JP2006217289A - Optical radio transmitting device - Google Patents

Optical radio transmitting device Download PDF

Info

Publication number
JP2006217289A
JP2006217289A JP2005028242A JP2005028242A JP2006217289A JP 2006217289 A JP2006217289 A JP 2006217289A JP 2005028242 A JP2005028242 A JP 2005028242A JP 2005028242 A JP2005028242 A JP 2005028242A JP 2006217289 A JP2006217289 A JP 2006217289A
Authority
JP
Japan
Prior art keywords
optical
visible laser
light emitting
visible
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005028242A
Other languages
Japanese (ja)
Inventor
Tadashi Aizawa
忠 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2005028242A priority Critical patent/JP2006217289A/en
Publication of JP2006217289A publication Critical patent/JP2006217289A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical radio transmitting device which enables alignment of an optical axis to be confirmed by simple structure and simple operation. <P>SOLUTION: The optical radio transmitting device comprises: an optical transmitter 1 provided with an optical signal transmission part, a visible laser beam emitting part for alignment of the optical axis, and a mechanism 21 capable of horizontally and vertically rotating the optical signal transmission part and the visible laser beam emitting part in an integrated state; and an optical receiver 2 provided with an optical signal reception part, a visible laser beam emitting part, and a mechanism 21 capable of horizontally and vertically rotating the optical signal reception part and the visible laser beam emitting part in an integrated state. The optical signal transmission part and the visible laser beam emitting part of the optical transmitter are arranged so as to be opposed to the optical signal reception part and the visible laser beam emitting part of the optical receiver respectively. Each of the optical transmitter and the optical receiver is provided with an infrared light receiving part for turning on/off visible laser emission by the visible laser beam emitting part based on reception of an infrared signal. The infrared light receiving part provided at the optical receiver is provided facing a direction different from a direction which the optical signal reception part faces. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、簡素な構造での光軸合わせを可能にするとともに、通信不良時に容易に光軸合わせの確認を可能にする光無線伝送装置に関する。   The present invention relates to an optical wireless transmission apparatus that enables optical axis alignment with a simple structure and allows easy confirmation of optical axis alignment when communication is poor.

従来から光を用いて情報の空間伝送を行う光無線伝送技術がある。この光無線伝送には一般に赤外光が用いられ、その発光素子としては、発光ダイオードやレーザダイオードなどの半導体発光素子が用いられている。このような光無線伝送において、送受信間距離を十分にとりたい場合は、受信装置側に十分な光量を入射させるように、送信装置より発する光ビームを鋭く絞る必要がある。また、受光側も外乱光の排除や受信感度に有利に作用するように、受光可能な範囲の角度を絞る必要がある。そのような状態で送信装置及び受信装置の光軸を合わせなければならないが、指向性の高い光ビームを用いることや、光ビームとして目に見えない赤外光を用いることなどから、光軸合わせは大変煩わしい作業となる。   Conventionally, there is an optical wireless transmission technology for performing spatial transmission of information using light. Infrared light is generally used for this optical wireless transmission, and a semiconductor light emitting element such as a light emitting diode or a laser diode is used as the light emitting element. In such optical wireless transmission, when a sufficient distance between transmission and reception is desired, it is necessary to sharply squeeze the light beam emitted from the transmission device so that a sufficient amount of light is incident on the reception device side. Further, it is necessary to narrow the angle of the light receiving range so that the light receiving side also has an advantageous effect on the removal of disturbance light and the reception sensitivity. In such a state, it is necessary to align the optical axes of the transmitter and receiver. However, the optical axis is aligned because a highly directional light beam or invisible infrared light is used as the light beam. Is a very cumbersome task.

そこで、従来から光軸合わせを容易に行える光無線伝送装置の提案がされている。例えば、送信装置に照準機を設置して操作者がその照準機を見ながら光軸を合わせる光無線伝送装置や、受信装置側に受光レベル検出用測定機を接続して2人一組で光軸合わせを行う光無線伝送装置もある。また、受光器側に光軸調整用の光源を設けて、送信器からの送信光の受信レベル情報を折り返し、受信レベルに応じて送信器側で光軸を合わせるものもある。光軸調整用の光源を用いる方法に関しては、プログラム的に補正を加える方法もある。   In view of this, an optical wireless transmission apparatus that can easily align the optical axis has been proposed. For example, an optical wireless transmission device that installs a sighting device on the transmitter and the operator looks at the sighting device and aligns the optical axis, or a measuring device for detecting the received light level on the receiving device side, and two people Some optical wireless transmission devices perform axis alignment. There is also a type in which a light source for adjusting the optical axis is provided on the light receiver side, the reception level information of the transmission light from the transmitter is turned back, and the optical axis is adjusted on the transmitter side according to the reception level. As a method of using a light source for adjusting the optical axis, there is a method of performing correction programmatically.

しかし、これらの方法は、人手が掛かる方法であるか又は装置に様々な制御手段を組み込む必要から装置の価格が高くなる問題点があった。そのため、安価な光軸合わせを実現する方法として、位置合わせ用のレーザ光を用いる簡易な構造で、レーザ光の受光レベルにより光軸合わせを行う無線装置が提案されている(例えば、下記の特許文献1参照)。
特開平5−175907号公報
However, these methods have a problem in that the cost of the apparatus is high because it is a manual method or it is necessary to incorporate various control means in the apparatus. Therefore, as a method for realizing inexpensive optical axis alignment, a wireless device that performs optical axis alignment according to the received light level of the laser light with a simple structure using laser light for alignment has been proposed (for example, the following patents) Reference 1).
JP-A-5-175907

しかしながら、光軸合わせに関しては、経時変化や強風などの自然現象で一度合わせた光軸がずれる可能性があり、そのような疑いのある場合には光軸が合っているか確認する作業を要することになる。しかし、従来の簡易な構造による光無線の光軸合わせの方法では光軸確認の作業負担が大きい場合がある。   However, with regard to optical axis alignment, there is a possibility that the optical axis once aligned may shift due to natural phenomena such as changes over time or strong winds, and in such a case, it is necessary to check whether the optical axis is aligned. become. However, in the conventional optical wireless optical axis alignment method with a simple structure, the work load for optical axis confirmation may be large.

