WO2018163228A1 - Method for assessing authenticity of printed matter and method for preventing counterfeiting of printed matter - Google Patents

Method for assessing authenticity of printed matter and method for preventing counterfeiting of printed matter Download PDF

Info

Publication number
WO2018163228A1
WO2018163228A1 PCT/JP2017/008650 JP2017008650W WO2018163228A1 WO 2018163228 A1 WO2018163228 A1 WO 2018163228A1 JP 2017008650 W JP2017008650 W JP 2017008650W WO 2018163228 A1 WO2018163228 A1 WO 2018163228A1
Authority
WO
WIPO (PCT)
Prior art keywords
printed matter
authenticity
infrared
ultraviolet
specific region
Prior art date
Application number
PCT/JP2017/008650
Other languages
French (fr)
Japanese (ja)
Inventor
廣田寿一
菱木達也
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to PCT/JP2017/008650 priority Critical patent/WO2018163228A1/en
Publication of WO2018163228A1 publication Critical patent/WO2018163228A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • B42D25/387Special inks absorbing or reflecting ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation

Definitions

  • the present invention relates to a printed matter authenticity determination method and a printed matter forgery prevention method.
  • JP-A-2002-086889 discloses a forgery-preventing printed matter
  • JP-A-2011-001409 discloses a pigment suitable for security printing for preventing forgery.
  • Japanese Patent Application Laid-Open Nos. 2002-086889 and 2011-001409 describe phosphors for ultraviolet excitation and infrared light emission, and the wavelengths of excitation light and detection light are separated from each other. It is disclosed that a filter that cuts interference is unnecessary. However, the light emission performance (quantum efficiency, etc.) of the actual phosphor is not shown, and the possibility is shown, and it is far from practical use. In addition, there is no specific disclosure about an actual authenticity determination method using such a material.
  • the present invention has been made in consideration of such problems. Although the authenticity of a printed matter is simple, the confidentiality of the printed matter is high and a large amount of inspection can be performed in a short time.
  • An object is to provide a forgery determination method and a forgery prevention method for printed matter.
  • the first aspect of the present invention is a method for determining the authenticity of a printed material, wherein the printed material has a specific region on which a substance that emits infrared light by irradiating ultraviolet rays is printed,
  • the second step of detecting the infrared rays emitted from the specific region with the irradiation of the ultraviolet rays and reading the shape of the specific region or the intensity of the infrared rays,
  • a third step of determining the authenticity of the printed matter based on the third step.
  • the authenticity of the printed material can be determined accurately and easily and inexpensively, and the printed material can be prevented from being counterfeited. That is, it contributes to a method for preventing forgery of printed matter.
  • the second step of reading the shape of the specific region or the intensity of the infrared is to capture an image of the specific region with an infrared detection device that detects the infrared
  • the third step of determining authenticity of the printed matter may be authenticating the image.
  • an image that cannot be recognized by normal visual inspection and is difficult to forge can be used as a criterion for authenticity determination, high-precision authenticity judgment can be performed, and forgery of printed matter can be prevented. Useful.
  • the specific area is imaged by a camera having sensitivity in a visible light area
  • the authentication is preset with the image captured by the camera under the irradiation of the ultraviolet rays. It may be determined that the authentication is negative when the authentication image matches.
  • the authentication is determined as positive authentication when an image captured by the infrared detection device matches a preset authentication image under the irradiation of the ultraviolet rays. May be.
  • the ultraviolet ray is an ultraviolet ray on which a specific primary signal is superimposed, and a secondary signal superimposed on the infrared ray radiated from the specific region with the irradiation of the ultraviolet ray is obtained.
  • the authenticity of the printed matter may be determined by reading and based on the secondary signal.
  • the authenticity determination can be simplified and higher accuracy can be realized.
  • a specific pattern and figure are printed with a wavelength conversion material (ultraviolet excitation, infrared emission phosphor), and a highly accurate determination is obtained by a method of recognizing such a shape.
  • a wavelength conversion material ultraviolet excitation, infrared emission phosphor
  • the authenticity of the printed matter can be easily determined simply by confirming the synchronization and matching of the irradiation signal (primary signal) and the detection signal (secondary signal).
  • the irradiation signal primary signal
  • the detection signal secondary signal
  • the specific region of the printed matter is a phosphor that is excited by the excitation light including the ultraviolet rays and emits light including the near infrared rays, and has an internal quantum efficiency of 10 % May be a region which is printed with an ink containing a phosphor having a pigment content of at least% as a pigment and is colorless under visible light.
  • the ultraviolet rays applied to the specific region are ultraviolet rays including a predetermined level, and the predetermined level is the ink containing the phosphor having an internal quantum efficiency of 10% or more as a pigment.
  • the infrared rays emitted from the specific region as a result of the irradiation of the ultraviolet rays are infrared rays of a detectable level, and the phosphor contains an internal quantum efficiency of less than 10% as a pigment.
  • the infrared ray emitted from the specific region with the irradiation of the ultraviolet ray may be an undetectable infrared ray.
  • the surface on which the specific region is set is irradiated with the ultraviolet light, and accompanied with the irradiation of the ultraviolet light.
  • the second step of detecting the infrared ray radiated from the specific region and reading the shape of the specific region or the intensity of the infrared ray may detect the infrared ray emitted from the surface on which the specific region is set. Good.
  • the ultraviolet irradiation device and the infrared detection device can be installed adjacent to or at the same position, and the entire device can be realized in a compact manner.
  • the surface on which the specific region is set is irradiated with the ultraviolet light, and accompanied with the irradiation of the ultraviolet light.
  • the second step of detecting the infrared ray emitted from the specific region and reading the shape of the specific region or the intensity of the infrared ray detects the infrared ray emitted from a surface where the specific region is not set. Also good.
  • Ultraviolet rays with short wavelengths are difficult to transmit through objects such as printed matter, and infrared rays with long wavelengths are Utilizes the property of being easily transmitted through an object.
  • the ultraviolet irradiation device and the infrared detection device can be arranged on a straight line, and the arrangement of the entire device can be simplified.
  • it is easy to continuously pass inspection objects through irradiation and detection lines arranged on a straight line a large amount of inspection objects can be processed in a short time.
  • detection noise can be eliminated and detection with high accuracy is possible.
  • the first step may irradiate the ultraviolet rays using an ultraviolet irradiation device, and the second step may detect the infrared rays using an infrared detection device.
  • the ultraviolet irradiation device may be a device that emits long-wavelength ultraviolet light.
  • the detection element used in the infrared detection device may be a solid-state imaging element.
  • the infrared detecting device may be a device that visualizes near infrared rays using a photomultiplier tube.
  • the infrared detecting device may be a card coated with a paint that receives infrared light and emits visible light.
  • a distance between the printed matter and the infrared detection device may be larger than a maximum length that defines the specific area.
  • the substance that emits infrared rays when irradiated with ultraviolet rays may include a phosphor having a perovskite structure represented by BaSnO 3 as a main component.
  • the printed material has a specific region printed with a substance that emits infrared rays by irradiating ultraviolet rays, and the specific region is irradiated with the ultraviolet rays.
  • the second step of detecting the infrared ray emitted from the specific region with the irradiation of the ultraviolet ray, and reading the shape of the specific region or the intensity of the infrared ray And a third step of determining the authenticity of the printed matter.
  • the printed material authenticity determination method and the printed material forgery prevention method according to the present invention have at least the following effects.
  • A) It is easy on the side to be inspected (used), and it is possible to perform the authenticity determination and inspection with high confidentiality that is unknown to the side not knowing how to use.
  • B) A large amount of inspection is possible in a short time.
  • C) A large-scale device is not required.
  • FIG. 1A shows an example of a first authenticity determination method, and is an explanatory diagram showing a state in which a specific area printed on a printed matter is picked up with a normal camera under ultraviolet light, and FIG. 1B is under ultraviolet light. It is explanatory drawing which shows the state which is imaging the specific area
  • FIG. 2 is an explanatory diagram showing an example of the crystal structure of the phosphor particles contained in the ink used in the present embodiment.
  • FIG. 3 is an explanatory diagram showing the authentication process for samples 1 to 4.
  • FIG. 4 is a flowchart showing an example of the authentication operation in the first authenticity determination method.
  • FIG. 5A shows an example of a second authenticity determination method, and is an explanatory view showing a state where an image printed with a specific ink is captured under ultraviolet light
  • FIG. 5B shows another ink under ultraviolet light. It is explanatory drawing which shows the state which has imaged the image printed by.
  • FIG. 6 is a flowchart showing an example of the authentication operation in the second authenticity determination method.
  • FIG. 7 is a configuration diagram illustrating an example of a third authenticity determination device used in the third authenticity determination method.
  • FIG. 8 is a flowchart showing an example of the third authenticity determination method.
  • FIG. 9A is an explanatory diagram illustrating an example of an ultraviolet irradiation device
  • FIG. 9B is an explanatory diagram illustrating another example of the ultraviolet irradiation device.
  • FIG. 9A is an explanatory diagram illustrating an example of an ultraviolet irradiation device
  • FIG. 9B is an explanatory diagram illustrating another example of the ultraviolet irradiation device.
  • FIG. 10A is a diagram illustrating signal waveforms of a primary signal, an optical signal, and a secondary signal when printed with a specific ink
  • FIG. 10B is a diagram illustrating a primary signal, an optical signal, and a secondary signal when printed with other ink. It is a figure which shows the signal waveform of a signal.
  • FIG. 11 is an explanatory diagram showing a configuration of an ultraviolet irradiation apparatus having a plurality of semiconductor lasers.
  • FIG. 12 is an explanatory diagram illustrating an example of a determination method in the signal determination apparatus.
  • FIG. 13 is a diagram illustrating a first configuration example in the case of determining the authenticity of a plurality of printed materials.
  • FIG. 14 is a diagram illustrating a second configuration example in the case of determining the authenticity of a plurality of printed materials.
  • FIG. 15 is a diagram illustrating a third configuration example when determining the authenticity of a plurality of printed materials.
  • FIG. 16 is a diagram illustrating a fourth configuration example (No. 1) in the case of determining the authenticity of a plurality of printed materials.
  • FIG. 17 is a diagram illustrating a fourth configuration example (No. 2) in the case of determining the authenticity of a plurality of printed materials.
  • FIGS. 1A to 17 embodiments of a printed material authenticity determination method and a printed material forgery prevention method according to the present invention will be described with reference to FIGS. 1A to 17.
  • indicating a numerical range is used as a meaning including numerical values described before and after the numerical value as a lower limit value and an upper limit value.
  • a device according to a first specific example (hereinafter referred to as a first authenticity determination device 10A) used in a printed material authenticity determination method (hereinafter referred to as a first authenticity determination method) according to the first embodiment. Will be described with reference to FIGS. 1A to 4.
  • the first authenticity determination device 10A is sensitive to an ultraviolet irradiation device 18 such as an ultraviolet lamp that irradiates the specific region 14 of the printed matter 12 with an ultraviolet ray 16 and mainly in the visible light region. It has a normal camera 19 (see FIG. 1A), an infrared detection device 20 (see FIG. 1B) such as an infrared camera having sensitivity in the infrared light region, and an authentication device 22.
  • an ultraviolet irradiation device 18 such as an ultraviolet lamp that irradiates the specific region 14 of the printed matter 12 with an ultraviolet ray 16 and mainly in the visible light region.
  • It has a normal camera 19 (see FIG. 1A)
  • an infrared detection device 20 see FIG. 1B
  • an authentication device 22 such as an infrared camera having sensitivity in the infrared light region
  • a substance that emits infrared rays 24 when irradiated with ultraviolet rays 16 is printed on the specific region 14 of the printed matter 12.
  • an image for authentication is printed with specific ink 26. Images include numbers, letters, pictures, marks, barcodes, two-dimensional codes, and the like.
  • the specific area 14 refers to an area set in advance for determining the authenticity of the printed material 12, and is set to either the front surface or the back surface of the printed material 12. Therefore, for example, if the specific area 14 is set on the surface of the printed material 12, the surface of the printed material 12 is the surface on which the specific area 14 is set, and the back surface of the printed material 12 is the surface on which the specific region 14 is not set. It is.
  • the image is shown with a thickness that allows the image with the ink 26 to be visually recognized.
  • the image cannot actually be visually recognized under visible light. That is, the specific region 14 of the printed matter 12 is a colorless region under visible light.
  • the above-described ink 26 is excited by excitation light including ultraviolet rays 16, emits light including near infrared rays, and contains a phosphor having an internal quantum efficiency of 10% or more as a pigment.
  • the phosphor is preferably an inorganic oxide having a perovskite structure.
  • the phosphor include a phosphor having a perovskite structure represented by BaSnO 3 . As shown in FIG. 2, this phosphor has a perovskite-type crystal structure, Ba (barium) is arranged at each vertex, Sn (tin) is arranged at the body center, and Sn is the center. O (oxygen) is arranged in the face center. Because it is an inorganic material that does not contain carbon, it has excellent durability against long-term use of the printed matter 12 and irradiation of ultraviolet rays 16 and the like. Can be maintained. Further, the fine particles are white, and even if mixed with the ink or the like, it does not affect the color development of the ink, which is preferable.
  • the composition of the phosphor can be measured by an energy dispersive X-ray analyzer.
  • the crystal structure can be measured by a powder X-ray diffractometer (XRD).
  • the method for producing the phosphor includes a step of reacting these raw materials using raw materials containing Ba and Sn.
  • a hydrothermal synthesis method, a supercritical hydrothermal synthesis method, or the like can be preferably employed.
  • the raw materials may be synthesized by firing in the air.
  • the ultraviolet irradiation device 18 irradiates the specific region 14 of the printed matter 12 with the ultraviolet rays 16.
  • the normal camera 19 images a portion of the printed matter 12 that is irradiated with the ultraviolet rays 16.
  • the normal camera 19 and the infrared detection device 20 image a portion of the printed matter 12 that is irradiated with the ultraviolet rays 16.
  • the authentication device 22 determines negative authentication, that is, incorrect when a normal image captured by a normal camera 19 matches a preset authentication image (authentication image) under ultraviolet light. .
  • the authentication device 22 determines negative authentication when the infrared image captured by the infrared detection device 20 does not match a preset authentication image under ultraviolet light.
  • the authentication device 22 does not match the normal image captured by the normal camera 19 with the preset authentication image under the ultraviolet light, and the infrared detection device 20 captures the image under the ultraviolet light.
  • the set infrared image matches the preset authentication image, it is determined for the first time that the authentication is positive, that is, correct.
  • the first authenticity determination method will be described with reference to FIGS.
  • the difference in authentication between samples 1 to 4 will also be described.
  • Sample 1 printed the same image as the authentication image with specific ink 26 on a specific region 14 (for example, the upper surface) of printed matter 12 as shown in FIG.
  • sample 2 an image different from the authentication image was printed with a specific ink 26 in a specific area 14 of the printed matter 12.
  • Sample 3 was printed with the same image as the authentication image with the other ink 27 that emits fluorescence in the visible light region by the ultraviolet irradiation device 18.
  • Sample 4 did not print an image on the specific area 14 of the printed material 12.
  • FIG. 3 in order to show that the images printed on samples 1 to 3 cannot be viewed under visible light, the images are shown by broken lines.
  • the ultraviolet irradiation device 18 irradiates the specific region 14 of the printed matter 12 with ultraviolet rays 16 by manual operation by an operator or automatic control by a computer.
  • step S2 the normal camera 19 images a portion of the printed matter 12 irradiated with the ultraviolet rays 16 by manual operation by an operator or automatic control by a computer. That is, a normal image is acquired.
  • step S3 the authentication device 22 compares the normal image captured by the normal camera 19 with a preset authentication image. If the normal image matches the authentication image, negative authentication is performed in step S4. Then, the subsequent authentication process is terminated.
  • the normal image captured by the normal camera 19 does not match the preset authentication image.
  • the normal image captured by the normal camera 19 and the authentication image set in advance also do not match in this case.
  • sample 3 Since the sample 3 has the same image as the authentication image printed with the other ink 27 that emits fluorescence in the visible light region by the ultraviolet irradiation device 18, that is, the ink 27 that is not the specific ink 26, The captured normal image matches the preset authentication image. That is, sample 3 is determined as negative authentication.
  • step S5 instead of the normal camera 19, the infrared detection device 20 images a portion of the printed matter 12 that is irradiated with the ultraviolet rays 16 by manual operation by an operator or automatic control by a computer. That is, an infrared image is acquired.
  • the authentication device 22 compares the infrared image captured by the infrared detection device 20 with a preset authentication image. If the infrared image matches the authentication image, the authentication device 22 determines in step S7. Authenticate positively. On the other hand, if the infrared image does not match the authentication image, negative authentication is performed in step S4.
  • the samples 1 and 2 have an image printed on the specific region 14 with the specific ink 26 as described above, the specific ink 26 emits infrared light under ultraviolet light. As a result, as shown in FIG. 3, the samples 1 and 2 each capture an image of the specific ink 26 by the infrared detection device 20. Since sample 1 prints an image that matches the authentication image, it is determined as positive authentication, and since sample 2 prints an image that does not match the authentication image, it is determined as negative authentication. Note that sample 4 is not originally printed in the specific area 14 and thus does not match the preset authentication image, resulting in negative authentication.
