〜23d 第2の光受信手段
24a〜24d 受光/発光回路
25、25a〜25d 第2の光送信手段
26 パン回転機構
27 チルト回転機構
28 光学目視手段
DESCRIPTION OF SYMBOLS 1 Transmitter 2 Transmission signal processing circuit 3 Light emitting element driver 4 1st light transmission means 11 Control part 15 1st light receiving means 16 Light receiving circuit 17 Reception signal processing circuit 18 Reception level detection circuit 20 Light emitting element driver 22 Receiver 23a -23d second light receiving means 24a-24d light receiving / light emitting circuit 25, 25a-25d second light transmitting means 26 pan rotation mechanism 27 tilt rotation mechanism 28 optical viewing means

Claims (2)

指向性を有する光信号を送信する第1の光学送信手段を有する送信機と、前記光信号を受信して電気信号に変換する第1の光学受信手段を有する受信機とを備えた光無線伝送装置であって、
前記送信機は、
前記第1の光学送信手段の光軸を手動で合わせるための光軸調整機構を有し、
前記受信機は、
前記第1の光学受信手段により受信した信号のレベルに応じた強度レベルで発光する第2の光学送信手段を備え、
前記強度レベルに応じて前記第1の光学送信手段の光軸を手動で合わせるようにした光無線伝送装置。
Optical wireless transmission comprising a transmitter having first optical transmission means for transmitting an optical signal having directivity and a receiver having first optical reception means for receiving the optical signal and converting it into an electrical signal A device,
The transmitter is
An optical axis adjustment mechanism for manually adjusting the optical axis of the first optical transmission means;
The receiver
A second optical transmitter that emits light at an intensity level corresponding to the level of the signal received by the first optical receiver;
An optical wireless transmission apparatus in which the optical axis of the first optical transmission means is manually adjusted in accordance with the intensity level.
指向性を有する光信号を送信する第1の光学送信手段を有する送信機と、前記光信号を受信して電気信号に変換する第1の光学受信手段を有する受信機とを備えた光無線伝送装置であって、
前記送信機は、
前記第1の光学送信手段の光軸を手動で合わせるための光軸調整機構を有し、
前記受信機は、
前記第1の光学受信手段の位置を中心としてその回りに配置されて前記光信号を受信する第2の複数の光学受信手段と、
前記第2の複数の光学受信手段のそれぞれの近傍に配置され、前記第2の複数の光学受信手段のそれぞれにより受信したレベルに応じた強度レベルで発光する第2の複数の光学送信手段を備え、
前記第2の複数の光学送信手段の各強度レベルが同じになるように前記第1の光学送信手段の光軸を手動で合わせるようにした光無線伝送装置。
Optical wireless transmission comprising: a transmitter having first optical transmission means for transmitting an optical signal having directivity; and a receiver having first optical reception means for receiving the optical signal and converting it into an electrical signal. A device,
The transmitter is
An optical axis adjustment mechanism for manually adjusting the optical axis of the first optical transmission means;
The receiver
A plurality of second optical receiving means arranged around the position of the first optical receiving means for receiving the optical signal;
A plurality of second optical transmitters arranged near each of the second plurality of optical receivers and emitting light at an intensity level corresponding to the level received by each of the second plurality of optical receivers; ,
An optical wireless transmission apparatus in which the optical axis of the first optical transmission unit is manually aligned so that the intensity levels of the second plurality of optical transmission units are the same.
JP2004086875A 2003-07-04 2004-03-24 Optical radio transmission apparatus Withdrawn JP2005045763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004086875A JP2005045763A (en) 2003-07-04 2004-03-24 Optical radio transmission apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003271102 2003-07-04
JP2004086875A JP2005045763A (en) 2003-07-04 2004-03-24 Optical radio transmission apparatus

Publications (1)

Publication Number Publication Date
JP2005045763A true JP2005045763A (en) 2005-02-17

Family

ID=34277391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004086875A Withdrawn JP2005045763A (en) 2003-07-04 2004-03-24 Optical radio transmission apparatus

Country Status (1)

Country Link
JP (1) JP2005045763A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100715782B1 (en) 2005-08-05 2007-05-07 최영헌 Security system using infrared rays
WO2018163228A1 (en) * 2017-03-06 2018-09-13 日本碍子株式会社 Method for assessing authenticity of printed matter and method for preventing counterfeiting of printed matter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100715782B1 (en) 2005-08-05 2007-05-07 최영헌 Security system using infrared rays
WO2018163228A1 (en) * 2017-03-06 2018-09-13 日本碍子株式会社 Method for assessing authenticity of printed matter and method for preventing counterfeiting of printed matter

Similar Documents

Publication Publication Date Title
US8805192B2 (en) Method of directing an optical receiver toward a light source and an apparatus of practicing the method
US7271722B2 (en) Security sensor device having optical axis adjustment capability
US5264955A (en) Optical space communication apparatus
WO2017169913A1 (en) Communication device and communication method
JP2005045763A (en) Optical radio transmission apparatus
JP3823976B2 (en) Optical wireless transmission system and optical wireless transmission device
JP4570839B2 (en) Optical coordinate input device and optical coordinate input method
US7239811B2 (en) Optical-axis directional indicating apparatus for optical communication
EP0378148B1 (en) Optical space communication apparatus
JP2003209520A (en) Transmitter, receiver and signal axis alignment method
KR20080046928A (en) Apparatus and method for detecting location of remote controller
JPH08204640A (en) Optical space transmitter
JP4599847B2 (en) Optical wireless transmission device
US20030202796A1 (en) Optical wireless communication device and postion adjustment method therefor
EP1503526B1 (en) System and method for eliminating effect of external interference on active tracking for free space optics communication
JP2829941B2 (en) Optical space transmission equipment
JPH06164512A (en) Pointing apparatus for optical space communication device
JP2006042206A (en) Optical radio transmitter
KR100685498B1 (en) Alignment method of the optical transmitter and receiver in the optical wireless communication system
JPH05183515A (en) Optical space transmitter
JP2004135326A (en) Optical wireless transmission equipment
WO2007104925A2 (en) Optical transmissometer and light source and light detector for such optical transmissometer
JP2006217289A (en) Optical radio transmitting device
JP2005044275A (en) Transmitter, receiver, image display, system and transmission and reception method
Shatz et al. Demonstration of augmented-reality optical narrowcasting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605