上記の特許文献1で提案されている方法は、位置合わせ用のレーザ光を用いる簡易な構造で、レーザ光の受光レベルにより光軸合わせを行うが、受光レベルを読み取って自動的に光軸合わせを行う機構はマイコンやアクチュエーターを必要とするので安価な装置には適さない。受光レベルを何らかの方法で読み取って外から力を加える方法が安価に装置を構成する場合に適すると考えられるが、受光レベル表示を本体に設ける方法の場合、設置場所によっては表示部の視認性を確保しにくく、どの程度どちらに外れているかといった情報を得られるものではない。また、ネットワーク経由で受光レベルの情報を得ることも可能であるが、多くの場合、情報を得るのにコンピューターの操作を必要とし、誰にでも操作可能な簡単な方法とは言いがたい。コンピューターを使用せずに専用の監視端末を用いる場合はコスト高になり安価な構造とは言えなくなる。   The method proposed in Patent Document 1 described above is a simple structure using a laser beam for alignment, and optical axis alignment is performed according to the light reception level of the laser light. However, the optical axis alignment is automatically performed by reading the light reception level. Since the mechanism that performs the operation requires a microcomputer and an actuator, it is not suitable for an inexpensive device. The method of reading the received light level by some method and applying force from the outside is considered to be suitable for constructing the device at low cost.However, when the received light level display is provided on the main body, the visibility of the display unit may be increased depending on the installation location. It is difficult to secure and it is not possible to obtain information on how far it is off. Although it is possible to obtain information on the light reception level via a network, in many cases it is necessary to operate a computer to obtain the information, and it is difficult to say that it is a simple method that anyone can operate. When a dedicated monitoring terminal is used without using a computer, the cost increases and it cannot be said that the structure is inexpensive.

また、光軸合わせにレーザ光を用いる場合、発光制御も課題となる。レーザ光を常時発光させておくと、消費電力とレーザ光源の信頼性確保の点でコスト負担が大きい。レーザ光を必要なときにだけオン/オフする場合は本体にスイッチを設ける方法が考えられる。その場合、設置作業時は設置位置で必要に応じてオン/オフすれば作業性は良いが、設置後に通信不良になった際に光軸が合っているか否か確認するには再度設置場所での作業が必要となり、特に高所作業の場合負担が大きい。通信エラーを検知して自動的に発光する方法も考えられるが、人の往来がある場所では、たとえ安全なレベルのレーザ光を発光する仕様であっても、様々な要因が重なり合って危険な状況が生ずる場合が皆無とは言えず、必要な場所で必要な時間だけ発光させるのが最も望ましい形態である。   In addition, when laser light is used for optical axis alignment, emission control is also an issue. If laser light is always emitted, the cost burden is large in terms of power consumption and ensuring the reliability of the laser light source. If the laser light is turned on / off only when necessary, a method of providing a switch in the main body can be considered. In that case, the workability is good if it is turned on / off as necessary at the installation position during installation work, but in order to check whether the optical axis is correct when communication failure occurs after installation, check again at the installation site. Work is necessary, especially in high places. Although a method of detecting a communication error and automatically emitting light can be considered, even in a place where people come and go, even if it is a specification that emits a laser beam at a safe level, various factors overlap and it is a dangerous situation It is the most desirable form to emit light for a required time at a required place.

本発明は上述した問題点に鑑みてなされたもので、簡易な構造と簡単な操作により、通信不良時の光軸合わせの確認を実現できる光無線伝送装置の提供を目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an optical wireless transmission apparatus capable of realizing confirmation of optical axis alignment at the time of communication failure with a simple structure and simple operation.

上記目的を達成するための手段として、本発明に係る光無線伝送装置は、光信号を送信する光学送信手段と、光軸合わせ用可視レーザ光を発光する可視光発光手段と、前記光学送信手段と前記可視光発光手段とを一体の状態で水平方向と垂直方向に調整可能な機構とを備える光送信器と、前記光信号を受信する光学受信手段と、光軸合わせ用可視レーザ光を発光する可視光発光手段と、前記光学受信手段と前記可視光発光手段とを一体の状態で水平方向と垂直方向に調整可能な機構とを備える光受信器とからなる光無線伝送装置において、前記光送信器と前記光受信器とを対向させた際に、前記光送信器の光学送信手段と可視光発光手段とを、前記光受信器の光学受信手段と可視光発光手段とにそれぞれ対向するように配置するとともに、前記光送信器と前記光受信器との両方に、赤外光信号の受信に基づいて前記可視光発光手段の可視レーザ光発光のオン/オフを行う赤外光受光手段をそれぞれ備え、少なくとも前記光受信器に設けられた赤外光受光手段を、前記光学受信手段の向いている方向とは異なる方向に向けて設けたことを特徴とする。   As means for achieving the above object, an optical wireless transmission apparatus according to the present invention comprises an optical transmission means for transmitting an optical signal, a visible light emitting means for emitting an optical axis alignment visible laser light, and the optical transmission means. And an optical transmitter having a mechanism capable of adjusting the horizontal direction and the vertical direction integrally with the visible light emitting means, an optical receiving means for receiving the optical signal, and emitting visible laser light for optical axis alignment In the optical wireless transmission device comprising: a visible light emitting means; and an optical receiver comprising a mechanism capable of adjusting the optical receiving means and the visible light emitting means in a horizontal direction and a vertical direction in an integrated state. When the transmitter and the optical receiver are opposed to each other, the optical transmission unit and the visible light emitting unit of the optical transmitter are opposed to the optical reception unit and the visible light emitting unit of the optical receiver, respectively. And placed in front Both the optical transmitter and the optical receiver are provided with infrared light receiving means for turning on / off visible laser light emission of the visible light emitting means based on reception of infrared light signals, respectively, and at least the light The infrared light receiving means provided in the receiver is provided in a direction different from the direction in which the optical receiving means is directed.