  • the normal image captured by the normal camera 19 under the ultraviolet light matches the authentication image
  • the normal image is determined in step S3. If the authentication image matches the authentication image, negative authentication is determined. Therefore, even if an image that matches the authentication image is printed using ink 27 other than the specific ink 26, it is processed as a forged printed matter or the like. As a result, it is possible to prevent forgery in which a password or the like printed on a document or the like with a fluorescent ink is previously confirmed with an ultraviolet lamp, and another document is printed with the same fluorescent ink. Even if the image is forged, if the forged printing fluorescent ink is forged, the image is detected by the camera 19 having sensitivity in the visible light region, so that the authentication step (step S3 ) Can be determined to be counterfeit.
  • the authentication is positive only when the infrared image captured by the infrared detection device 20 matches the authentication image under ultraviolet light. Therefore, even if conventional fluorescent ink is used, it is impossible to obtain a positive authentication.
  • a positive authentication can be obtained only by using a specific ink 26 and printing an image that matches the authentication image. Since it is not visible light emission by ultraviolet irradiation, it cannot be confirmed by visual observation, and using a special device called the infrared detection device 20 and authenticating with image information shared between parties prevents prevention of counterfeiting of printed matter, etc. And improve the security level.
  • FIG. 10B a device according to a second specific example (hereinafter referred to as a second authenticity determination device) used in a printed material authenticity determination method (hereinafter referred to as a second authenticity determination method) according to the second embodiment. 10B) will be described with reference to FIGS. 5A to 6.
  • a second authenticity determination device used in a printed material authenticity determination method (hereinafter referred to as a second authenticity determination method) according to the second embodiment. 10B)
  • the second authenticity determination device 10B includes the ultraviolet irradiation device 18, the infrared detection device 20, and the authentication device 22 in the same manner as the first authenticity determination device 10A described above.
  • the difference is that the intensity of the ultraviolet rays 16 emitted from the irradiation device 18 is set as follows.
  • the infrared detection device 20 sets so that the intensity
  • the intensity I of the infrared rays 24 read by the infrared detecting device 20 when the phosphor 27 having an internal quantum efficiency of less than 10% is printed as the pigment 27 is threshold. Set to be less than the value Ith.
  • the ultraviolet irradiation device 18 irradiates the specific region 14 of the printed matter 12 with ultraviolet rays 16 by manual operation by an operator or automatic control by a computer.
  • step S102 the infrared detecting device 20 detects the infrared rays 24 from the specific area 14.
  • the authentication device 22 performs affirmative authentication in step S104 when the intensity I of the infrared ray 24 detected by the infrared detection device 20 is greater than or equal to the threshold value Ith. On the other hand, if the intensity of infrared rays is less than the threshold value Ith, negative authentication is performed in step S105.
  • the relationship between the internal quantum efficiency of the phosphor and the intensity of the infrared ray 24 emitted from the specific region 14 is grasped, and the intensity of the infrared ray 24 to be positively authenticated in advance.
  • the authenticity determination can be simplified and the accuracy can be improved.
  • the internal quantum efficiency of the phosphor to be used is slightly varied depending on the intensity of the ultraviolet light 16 to be irradiated. Is preferably 10% or more. If it is less than 10%, the intensity of the emitted infrared rays 24 is insufficient, and detection with a simple device becomes unstable.
  • a third authenticity determination device used in a printed matter authenticity determination method (hereinafter referred to as a third authenticity determination method) according to the third embodiment. 10C) will be described with reference to FIGS.
  • the third authenticity determination device 10 ⁇ / b> C irradiates ultraviolet rays 16 in which a specific primary signal Sa ⁇ b> 1 is superimposed (modulated with a specific primary signal Sa ⁇ b> 1) on a specific region 14 of the printed matter 12.
  • a signal determination device 30 for determining true / false of twelve.
  • the specific area 14 of the printed matter 12 is printed with specific ink 26.
  • the ink 26 is a phosphor that is excited by excitation light including ultraviolet rays 16 and emits light including near infrared rays, and includes a phosphor having an internal quantum efficiency of 10% or more as a pigment. Therefore, the specific region 14 of the printed matter 12 is a colorless region under visible light. Of course, if an image or the like is printed on the base of the ink 26, the image is visually recognized through the ink 26.
  • region 14 is arbitrary and can employ
  • the distance between the printed matter 12 and the infrared detection device 20 may be larger than the maximum length that defines the specific region 14. Since the reach distance of the infrared ray 24 is longer than that of the ultraviolet ray 16, the degree of freedom of the installation position of the infrared ray detection device 20 can be increased accordingly, and it is possible to flexibly cope with various device configurations.
  • step S201 of FIG. 8 the ultraviolet irradiation device 18 irradiates the specific region 14 of the printed matter 12 with the ultraviolet light 16 on which the specific primary signal Sa1 is superimposed (modulated with the specific primary signal Sa1).
  • step S ⁇ b> 202 the infrared detection device 20 detects the infrared ray 24 emitted from the specific area 14.
  • step S203 the infrared detector 20 reads the secondary signal Sa2 superimposed on the detected infrared ray 24.
  • the signal determination device 30 determines the authenticity of the printed matter 12 based on the read secondary signal Sa2.
  • Examples of the primary signal Sa1 include an ON / OFF pattern signal, a signal that modulates the phase of the ultraviolet ray 16, a signal that modulates the amplitude of the ultraviolet ray 16, and a signal that modulates the polarization plane of the ultraviolet ray 16.
  • the ultraviolet light 16 may be modulated with the primary signal Sa1 using a modulation method used in normal optical communication.
  • Examples of normal optical communication include time division multiplexing, optical wavelength multiplexing, multilevel modulation, and polarization multiplexing.
  • Examples of the ON / OFF pattern signal include a high level / low level pattern signal.
  • the ultraviolet irradiation device 18 for example, a direct modulation method in which a semiconductor laser that emits ultraviolet rays 16 is directly turned on / off with a primary signal Sa 1, or an ultraviolet light emitted from the semiconductor laser is used as a primary modulator.
  • An external modulation system that changes the phase, amplitude, polarization plane, and the like according to the signal Sa1 can be employed.
  • a pattern signal Sp that changes to ON and OFF with respect to time is directly input to the semiconductor laser 32 as the primary signal Sa1.
  • the semiconductor laser 32 outputs an optical signal Lp (ultraviolet ray 16) that blinks in accordance with ON / OFF of the pattern signal Sp.
  • an optical modulator 34 is arranged on the output side of the semiconductor laser 32, and a pattern signal Sp that changes temporally ON and OFF is input to the optical modulator 34 as the primary signal Sa1.
  • a reference signal Sb that is always ON is input to the semiconductor laser 32, and ultraviolet rays 16 are emitted from the semiconductor laser 32.
  • the light modulator 34 outputs an optical signal Lp (ultraviolet light 16) in which the emitted light (ultraviolet light 16) from the semiconductor laser 32 blinks according to ON / OFF of the pattern signal Sp.
  • the ultraviolet ray 16 modulated by the pattern signal Sp including the high level and the low level is emitted from the ultraviolet ray irradiation device 18.
  • the infrared rays 24 having the intensity corresponding to the high level and the low level are emitted.
  • the infrared detection device 20 outputs a pattern signal (secondary signal Sa2: see FIG. 7) that changes to ON / OFF in time corresponding to the high level / low level.
  • a medium level signal obtained by reducing the ON level may be included as the pattern signal Sp as the primary signal Sa1. That is, the level relationship is high level> medium level> low level.
  • the maximum level of the pattern signal Sp is 100, for example, the high level is 80 to 100, the medium level is 40 to 60, the low level is 0 to 20, and the like.
  • the ultraviolet light irradiation device 18 emits an optical signal Lp (ultraviolet light 16) modulated by the pattern signal Sp including high level, medium level and low level.
  • Lp ultraviolet light 16
  • the infrared rays 24 having the intensity corresponding to the high level, the medium level, and the low level are emitted.
  • the infrared detection device 20 outputs a pattern signal (secondary signal Sa2) that changes to ON / OFF in time corresponding to the high level / low level and the medium level / low level.
  • the infrared detection device 20 when the medium level is printed with the ink 26 containing the specific phosphor having an internal quantum efficiency of 10% or more as the pigment in the specific region 14 of the printed matter 12, the infrared detection device 20 The level that is output as ON, that is, is set so as to be high when read as the secondary signal Sa2. In other words, as shown in FIG. 10B, the level output as OFF from the infrared detecting device 20 when the phosphor having an internal quantum efficiency of less than 10% is printed as the pigment, that is, the secondary signal. It is set so that it is at a low level when it is read as Sa2. This makes it possible to increase the concealment of the primary signal Sa1 despite the simple signal form of ON / OFF.
  • the primary signal Sa1 is added to temporal ON / OFF, and the signal intensity is set as a pattern.
  • a signal pattern is set so that a low intensity signal cannot be detected according to the internal quantum efficiency of the phosphor contained in the ink.
  • the primary signal pattern, and the resulting secondary signal pattern it is possible to operate with a high security level that cannot be imitated by a third party. It becomes possible.
  • At least the primary signal Sa1 is not an ON / OFF pattern signal, but a shade corresponding to the level as a signal component. It may be a gray signal.
  • two semiconductor lasers may be used.
  • the first pattern signal Sp1 and the second pattern signal Sp2 by ON / OFF are directly input to the first semiconductor laser 32A and the second semiconductor laser 32B, respectively.
  • the first semiconductor laser 32A outputs a first optical signal Lp1 (ultraviolet ray 16) that blinks in response to ON / OFF of the first pattern signal Sp1, and the second semiconductor laser 32B turns ON / OFF the second pattern signal Sp2.
  • the second optical signal Lp2 (ultraviolet ray 16) that blinks in response to is output.
  • three or more semiconductor lasers may be used.
  • the ultraviolet irradiation device 18 a device that emits ultraviolet light having a short wavelength that cannot be visually recognized may be used.
  • a black light that emits ultraviolet light having a long wavelength of 315 to 400 nm may be used. Good.
  • the infrared detection device 20 may be configured by an infrared light receiving element that receives an optical signal of the infrared light 24 from the specific region 14 of the printed matter 12.
  • an infrared camera using a solid-state imaging device such as a CCD or CMOS as a detection element, a battery-driven infrared viewer that visualizes near infrared rays using a photomultiplier tube, and the like can be given.
  • the infrared detection device 20 is a combination of an infrared viewer card coated with a paint that receives infrared light 24 and emits visible light, and a camera (CCD camera, CMOS camera, etc.) that detects visible light from the infrared viewer card. May be used.
  • the signal determination device 30 uses, for example, one semiconductor laser 32 (see FIG. 9) as the ultraviolet irradiation device 18, and uses, for example, one infrared light receiving element as the infrared detection device 20, as shown in FIG. , ON periods T1, T2, T3... Of the primary signal Sa1 (pattern signal Sp) to the semiconductor laser 32 or the optical modulator 34 (see FIG. 9), and the secondary signal Sa2 detected by the infrared light receiving element.
  • ON periods Ta, Tb, Tc,... are the same, it is determined that the printed matter 12 is correct.
  • the signal determination device 30 may determine the authenticity of the printed matter by comparing the image data from the infrared camera with the pattern signal.
  • the present invention can also be applied when the ultraviolet irradiation device 18 includes a plurality of semiconductor lasers (see FIG. 11).
  • the ultraviolet irradiation device 18 includes a plurality of semiconductor lasers (see FIG. 11).
  • the ultraviolet irradiation device 18 includes a plurality of semiconductor lasers (see FIG. 11).
  • multiple semiconductor lasers by supplying different pattern signals to each semiconductor laser, it is possible to identify complex optical signals (ultraviolet rays) whose ON / OFF timing differs spatially and temporally.
  • the region 14 can be irradiated.
  • the ON cycle at a plurality of spatially separated locations from sequentially captured image data in units of frames. can be captured.
  • the signal determination device 30 can easily determine the authenticity of the printed matter 12 by comparing ON cycles at a plurality of locations with a plurality of pattern signals by the same method as described above.
  • a third authenticity determination device 10 ⁇ / b> C is installed in association with a first sheet counting device 40 ⁇ / b> A that counts the number of bundled printed materials 12.
  • the first number counting device 40A includes, for example, an accommodating portion 42 that accommodates a plurality of printed materials 12, an urging means 44 that presses the plurality of printed materials 12 upward, and only the uppermost printed material 12 of the plurality of printed materials 12. It has a roller 46 that pulls out in one direction and a pair of rollers 48 that convey the drawn printed matter 12 in one direction.
  • the first sheet counting device 40A is not limited to the above-described configuration.
  • the third authenticity determination device 10 ⁇ / b> C is installed above the printed material 12 in the conveyance process by a pair of rollers 48, for example.
  • the ultraviolet irradiation device 18 of the third authenticity determination device 10C always irradiates the ultraviolet rays 16 in an oblique direction toward the surface of the printed matter 12 in the conveyance process.
  • the ultraviolet ray 16 is modulated by the primary signal Sa1. If the specific ink 26 is printed on the specific region 14 on the surface of the printed matter 12, the specific region 14 irradiated with the ultraviolet ray 16 is irradiated when the irradiation position of the ultraviolet ray 16 coincides with the specific region 14 of the printed matter 12.
  • Infrared rays 24 are emitted.
  • the infrared ray 24 enters the infrared detection device 20.
  • the infrared detection device 20 reads the secondary signal Sa2 superimposed on the detected infrared ray 24 and outputs it to the signal determination device 30.
  • the signal determination device 30 determines the authenticity of the printed matter 12 based on the input secondary signal Sa2. In this case, it is preferable to include a synchronization signal indicating the start of determination in the primary signal Sa1. Thereby, the authenticity determination in the signal determination apparatus 30 can be performed with high accuracy.
  • the ultraviolet irradiation device 18 and the infrared detection device 20 are provided. It can be installed adjacent to or at the same position, and the entire apparatus can be realized in a compact manner. In addition, there is a merit that alignment between the irradiation position and the detection position becomes easy.
  • the signal determination device 30 determines that the printed matter 12 is “false”. The same applies to second to fourth configuration examples described later.
  • the ultraviolet rays 16 are constantly irradiated.
  • the ultraviolet rays 16 may be irradiated when the specific area 14 of the printed matter 12 reaches a preset position. In this case, it is not necessary to include a synchronization signal indicating the start of determination in the primary signal Sa1.
  • the second configuration example has substantially the same configuration as the first configuration example described above, but for example, a pair of rollers 48 irradiates ultraviolet rays above the printed matter 12 in the process of conveyance.
  • the difference is that an apparatus 18 is installed and an infrared detection apparatus 20 is installed below the printed material 12 in the process of conveyance.
  • the ultraviolet irradiation device 18 always irradiates the ultraviolet rays 16 toward the surface (for example, the surface) on which the specific region 14 of the printed matter 12 in the conveyance process is set. If the specific ink 26 is printed on the specific region 14 on the surface of the printed matter 12, the specific region 14 irradiated with the ultraviolet ray 16 is irradiated when the irradiation position of the ultraviolet ray 16 coincides with the specific region 14 of the printed matter 12. Infrared rays 24 are emitted.
  • the secondary signal Sa2 superimposed on the infrared ray 24 is read by the infrared detecting device 20 as described above.
  • the signal determination device 30 determines the authenticity of the printed matter 12 based on the input secondary signal Sa2.
  • the ultraviolet rays 16 having a short wavelength are difficult to transmit through an object such as a printed matter 12 and have a long wavelength.
  • Reference numeral 24 uses the property of easily passing through such an object.
  • the ultraviolet ray 16 is irradiated to the surface where the specific region 14 is set, and the infrared ray 24 emitted from the surface where the specific region 14 is not set is detected.
  • the ultraviolet irradiating device 18 and the infrared detecting device 20 can be arranged on a straight line, so that the arrangement of the entire device can be simplified. Moreover, since it is easy to continuously pass the inspection object (printed matter 12) through the irradiation and detection lines arranged on a straight line, a large amount of inspection objects can be processed in a short time. Furthermore, since the irradiated ultraviolet rays 16 do not enter the infrared detecting device 20 at the time of detection, detection noise can be eliminated and highly accurate detection is possible.
  • a third authenticity determination device 10C is installed in association with a second number counting device 40B different from the first number counting device 40A.
  • the second number counting device 40B Although details of the second number counting device 40B are omitted, one short side of the bundled printed matter 12 is opened, and the printed matter 12 is counted one by one from the uncounted bundle into a container (not shown) that has been counted. Move. The number of sheets is counted in the process of moving the printed matter 12 one by one.
  • the ultraviolet irradiation device 18 of the third authenticity determination device 10C is installed to face the surface of the printed matter 12 when the moving printed matter 12 reaches the center position.
  • the ultraviolet light emitting surface is installed so as to face the specific area 14 on the surface of the printed matter 12.
  • the infrared detection device 20 is disposed at a position facing the ultraviolet irradiation device 18 and facing the back surface of the printed matter 12 when the moving printed matter 12 reaches the center position.
  • the ultraviolet irradiation device 18 always irradiates the ultraviolet rays 16 toward the printed matter 12 in the middle of movement. If the specific ink 26 is printed on the specific region 14 on the surface of the printed matter 12, the specific region 14 irradiated with the ultraviolet ray 16 is irradiated when the irradiation position of the ultraviolet ray 16 coincides with the specific region 14 of the printed matter 12. Infrared rays 24 are emitted. In this case, since the infrared ray 24 passes through the printed matter 12 and is emitted from the back surface of the printed matter 12, the secondary signal Sa2 superimposed on the infrared ray 24 is read by the infrared detecting device 20 as described above. The signal determination device 30 determines the authenticity of the printed matter 12 based on the input secondary signal Sa2.
  • the ultraviolet irradiation device 18 and the infrared detection device 20 can be arranged on a straight line, and there is an advantage that the arrangement of the entire device can be simplified. Moreover, since it is easy to continuously pass the inspection object (printed matter 12) through the irradiation and detection lines arranged on a straight line, a large amount of inspection objects can be processed in a short time. Furthermore, since the irradiated ultraviolet rays 16 do not enter the infrared detecting device 20 at the time of detection, detection noise can be eliminated and highly accurate detection is possible.
  • the fourth configuration example has substantially the same configuration as the third configuration example described above, but differs in the following points. That is, the ultraviolet irradiation device 18 and the infrared detection device 20 are installed at positions facing the surface side of the printed matter 12. For example, in the configuration example shown in FIG. 16, the ultraviolet irradiation device 18 can irradiate the surface 16 of the printed material 12 when the moving printed material 12 reaches the center position, in particular, the specific region 14 with the ultraviolet light 16. Is installed.
  • the infrared detecting device 20 is installed at a position where the infrared ray 24 from the specific region 14 irradiated with the ultraviolet ray 16 can be received.
  • the ultraviolet irradiation device 18 irradiates, for example, the ultraviolet rays 16 on the surface of the uppermost printed matter 12 (printed matter 12 to be counted) of the uncounted bundle, particularly on the specific region 14. It is installed at a position where it can be irradiated.
  • the infrared detecting device 20 is installed at a position where the infrared ray 24 from the specific region 14 irradiated with the ultraviolet ray 16 can be received.
  • the specific ink 26 is printed on the specific region 14 on the surface of the printed matter 12.
  • the surface 16 on which the specific region 14 is set is irradiated with the ultraviolet rays 16 and the infrared ray 24 emitted from the surface on which the specific region 14 is set is emitted. Since the detection is performed, the ultraviolet irradiation device 18 and the infrared detection device 20 can be installed adjacent to or at the same position, and the entire device can be realized in a compact manner. In addition, there is a merit that alignment between the irradiation position and the detection position becomes easy. In particular, in the configuration example shown in FIG. 17, it is possible to remove the printed matter 12 determined as “false” before counting.
  • the third authenticity determination method includes a first step of irradiating the specific region 14 of the printed matter 12 with the ultraviolet ray 16 on which the specific primary signal Sa1 is superimposed (modulated with the specific primary signal Sa1), and the ultraviolet ray 16.
  • a third step for determining authenticity is a third step for determining authenticity.
  • the authenticity of the printed matter 12 can be easily confirmed simply by confirming the synchronization and matching of the irradiation signal (primary signal Sa1) and the detection signal (secondary signal Sa2). Judgment is possible. In addition, there is no need to depend on printing patterns and graphics, and labor can be reduced.
  • the third authenticity determination device 10C In the above-described third authenticity determination method, an example in which the third authenticity determination device 10C is used has been described. However, instead of the third authenticity determination device 10C, the first authenticity determination device 10A and the second authenticity determination device described above are used. The false determination device 10B can be used.
  • the authenticity determination method in the case of determining the authenticity of the plurality of printed materials 12 shown in FIGS. 13 to 17 irradiates the ultraviolet rays 16 on which the specific primary signal Sa1 is superimposed and superimposes them on the infrared rays 24.
  • the threshold value is not limited to the third authenticity determination method of reading the secondary signal Sa2, but the first authenticity determination method for authenticating the image in the image of the specific area 14 or the intensity of the infrared ray 24 that emits light.
  • the second true / false determination method that is determined based on the above is also employed as appropriate.
  • the authenticity of the printed material can be determined easily and inexpensively, and the printed material can be prevented from being counterfeited. That is, it contributes to a method for preventing forgery of printed matter.
  • the printed matter authenticity determination method and the printed matter forgery prevention method according to the present invention are not limited to the above-described embodiments, and various configurations can be adopted without departing from the gist of the present invention. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)
  • Credit Cards Or The Like (AREA)

Abstract

The present invention pertains to a method for assessing the authenticity of printed matter and a method for preventing counterfeiting of printed matter. Printed matter (12) has a specific region (14) in which is printed a substance (26) that emits infrared rays (24) upon being irradiated with ultraviolet rays (16). This method has: a first step for irradiating the specific region (14) with ultraviolet rays (16); a second step for detecting infrared rays (24) that are emitted from the specific region (14) in accordance with the irradiation by the ultraviolet rays (16), and reading the shape of the specific region (14) or the intensity of the infrared rays (24); and a third step for determining the authenticity of the printed matter (12) on the basis of the result of the reading.

Description

印刷物の真偽判定方法及び印刷物の偽造防止方法Method for determining authenticity of printed matter and method for preventing forgery of printed matter
 本発明は、印刷物の真偽判定方法及び印刷物の偽造防止方法に関する。 The present invention relates to a printed matter authenticity determination method and a printed matter forgery prevention method.
 近時、個人認証や書類等の秘密保持のために、パスワードや個人特有のシンボルやマーク等を、通常の可視光下では視認することが困難な蛍光インクで印刷することが行われている(例えば特許第4185032号公報、特開平9-188835号公報及び特開平8-239611号公報参照)。 Recently, passwords and personal symbols and marks have been printed with fluorescent ink that is difficult to see under normal visible light for personal authentication and confidentiality of documents ( (For example, see Japanese Patent No. 4185032, Japanese Patent Laid-Open No. 9-188835, and Japanese Patent Laid-Open No. 8-239611).
 また、偽造防止印刷物として、例えば特開2002-086889号公報に開示があり、偽造防止のためのセキュリティ印刷に適した顔料として、例えば特開2011-001409号公報に開示がある。 Further, for example, JP-A-2002-086889 discloses a forgery-preventing printed matter, and JP-A-2011-001409 discloses a pigment suitable for security printing for preventing forgery.
 特許第4185032号公報、特開平9-188835号公報及び特開平8-239611号公報に記載の技術において、従来の蛍光インクを用いた場合、いずれも可視光領域では無色で肉眼での視認が困難であるが、紫外線ランプ等で紫外域の励起光を照射することによって、蛍光インクから可視光領域の蛍光が発光されるため、肉眼での視認が容易になる。 In the techniques described in Japanese Patent No. 4185032, Japanese Patent Laid-Open No. 9-188835, and Japanese Patent Laid-Open No. 8-239611, all of the conventional fluorescent inks are colorless in the visible light region and difficult to see with the naked eye. However, by irradiating the ultraviolet excitation light with an ultraviolet lamp or the like, the fluorescent ink emits fluorescence in the visible light region, so that visual recognition with the naked eye becomes easy.
 最近は、このような蛍光インクや紫外線ランプ等の入手が容易になっている。そのため、書類に蛍光インクで印刷されたパスワード等を予め紫外線ランプで確認し、別の書類に同様の蛍光インクで印刷するという偽造が容易になるおそれがある。 Recently, it is easy to obtain such fluorescent inks and ultraviolet lamps. For this reason, there is a risk that forgery in which a password printed on a document with fluorescent ink is previously confirmed with an ultraviolet lamp and printed on another document with the same fluorescent ink may be facilitated.
 一方、特開2002-086889号公報及び特開2011-001409号公報には、紫外線励起、赤外線発光の蛍光体が記載され、励起光と検出光の波長が離れていることから、励起光の反射や干渉をカットするフィルターが不要になることが開示されている。しかし、実際の蛍光体の発光性能(量子効率等)が示されておらず、可能性が示されているだけで、実用化には遠いものであった。また、そのような材料を用いての実際の真偽判定方法については、具体的な開示がない。 On the other hand, Japanese Patent Application Laid-Open Nos. 2002-086889 and 2011-001409 describe phosphors for ultraviolet excitation and infrared light emission, and the wavelengths of excitation light and detection light are separated from each other. It is disclosed that a filter that cuts interference is unnecessary. However, the light emission performance (quantum efficiency, etc.) of the actual phosphor is not shown, and the possibility is shown, and it is far from practical use. In addition, there is no specific disclosure about an actual authenticity determination method using such a material.
 本発明はこのような課題を考慮してなされたものであり、印刷物の真偽判定が簡便であるにも拘わらず、秘匿性が高く、しかも、短時間で大量の検査が可能な印刷物の真偽判定方法及び印刷物の偽造防止方法を提供することを目的とする。 The present invention has been made in consideration of such problems. Although the authenticity of a printed matter is simple, the confidentiality of the printed matter is high and a large amount of inspection can be performed in a short time. An object is to provide a forgery determination method and a forgery prevention method for printed matter.
[1] 第1の本発明は印刷物の真偽判定方法であって、前記印刷物は、紫外線を照射することで赤外線を発光する物質を印刷した特定領域を有し、前記特定領域に、前記紫外線を照射する第1ステップと、前記紫外線の照射に伴って前記特定領域から放射される前記赤外線を検出し、前記特定領域の形状、若しくは前記赤外線の強度を読み取る第2ステップと、読み取った結果に基づいて前記印刷物の真偽を判定する第3ステップとを有することを特徴とする。 [1] The first aspect of the present invention is a method for determining the authenticity of a printed material, wherein the printed material has a specific region on which a substance that emits infrared light by irradiating ultraviolet rays is printed, The second step of detecting the infrared rays emitted from the specific region with the irradiation of the ultraviolet rays and reading the shape of the specific region or the intensity of the infrared rays, And a third step of determining the authenticity of the printed matter based on the third step.
 本実施の形態に係る印刷物の真偽判定方法を採用することで、印刷物の真偽を精度よく、容易に且つ安価に判定することができ、印刷物の偽造防止にも発揮させることができる。すなわち、印刷物の偽造防止方法に寄与する。 By adopting the method for determining the authenticity of a printed material according to the present embodiment, the authenticity of the printed material can be determined accurately and easily and inexpensively, and the printed material can be prevented from being counterfeited. That is, it contributes to a method for preventing forgery of printed matter.
[2] 第1の本発明において、前記特定領域の形状、若しくは前記赤外線の強度を読み取る前記第2ステップは、前記赤外線を検出する赤外線検出装置で前記特定領域の画像を撮像することであり、前記印刷物の真偽を判定する前記第3ステップは、前記画像を認証することであってもよい。 [2] In the first aspect of the present invention, the second step of reading the shape of the specific region or the intensity of the infrared is to capture an image of the specific region with an infrared detection device that detects the infrared, The third step of determining authenticity of the printed matter may be authenticating the image.
 このような方法を採用することによって、通常の目視では認識できず、偽造がし難い画像を真偽の判定の基準とすることができ、高精度な真偽鑑定ができ、印刷物の偽造防止に役立つ。 By adopting such a method, an image that cannot be recognized by normal visual inspection and is difficult to forge can be used as a criterion for authenticity determination, high-precision authenticity judgment can be performed, and forgery of printed matter can be prevented. Useful.
[3] 第1の本発明において、可視光領域に感度を有するカメラにて前記特定領域を撮像し、前記認証は、前記紫外線の照射下において、前記カメラにて撮像された前記画像と予め設定された認証用の画像とが一致した場合に否定認証と判定してもよい。 [3] In the first aspect of the present invention, the specific area is imaged by a camera having sensitivity in a visible light area, and the authentication is preset with the image captured by the camera under the irradiation of the ultraviolet rays. It may be determined that the authentication is negative when the authentication image matches.
 このような方法を採用することによって、万一、画像が偽造された場合においても、偽造印刷の蛍光インクが偽造されたものであると、可視光領域に感度を有するカメラで画像が検出されるため、認証ステップで偽造と判断することができる。 By adopting such a method, even if the image is forged, if the forged printing fluorescent ink is forged, the image is detected by a camera having sensitivity in the visible light region. For this reason, it can be determined to be counterfeit in the authentication step.
[4] 第1の本発明において、前記認証は、前記紫外線の照射下において、前記赤外線検出装置にて撮像された画像と予め設定された認証用の画像とが一致した場合に肯定認証と判定してもよい。 [4] In the first aspect of the present invention, the authentication is determined as positive authentication when an image captured by the infrared detection device matches a preset authentication image under the irradiation of the ultraviolet rays. May be.
 このような方法を採用することによって、認証画像、及び蛍光インクがより偽造し難く、真偽判定精度、セキュリティレベルともに高い真偽鑑定、印刷物の偽造防止が可能となる。 By adopting such a method, it is more difficult to forge the authentication image and the fluorescent ink, and it is possible to prevent the forgery of the printed matter and the authenticity judgment with high authenticity determination accuracy and security level.
[5] 第1の本発明において、前記紫外線は、特定の一次信号が重畳された紫外線であり、前記紫外線の照射に伴って前記特定領域から放射される前記赤外線に重畳された二次信号を読み取り、前記二次信号に基づいて前記印刷物の真偽を判定してもよい。 [5] In the first aspect of the present invention, the ultraviolet ray is an ultraviolet ray on which a specific primary signal is superimposed, and a secondary signal superimposed on the infrared ray radiated from the specific region with the irradiation of the ultraviolet ray is obtained. The authenticity of the printed matter may be determined by reading and based on the secondary signal.
 このような方法を採用することによって、真偽の判定が簡素化、且つ、更なる高精度化を実現することができる。通常は、波長変換材(紫外励起、赤外発光の蛍光体)で、特定のパターン、図形を印刷し、このような形を認識する方法で高精度な判定を得る。この場合、図形や形状等の認識のための複雑な処理回路、装置が必要になり大掛かりになるという問題がある。 By adopting such a method, the authenticity determination can be simplified and higher accuracy can be realized. Usually, a specific pattern and figure are printed with a wavelength conversion material (ultraviolet excitation, infrared emission phosphor), and a highly accurate determination is obtained by a method of recognizing such a shape. In this case, there is a problem that a complicated processing circuit and apparatus for recognizing a figure, a shape, and the like are necessary and become large-scale.
 また、蛍光体への印刷に際しても形が崩れないような精度が必要になり、手間がかかるという問題がある。パターンではなく、どのような形でもよい塗布エリアの有/無だけで判定する方法も考えられるが、そのような場合、似たような蛍光体(発光効率が弱い蛍光体を含む)を塗布しただけでも、わずかに発光してしまうため、精度のよい判定ができない。 Also, there is a problem in that it takes time and accuracy when printing on the phosphor, so that the shape does not collapse. It is possible to make a judgment based on the presence / absence of an application area that may be in any shape instead of a pattern. In such a case, similar phosphors (including phosphors with low emission efficiency) were applied. However, since it emits light slightly, accurate determination cannot be made.
 そこで、上述した方法を経ることで、照射信号(一次信号)と検出信号(二次信号)の同期、マッチング等を確認するだけで、簡単に印刷物の真偽判定が可能になる。また、印刷パターン、図形に依存する必要がなく、手間が少なくて済む。 Therefore, through the above-described method, the authenticity of the printed matter can be easily determined simply by confirming the synchronization and matching of the irradiation signal (primary signal) and the detection signal (secondary signal). In addition, there is no need to depend on printing patterns and graphics, and labor can be reduced.
[6] 第1の本発明において、前記印刷物の前記特定領域は、前記紫外線を含む励起光により励起され、近赤外線を含む光を発光する蛍光体であって、且つ、その内部量子効率が10%以上である蛍光体を顔料として含むインクにより印刷され、可視光下では無色である領域であってもよい。 [6] In the first aspect of the present invention, the specific region of the printed matter is a phosphor that is excited by the excitation light including the ultraviolet rays and emits light including the near infrared rays, and has an internal quantum efficiency of 10 % May be a region which is printed with an ink containing a phosphor having a pigment content of at least% as a pigment and is colorless under visible light.
 このような方法を採用することによって、画像の認証や、赤外線に重畳された二次信号の読み取り、二次信号に基づいた印刷物の真偽の判定等が、より高精度で、簡易な装置にて可能になる。 By adopting such a method, the authentication of images, the reading of secondary signals superimposed on infrared rays, the authenticity of printed matter based on the secondary signals, etc. can be made with a higher accuracy and simpler device. It becomes possible.