また、本発明に係る光無線伝送装置は、光信号を送信する光学送信手段と、光信号を受信する光学受信手段と、光軸合わせ用可視レーザ光を発光する可視光発光手段と、前記光学送信手段及び前記光学受信手段と前記可視光発光手段とを一体の状態で水平方向と垂直方向に調整可能な機構とを備える一対の光送受信器を互いに対向するよう配置した光無線伝送装置において、前記光学送信手段と前記光学受信手段とを、水平方向に沿って配置し、かつ前記可視光発光手段を、前記光学送信手段と前記光学受信手段とに対してそれぞれ等距離の位置に光軸があるように配置するとともに、前記一対の光送受信器に、赤外光信号の受信に基づいて前記可視光発光手段の可視レーザ光発光のオン/オフを行う赤外光受光手段をそれぞれ備え、前記赤外光受光手段を、前記光学受信手段の受光方向とは異なる方向に向けて設けたことを特徴とする。   An optical wireless transmission apparatus according to the present invention includes an optical transmission unit that transmits an optical signal, an optical reception unit that receives an optical signal, a visible light emitting unit that emits visible laser light for optical axis alignment, and the optical In an optical wireless transmission apparatus in which a pair of optical transceivers including a transmission unit, a mechanism capable of adjusting the optical receiving unit and the visible light emitting unit in an integrated state in a horizontal direction and a vertical direction are arranged to face each other, The optical transmitting means and the optical receiving means are arranged along a horizontal direction, and the visible light emitting means is disposed at equidistant positions with respect to the optical transmitting means and the optical receiving means. The infrared light receiving means for turning on / off the visible laser light emission of the visible light emitting means based on reception of the infrared light signal in each of the pair of optical transceivers, Red Light receiving means, characterized in that provided in different directions to the light receiving direction of said optical receiving means.

本発明によれば、光学送信手段と光学受信手段及び可視光発光手段を適切に配置することで、可視レーザ光を対向する相手の可視レーザ光発光部に当てるだけで光信号送受信の光軸合わせを行うことができ、光信号を送受信する向きと異なる方向に赤外光受光手段を設けることで、赤外光による光信号の影響を受けずに可視レーザ光発光のオン/オフを行うことができる。したがって、可視レーザ光発光を通常はオフにして余分な電力消費を防ぎ、光軸確認で必要なときにのみオンにするといった運用が可能になり、さらに、光軸合わせの状態を視覚的に確認できる。   According to the present invention, by appropriately arranging the optical transmission means, the optical reception means, and the visible light emitting means, the optical axis alignment of the optical signal transmission / reception can be performed only by applying the visible laser light to the opposing visible laser light emitting section. By providing the infrared light receiving means in a direction different from the direction in which the optical signal is transmitted and received, visible laser light emission can be turned on / off without being affected by the optical signal by the infrared light. it can. Therefore, it is possible to operate such that visible laser light emission is normally turned off to prevent excessive power consumption, and is turned on only when necessary for optical axis confirmation, and the optical axis alignment state is visually confirmed. it can.

以下、図面を参照して本発明の実施の形態について説明する。
図1は、光軸合わせ方法を実現するための本発明の実施の形態に係る片方向通信の光無線伝送装置の構成を示すブロック図である。図1に示すように、本実施の形態に係る光無線伝送装置は、光送信器1と光受信器2からなり、光送信器1から光信号10を光受信器2へ照射して情報伝送が行われる。光軸合わせをするために、光送信器1の発する可視レーザ光11と光受信器2の発する可視レーザ光12を相手の可視レーザ光光源に当てることにより、光信号発光光軸と光信号受光光軸を合わせる。光信号10により様々な情報を伝送できるが、本実施の形態においては映像や音声情報の伝送を目的としている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram showing a configuration of an optical wireless transmission apparatus for one-way communication according to an embodiment of the present invention for realizing an optical axis alignment method. As shown in FIG. 1, the optical wireless transmission apparatus according to the present embodiment includes an optical transmitter 1 and an optical receiver 2, and radiates an optical signal 10 from the optical transmitter 1 to the optical receiver 2 to transmit information. Is done. In order to align the optical axes, the visible laser light 11 emitted from the optical transmitter 1 and the visible laser light 12 emitted from the optical receiver 2 are applied to the other visible laser light source, whereby the optical signal emission optical axis and the optical signal reception are obtained. Align the optical axis. Various kinds of information can be transmitted by the optical signal 10, but the purpose of this embodiment is to transmit video and audio information.

ここで、光送信器1には、後に詳細に説明するが、光信号を送信する光信号送信部と、光軸合わせ用可視レーザ光11を発光する可視レーザ光発光部とが内蔵され、光信号送信部と可視レーザ光発光部とを一体の状態で水平方向と垂直方向に回転可能な機構21が備えられている。同様に、光受信器2には、光信号を受信する光信号受信部と、可視レーザ光発光部とが内蔵され、光信号受信部と可視レーザ光発光部とを一体の状態で水平方向と垂直方向に回転可能な機構21が備えられている。   Here, as will be described in detail later, the optical transmitter 1 includes an optical signal transmitter that transmits an optical signal and a visible laser beam emitter that emits an optical axis alignment visible laser beam 11. A mechanism 21 capable of rotating in a horizontal direction and a vertical direction in a state where the signal transmission unit and the visible laser light emitting unit are integrated is provided. Similarly, the optical receiver 2 includes an optical signal receiving unit that receives an optical signal and a visible laser light emitting unit, and the optical signal receiving unit and the visible laser light emitting unit are integrated in the horizontal direction. A mechanism 21 capable of rotating in the vertical direction is provided.