[7] 第1の本発明において、前記特定領域に照射する前記紫外線は、所定レベルを含む紫外線であり、前記所定レベルは、内部量子効率が10%以上の前記蛍光体を顔料として含む前記インクを使用した場合に、前記紫外線の照射に伴って前記特定領域から放射される前記赤外線が検出可能なレベルの赤外線であり、且つ、内部量子効率が10%未満の前記蛍光体を顔料として含むインクを使用した場合に、前記紫外線の照射に伴って前記特定領域から放射される前記赤外線が検出不能なレベルの赤外線であってもよい。 [7] In the first aspect of the invention, the ultraviolet rays applied to the specific region are ultraviolet rays including a predetermined level, and the predetermined level is the ink containing the phosphor having an internal quantum efficiency of 10% or more as a pigment. Is used, the infrared rays emitted from the specific region as a result of the irradiation of the ultraviolet rays are infrared rays of a detectable level, and the phosphor contains an internal quantum efficiency of less than 10% as a pigment. When using the infrared ray, the infrared ray emitted from the specific region with the irradiation of the ultraviolet ray may be an undetectable infrared ray.
 これにより、所定レベルを、当事者しか知りえないこととすることで、第三者が模倣することができないセキュリティレベルの高い運用が可能になる。 This makes it possible to operate at a high security level that cannot be imitated by a third party by making the predetermined level known only to the parties.
[8] 第1の本発明において、前記特定領域に、前記紫外線を照射する前記第1ステップは、前記特定領域が設定された面に対して前記紫外線を照射し、前記紫外線の照射に伴って前記特定領域から放射される前記赤外線を検出し、前記特定領域の形状、若しくは前記赤外線の強度を読み取る前記第2ステップは、前記特定領域が設定された面から発せられる前記赤外線を検出してもよい。 [8] In the first aspect of the present invention, in the first step of irradiating the specific region with the ultraviolet light, the surface on which the specific region is set is irradiated with the ultraviolet light, and accompanied with the irradiation of the ultraviolet light. The second step of detecting the infrared ray radiated from the specific region and reading the shape of the specific region or the intensity of the infrared ray may detect the infrared ray emitted from the surface on which the specific region is set. Good.
 このような方法を採用することによって、紫外線の照射装置と赤外線の検出装置を隣接、又は同位置に設置することができ、装置全体をコンパクトに実現できる。また、照射位置と検出位置の位置合わせが容易になるメリットも有する。 By adopting such a method, the ultraviolet irradiation device and the infrared detection device can be installed adjacent to or at the same position, and the entire device can be realized in a compact manner. In addition, there is a merit that alignment between the irradiation position and the detection position becomes easy.
[9] 第1の本発明において、前記特定領域に、前記紫外線を照射する前記第1ステップは、前記特定領域が設定された面に対して前記紫外線を照射し、前記紫外線の照射に伴って前記特定領域から放射される前記赤外線を検出し、前記特定領域の形状、若しくは前記赤外線の強度を読み取る前記第2ステップは、前記特定領域が設定されていない面から発せられる前記赤外線を検出してもよい。 [9] In the first aspect of the present invention, in the first step of irradiating the specific region with the ultraviolet light, the surface on which the specific region is set is irradiated with the ultraviolet light, and accompanied with the irradiation of the ultraviolet light. The second step of detecting the infrared ray emitted from the specific region and reading the shape of the specific region or the intensity of the infrared ray detects the infrared ray emitted from a surface where the specific region is not set. Also good.
 これは、紫外線により励起されて赤外線を発する蛍光体の特長を生かした認証画像、信号の検出方法であり、波長の短い紫外線は印刷物等の物体を透過し難く、波長の長い赤外線はそのような物体を透過し易い性質を利用している。このような方法を採用することによって、紫外線の照射装置と赤外線の検出装置を直線上に配置することができ、装置全体の配置を簡単にできるメリットを有する。また、直線上に並んだ照射、検出ラインに検査対象を連続的に通すことが簡易にできるため、大量の検査対象を短時間で処理することが可能となる。更にまた、検出時に、照射された紫外線が赤外線検出装置に入射することがないため、検出ノイズが排除でき、精度の高い検出が可能となる。 This is an authentication image and signal detection method that takes advantage of the phosphor that emits infrared rays when excited by ultraviolet rays. Ultraviolet rays with short wavelengths are difficult to transmit through objects such as printed matter, and infrared rays with long wavelengths are Utilizes the property of being easily transmitted through an object. By adopting such a method, the ultraviolet irradiation device and the infrared detection device can be arranged on a straight line, and the arrangement of the entire device can be simplified. In addition, since it is easy to continuously pass inspection objects through irradiation and detection lines arranged on a straight line, a large amount of inspection objects can be processed in a short time. Furthermore, since the irradiated ultraviolet rays do not enter the infrared detection device at the time of detection, detection noise can be eliminated and detection with high accuracy is possible.
[10] 第1の本発明において、前記第1ステップは、紫外線照射装置を使用して前記紫外線を照射し、前記第2ステップは、赤外線検出装置を使用して前記赤外線を検出してもよい。 [10] In the first aspect of the present invention, the first step may irradiate the ultraviolet rays using an ultraviolet irradiation device, and the second step may detect the infrared rays using an infrared detection device. .
[11] 第1の本発明において、前記紫外線照射装置は、長波長の紫外線を放射する装置であってもよい。 [11] In the first aspect of the present invention, the ultraviolet irradiation device may be a device that emits long-wavelength ultraviolet light.
[12] 第1の本発明において、前記赤外線検出装置に使用される検出素子が固体撮像素子であってもよい。 [12] In the first aspect of the present invention, the detection element used in the infrared detection device may be a solid-state imaging element.
[13] 第1の本発明において、前記赤外線検出装置は、光電子増倍管を用いて近赤外線を可視化する装置であってもよい。 [13] In the first aspect of the present invention, the infrared detecting device may be a device that visualizes near infrared rays using a photomultiplier tube.
[14] 第1の本発明において、前記赤外線検出装置は、赤外線を受け、可視光を発光する塗料が塗布されたカードであってもよい。 [14] In the first aspect of the present invention, the infrared detecting device may be a card coated with a paint that receives infrared light and emits visible light.
[15] 第1の本発明において、前記印刷物と前記赤外線検出装置との間の距離は、前記特定領域を規定する最大長さより大きくてもよい。 [15] In the first aspect of the present invention, a distance between the printed matter and the infrared detection device may be larger than a maximum length that defines the specific area.
[16] 第1の本発明において、前記紫外線を照射することで前記赤外線を発光する物質は、BaSnOで表されるペロブスカイト型構造を有する蛍光体を主成分としてもよい。 [16] In the first aspect of the present invention, the substance that emits infrared rays when irradiated with ultraviolet rays may include a phosphor having a perovskite structure represented by BaSnO 3 as a main component.
 このような無機材料を採用することによって、紫外線照射という環境下においても、耐久性を保持し、赤外線発光性能を長期間にわたり保持できるという特長を有する。 By adopting such an inorganic material, it has the characteristics that durability can be maintained and infrared emission performance can be maintained for a long period of time even in an environment of ultraviolet irradiation.
[17] 第2の本発明に係る印刷物の偽造防止方法は、前記印刷物は、紫外線を照射することで赤外線を発光する物質を印刷した特定領域を有し、前記特定領域に、前記紫外線を照射する第1ステップと、前記紫外線の照射に伴って前記特定領域から放射される前記赤外線を検出し、前記特定領域の形状、若しくは前記赤外線の強度を読み取る第2ステップと、読み取った結果に基づいて前記印刷物の真偽を判定する第3ステップとを有することを特徴とする。 [17] In the method for preventing forgery of a printed material according to the second aspect of the present invention, the printed material has a specific region printed with a substance that emits infrared rays by irradiating ultraviolet rays, and the specific region is irradiated with the ultraviolet rays. Based on the result of the first step, the second step of detecting the infrared ray emitted from the specific region with the irradiation of the ultraviolet ray, and reading the shape of the specific region or the intensity of the infrared ray And a third step of determining the authenticity of the printed matter.
 本発明に係る印刷物の真偽判定方法及び印刷物の偽造防止方法によれば、少なくとも以下の効果を奏する。
 (a) 検査する(使う)側には簡便であり、且つ、使い方を知らない側にとってはそれが不明である秘匿性の高い、真偽判定、検査が可能になる。
 (b) 短時間で大量に検査が可能になる。
 (c) 大掛かりな装置が不要である。
 (d) 空港等の現場での検査が容易になる。
 (e) セキュリティレベルが高い。
The printed material authenticity determination method and the printed material forgery prevention method according to the present invention have at least the following effects.
(A) It is easy on the side to be inspected (used), and it is possible to perform the authenticity determination and inspection with high confidentiality that is unknown to the side not knowing how to use.
(B) A large amount of inspection is possible in a short time.
(C) A large-scale device is not required.
(D) Inspection on site such as an airport becomes easy.
(E) The security level is high.
図1Aは、第1真偽判定方法の一例を示し、紫外光下において通常のカメラで印刷物に印刷された特定領域を撮像している状態を示す説明図であり、図1Bは紫外光下において赤外線検出装置で印刷物に印刷された特定領域を撮像している状態を示す説明図である。FIG. 1A shows an example of a first authenticity determination method, and is an explanatory diagram showing a state in which a specific area printed on a printed matter is picked up with a normal camera under ultraviolet light, and FIG. 1B is under ultraviolet light. It is explanatory drawing which shows the state which is imaging the specific area | region printed on printed matter with the infrared rays detection apparatus. 図2は、本実施の形態で使用されるインクに含まれる蛍光体粒子の結晶構造の一例を示す説明図である。FIG. 2 is an explanatory diagram showing an example of the crystal structure of the phosphor particles contained in the ink used in the present embodiment. 図3は、サンプル1~4に対する認証処理過程を示す説明図である。FIG. 3 is an explanatory diagram showing the authentication process for samples 1 to 4. 図4は、第1真偽判定方法での認証動作の一例を示すフローチャートである。FIG. 4 is a flowchart showing an example of the authentication operation in the first authenticity determination method. 図5Aは、第2真偽判定方法の一例を示し、紫外光下において特定のインクで印刷された画像を撮像している状態を示す説明図であり、図5Bは紫外光下においてその他のインクで印刷された画像を撮像している状態を示す説明図である。FIG. 5A shows an example of a second authenticity determination method, and is an explanatory view showing a state where an image printed with a specific ink is captured under ultraviolet light, and FIG. 5B shows another ink under ultraviolet light. It is explanatory drawing which shows the state which has imaged the image printed by. 図6は、第2真偽判定方法での認証動作の一例を示すフローチャートである。FIG. 6 is a flowchart showing an example of the authentication operation in the second authenticity determination method. 図7は、第3真偽判定方法で使用される第3真偽判定装置の一例を示す構成図である。FIG. 7 is a configuration diagram illustrating an example of a third authenticity determination device used in the third authenticity determination method. 図8は、第3真偽判定方法の一例を示すフローチャートである。FIG. 8 is a flowchart showing an example of the third authenticity determination method. 図9Aは、紫外線照射装置の一例を示す説明図であり、図9Bは、紫外線照射装置の他の例を示す説明図である。FIG. 9A is an explanatory diagram illustrating an example of an ultraviolet irradiation device, and FIG. 9B is an explanatory diagram illustrating another example of the ultraviolet irradiation device. 図10Aは、特定のインクで印刷した場合の一次信号、光信号及び二次信号の信号波形を示す図であり、図10Bは、その他のインクで印刷した場合の一次信号、光信号及び二次信号の信号波形を示す図である。FIG. 10A is a diagram illustrating signal waveforms of a primary signal, an optical signal, and a secondary signal when printed with a specific ink, and FIG. 10B is a diagram illustrating a primary signal, an optical signal, and a secondary signal when printed with other ink. It is a figure which shows the signal waveform of a signal. 図11は、複数の半導体レーザを有する紫外線照射装置の構成を示す説明図である。FIG. 11 is an explanatory diagram showing a configuration of an ultraviolet irradiation apparatus having a plurality of semiconductor lasers. 図12は、信号判定装置での判定方法の一例を示す説明図である。FIG. 12 is an explanatory diagram illustrating an example of a determination method in the signal determination apparatus. 図13は、複数の印刷物の真偽を判定する場合の第1の構成例を示す図である。FIG. 13 is a diagram illustrating a first configuration example in the case of determining the authenticity of a plurality of printed materials. 図14は、複数の印刷物の真偽を判定する場合の第2の構成例を示す図である。FIG. 14 is a diagram illustrating a second configuration example in the case of determining the authenticity of a plurality of printed materials. 図15は、複数の印刷物の真偽を判定する場合の第3の構成例を示す図である。FIG. 15 is a diagram illustrating a third configuration example when determining the authenticity of a plurality of printed materials. 図16は、複数の印刷物の真偽を判定する場合の第4の構成例(その1)を示す図である。FIG. 16 is a diagram illustrating a fourth configuration example (No. 1) in the case of determining the authenticity of a plurality of printed materials. 図17は、複数の印刷物の真偽を判定する場合の第4の構成例(その2)を示す図である。FIG. 17 is a diagram illustrating a fourth configuration example (No. 2) in the case of determining the authenticity of a plurality of printed materials.
 以下、本発明に係る印刷物の真偽判定方法及び印刷物の偽造防止方法の実施の形態例を図1A~図17を参照しながら説明する。なお、本明細書において数値範囲を示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味として使用される。 Hereinafter, embodiments of a printed material authenticity determination method and a printed material forgery prevention method according to the present invention will be described with reference to FIGS. 1A to 17. In the present specification, “˜” indicating a numerical range is used as a meaning including numerical values described before and after the numerical value as a lower limit value and an upper limit value.
 先ず、第1の実施の形態に係る印刷物の真偽判定方法(以下、第1真偽判定方法と記す)で使用される第1の具体例に係る装置(以下、第1真偽判定装置10Aと記す)について、図1A~図4を参照しながら説明する。 First, a device according to a first specific example (hereinafter referred to as a first authenticity determination device 10A) used in a printed material authenticity determination method (hereinafter referred to as a first authenticity determination method) according to the first embodiment. Will be described with reference to FIGS. 1A to 4.
 第1真偽判定装置10Aは、図1A及び図1Bに示すように、印刷物12の特定領域14に紫外線16を照射する紫外線ランプ等の紫外線照射装置18と、主に可視光領域に感度を有する通常のカメラ19(図1A参照)と、赤外光領域に感度を有する赤外線カメラ等の赤外線検出装置20(図1B参照)と、認証装置22とを有する。 As shown in FIGS. 1A and 1B, the first authenticity determination device 10A is sensitive to an ultraviolet irradiation device 18 such as an ultraviolet lamp that irradiates the specific region 14 of the printed matter 12 with an ultraviolet ray 16 and mainly in the visible light region. It has a normal camera 19 (see FIG. 1A), an infrared detection device 20 (see FIG. 1B) such as an infrared camera having sensitivity in the infrared light region, and an authentication device 22.
 印刷物12の特定領域14には、紫外線16を照射することで赤外線24を発光する物質が印刷されている。例えば特定のインク26によって認証のための画像が印刷されている。画像としては、数字、文字、絵、マーク、バーコード、二次元コード等を含む。ここで、特定領域14とは、印刷物12の真偽を判定するために予め設定された領域を指し、印刷物12の表面及び裏面のいずれかに設定される。従って、例えば印刷物12の表面に特定領域14が設定されていれば、印刷物12の表面が、特定領域14が設定された面であり、印刷物12の裏面が、特定領域14が設定されていない面である。 A substance that emits infrared rays 24 when irradiated with ultraviolet rays 16 is printed on the specific region 14 of the printed matter 12. For example, an image for authentication is printed with specific ink 26. Images include numbers, letters, pictures, marks, barcodes, two-dimensional codes, and the like. Here, the specific area 14 refers to an area set in advance for determining the authenticity of the printed material 12, and is set to either the front surface or the back surface of the printed material 12. Therefore, for example, if the specific area 14 is set on the surface of the printed material 12, the surface of the printed material 12 is the surface on which the specific area 14 is set, and the back surface of the printed material 12 is the surface on which the specific region 14 is not set. It is.
 図1A及び図1Bでは、インク26による画像を視認できる程度の厚みをもって記載しているが、実際には可視光下では画像を視認することができない。すなわち、印刷物12の特定領域14は、可視光下では無色の領域である。 In FIG. 1A and FIG. 1B, the image is shown with a thickness that allows the image with the ink 26 to be visually recognized. However, the image cannot actually be visually recognized under visible light. That is, the specific region 14 of the printed matter 12 is a colorless region under visible light.
 上述したインク26は、紫外線16を含む励起光により励起され、近赤外線を含む光を発光し、その内部量子効率が10%以上である蛍光体を顔料として含む。 The above-described ink 26 is excited by excitation light including ultraviolet rays 16, emits light including near infrared rays, and contains a phosphor having an internal quantum efficiency of 10% or more as a pigment.
 蛍光体は、ペロブスカイト型構造の無機酸化物であることが好ましい。蛍光体としては、例えばBaSnOで表されるペロブスカイト型構造を有する蛍光体が挙げられる。この蛍光体は、図2に示すように、ペロブスカイト型構造の結晶構造を有し、各頂点にBa(バリウム)が配置され、体心にSn(スズ)が配置され、Snを中心として、各面心にO(酸素)が配置される。炭素を含まない無機材料であることから、印刷物12の長期にわたる使用時や、紫外線16の照射等に対しての耐久性が優れており、劣化することが少なく、良好な赤外線24の発光性能を維持することができる。また、その微粒子は白色を呈しており、インク等に混ぜてもインクの発色性に影響を及ぼすことは少なく好適である。 The phosphor is preferably an inorganic oxide having a perovskite structure. Examples of the phosphor include a phosphor having a perovskite structure represented by BaSnO 3 . As shown in FIG. 2, this phosphor has a perovskite-type crystal structure, Ba (barium) is arranged at each vertex, Sn (tin) is arranged at the body center, and Sn is the center. O (oxygen) is arranged in the face center. Because it is an inorganic material that does not contain carbon, it has excellent durability against long-term use of the printed matter 12 and irradiation of ultraviolet rays 16 and the like. Can be maintained. Further, the fine particles are white, and even if mixed with the ink or the like, it does not affect the color development of the ink, which is preferable.
 なお、蛍光体の組成は、エネルギー分散型X線分析装置により測定することができる。また、結晶構造は、粉末X線回折装置(XRD)により測定することができる。 The composition of the phosphor can be measured by an energy dispersive X-ray analyzer. The crystal structure can be measured by a powder X-ray diffractometer (XRD).
 蛍光体を製造する方法は、Ba及びSnを含む原料を用い、これら原料を反応させる工程を含む。原料を反応させる工程では、例えば水熱合成法、超臨界水熱合成法等を好ましく採用することができるが、原料を大気中で焼成させて合成してもよい。 The method for producing the phosphor includes a step of reacting these raw materials using raw materials containing Ba and Sn. In the step of reacting the raw materials, for example, a hydrothermal synthesis method, a supercritical hydrothermal synthesis method, or the like can be preferably employed. However, the raw materials may be synthesized by firing in the air.
 そして、紫外線照射装置18は、印刷物12の特定領域14に紫外線16を照射する。通常のカメラ19は、印刷物12のうち、紫外線16が照射されている部分を撮像する。通常のカメラ19及び赤外線検出装置20は、印刷物12のうち、紫外線16が照射されている部分を撮像する。 Then, the ultraviolet irradiation device 18 irradiates the specific region 14 of the printed matter 12 with the ultraviolet rays 16. The normal camera 19 images a portion of the printed matter 12 that is irradiated with the ultraviolet rays 16. The normal camera 19 and the infrared detection device 20 image a portion of the printed matter 12 that is irradiated with the ultraviolet rays 16.
 認証装置22は、紫外光下において、通常のカメラ19にて撮像された通常画像と予め設定された認証用の画像(認証画像)とが一致した場合に否定認証、すなわち、正しくないと判定する。 The authentication device 22 determines negative authentication, that is, incorrect when a normal image captured by a normal camera 19 matches a preset authentication image (authentication image) under ultraviolet light. .
 また、認証装置22は、紫外光下において、赤外線検出装置20にて撮像された赤外線画像と予め設定された認証画像とが一致しない場合に、否定認証と判定する。 The authentication device 22 determines negative authentication when the infrared image captured by the infrared detection device 20 does not match a preset authentication image under ultraviolet light.
 更に、認証装置22は、紫外光下において、通常のカメラ19にて撮像された通常画像と予め設定された認証画像とが一致せず、且つ、紫外光下において、赤外線検出装置20にて撮像された赤外線画像と予め設定された認証画像とが一致した場合に、初めて肯定認証、すなわち、正しいと判定する。 Further, the authentication device 22 does not match the normal image captured by the normal camera 19 with the preset authentication image under the ultraviolet light, and the infrared detection device 20 captures the image under the ultraviolet light. When the set infrared image matches the preset authentication image, it is determined for the first time that the authentication is positive, that is, correct.
 ここで、第1真偽判定方法を図3及び図4を参照しながら説明する。一例として、サンプル1~4による認証の違いも併せて説明する。 Here, the first authenticity determination method will be described with reference to FIGS. As an example, the difference in authentication between samples 1 to 4 will also be described.
 サンプル1は、図3に示すように、印刷物12の特定領域14(例えば上面)に、特定のインク26で認証画像と同じ画像を印刷した。サンプル2は、印刷物12の特定領域14に、特定のインク26で認証画像と異なる画像を印刷した。サンプル3は、紫外線照射装置18によって可視光領域の蛍光を発するその他のインク27で認証画像と同じ画像を印刷した。サンプル4は、印刷物12の特定領域14に、画像を印刷しなかった。なお、図3において、サンプル1~3に印刷された画像が可視光下では視認できないことを示すために、画像を破線にて示した。 Sample 1 printed the same image as the authentication image with specific ink 26 on a specific region 14 (for example, the upper surface) of printed matter 12 as shown in FIG. In sample 2, an image different from the authentication image was printed with a specific ink 26 in a specific area 14 of the printed matter 12. Sample 3 was printed with the same image as the authentication image with the other ink 27 that emits fluorescence in the visible light region by the ultraviolet irradiation device 18. Sample 4 did not print an image on the specific area 14 of the printed material 12. In FIG. 3, in order to show that the images printed on samples 1 to 3 cannot be viewed under visible light, the images are shown by broken lines.
 先ず、図4のステップS1において、紫外線照射装置18は、オペレータによる手動あるいはコンピュータによる自動制御によって、印刷物12のうち、特定領域14に紫外線16を照射する。 First, in step S1 of FIG. 4, the ultraviolet irradiation device 18 irradiates the specific region 14 of the printed matter 12 with ultraviolet rays 16 by manual operation by an operator or automatic control by a computer.
 ステップS2において、通常のカメラ19は、オペレータによる手動あるいはコンピュータによる自動制御によって、印刷物12のうち、紫外線16が照射されている部分を撮像する。すなわち、通常画像を取得する。 In step S2, the normal camera 19 images a portion of the printed matter 12 irradiated with the ultraviolet rays 16 by manual operation by an operator or automatic control by a computer. That is, a normal image is acquired.
 ステップS3において、認証装置22は、通常のカメラ19にて撮像された通常画像と、予め設定された認証画像とを比較し、通常画像と認証画像とが一致した場合に、ステップS4において否定認証し、その後の認証処理を終了する。 In step S3, the authentication device 22 compares the normal image captured by the normal camera 19 with a preset authentication image. If the normal image matches the authentication image, negative authentication is performed in step S4. Then, the subsequent authentication process is terminated.
 ここで、サンプル1及び2は、いずれも印刷物12の特定領域14に、特定のインク26によって画像を印刷している。しかし、紫外線16の照射下で、蛍光インクが赤外発光しているため、可視光領域に感度を有する通常のカメラ19では、特定のインク26による画像を捉えることができない。 Here, in both samples 1 and 2, an image is printed on the specific region 14 of the printed matter 12 with the specific ink 26. However, since the fluorescent ink emits infrared light under the irradiation of the ultraviolet rays 16, the normal camera 19 having sensitivity in the visible light region cannot capture an image of the specific ink 26.
 従って、サンプル1及び2は、通常のカメラ19にて撮像された通常画像と、予め設定された認証画像とが一致しない。なお、サンプル4については、元々特定領域14に画像を印刷していないため、この場合も、通常のカメラ19にて撮像された通常画像と、予め設定された認証画像とが一致しない。 Therefore, in Samples 1 and 2, the normal image captured by the normal camera 19 does not match the preset authentication image. In addition, since an image is not originally printed in the specific area 14 for the sample 4, the normal image captured by the normal camera 19 and the authentication image set in advance also do not match in this case.
 サンプル3は、紫外線照射装置18によって可視光領域の蛍光を発するその他のインク27、すなわち、特定のインク26ではないインク27で認証画像と同じ画像を印刷しているため、通常のカメラ19にて撮像された通常画像と、予め設定された認証画像とが一致することとなる。つまり、サンプル3は、否定認証と判定される。 Since the sample 3 has the same image as the authentication image printed with the other ink 27 that emits fluorescence in the visible light region by the ultraviolet irradiation device 18, that is, the ink 27 that is not the specific ink 26, The captured normal image matches the preset authentication image. That is, sample 3 is determined as negative authentication.
 一方、上述したステップS3において、通常画像と認証画像とが一致しないと判別された場合は、次のステップS5に進む。このステップS5において、通常のカメラ19に代わって、赤外線検出装置20は、オペレータによる手動あるいはコンピュータによる自動制御によって、印刷物12のうち、紫外線16が照射されている部分を撮像する。すなわち、赤外線画像を取得する。 On the other hand, if it is determined in step S3 described above that the normal image and the authentication image do not match, the process proceeds to the next step S5. In step S5, instead of the normal camera 19, the infrared detection device 20 images a portion of the printed matter 12 that is irradiated with the ultraviolet rays 16 by manual operation by an operator or automatic control by a computer. That is, an infrared image is acquired.
 次のステップS6において、認証装置22は、赤外線検出装置20にて撮像された赤外線画像と、予め設定された認証画像とを比較し、赤外線画像と認証画像とが一致した場合に、ステップS7において、肯定認証する。反対に、赤外線画像と認証画像とが一致しない場合は、ステップS4において、否定認証する。 In the next step S6, the authentication device 22 compares the infrared image captured by the infrared detection device 20 with a preset authentication image. If the infrared image matches the authentication image, the authentication device 22 determines in step S7. Authenticate positively. On the other hand, if the infrared image does not match the authentication image, negative authentication is performed in step S4.
 ここで、サンプル1及び2は、上述したように、特定領域14に、特定のインク26によって画像を印刷しているため、紫外光下で、特定のインク26が赤外発光する。その結果、サンプル1及び2は、図3に示すように、いずれも赤外線検出装置20によって特定のインク26による画像が捉えられる。サンプル1は認証画像と一致する画像を印刷しているため、肯定認証とされ、サンプル2は認証画像と一致しない画像を印刷しているため、否定認証とされる。なお、サンプル4については、元々特定領域14に画像を印刷していないため、予め設定された認証画像とが一致せず、結果的に否定認証とされる。 Here, since the samples 1 and 2 have an image printed on the specific region 14 with the specific ink 26 as described above, the specific ink 26 emits infrared light under ultraviolet light. As a result, as shown in FIG. 3, the samples 1 and 2 each capture an image of the specific ink 26 by the infrared detection device 20. Since sample 1 prints an image that matches the authentication image, it is determined as positive authentication, and since sample 2 prints an image that does not match the authentication image, it is determined as negative authentication. Note that sample 4 is not originally printed in the specific area 14 and thus does not match the preset authentication image, resulting in negative authentication.
 このように、サンプル1~4のうち、上述した特定のインク26にて認証画像と一致する画像を印刷したサンプル1のみが肯定認証され、それ以外は否定認証され、偽造防止に効果があることがわかる。 As described above, among samples 1 to 4, only sample 1 printed with the above-described specific ink 26 and an image that matches the authentication image is positively authenticated, and the other is negatively authenticated, which is effective in preventing forgery. I understand.
 すなわち、従来では、紫外光下において通常のカメラ19にて撮像した通常画像と認証画像とが一致した場合は、肯定認証と判定するが、第1真偽判定方法では、ステップS3において、通常画像と認証画像とが一致した場合、否定認証と判定する。従って、単に、特定のインク26以外のインク27を使用して認証画像と一致する画像を印刷しても、偽造された印刷物等として処理される。これにより、書類等に蛍光インクで印刷されたパスワード等を予め紫外線ランプで確認し、別の書類に同様の蛍光インクで印刷するという偽造を防止することが可能となる。また、万一、画像が偽造された場合においても、偽造印刷の蛍光インクが偽造されたものであると、可視光領域に感度を有するカメラ19で画像が検出されるため、認証ステップ(ステップS3)で偽造と判断することができる。 That is, conventionally, when the normal image captured by the normal camera 19 under the ultraviolet light matches the authentication image, the authentication is determined as positive authentication. However, in the first authenticity determination method, the normal image is determined in step S3. If the authentication image matches the authentication image, negative authentication is determined. Therefore, even if an image that matches the authentication image is printed using ink 27 other than the specific ink 26, it is processed as a forged printed matter or the like. As a result, it is possible to prevent forgery in which a password or the like printed on a document or the like with a fluorescent ink is previously confirmed with an ultraviolet lamp, and another document is printed with the same fluorescent ink. Even if the image is forged, if the forged printing fluorescent ink is forged, the image is detected by the camera 19 having sensitivity in the visible light region, so that the authentication step (step S3 ) Can be determined to be counterfeit.
 更に、本実施の形態では、紫外光下において赤外線検出装置20にて撮像した赤外線画像と認証画像とが一致した場合に初めて、肯定認証と判定する。そのため、従来の蛍光インクを使用しても、肯定認証を得ることは不可能である。特定のインク26を使用し、且つ、認証画像と一致する画像を印刷することで初めて、肯定認証を得ることができる。紫外線照射による可視光発光ではないので、目視で確認することはできず、赤外線検出装置20という特殊な装置を使用し、当事者間で共有する画像情報によって認証することは、印刷物等の偽造の防止につながり、セキュリティレベルを向上させることができる。 Furthermore, in this embodiment, it is determined that the authentication is positive only when the infrared image captured by the infrared detection device 20 matches the authentication image under ultraviolet light. Therefore, even if conventional fluorescent ink is used, it is impossible to obtain a positive authentication. A positive authentication can be obtained only by using a specific ink 26 and printing an image that matches the authentication image. Since it is not visible light emission by ultraviolet irradiation, it cannot be confirmed by visual observation, and using a special device called the infrared detection device 20 and authenticating with image information shared between parties prevents prevention of counterfeiting of printed matter, etc. And improve the security level.
 次に、第2の実施の形態に係る印刷物の真偽判定方法(以下、第2真偽判定方法と記す)で使用される第2の具体例に係る装置(以下、第2真偽判定装置10Bと記す)について、図5A~図6を参照しながら説明する。 Next, a device according to a second specific example (hereinafter referred to as a second authenticity determination device) used in a printed material authenticity determination method (hereinafter referred to as a second authenticity determination method) according to the second embodiment. 10B) will be described with reference to FIGS. 5A to 6. FIG.
 第2真偽判定装置10Bは、図5A~図6に示すように、上述した第1真偽判定装置10Aと同様に、紫外線照射装置18、赤外線検出装置20及び認証装置22を有するが、紫外線照射装置18から出射される紫外線16の強度を以下のように設定している点で異なる。 As shown in FIGS. 5A to 6, the second authenticity determination device 10B includes the ultraviolet irradiation device 18, the infrared detection device 20, and the authentication device 22 in the same manner as the first authenticity determination device 10A described above. The difference is that the intensity of the ultraviolet rays 16 emitted from the irradiation device 18 is set as follows.
 すなわち、図5Aに示すように、印刷物12の特定領域14に、内部量子効率が10%以上である特定の蛍光体を顔料として含む特定のインク26で印刷した場合に、赤外線検出装置20にて読み取った赤外線24の強度Iが予め設定したしきい値Ith以上となるように設定する。換言すれば、図5Bに示すように、内部量子効率が10%未満である蛍光体を顔料として含むインク27で印刷した場合に、赤外線検出装置20にて読み取った赤外線24の強度Iがしきい値Ith未満となるように設定する。 That is, as shown in FIG. 5A, when the specific region 14 of the printed matter 12 is printed with a specific ink 26 containing a specific phosphor having an internal quantum efficiency of 10% or more as a pigment, the infrared detection device 20 It sets so that the intensity | strength I of the read infrared rays 24 may become more than the preset threshold value Ith. In other words, as shown in FIG. 5B, the intensity I of the infrared rays 24 read by the infrared detecting device 20 when the phosphor 27 having an internal quantum efficiency of less than 10% is printed as the pigment 27 is threshold. Set to be less than the value Ith.
 ここで、第2真偽判定方法について図6のフローチャートも参照しながら説明する。 Here, the second authenticity determination method will be described with reference to the flowchart of FIG.
 先ず、図6のステップS101において、紫外線照射装置18は、オペレータによる手動あるいはコンピュータによる自動制御によって、印刷物12のうち、特定領域14に紫外線16を照射する。 First, in step S101 of FIG. 6, the ultraviolet irradiation device 18 irradiates the specific region 14 of the printed matter 12 with ultraviolet rays 16 by manual operation by an operator or automatic control by a computer.
 ステップS102において、赤外線検出装置20は、特定領域14からの赤外線24を検出する。次いで、ステップS103において、認証装置22は、赤外線検出装置20にて検出した赤外線24の強度Iがしきい値Ith以上の場合に、ステップS104において、肯定認証する。反対に、赤外線の強度がしきい値Ith未満の場合に、ステップS105において、否定認証する。 In step S102, the infrared detecting device 20 detects the infrared rays 24 from the specific area 14. Next, in step S103, the authentication device 22 performs affirmative authentication in step S104 when the intensity I of the infrared ray 24 detected by the infrared detection device 20 is greater than or equal to the threshold value Ith. On the other hand, if the intensity of infrared rays is less than the threshold value Ith, negative authentication is performed in step S105.