そして、光送信器1と光受信器2とを対向させた際に、光送信器1の光信号送信部と可視レーザ光発光部とを、光受信器2の光信号受信部と可視レーザ光発光部とにそれぞれ対向するように配置するとともに、光送信器1と光受信器2との両方に、赤外光信号の受信に基づいて可視レーザ光発光部の可視レーザ光発光のオン/オフを行う赤外光受光部をそれぞれ備え、少なくとも光受信器2に設けられた赤外光受光部を、光信号受信部の向いている方向とは異なる方向に向けて設けており、これらの構成により片方向通信の光無線伝送装置を構成している。   When the optical transmitter 1 and the optical receiver 2 are opposed to each other, the optical signal transmission unit and the visible laser light emission unit of the optical transmitter 1 are replaced with the optical signal reception unit and the visible laser beam of the optical receiver 2. On and off the visible laser light emission of the visible laser light emitting unit based on the reception of the infrared light signal in both the optical transmitter 1 and the optical receiver 2 while being arranged to face the light emitting unit respectively. Infrared light receiving units that perform the above-described configuration, and at least the infrared light receiving unit provided in the optical receiver 2 is provided in a direction different from the direction in which the optical signal receiving unit is directed. Thus, an optical wireless transmission device for one-way communication is configured.

図2は、図1に示す光無線伝送装置の設置例を示す図である。なお、この図2においては、光送信器1と光受信器2を備えた一対の光送受信器20により双方向の光無線伝送を実現する形態を示している。一対の光送受信器20は、人の往来がある場所で光信号の光線が遮られないような高さにポールなどを用いて設置される。   FIG. 2 is a diagram illustrating an installation example of the optical wireless transmission device illustrated in FIG. 1. Note that FIG. 2 shows a form in which bidirectional optical wireless transmission is realized by a pair of optical transceivers 20 including the optical transmitter 1 and the optical receiver 2. The pair of optical transceivers 20 is installed using a pole or the like at a height that does not block the light beam of an optical signal in a place where people are coming and going.

図3は、本発明による光無線伝送装置の光送受信器20を斜め下方より見た図である。図3に示すように、光送受信器20は、光信号を受信する光信号受信部30、光軸合わせ用可視レーザ光を発光する可視レーザ光発光部40、光信号を送信する光信号送信部50を備えており、これらは左右に一直線に並んでおり、光信号受信部30と光信号送信部50との間の中間位置(図3のA=Bとなる位置)に可視レーザ光発光部40が設けられている。また、光信号送信部の発光光軸51と可視レーザ光の光軸41と光信号受信部の受光光軸31は互いに平行で同一方向を向くようにあらかじめ調整されている。さらに、光信号受信部30と可視レーザ光発光部40と光信号送信部50とが一体の状態で水平方向と垂直方向に回転可能な回転機構21を備えている。このような構造により、光送受信器20は対向させて可視レーザ光を相手の可視レーザ光発光部40に当てるだけで可視光でない光信号の送受信の光軸を簡単に合わせられる。また、赤外光信号の受信に基づいて可視レーザ光発光部40の可視レーザ光発光のオン/オフを行う赤外光受光部60が光信号の受光方向と異なる向きに設けられている。   FIG. 3 is a view of the optical transceiver 20 of the optical wireless transmission apparatus according to the present invention as seen obliquely from below. As shown in FIG. 3, the optical transceiver 20 includes an optical signal receiving unit 30 that receives an optical signal, a visible laser light emitting unit 40 that emits visible laser light for optical axis alignment, and an optical signal transmitting unit that transmits an optical signal. 50, which are arranged in a straight line on the left and right, and a visible laser light emitting unit at an intermediate position (a position where A = B in FIG. 3) between the optical signal receiving unit 30 and the optical signal transmitting unit 50 40 is provided. The light emitting optical axis 51 of the optical signal transmitting unit, the optical axis 41 of the visible laser beam, and the light receiving optical axis 31 of the optical signal receiving unit are adjusted in advance so as to be parallel to each other and to face the same direction. Furthermore, the optical signal receiving unit 30, the visible laser light emitting unit 40, and the optical signal transmitting unit 50 are provided with a rotation mechanism 21 that can rotate in the horizontal direction and the vertical direction in an integrated state. With such a structure, the optical transmitter / receiver 20 can be easily aligned with the optical axis for transmitting / receiving an optical signal that is not visible light by simply facing the visible laser light to the other visible laser light emitting unit 40 while facing it. An infrared light receiving unit 60 that turns on / off the visible laser light emission of the visible laser light emitting unit 40 based on the reception of the infrared light signal is provided in a direction different from the light receiving direction of the optical signal.

図4は、本発明における光送受信器20の内部構造を示す図である。光信号受信部30は、レンズを含む光学系とPD(フォトダイオード)と水平垂直方向の調整機構からなっており、光学系はレンズ以外に外乱光を遮断する波長選択フィルタも備える。可視レーザ光発光部40は、レンズを含む光学部と可視レーザ光発光素子とレーザ駆動回路と水平垂直方向の調整機構からなり、レーザは波長635nmで放射角が小さいものを用いている。光信号送信部50は、レンズを含む光学系とLD(レーザダイオード)と水平垂直方向の調整機構からなっており、光学系とLDの距離を調整して所望の放射角を得ている。上記3つの要素は、それぞれ水平垂直方向の調整機構を備えるが、最終的に3本の光軸が揃えばよいので、1つの光軸を固定し、他の2本の光軸を合わせる形でも実現可能である。   FIG. 4 is a diagram showing the internal structure of the optical transceiver 20 in the present invention. The optical signal receiving unit 30 includes an optical system including a lens, a PD (photodiode), and a horizontal / vertical adjustment mechanism. The optical system includes a wavelength selection filter that blocks disturbance light in addition to the lens. The visible laser light emitting unit 40 includes an optical unit including a lens, a visible laser light emitting element, a laser driving circuit, and a horizontal / vertical adjustment mechanism, and a laser having a wavelength of 635 nm and a small emission angle is used. The optical signal transmission unit 50 includes an optical system including a lens, an LD (laser diode), and an adjustment mechanism in the horizontal and vertical directions, and obtains a desired radiation angle by adjusting the distance between the optical system and the LD. Each of the above three elements is provided with a horizontal and vertical adjustment mechanism. However, since it is only necessary that three optical axes are finally aligned, one optical axis may be fixed and the other two optical axes may be aligned. It is feasible.

図5は、対向するように配置された一対の光送受信器20の光軸が合った状態を示す図である。光信号送信部50と光信号受信部30を対向させ、さらに可視レーザ光発光部40の可視レーザ光のスポットを相手の可視レーザ光の光源に合わせることにより(光軸41を一致させることにより)、他の2本の光信号の受発光光軸31と51を合わせている。なお、32は光信号受信部30の受光指向角の範囲、42は可視レーザ光発光部40の可視レーザ光の放射角の範囲、52は光信号送信部50の発光放射角の範囲をそれぞれ示している。   FIG. 5 is a diagram illustrating a state in which the optical axes of the pair of optical transceivers 20 arranged to face each other are aligned. By making the optical signal transmitting unit 50 and the optical signal receiving unit 30 face each other and aligning the visible laser beam spot of the visible laser beam emitting unit 40 with the light source of the other visible laser beam (by matching the optical axis 41) The light receiving and emitting optical axes 31 and 51 of the other two optical signals are aligned. Reference numeral 32 denotes the range of the light reception directivity angle of the optical signal receiver 30, 42 denotes the range of the visible laser light emission angle of the visible laser light emitter 40, and 52 denotes the range of the light emission angle of the optical signal transmitter 50. ing.

具体的には、光信号送信部50に赤外光を発光するLDを用いるが、これを図示しない光学系により放射角度を全幅で2度に調整している。放射角度を狭めるほどエネルギー密度を上げられるが、本実施の形態においては通信距離数十メートル程度を想定して放射角を決めている。光信号受信部30にはPDを用いており、図示しない光学系により、PDの受光指向角が全幅で1.5度になるように設定している。放射角、指向角共所定の強度の光が有する光学的に有効な範囲を示すものである。送信光の2度の放射角によると10m先で直径35cm程度のスポットになり、30m先で直径約1mのスポットになる。同様に、受信指向角1.5度によると10m先で直径約26cmのスポットになり、30m先で直径約80cmのスポットになる。光無線において、光信号の送受信の光軸が合うとは、送信光放射角のスポットで受光素子を捉え、かつ、受光指向角のスポットで相手の送信光発光素子を捉えた状態のことである。これらは、レンズの有効径や発光素子・受光素子の性能によって様々な組み合わせが可能であるが、コスト、目標とする光軸合わせのしやすさ、伝送距離によって最適な組み合わせを選ぶ。   Specifically, an LD that emits infrared light is used for the optical signal transmission unit 50, and the radiation angle is adjusted to 2 degrees over the entire width by an optical system (not shown). Although the energy density can be increased as the radiation angle is narrowed, in this embodiment, the radiation angle is determined assuming a communication distance of about several tens of meters. A PD is used for the optical signal receiving unit 30, and the light receiving directivity angle of the PD is set to 1.5 degrees in the entire width by an optical system (not shown). This indicates an optically effective range of light having a predetermined intensity for both the radiation angle and the directivity angle. According to the 2 degree radiation angle of the transmitted light, it becomes a spot with a diameter of about 35 cm after 10 m, and a spot with a diameter of about 1 m after 30 m. Similarly, according to the reception directivity angle of 1.5 degrees, a spot with a diameter of about 26 cm is formed 10 m ahead, and a spot with a diameter of about 80 cm is formed 30 m ahead. In optical wireless, the optical axis for transmission and reception of optical signals is the state where the light receiving element is captured at the spot of the transmission light radiation angle and the other transmitting light emitting element is captured at the spot of the light reception directivity angle. . These can be variously combined depending on the effective diameter of the lens and the performance of the light emitting element / light receiving element, but an optimal combination is selected depending on cost, ease of optical axis alignment, and transmission distance.

光軸31、41及び51が合っている状態を示す図5に対し、図6は、光軸31、41及び51が合っていない状態を示す図である。図面の左側の光送受信器20の光軸31、41、51は右側の光送受信器20の対応する各部を光学的に有効な範囲に捉えているが、右側の光送受信器20が相手側に正対していないため、光学的に有効な範囲に左側の光送受信器20の対応する各部を捉えられていないので光軸が合っていない状態である。光信号は可視光でないため肉眼で見えないが、このような状態では、可視レーザ光がずれた位置を指すので光軸がずれていることが視覚的に分かる。   FIG. 6 is a diagram showing a state where the optical axes 31, 41 and 51 are not aligned with respect to FIG. 5 which shows a state where the optical axes 31, 41 and 51 are aligned. The optical axes 31, 41, 51 of the optical transceiver 20 on the left side of the drawing grasp the corresponding parts of the optical transceiver 20 on the right side within the optically effective range, but the right optical transceiver 20 is on the other side. Since they are not facing each other, the corresponding parts of the left optical transceiver 20 are not captured within the optically effective range, so that the optical axes are not aligned. Since the optical signal is not visible light, it cannot be seen with the naked eye, but in such a state, since the visible laser beam indicates a position shifted, it is visually understood that the optical axis is shifted.