 この第2真偽判定方法では、上述したように、蛍光体の内部量子効率と、特定領域14から出射される赤外線24の強度との関係を把握して、予め肯定認証すべき赤外線24の強度(しきい値Ith)を設定することで、真偽の判定が簡素化、且つ、高精度化することができる。また、このような紫外線照射で発光する赤外線の強度に対し、しきい値Ithを基準に判定するには、照射する紫外線16の強度により多少の変動はあるものの、使用する蛍光体の内部量子効率が10%以上あることが好ましい。10%に満たない場合、発光する赤外線24の強度が不足し、簡便な装置での検出が不安定になる。 In this second authenticity determination method, as described above, the relationship between the internal quantum efficiency of the phosphor and the intensity of the infrared ray 24 emitted from the specific region 14 is grasped, and the intensity of the infrared ray 24 to be positively authenticated in advance. By setting (threshold value Ith), the authenticity determination can be simplified and the accuracy can be improved. Further, in order to determine the intensity of infrared light emitted by such ultraviolet irradiation based on the threshold value Ith, the internal quantum efficiency of the phosphor to be used is slightly varied depending on the intensity of the ultraviolet light 16 to be irradiated. Is preferably 10% or more. If it is less than 10%, the intensity of the emitted infrared rays 24 is insufficient, and detection with a simple device becomes unstable.
 次に、第3の実施の形態に係る印刷物の真偽判定方法(以下、第3真偽判定方法と記す)で使用される第3の具体例に係る装置(以下、第3真偽判定装置10Cと記す)について、図7~図17を参照しながら説明する。 Next, an apparatus according to a third specific example (hereinafter referred to as a third authenticity determination device) used in a printed matter authenticity determination method (hereinafter referred to as a third authenticity determination method) according to the third embodiment. 10C) will be described with reference to FIGS.
 この第3真偽判定装置10Cは、図7に示すように、印刷物12の特定領域14に、特定の一次信号Sa1が重畳(特定の一次信号Sa1で変調)された紫外線16を照射する紫外線照射装置18と、特定領域14から発せられる赤外線24を検出して、赤外線24に重畳された二次信号Sa2を読み取る(抽出する)赤外線検出装置20と、少なくとも読み取った二次信号Sa2に基づいて印刷物12の真偽を判定する信号判定装置30とを有する。 As illustrated in FIG. 7, the third authenticity determination device 10 </ b> C irradiates ultraviolet rays 16 in which a specific primary signal Sa <b> 1 is superimposed (modulated with a specific primary signal Sa <b> 1) on a specific region 14 of the printed matter 12. The device 18, the infrared ray 24 emitted from the specific area 14, the infrared detection device 20 that reads (extracts) the secondary signal Sa <b> 2 superimposed on the infrared ray 24, and the printed matter based on at least the read secondary signal Sa <b> 2. And a signal determination device 30 for determining true / false of twelve.
 印刷物12の特定領域14は、特定のインク26が印刷されている。このインク26は、紫外線16を含む励起光により励起され、近赤外線を含む光を発光する蛍光体であって、且つ、その内部量子効率が10%以上である蛍光体を顔料として含む。従って、印刷物12の特定領域14は、可視光下では無色の領域である。もちろん、インク26の下地に画像等が印刷されていれば、該画像がインク26を介して視認される。なお、特定領域14の外形は任意であり、四角形、円形、楕円形、多角形等を採用することができる。 The specific area 14 of the printed matter 12 is printed with specific ink 26. The ink 26 is a phosphor that is excited by excitation light including ultraviolet rays 16 and emits light including near infrared rays, and includes a phosphor having an internal quantum efficiency of 10% or more as a pigment. Therefore, the specific region 14 of the printed matter 12 is a colorless region under visible light. Of course, if an image or the like is printed on the base of the ink 26, the image is visually recognized through the ink 26. In addition, the external shape of the specific area | region 14 is arbitrary and can employ | adopt square, circular, an ellipse, a polygon, etc.
 また、印刷物12と赤外線検出装置20との間の距離は、特定領域14を規定する最大長さより大きくてもよい。赤外線24の到達距離は紫外線16のそれよりも長いため、それに応じて、赤外線検出装置20の設置位置の自由度を高めることができ、様々な装置構成に柔軟に対応させることができる。 Further, the distance between the printed matter 12 and the infrared detection device 20 may be larger than the maximum length that defines the specific region 14. Since the reach distance of the infrared ray 24 is longer than that of the ultraviolet ray 16, the degree of freedom of the installation position of the infrared ray detection device 20 can be increased accordingly, and it is possible to flexibly cope with various device configurations.
 ここで、第3真偽判定方法について図8のフローチャートを参照しながら説明する。 Here, the third authenticity determination method will be described with reference to the flowchart of FIG.
 先ず、図8のステップS201において、紫外線照射装置18は、印刷物12の特定領域14に、特定の一次信号Sa1が重畳(特定の一次信号Sa1で変調)された紫外線16を照射する。ステップS202において、赤外線検出装置20は、上記特定領域14から発せられる赤外線24を検出する。ステップS203において、赤外線検出装置20は、検出された赤外線24に重畳された二次信号Sa2を読み取る。ステップS204において、信号判定装置30は、読み取った二次信号Sa2に基づいて印刷物12の真偽を判定する。 First, in step S201 of FIG. 8, the ultraviolet irradiation device 18 irradiates the specific region 14 of the printed matter 12 with the ultraviolet light 16 on which the specific primary signal Sa1 is superimposed (modulated with the specific primary signal Sa1). In step S <b> 202, the infrared detection device 20 detects the infrared ray 24 emitted from the specific area 14. In step S203, the infrared detector 20 reads the secondary signal Sa2 superimposed on the detected infrared ray 24. In step S204, the signal determination device 30 determines the authenticity of the printed matter 12 based on the read secondary signal Sa2.
 一次信号Sa1としては、例えばON/OFFのパターン信号、紫外線16の位相を変調する信号、紫外線16の振幅を変調する信号、紫外線16の偏波面を変調する信号等が挙げられる。もちろん、通常の光通信で使用されている変調方式を使用して紫外線16を一次信号Sa1で変調してもよい。通常の光通信としては、例えば時分割多重方式、光波長多重方式、多値変調方式、偏波多重方式等を挙げることができる。ON/OFFのパターン信号としては、高レベル/低レベルのパターン信号等が挙げられる。 Examples of the primary signal Sa1 include an ON / OFF pattern signal, a signal that modulates the phase of the ultraviolet ray 16, a signal that modulates the amplitude of the ultraviolet ray 16, and a signal that modulates the polarization plane of the ultraviolet ray 16. Of course, the ultraviolet light 16 may be modulated with the primary signal Sa1 using a modulation method used in normal optical communication. Examples of normal optical communication include time division multiplexing, optical wavelength multiplexing, multilevel modulation, and polarization multiplexing. Examples of the ON / OFF pattern signal include a high level / low level pattern signal.
 また、紫外線照射装置18としては、例えば紫外線16を出射する半導体レーザを直接一次信号Sa1でON/OFFさせる直接変調方式や、半導体レーザから出射された紫外線を外部の変調器を使用して、一次信号Sa1によって、位相、振幅、偏波面等を変化させる外部変調方式を採用することができる。 Further, as the ultraviolet irradiation device 18, for example, a direct modulation method in which a semiconductor laser that emits ultraviolet rays 16 is directly turned on / off with a primary signal Sa 1, or an ultraviolet light emitted from the semiconductor laser is used as a primary modulator. An external modulation system that changes the phase, amplitude, polarization plane, and the like according to the signal Sa1 can be employed.
 例えば図9Aに示すように、半導体レーザ32に対し、一次信号Sa1として時間的にON及びOFFに変化するパターン信号Spを直接入力する。これにより、半導体レーザ32からはパターン信号SpのON/OFFに応じて点滅する光信号Lp(紫外線16)が出力される。 For example, as shown in FIG. 9A, a pattern signal Sp that changes to ON and OFF with respect to time is directly input to the semiconductor laser 32 as the primary signal Sa1. As a result, the semiconductor laser 32 outputs an optical signal Lp (ultraviolet ray 16) that blinks in accordance with ON / OFF of the pattern signal Sp.
 あるいは、図9Bに示すように、半導体レーザ32の出力側に光変調器34を配置し、光変調器34に対し、一次信号Sa1として時間的にON及びOFFに変化するパターン信号Spを入力する。半導体レーザ32には例えば常時ONとする基準信号Sbを入力して半導体レーザ32から紫外線16を出射させる。これにより、光変調器34からは、半導体レーザ32からの出射光(紫外線16)がパターン信号SpのON/OFFに応じて点滅する光信号Lp(紫外線16)が出力される。 Alternatively, as shown in FIG. 9B, an optical modulator 34 is arranged on the output side of the semiconductor laser 32, and a pattern signal Sp that changes temporally ON and OFF is input to the optical modulator 34 as the primary signal Sa1. . For example, a reference signal Sb that is always ON is input to the semiconductor laser 32, and ultraviolet rays 16 are emitted from the semiconductor laser 32. As a result, the light modulator 34 outputs an optical signal Lp (ultraviolet light 16) in which the emitted light (ultraviolet light 16) from the semiconductor laser 32 blinks according to ON / OFF of the pattern signal Sp.
 すなわち、紫外線照射装置18からは、高レベル及び低レベルを含むパターン信号Spで変調された紫外線16が放射される。この紫外線16が特定領域14に照射されることで、高レベル及び低レベルに対応した強度の赤外線24が放射される。その結果、赤外線検出装置20からは高レベル/低レベルに対応して時間的にON/OFFに変化するパターン信号(二次信号Sa2:図7参照)が出力される。 That is, the ultraviolet ray 16 modulated by the pattern signal Sp including the high level and the low level is emitted from the ultraviolet ray irradiation device 18. By irradiating the specific region 14 with the ultraviolet rays 16, the infrared rays 24 having the intensity corresponding to the high level and the low level are emitted. As a result, the infrared detection device 20 outputs a pattern signal (secondary signal Sa2: see FIG. 7) that changes to ON / OFF in time corresponding to the high level / low level.
 この場合、図10Aに示すように、一次信号Sa1としてのパターン信号Spとして、ONのレベル(高レベル)を低下させた中レベルの信号を含めるようにしてもよい。すなわち、レベルの大小関係は、高レベル>中レベル>低レベルである。パターン信号Spの最大レベルを100としたとき、例えば高レベルは80~100、中レベルは40~60、低レベルは0~20等が挙げられる。 In this case, as shown in FIG. 10A, a medium level signal obtained by reducing the ON level (high level) may be included as the pattern signal Sp as the primary signal Sa1. That is, the level relationship is high level> medium level> low level. When the maximum level of the pattern signal Sp is 100, for example, the high level is 80 to 100, the medium level is 40 to 60, the low level is 0 to 20, and the like.
 これにより、図7に示すように、紫外線照射装置18からは、高レベル、中レベル及び低レベルを含むパターン信号Spで変調された光信号Lp(紫外線16)が放射される。この紫外線16が特定領域14に照射されることで、高レベル、中レベル及び低レベルに対応した強度の赤外線24が放射される。その結果、赤外線検出装置20からは高レベル/低レベル並びに中レベル/低レベルに対応して時間的にON/OFFに変化するパターン信号(二次信号Sa2)が出力される。 As a result, as shown in FIG. 7, the ultraviolet light irradiation device 18 emits an optical signal Lp (ultraviolet light 16) modulated by the pattern signal Sp including high level, medium level and low level. By irradiating the specific region 14 with the ultraviolet rays 16, the infrared rays 24 having the intensity corresponding to the high level, the medium level, and the low level are emitted. As a result, the infrared detection device 20 outputs a pattern signal (secondary signal Sa2) that changes to ON / OFF in time corresponding to the high level / low level and the medium level / low level.
 図10Aに示すように、中レベルとしては、印刷物12の特定領域14に、内部量子効率が10%以上である特定の蛍光体を顔料として含むインク26で印刷した場合に、赤外線検出装置20からONとして出力されるレベル、すなわち、二次信号Sa2として読み取った際に高レベルとなるように設定する。換言すれば、図10Bに示すように、内部量子効率が10%未満である蛍光体を顔料として含むインクで印刷した場合に、赤外線検出装置20からOFFとして出力されるレベル、すなわち、二次信号Sa2として読み取った際に低レベルとなるように設定する。これにより、ON/OFFという単純な信号形態にも拘わらず、一次信号Sa1の秘匿化を高めることが可能となる。 As shown in FIG. 10A, when the medium level is printed with the ink 26 containing the specific phosphor having an internal quantum efficiency of 10% or more as the pigment in the specific region 14 of the printed matter 12, the infrared detection device 20 The level that is output as ON, that is, is set so as to be high when read as the secondary signal Sa2. In other words, as shown in FIG. 10B, the level output as OFF from the infrared detecting device 20 when the phosphor having an internal quantum efficiency of less than 10% is printed as the pigment, that is, the secondary signal. It is set so that it is at a low level when it is read as Sa2. This makes it possible to increase the concealment of the primary signal Sa1 despite the simple signal form of ON / OFF.
 すなわち、上述のように、一次信号Sa1を時間的なON/OFFに加え、信号強度の強弱もつけたパターンとする。例えばインクに含まれる蛍光体の内部量子効率に応じて強度の低い信号は検出できないレベルになるような信号パターンを設定する。そして、印刷物の特性、一次信号の信号パターン、得られる二次信号の信号パターンの組合せを、当事者しか知りえないこととすることで、第三者が模倣することができないセキュリティレベルの高い運用が可能になる。 That is, as described above, the primary signal Sa1 is added to temporal ON / OFF, and the signal intensity is set as a pattern. For example, a signal pattern is set so that a low intensity signal cannot be detected according to the internal quantum efficiency of the phosphor contained in the ink. And, since only the parties can know the characteristics of the printed matter, the primary signal pattern, and the resulting secondary signal pattern, it is possible to operate with a high security level that cannot be imitated by a third party. It becomes possible.
 なお、高レベル、中レベル及び低レベルのように、3つ以上のレベルを採用する場合は、少なくとも一次信号Sa1を、ON/OFFのパターン信号ではなく、レベルに応じた濃淡を信号成分とした濃淡信号としてもよい。 When three or more levels are employed, such as a high level, a medium level, and a low level, at least the primary signal Sa1 is not an ON / OFF pattern signal, but a shade corresponding to the level as a signal component. It may be a gray signal.
 紫外線照射装置18の変形例として、例えば図11に示すように、2つの半導体レーザ(第1半導体レーザ32A及び第2半導体レーザ32B)を用いてもよい。この場合、例えば第1半導体レーザ32A及び第2半導体レーザ32Bにそれぞれ直接ON/OFFによる第1パターン信号Sp1及び第2パターン信号Sp2を入力する。第1半導体レーザ32Aからは第1パターン信号Sp1のON/OFFに応じて点滅する第1光信号Lp1(紫外線16)が出力され、第2半導体レーザ32Bからは第2パターン信号Sp2のON/OFFに応じて点滅する第2光信号Lp2(紫外線16)が出力される。もちろん、3つ以上の半導体レーザを用いてもよい。 As a modification of the ultraviolet irradiation device 18, for example, as shown in FIG. 11, two semiconductor lasers (first semiconductor laser 32A and second semiconductor laser 32B) may be used. In this case, for example, the first pattern signal Sp1 and the second pattern signal Sp2 by ON / OFF are directly input to the first semiconductor laser 32A and the second semiconductor laser 32B, respectively. The first semiconductor laser 32A outputs a first optical signal Lp1 (ultraviolet ray 16) that blinks in response to ON / OFF of the first pattern signal Sp1, and the second semiconductor laser 32B turns ON / OFF the second pattern signal Sp2. The second optical signal Lp2 (ultraviolet ray 16) that blinks in response to is output. Of course, three or more semiconductor lasers may be used.
 また、紫外線照射装置18としては、視認できない短波長の紫外線を放射する装置を使用してもよいし、その他、例えば波長は315~400nmの長波長の紫外線を放射するブラックライトを使用してもよい。 Further, as the ultraviolet irradiation device 18, a device that emits ultraviolet light having a short wavelength that cannot be visually recognized may be used. For example, a black light that emits ultraviolet light having a long wavelength of 315 to 400 nm may be used. Good.
 一方、赤外線検出装置20としては、印刷物12の特定領域14からの赤外線24の光信号を受光する赤外線受光素子にて構成してもよい。あるいは、検出素子がCCDやCMOS等の固体撮像素子を使用した赤外線カメラや、光電子増倍管を用いて近赤外線を可視化する電池駆動の赤外線ビューア等が挙げられる。もちろん、赤外線検出装置20として、赤外線24を受け、可視光を発光する塗料が塗布された赤外線ビューアカードと、赤外線ビューアカードからの可視光を検知するカメラ(CCDカメラ、CMOSカメラ等)との組み合わせを使用してもよい。 On the other hand, the infrared detection device 20 may be configured by an infrared light receiving element that receives an optical signal of the infrared light 24 from the specific region 14 of the printed matter 12. Alternatively, an infrared camera using a solid-state imaging device such as a CCD or CMOS as a detection element, a battery-driven infrared viewer that visualizes near infrared rays using a photomultiplier tube, and the like can be given. Of course, the infrared detection device 20 is a combination of an infrared viewer card coated with a paint that receives infrared light 24 and emits visible light, and a camera (CCD camera, CMOS camera, etc.) that detects visible light from the infrared viewer card. May be used.