図7は、本実施の形態における光軸合わせの様子を説明する図である。光送受信器20内に光信号送信部50と光信号受信部30及び可視レーザ光発光部40を一体として水平方向と垂直方向に回転可能な機構21が設けられており、可視レーザ光を相手側送受信器20の可視レーザ光発光源に当てて光軸を合わせる。通常は、光信号の光線が遮られることがないよう人や車が通っても影響を受けないような高さの位置に設置する。設置位置が高い場合、図7に示すように高所作業車を用いて光送受信器20の設置や光軸合わせを行う。   FIG. 7 is a diagram for explaining the state of optical axis alignment in the present embodiment. In the optical transmitter / receiver 20, the optical signal transmitter 50, the optical signal receiver 30, and the visible laser light emitter 40 are integrated, and a mechanism 21 that can rotate in the horizontal direction and the vertical direction is provided. The optical axis is aligned with the visible laser light source of the transceiver 20. Normally, it is installed at a height that does not affect the passage of people or vehicles so that the light rays of the optical signal are not blocked. When the installation position is high, the optical transceiver 20 is installed and the optical axis is aligned using an aerial work vehicle as shown in FIG.

最初の設置時の光軸調整は、光送受信器20を設置する必要性もあり、高所作業になっても作業性の影響は少ないが、いったん設置した後に強風や経時変化などの何らかの要因により、通信不良の状態になった場合の光軸確認に際して、高所での作業を伴うのは負担が大きい。   The optical axis adjustment at the time of initial installation also requires the installation of the optical transceiver 20 and is less affected by workability even when working at a high place. When checking the optical axis in the case of communication failure, it is burdensome to involve work at a high place.

図3に示すように、本発明の光送受信器20には、下面に赤外光受光部60が設けてあるので、図8に示すように、地上からの赤外光発光端末としてのリモコン61により赤外光信号62を送れば、可視レーザ光発光部40の発光状態を切り替えられる。また、赤外光受光部60が光信号を受光する方向と異なる方向を向いているので、光信号による影響を低減できる。さらに、低い位置からのリモコン操作に最適な底面側に赤外光受光部60を設けてあるので、地上側からのリモコン操作の赤外光信号62を効率良く受光できる。   As shown in FIG. 3, the optical transmitter / receiver 20 of the present invention is provided with an infrared light receiving unit 60 on the lower surface. Therefore, as shown in FIG. 8, a remote controller 61 as an infrared light emitting terminal from the ground is provided. If the infrared light signal 62 is sent by the above, the light emission state of the visible laser light emitting unit 40 can be switched. In addition, since the infrared light receiving unit 60 faces in a direction different from the direction in which the optical signal is received, the influence of the optical signal can be reduced. Furthermore, since the infrared light receiving unit 60 is provided on the bottom surface side that is optimal for remote control operation from a low position, the infrared light signal 62 of remote control operation from the ground side can be received efficiently.

図9は、本発明の光無線伝送装置の光送受信器20の底面に設けられた赤外光受光部60で受光したリモコン61からの赤外光信号62を処理する過程を示すブロック図である。図9に示すように、赤外光受光部60で受光したリモコン61からの赤外光信号62は、信号検出部/増幅回路63を経て制御部(マイコン部)64に伝わり、制御部64が可視レーザ光発光部40の発光素子駆動回路40Aを介して可視光発光素子40Bによる可視レーザ光発光のオン/オフを行い、光学系40Cを介して可視レーザ光を発信する。   FIG. 9 is a block diagram showing a process of processing the infrared light signal 62 from the remote controller 61 received by the infrared light receiving unit 60 provided on the bottom surface of the optical transceiver 20 of the optical wireless transmission apparatus of the present invention. . As shown in FIG. 9, the infrared light signal 62 from the remote controller 61 received by the infrared light receiving unit 60 is transmitted to the control unit (microcomputer unit) 64 through the signal detection unit / amplifier circuit 63, and the control unit 64 Visible laser light emission by the visible light emitting element 40B is turned on / off via the light emitting element drive circuit 40A of the visible laser light emitting unit 40, and visible laser light is transmitted through the optical system 40C.

したがって、上記実施の形態によれば、光信号送信部50と光信号受信部30及び可視レーザ光発光部40を適切に配置することで、可視レーザ光を対向する相手の可視レーザ光発光部40に当てるだけで光信号送受信の光軸合わせを行うことができ、光信号を送受信する向きと異なる方向に赤外光受光部60を設けることで、赤外光による光信号の影響を受けずにリモコン61による制御で離れた場所から可視レーザ光発光のオン/オフを行える。したがって、可視レーザ光発光を通常はオフにして余分な電力消費を防ぎ、光軸確認で必要なときにのみオンにするといった運用が可能になり、さらに、光軸合わせの状態を視覚的に確認できる。   Therefore, according to the said embodiment, the visible laser light emission part 40 of the other party which opposes a visible laser beam by arrange | positioning the optical signal transmission part 50, the optical signal receiving part 30, and the visible laser light emission part 40 appropriately. The optical axis of the optical signal transmission / reception can be adjusted simply by touching the optical signal, and by providing the infrared light receiving unit 60 in a direction different from the direction in which the optical signal is transmitted / received, the optical signal is not affected by the infrared light. Visible laser light emission can be turned on / off from a remote location under the control of the remote controller 61. Therefore, it is possible to operate such that visible laser light emission is normally turned off to prevent excessive power consumption, and is turned on only when necessary for optical axis confirmation, and the optical axis alignment state is visually confirmed. it can.