 信号判定装置30は、紫外線照射装置18として、例えば1つの半導体レーザ32(図9参照)を用い、赤外線検出装置20として、例えば1つの赤外線受光素子を使用する場合は、図12に示すように、半導体レーザ32あるいは光変調器34(図9参照)への一次信号Sa1(パターン信号Sp)のONの周期T1、T2、T3・・・と、赤外線受光素子にて検出された二次信号Sa2の例えばONの周期Ta、Tb、Tc・・・とが同じ場合に、印刷物12が正しいと判定する。 When the signal determination device 30 uses, for example, one semiconductor laser 32 (see FIG. 9) as the ultraviolet irradiation device 18, and uses, for example, one infrared light receiving element as the infrared detection device 20, as shown in FIG. , ON periods T1, T2, T3... Of the primary signal Sa1 (pattern signal Sp) to the semiconductor laser 32 or the optical modulator 34 (see FIG. 9), and the secondary signal Sa2 detected by the infrared light receiving element. For example, when the ON periods Ta, Tb, Tc,... Are the same, it is determined that the printed matter 12 is correct.
 信号判定装置30は、赤外線カメラからの画像データとパターン信号とを比較して印刷物の真偽を判定してもよい。特に、赤外線検出装置20として、赤外線カメラや赤外線ビューア等を用いた場合は、紫外線照射装置18が複数の半導体レーザを有する場合(図11参照)にも適用することができる。すなわち、複数の半導体レーザを有する場合、各半導体レーザにそれぞれ異なったパターン信号を供給することで、ON/OFFのタイミングが空間的にも時間的にも異なった複雑な光信号(紫外線)を特定領域14に照射することができる。この場合は、上述したように、赤外線検出装置20として、赤外線カメラや赤外線ビューア等を用いることで、順次撮像されるフレーム単位の撮像データから、空間的に離れた複数の箇所でのONの周期を捉えることができる。その結果、信号判定装置30において、上述と同様の手法で、複数箇所でのONの周期と複数のパターン信号とを比較することで、印刷物12の真偽を容易に判定することができる。 The signal determination device 30 may determine the authenticity of the printed matter by comparing the image data from the infrared camera with the pattern signal. In particular, when an infrared camera, an infrared viewer, or the like is used as the infrared detection device 20, the present invention can also be applied when the ultraviolet irradiation device 18 includes a plurality of semiconductor lasers (see FIG. 11). In other words, when multiple semiconductor lasers are used, by supplying different pattern signals to each semiconductor laser, it is possible to identify complex optical signals (ultraviolet rays) whose ON / OFF timing differs spatially and temporally. The region 14 can be irradiated. In this case, as described above, by using an infrared camera, an infrared viewer, or the like as the infrared detection device 20, the ON cycle at a plurality of spatially separated locations from sequentially captured image data in units of frames. Can be captured. As a result, the signal determination device 30 can easily determine the authenticity of the printed matter 12 by comparing ON cycles at a plurality of locations with a plurality of pattern signals by the same method as described above.
 もちろん、次のように判定してもよい。正しい印刷物12に対する複数の半導体レーザからの紫外線照射と予め設定した複数の参照パターン信号による撮像画像の変化(参照動画像)をメモリに記録しておく。そして、真偽が不明な印刷物12に対する実際の判定の際に、赤外線カメラや赤外線ビューア等で撮像した動画像と参照動画像とを比較して、印刷物12の真偽を判定するようにしてもよい。 Of course, it may be determined as follows. Changes in captured images (reference moving images) due to ultraviolet irradiation from a plurality of semiconductor lasers on a correct printed matter 12 and a plurality of preset reference pattern signals are recorded in a memory. In the actual determination on the printed matter 12 whose authenticity is unknown, the authenticity of the printed matter 12 may be determined by comparing the moving image captured by the infrared camera or the infrared viewer with the reference moving image. Good.
 次に、第3真偽判定方法において、複数の印刷物12の真偽を判定する場合の構成例並びに判定方法を図13~図17を参照しながら説明する。 Next, a configuration example and a determination method when determining the authenticity of a plurality of printed materials 12 in the third authenticity determination method will be described with reference to FIGS.
 第1の構成例は、図13に示すように、例えば束ねられた複数の印刷物12の枚数を計数する第1枚数計数装置40Aに付随して第3真偽判定装置10Cが設置される。 In the first configuration example, as shown in FIG. 13, for example, a third authenticity determination device 10 </ b> C is installed in association with a first sheet counting device 40 </ b> A that counts the number of bundled printed materials 12.
 第1枚数計数装置40Aは、例えば複数の印刷物12が収容する収容部42と、複数の印刷物12を上方に押圧する付勢手段44と、複数の印刷物12のうち、最上層の印刷物12だけを一方向に引き出すローラ46と、引き出された印刷物12を一方向に搬送する一対のローラ48とを有する。もちろん、第1枚数計数装置40Aは上述の構成に限らない。 The first number counting device 40A includes, for example, an accommodating portion 42 that accommodates a plurality of printed materials 12, an urging means 44 that presses the plurality of printed materials 12 upward, and only the uppermost printed material 12 of the plurality of printed materials 12. It has a roller 46 that pulls out in one direction and a pair of rollers 48 that convey the drawn printed matter 12 in one direction. Of course, the first sheet counting device 40A is not limited to the above-described configuration.
 第3真偽判定装置10Cは、例えば一対のローラ48によって搬送過程にある印刷物12の上方に設置される。 The third authenticity determination device 10 </ b> C is installed above the printed material 12 in the conveyance process by a pair of rollers 48, for example.
 第3真偽判定装置10Cの紫外線照射装置18は、搬送過程にある印刷物12の表面に向かって常時斜め方向に紫外線16を照射する。紫外線16は一次信号Sa1によって変調されている。そして、印刷物12の表面の特定領域14に特定のインク26が印刷されていれば、紫外線16の照射位置が印刷物12の特定領域14と一致した段階で、紫外線16が照射された特定領域14から赤外線24が放射される。赤外線24は赤外線検出装置20に入射する。赤外線検出装置20は、検出された赤外線24に重畳された二次信号Sa2を読み取って信号判定装置30に出力する。 The ultraviolet irradiation device 18 of the third authenticity determination device 10C always irradiates the ultraviolet rays 16 in an oblique direction toward the surface of the printed matter 12 in the conveyance process. The ultraviolet ray 16 is modulated by the primary signal Sa1. If the specific ink 26 is printed on the specific region 14 on the surface of the printed matter 12, the specific region 14 irradiated with the ultraviolet ray 16 is irradiated when the irradiation position of the ultraviolet ray 16 coincides with the specific region 14 of the printed matter 12. Infrared rays 24 are emitted. The infrared ray 24 enters the infrared detection device 20. The infrared detection device 20 reads the secondary signal Sa2 superimposed on the detected infrared ray 24 and outputs it to the signal determination device 30.
 信号判定装置30は、入力された二次信号Sa2に基づいて印刷物12の真偽を判定する。この場合、一次信号Sa1に判定開始を示す同期信号を含めておくことが好ましい。これにより、信号判定装置30での真偽判定を高精度に行うことができる。 The signal determination device 30 determines the authenticity of the printed matter 12 based on the input secondary signal Sa2. In this case, it is preferable to include a synchronization signal indicating the start of determination in the primary signal Sa1. Thereby, the authenticity determination in the signal determination apparatus 30 can be performed with high accuracy.
 また、特定領域14が設定された面に対して紫外線16を照射し、特定領域14が設定された面から発せられる赤外線24を検出するようにしたので、紫外線照射装置18と赤外線検出装置20を隣接、又は同位置に設置することができ、装置全体をコンパクトに実現できる。また、照射位置と検出位置の位置合わせが容易になるメリットも有する。 In addition, since the ultraviolet ray 16 is irradiated on the surface on which the specific region 14 is set and the infrared ray 24 emitted from the surface on which the specific region 14 is set is detected, the ultraviolet irradiation device 18 and the infrared detection device 20 are provided. It can be installed adjacent to or at the same position, and the entire apparatus can be realized in a compact manner. In addition, there is a merit that alignment between the irradiation position and the detection position becomes easy.
 なお、印刷物12の特定領域14に特定のインク26が印刷されていない場合は、特定領域14から赤外線24が放射されない、あるいは、赤外線24が放射されても全体的にレベルが低く、信号判定装置30にてON/OFFを見分けることができない。このような場合、信号判定装置30は、印刷物12は「偽」と判定する。これは、後述する第2の構成例~第4の構成例においても同様である。 In addition, when the specific ink 26 is not printed in the specific area 14 of the printed matter 12, the infrared ray 24 is not radiated from the specific area 14, or the overall level is low even if the infrared ray 24 is radiated. 30 cannot distinguish ON / OFF. In such a case, the signal determination device 30 determines that the printed matter 12 is “false”. The same applies to second to fourth configuration examples described later.
 上述の例では、紫外線16を常時照射したが、印刷物12の特定領域14が予め設定された位置に到達した段階で、紫外線16を照射してもよい。この場合、一次信号Sa1に判定開始を示す同期信号を含める必要がない。 In the above-described example, the ultraviolet rays 16 are constantly irradiated. However, the ultraviolet rays 16 may be irradiated when the specific area 14 of the printed matter 12 reaches a preset position. In this case, it is not necessary to include a synchronization signal indicating the start of determination in the primary signal Sa1.
 次に、第2の構成例は、図14に示すように、上述した第1の構成例とほぼ同様の構成を有するが、例えば一対のローラ48によって搬送過程にある印刷物12の上方に紫外線照射装置18が設置され、搬送過程にある印刷物12の下方に赤外線検出装置20が設置されている点で異なる。 Next, as shown in FIG. 14, the second configuration example has substantially the same configuration as the first configuration example described above, but for example, a pair of rollers 48 irradiates ultraviolet rays above the printed matter 12 in the process of conveyance. The difference is that an apparatus 18 is installed and an infrared detection apparatus 20 is installed below the printed material 12 in the process of conveyance.
 紫外線照射装置18は、搬送過程にある印刷物12の特定領域14が設定された面(例えば表面)に向かって常時紫外線16を照射する。そして、印刷物12の表面の特定領域14に特定のインク26が印刷されていれば、紫外線16の照射位置が印刷物12の特定領域14と一致した段階で、紫外線16が照射された特定領域14から赤外線24が放射される。この場合、赤外線24は印刷物12を透過して印刷物12の裏面から放射されるため、上述と同様に、赤外線24に重畳されている二次信号Sa2が赤外線検出装置20によって読み取られる。信号判定装置30は、入力された二次信号Sa2に基づいて印刷物12の真偽を判定する。 The ultraviolet irradiation device 18 always irradiates the ultraviolet rays 16 toward the surface (for example, the surface) on which the specific region 14 of the printed matter 12 in the conveyance process is set. If the specific ink 26 is printed on the specific region 14 on the surface of the printed matter 12, the specific region 14 irradiated with the ultraviolet ray 16 is irradiated when the irradiation position of the ultraviolet ray 16 coincides with the specific region 14 of the printed matter 12. Infrared rays 24 are emitted. In this case, since the infrared ray 24 passes through the printed matter 12 and is emitted from the back surface of the printed matter 12, the secondary signal Sa2 superimposed on the infrared ray 24 is read by the infrared detecting device 20 as described above. The signal determination device 30 determines the authenticity of the printed matter 12 based on the input secondary signal Sa2.
 これは、紫外線16により励起されて赤外線24を発する蛍光体の特長を生かした認証画像、信号の検出方法であり、波長の短い紫外線16は印刷物12等の物体を透過し難く、波長の長い赤外線24はそのような物体を透過し易い性質を利用している。 This is an authentication image and signal detection method that takes advantage of the feature of a phosphor that emits infrared rays 24 when excited by the ultraviolet rays 16. The ultraviolet rays 16 having a short wavelength are difficult to transmit through an object such as a printed matter 12 and have a long wavelength. Reference numeral 24 uses the property of easily passing through such an object.
 このような方法を採用することによって、すなわち、特定領域14が設定された面に対して紫外線16を照射し、特定領域14が設定されていない面から発せられる赤外線24を検出するようにしたので、紫外線照射装置18と赤外線検出装置20を直線上に配置することができ、装置全体の配置を簡単にできるメリットを有する。また、直線上に並んだ照射、検出ラインに検査対象(印刷物12)を連続的に通すことが簡易にできるため、大量の検査対象を短時間で処理することが可能となる。更にまた、検出時に、照射された紫外線16が赤外線検出装置20に入射することがないため、検出ノイズが排除でき、精度の高い検出が可能となる。 By adopting such a method, that is, the ultraviolet ray 16 is irradiated to the surface where the specific region 14 is set, and the infrared ray 24 emitted from the surface where the specific region 14 is not set is detected. The ultraviolet irradiating device 18 and the infrared detecting device 20 can be arranged on a straight line, so that the arrangement of the entire device can be simplified. Moreover, since it is easy to continuously pass the inspection object (printed matter 12) through the irradiation and detection lines arranged on a straight line, a large amount of inspection objects can be processed in a short time. Furthermore, since the irradiated ultraviolet rays 16 do not enter the infrared detecting device 20 at the time of detection, detection noise can be eliminated and highly accurate detection is possible.
 第3の構成例は、図15に示すように、第1枚数計数装置40Aとは異なる第2枚数計数装置40Bに付随して第3真偽判定装置10Cが設置される。 As shown in FIG. 15, in the third configuration example, a third authenticity determination device 10C is installed in association with a second number counting device 40B different from the first number counting device 40A.
 第2枚数計数装置40Bの詳細は省略するが、束ねられた複数の印刷物12の一方の短辺側を開き、1枚ずつ印刷物12を未計数の束から計数済みの容器(図示せず)に移動させる。この1枚ずつ印刷物12を移動させる過程で枚数の計数が行われる。 Although details of the second number counting device 40B are omitted, one short side of the bundled printed matter 12 is opened, and the printed matter 12 is counted one by one from the uncounted bundle into a container (not shown) that has been counted. Move. The number of sheets is counted in the process of moving the printed matter 12 one by one.
 第3真偽判定装置10Cの紫外線照射装置18は、移動中の印刷物12が中央の位置に到達した際の当該印刷物12の表面に対向して設置される。特に、紫外線出射面が印刷物12の表面の特定領域14に対向するように設置される。赤外線検出装置20は、紫外線照射装置18に対向した位置であって、且つ、移動中の印刷物12が中央の位置に到達した際の当該印刷物12の裏面に対向して設置されている。 The ultraviolet irradiation device 18 of the third authenticity determination device 10C is installed to face the surface of the printed matter 12 when the moving printed matter 12 reaches the center position. In particular, the ultraviolet light emitting surface is installed so as to face the specific area 14 on the surface of the printed matter 12. The infrared detection device 20 is disposed at a position facing the ultraviolet irradiation device 18 and facing the back surface of the printed matter 12 when the moving printed matter 12 reaches the center position.
 そして、紫外線照射装置18は、移動途中にある印刷物12に向かって常時紫外線16を照射する。そして、印刷物12の表面の特定領域14に特定のインク26が印刷されていれば、紫外線16の照射位置が印刷物12の特定領域14と一致した段階で、紫外線16が照射された特定領域14から赤外線24が放射される。この場合、赤外線24は印刷物12を透過して印刷物12の裏面から放射されるため、上述と同様に、赤外線24に重畳されている二次信号Sa2が赤外線検出装置20によって読み取られる。信号判定装置30は、入力された二次信号Sa2に基づいて印刷物12の真偽を判定する。 And the ultraviolet irradiation device 18 always irradiates the ultraviolet rays 16 toward the printed matter 12 in the middle of movement. If the specific ink 26 is printed on the specific region 14 on the surface of the printed matter 12, the specific region 14 irradiated with the ultraviolet ray 16 is irradiated when the irradiation position of the ultraviolet ray 16 coincides with the specific region 14 of the printed matter 12. Infrared rays 24 are emitted. In this case, since the infrared ray 24 passes through the printed matter 12 and is emitted from the back surface of the printed matter 12, the secondary signal Sa2 superimposed on the infrared ray 24 is read by the infrared detecting device 20 as described above. The signal determination device 30 determines the authenticity of the printed matter 12 based on the input secondary signal Sa2.