光軸合わせ方法を実現するための本発明の実施の形態に係る片方向通信の光無線伝送装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical wireless transmission apparatus of the one-way communication which concerns on embodiment of this invention for implement | achieving the optical axis alignment method. 図1に示す光無線伝送装置の設置例を示す図であり、光送信器と光受信器の構成を備えた一対の光送受信器により双方向の光無線伝送を実現する形態を示す図である。It is a figure which shows the example of installation of the optical wireless transmission apparatus shown in FIG. 1, and is a figure which shows the form which implement | achieves bidirectional optical wireless transmission with a pair of optical transmitter / receiver provided with the structure of an optical transmitter and an optical receiver. . 本発明の光無線伝送装置に用いる光送受信器を斜め下方より見た概略図である。It is the schematic which looked at the optical transmitter-receiver used for the optical wireless transmission apparatus of this invention from diagonally downward. 本発明の光無線伝送装置に用いる光送受信器の内部構造を示す図である。It is a figure which shows the internal structure of the optical transmitter-receiver used for the optical wireless transmission apparatus of this invention. 本発明の光無線伝送装置に用いる光送受信器の各光学部の構造を示す図であり、対向するよう配置された一対の光送受信器の光軸が合った状態を示す図である。It is a figure which shows the structure of each optical part of the optical transmitter / receiver used for the optical wireless transmission apparatus of this invention, and is a figure which shows the state with which the optical axis of a pair of optical transmitter / receiver arrange | positioned so as to oppose was suitable. 本発明の光無線伝送装置に用いる光送受信器の光軸が合っていない状態を示す図である。It is a figure which shows the state from which the optical axis of the optical transmitter-receiver used for the optical wireless transmission apparatus of this invention is not correct. 光無線伝送装置を高所に設置する際の作業の図又は光軸確認の手段を外部から制御できない機器の場合の作業の様子を表す図である。It is a figure of the operation | work at the time of installing an optical wireless transmission apparatus in a high place, or a figure showing the mode of the operation | work in the case of the apparatus which cannot control the optical axis confirmation means from the outside. 本発明の光無線伝送装置に用いる光送受信器の光軸確認を行う様子を示す図である。It is a figure which shows a mode that the optical axis confirmation of the optical transmitter / receiver used for the optical wireless transmission apparatus of this invention is performed. 本発明の光無線伝送装置に用いる光送受信器の可視レーザ光発光を赤外光信号でオン/オフする際のブロック図である。It is a block diagram at the time of turning on / off the visible laser light emission of the optical transmitter-receiver used for the optical wireless transmission apparatus of this invention by an infrared-light signal.

符号の説明Explanation of symbols

1 光送信器
2 光受信器
10 光送信器の発する光信号
11 光送信器の発する可視レーザ光
12 光受信器の発する可視レーザ光
20 光送受信器
21 水平垂直回転機構
30 光信号受信部
31 光信号受信部の受光光軸
32 光信号受信部の受光指向角の範囲
40 可視レーザ光発光部
41 可視レーザ光の光軸
42 可視レーザ光の放射角の範囲
43 光軸がずれている場合の可視レーザ光の光軸
50 光信号送信部
51 光信号送信部の発光光軸
52 光信号送信部の発光放射角の範囲
60 赤外光受光部
61 リモコン(赤外光発光端末)
62 赤外光信号
DESCRIPTION OF SYMBOLS 1 Optical transmitter 2 Optical receiver 10 Optical signal which optical transmitter emits 11 Visible laser beam which optical transmitter emits 12 Visible laser beam which optical receiver emits 20 Optical transmitter / receiver 21 Horizontal / vertical rotation mechanism 30 Optical signal receiver 31 Light Light receiving optical axis of signal receiving unit 32 Light receiving directivity angle range of optical signal receiving unit 40 Visible laser light emitting unit 41 Optical axis of visible laser light 42 Radiation angle range of visible laser light 43 Visible when optical axis is shifted Optical axis of laser light 50 Optical signal transmission unit 51 Optical emission axis of optical signal transmission unit 52 Range of emission radiation angle of optical signal transmission unit 60 Infrared light receiving unit 61 Remote control (infrared light emitting terminal)
62 Infrared light signal

Claims (2)

光信号を送信する光学送信手段と、光軸合わせ用可視レーザ光を発光する可視光発光手段と、前記光学送信手段と前記可視光発光手段とを一体の状態で水平方向と垂直方向に調整可能な機構とを備える光送信器と、
前記光信号を受信する光学受信手段と、光軸合わせ用可視レーザ光を発光する可視光発光手段と、前記光学受信手段と前記可視光発光手段とを一体の状態で水平方向と垂直方向に調整可能な機構とを備える光受信器とからなる光無線伝送装置において、
前記光送信器と前記光受信器とを対向させた際に、前記光送信器の光学送信手段と可視光発光手段とを、前記光受信器の光学受信手段と可視光発光手段とにそれぞれ対向するように配置するとともに、
前記光送信器と前記光受信器との両方に、赤外光信号の受信に基づいて前記可視光発光手段の可視レーザ光発光のオン/オフを行う赤外光受光手段をそれぞれ備え、少なくとも前記光受信器に設けられた赤外光受光手段を、前記光学受信手段の向いている方向とは異なる方向に向けて設けたことを特徴とする光無線伝送装置。
Optical transmission means that transmits optical signals, visible light emission means that emits visible laser light for optical axis alignment, and the optical transmission means and visible light emission means can be adjusted in the horizontal and vertical directions in an integrated state. An optical transmitter having a mechanism,
An optical receiving means for receiving the optical signal, a visible light emitting means for emitting an optical axis alignment visible laser beam, and the optical receiving means and the visible light emitting means are adjusted in a horizontal direction and a vertical direction in an integrated state. In an optical wireless transmission device comprising an optical receiver having a possible mechanism,
When the optical transmitter and the optical receiver are opposed to each other, the optical transmission unit and the visible light emitting unit of the optical transmitter are opposed to the optical reception unit and the visible light emitting unit of the optical receiver, respectively. And arrange to
Both the optical transmitter and the optical receiver each include infrared light receiving means for turning on / off visible laser light emission of the visible light emitting means based on reception of an infrared light signal, An optical wireless transmission device, wherein an infrared light receiving means provided in an optical receiver is provided in a direction different from a direction in which the optical receiving means is directed.
光信号を送信する光学送信手段と、光信号を受信する光学受信手段と、光軸合わせ用可視レーザ光を発光する可視光発光手段と、前記光学送信手段及び前記光学受信手段と前記可視光発光手段とを一体の状態で水平方向と垂直方向に調整可能な機構とを備える一対の光送受信器を互いに対向するよう配置した光無線伝送装置において、
前記光学送信手段と前記光学受信手段とを、水平方向に沿って配置し、かつ前記可視光発光手段を、前記光学送信手段と前記光学受信手段とに対してそれぞれ等距離の位置に光軸があるように配置するとともに、
前記一対の光送受信器に、赤外光信号の受信に基づいて前記可視光発光手段の可視レーザ光発光のオン/オフを行う赤外光受光手段をそれぞれ備え、前記赤外光受光手段を、前記光学受信手段の受光方向とは異なる方向に向けて設けたことを特徴とする光無線伝送装置。
Optical transmitting means for transmitting optical signals, optical receiving means for receiving optical signals, visible light emitting means for emitting visible laser light for optical axis alignment, optical transmitting means, optical receiving means, and visible light emitting In an optical wireless transmission apparatus in which a pair of optical transceivers including a mechanism that can be adjusted in a horizontal direction and a vertical direction in an integrated state is disposed so as to face each other
The optical transmitting means and the optical receiving means are arranged along a horizontal direction, and the visible light emitting means is disposed at equidistant positions with respect to the optical transmitting means and the optical receiving means. As well as arrange
Each of the pair of optical transceivers includes infrared light receiving means for turning on / off visible laser light emission of the visible light emitting means based on reception of an infrared light signal, and the infrared light receiving means, An optical wireless transmission device provided in a direction different from a light receiving direction of the optical receiving means.
JP2005028242A 2005-02-03 2005-02-03 Optical radio transmitting device Withdrawn JP2006217289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005028242A JP2006217289A (en) 2005-02-03 2005-02-03 Optical radio transmitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005028242A JP2006217289A (en) 2005-02-03 2005-02-03 Optical radio transmitting device

Publications (1)

Publication Number Publication Date
JP2006217289A true JP2006217289A (en) 2006-08-17

Family

ID=36980118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005028242A Withdrawn JP2006217289A (en) 2005-02-03 2005-02-03 Optical radio transmitting device

Country Status (1)

Country Link
JP (1) JP2006217289A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067950A (en) * 2005-08-31 2007-03-15 Victor Co Of Japan Ltd Optical radio transmitting device
JP2016127488A (en) * 2015-01-06 2016-07-11 日本電気株式会社 Communication device, measurement system and housing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067950A (en) * 2005-08-31 2007-03-15 Victor Co Of Japan Ltd Optical radio transmitting device
JP4613753B2 (en) * 2005-08-31 2011-01-19 日本ビクター株式会社 Optical wireless transmission device
JP2016127488A (en) * 2015-01-06 2016-07-11 日本電気株式会社 Communication device, measurement system and housing

Similar Documents

Publication Publication Date Title
KR100564043B1 (en) Optical curtain alignment method and optical curtain structure
JP5690931B2 (en) Device for transmitting data between two rail vehicles
CA2618297A1 (en) Acquisition, pointing, and tracking architecture for laser communication
WO2005101704A1 (en) Improvements relating to reception in optical networks
JP2009087240A (en) Method and system for automatically adjusting optical axis of infrared sensor, and optical axis adjustment device of infrared sensor used for the same
JP4310386B2 (en) Security sensor device with optical axis adjustment function
CN102494628A (en) Laser measuring method and laser measuring device for tunnel deformation
JP2006217289A (en) Optical radio transmitting device
JP2008151733A (en) Method for measuring for headlight tester and headlight tester
JP2008109598A (en) Optical communication apparatus
US20100247106A1 (en) Automatically aligning photobeam arrangement
JP2000244408A (en) Optical space communication equipment
KR200385668Y1 (en) Duplex infrared sensor
GB2384051A (en) Alignment of beam projecting and beam receiving units in a security sensor system
JP4599847B2 (en) Optical wireless transmission device
JP5286608B2 (en) Optical axis adjustment unit with built-in bidirectional wireless communication module
JP2003209520A (en) Transmitter, receiver and signal axis alignment method
US20060003701A1 (en) Alignment system for communications
JP2007067843A (en) Optical spatial communication apparatus and its communication method
JP2013088943A (en) Information acquisition device, information acquisition method, and tag device
JPH06164512A (en) Pointing apparatus for optical space communication device
JP2005101682A (en) Infrared transmitter/receiver
JP2009268530A (en) Visual target presenting apparatus
JP3108453U (en) Reflector adjustment aid
JP2003074746A (en) Pipe laser with remote control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070629

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100303