 この場合も、上述した第2の構成例と同様に、紫外線照射装置18と赤外線検出装置20を直線上に配置することができ、装置全体の配置を簡単にできるメリットを有する。また、直線上に並んだ照射、検出ラインに検査対象(印刷物12)を連続的に通すことが簡易にできるため、大量の検査対象を短時間で処理することが可能となる。更にまた、検出時に、照射された紫外線16が赤外線検出装置20に入射することがないため、検出ノイズが排除でき、精度の高い検出が可能となる。 Also in this case, similarly to the above-described second configuration example, the ultraviolet irradiation device 18 and the infrared detection device 20 can be arranged on a straight line, and there is an advantage that the arrangement of the entire device can be simplified. Moreover, since it is easy to continuously pass the inspection object (printed matter 12) through the irradiation and detection lines arranged on a straight line, a large amount of inspection objects can be processed in a short time. Furthermore, since the irradiated ultraviolet rays 16 do not enter the infrared detecting device 20 at the time of detection, detection noise can be eliminated and highly accurate detection is possible.
 第4の構成例は、図16及び図17に示すように、上述した第3の構成例とほぼ同様の構成を有するが、以下の点で異なる。すなわち、紫外線照射装置18及び赤外線検出装置20は、印刷物12の表面側に対向した位置に設置されている。例えば図16に示す構成例では、紫外線照射装置18は、移動中の印刷物12が中央の位置に到達した際の当該印刷物12の表面、特に、特定領域14に紫外線16を照射することができる位置に設置されている。赤外線検出装置20は、紫外線16が照射された上記特定領域14からの赤外線24を受光することができる位置に設置されている。 As shown in FIGS. 16 and 17, the fourth configuration example has substantially the same configuration as the third configuration example described above, but differs in the following points. That is, the ultraviolet irradiation device 18 and the infrared detection device 20 are installed at positions facing the surface side of the printed matter 12. For example, in the configuration example shown in FIG. 16, the ultraviolet irradiation device 18 can irradiate the surface 16 of the printed material 12 when the moving printed material 12 reaches the center position, in particular, the specific region 14 with the ultraviolet light 16. Is installed. The infrared detecting device 20 is installed at a position where the infrared ray 24 from the specific region 14 irradiated with the ultraviolet ray 16 can be received.
 図17に示す構成例では、紫外線照射装置18は、例えば未計数の束のうち、一番上にある印刷物12(これから計数されようとする印刷物12)の表面、特に特定領域14に紫外線16を照射することができる位置に設置されている。赤外線検出装置20は、紫外線16が照射された上記特定領域14からの赤外線24を受光することができる位置に設置されている。 In the configuration example shown in FIG. 17, the ultraviolet irradiation device 18 irradiates, for example, the ultraviolet rays 16 on the surface of the uppermost printed matter 12 (printed matter 12 to be counted) of the uncounted bundle, particularly on the specific region 14. It is installed at a position where it can be irradiated. The infrared detecting device 20 is installed at a position where the infrared ray 24 from the specific region 14 irradiated with the ultraviolet ray 16 can be received.
 これら図16及び図17に示す第4の構成例においても、印刷物12の表面の特定領域14に特定のインク26が印刷されている。この第4の構成例では、上述した第1の構成例と同様に、特定領域14が設定された面に対して紫外線16を照射し、特定領域14が設定された面から発せられる赤外線24を検出するようにしたので、紫外線照射装置18と赤外線検出装置20を隣接、又は同位置に設置することができ、装置全体をコンパクトに実現できる。また、照射位置と検出位置の位置合わせが容易になるメリットも有する。特に、図17に示す構成例では、「偽」と判定された印刷物12を計数前に除去することが可能となる。 Also in the fourth configuration example shown in FIGS. 16 and 17, the specific ink 26 is printed on the specific region 14 on the surface of the printed matter 12. In the fourth configuration example, similarly to the first configuration example described above, the surface 16 on which the specific region 14 is set is irradiated with the ultraviolet rays 16 and the infrared ray 24 emitted from the surface on which the specific region 14 is set is emitted. Since the detection is performed, the ultraviolet irradiation device 18 and the infrared detection device 20 can be installed adjacent to or at the same position, and the entire device can be realized in a compact manner. In addition, there is a merit that alignment between the irradiation position and the detection position becomes easy. In particular, in the configuration example shown in FIG. 17, it is possible to remove the printed matter 12 determined as “false” before counting.
 このように、第3真偽判定方法は、印刷物12の特定領域14に、特定の一次信号Sa1が重畳(特定の一次信号Sa1で変調)された紫外線16を照射する第1ステップと、紫外線16の照射に伴って特定領域14から放射される赤外線24を検出し、検出された赤外線24に重畳された二次信号Sa2を読み取る第2ステップと、読み取った二次信号Sa2に基づいて印刷物12の真偽を判定する第3ステップとを有する。 As described above, the third authenticity determination method includes a first step of irradiating the specific region 14 of the printed matter 12 with the ultraviolet ray 16 on which the specific primary signal Sa1 is superimposed (modulated with the specific primary signal Sa1), and the ultraviolet ray 16. The second step of detecting the infrared signal 24 radiated from the specific region 14 with the irradiation of the laser beam and reading the secondary signal Sa2 superimposed on the detected infrared signal 24, and the printed material 12 based on the read secondary signal Sa2 And a third step for determining authenticity.
 このような方法を採用することによって、真偽の判定が簡素化、且つ、高精度化することができる。通常は、波長変換材(紫外励起、赤外発光の蛍光体)で、特定のパターン、図形を印刷し、このような形を認識する方法で高精度な判定を得る。この場合、図形や形状等の認識のための複雑な処理回路、装置が必要になり大掛かりになるという問題がある。また、蛍光体への印刷に際しても形が崩れないような精度が必要になり、手間がかかるという問題がある。パターンではなく、どのような形でもよい塗布エリアの有/無だけで判定する方法も考えられるが、そのような場合、似たような蛍光体(発光効率が弱い蛍光体を含む)を塗布しただけでも、わずかに発光してしまうため、精度のよい判定ができない。 By adopting such a method, it is possible to simplify and improve the accuracy of authenticity determination. Usually, a specific pattern and figure are printed with a wavelength conversion material (ultraviolet excitation, infrared emission phosphor), and a highly accurate determination is obtained by a method of recognizing such a shape. In this case, there is a problem that a complicated processing circuit and apparatus for recognizing a figure, a shape, and the like are necessary and become large-scale. In addition, there is a problem in that it takes time and accuracy when printing on a phosphor, so that the shape does not lose its shape. It is possible to make a judgment based on the presence / absence of an application area that may be in any shape instead of a pattern. In such a case, similar phosphors (including phosphors with low emission efficiency) were applied. However, since it emits light slightly, accurate determination cannot be made.
 そこで、上述した第1ステップ~第3ステップを経ることで、照射信号(一次信号Sa1)と検出信号(二次信号Sa2)の同期、マッチング等を確認するだけで、簡単に印刷物12の真偽判定が可能になる。また、印刷パターン、図形に依存する必要がなく、手間が少なくて済む。 Therefore, through the first to third steps described above, the authenticity of the printed matter 12 can be easily confirmed simply by confirming the synchronization and matching of the irradiation signal (primary signal Sa1) and the detection signal (secondary signal Sa2). Judgment is possible. In addition, there is no need to depend on printing patterns and graphics, and labor can be reduced.
 上述した第3真偽判定方法は、第3真偽判定装置10Cを使用した例を示したが、第3真偽判定装置10Cに代えて、上述した第1真偽判定装置10Aや第2真偽判定装置10Bを使用することができる。 In the above-described third authenticity determination method, an example in which the third authenticity determination device 10C is used has been described. However, instead of the third authenticity determination device 10C, the first authenticity determination device 10A and the second authenticity determination device described above are used. The false determination device 10B can be used.
 すなわち、図13~図17で示した、複数の印刷物12の真偽を判定する場合の真偽判定方法は、特定の一次信号Sa1が重畳された紫外線16を照射し、赤外線24に重畳された二次信号Sa2を読み取るといった第3真偽判定方法に限ったものではなく、特定領域14の画像において画像を認証する第1真偽判定方法や、発光する赤外線24の強度に対し、しきい値を基準に判定する第2真偽判定方法も適宜採用される。 That is, the authenticity determination method in the case of determining the authenticity of the plurality of printed materials 12 shown in FIGS. 13 to 17 irradiates the ultraviolet rays 16 on which the specific primary signal Sa1 is superimposed and superimposes them on the infrared rays 24. The threshold value is not limited to the third authenticity determination method of reading the secondary signal Sa2, but the first authenticity determination method for authenticating the image in the image of the specific area 14 or the intensity of the infrared ray 24 that emits light. The second true / false determination method that is determined based on the above is also employed as appropriate.
 従って、本実施の形態に係る印刷物の真偽判定方法を採用することで、印刷物の真偽を容易に且つ安価に判定することができ、印刷物の偽造防止にも発揮させることができる。すなわち、印刷物の偽造防止方法に寄与する。 Therefore, by adopting the printed material authenticity determination method according to the present embodiment, the authenticity of the printed material can be determined easily and inexpensively, and the printed material can be prevented from being counterfeited. That is, it contributes to a method for preventing forgery of printed matter.
 なお、本発明に係る印刷物の真偽判定方法及び印刷物の偽造防止方法は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。 It should be noted that the printed matter authenticity determination method and the printed matter forgery prevention method according to the present invention are not limited to the above-described embodiments, and various configurations can be adopted without departing from the gist of the present invention. .

Claims (17)

  1.  印刷物(12)の真偽判定方法であって、
     前記印刷物(12)は、紫外線(16)を照射することで赤外線(24)を発光する物質(26)を印刷した特定領域(14)を有し、
     前記特定領域(14)に、前記紫外線(16)を照射する第1ステップと、
     前記紫外線(16)の照射に伴って前記特定領域(14)から放射される前記赤外線(24)を検出し、前記特定領域(14)の形状、若しくは前記赤外線(24)の強度を読み取る第2ステップと、
     読み取った結果に基づいて前記印刷物(12)の真偽を判定する第3ステップとを有することを特徴とする印刷物(12)の真偽判定方法。
    A method for determining the authenticity of a printed material (12),
    The printed matter (12) has a specific region (14) on which a substance (26) that emits infrared rays (24) by being irradiated with ultraviolet rays (16) is printed.
    A first step of irradiating the specific region (14) with the ultraviolet light (16);
    The infrared ray (24) emitted from the specific region (14) with the irradiation of the ultraviolet ray (16) is detected, and the shape of the specific region (14) or the intensity of the infrared ray (24) is read. Steps,
    And a third step of determining the authenticity of the printed matter (12) based on the read result.
  2.  請求項1記載の印刷物(12)の真偽判定方法において、
     前記特定領域(14)の形状、若しくは前記赤外線(24)の強度を読み取る前記第2ステップは、前記赤外線(24)を検出する赤外線検出装置(20)で前記特定領域(14)の画像を撮像することであり、
     前記印刷物(12)の真偽を判定する前記第3ステップは、前記画像を認証することを特徴とする印刷物(12)の真偽判定方法。
    In the authenticity determination method of the printed matter (12) according to claim 1,
    In the second step of reading the shape of the specific area (14) or the intensity of the infrared ray (24), an image of the specific area (14) is captured by an infrared detection device (20) that detects the infrared ray (24). Is to do
    The method of determining authenticity of a printed matter (12), wherein the third step of determining authenticity of the printed matter (12) authenticates the image.
  3.  請求項2記載の印刷物(12)の真偽判定方法において、
     可視光領域に感度を有するカメラ(19)にて前記特定領域(14)を撮像し、
     前記認証は、前記紫外線(16)の照射下において、前記カメラ(19)にて撮像された前記画像と予め設定された認証用の画像とが一致した場合に否定認証と判定することを特徴とする印刷物(12)の真偽判定方法。
    In the printed matter (12) authenticity determination method according to claim 2,
    The specific area (14) is imaged by a camera (19) having sensitivity in the visible light area,
    The authentication is characterized in that negative authentication is determined when the image captured by the camera (19) matches a preset authentication image under irradiation of the ultraviolet rays (16). The authenticity determination method of the printed matter (12) to be performed.
  4.  請求項2又は3記載の印刷物(12)の真偽判定方法において、
     前記認証は、前記紫外線(16)の照射下において、前記赤外線検出装置(20)にて撮像された画像と予め設定された認証用の画像とが一致した場合に肯定認証と判定することを特徴とする印刷物(12)の真偽判定方法。
    In the authenticity determination method of the printed matter (12) according to claim 2 or 3,
    The authentication is determined as affirmative authentication when an image captured by the infrared detection device (20) matches a preset authentication image under irradiation of the ultraviolet rays (16). The authenticity determination method of printed matter (12).
  5.  請求項1記載の印刷物(12)の真偽判定方法において、
     前記紫外線(16)は、特定の一次信号(Sa1)が重畳された紫外線であり、
     前記紫外線(16)の照射に伴って前記特定領域(14)から放射される前記赤外線(24)に重畳された二次信号(Sa2)を読み取り、前記二次信号(Sa2)に基づいて前記印刷物(12)の真偽を判定することを特徴とする印刷物(12)の真偽判定方法。
    In the authenticity determination method of the printed matter (12) according to claim 1,
    The ultraviolet ray (16) is an ultraviolet ray on which a specific primary signal (Sa1) is superimposed,
    A secondary signal (Sa2) superimposed on the infrared ray (24) radiated from the specific region (14) with the irradiation of the ultraviolet ray (16) is read, and the printed matter is based on the secondary signal (Sa2). A method for determining the authenticity of a printed matter (12), wherein the authenticity of (12) is determined.
  6.  請求項1~5のいずれか1項に記載の印刷物(12)の真偽判定方法において、
     前記印刷物(12)の前記特定領域(14)は、前記紫外線(16)を含む励起光により励起され、近赤外線を含む光を発光する蛍光体であって、且つ、その内部量子効率が10%以上である蛍光体を顔料として含むインク(26)により印刷され、可視光下では無色である領域であることを特徴とする印刷物(12)の真偽判定方法。
    The method for determining the authenticity of a printed matter (12) according to any one of claims 1 to 5,
    The specific region (14) of the printed matter (12) is a phosphor that is excited by excitation light including the ultraviolet rays (16) and emits light including near infrared rays, and has an internal quantum efficiency of 10%. A method for determining the authenticity of a printed matter (12), characterized in that the printed matter (12) is an area that is printed with an ink (26) containing the phosphor as a pigment and is colorless under visible light.
  7.  請求項6記載の印刷物(12)の真偽判定方法において、
     前記特定領域(14)に照射する前記紫外線(16)は、所定レベルを含む紫外線であり、
     前記所定レベルは、内部量子効率が10%以上の前記蛍光体を顔料として含む前記インク(26)を使用した場合に、前記紫外線(16)の照射に伴って前記特定領域(14)から放射される前記赤外線(24)が検出可能なレベルの赤外線であり、且つ、内部量子効率が10%未満の前記蛍光体を顔料として含むインクを使用した場合に、前記紫外線(16)の照射に伴って前記特定領域(14)から放射される前記赤外線(24)が検出不能なレベルの赤外線であることを特徴とする印刷物(12)の真偽判定方法。
    In the printed matter (12) authenticity determination method according to claim 6,
    The ultraviolet ray (16) applied to the specific region (14) is an ultraviolet ray including a predetermined level,
    The predetermined level is emitted from the specific region (14) with the irradiation of the ultraviolet ray (16) when the ink (26) containing the phosphor having an internal quantum efficiency of 10% or more as a pigment is used. When the ink containing the phosphor having a detectable level of infrared rays (24) and having an internal quantum efficiency of less than 10% is used as a pigment, the irradiation with the ultraviolet rays (16) is accompanied. The method of determining authenticity of a printed matter (12), wherein the infrared ray (24) emitted from the specific region (14) is an undetectable level infrared ray.
  8.  請求項1~7のいずれか1項に記載の印刷物(12)の真偽判定方法において、
     前記特定領域(14)に、前記紫外線(16)を照射する前記第1ステップは、前記特定領域(14)が設定された面に対して前記紫外線(16)を照射し、
     前記紫外線(16)の照射に伴って前記特定領域(14)から放射される前記赤外線(24)を検出し、前記特定領域(14)の形状、若しくは前記赤外線(24)の強度を読み取る前記第2ステップは、前記特定領域(14)が設定された面から発せられる前記赤外線(24)を検出することを特徴とする印刷物(12)の真偽判定方法。
    The method of determining authenticity of a printed matter (12) according to any one of claims 1 to 7,
    In the first step of irradiating the specific region (14) with the ultraviolet ray (16), the surface on which the specific region (14) is set is irradiated with the ultraviolet ray (16),
    The infrared ray (24) emitted from the specific region (14) with the irradiation of the ultraviolet ray (16) is detected, and the shape of the specific region (14) or the intensity of the infrared ray (24) is read. 2 step detects the said infrared rays (24) emitted from the surface in which the said specific area | region (14) was set, The authenticity determination method of printed matter (12) characterized by the above-mentioned.
  9.  請求項1~7のいずれか1項に記載の印刷物(12)の真偽判定方法において、
     前記特定領域(14)に、前記紫外線(16)を照射する前記第1ステップは、前記特定領域(14)が設定された面に対して前記紫外線(16)を照射し、
     前記紫外線(16)の照射に伴って前記特定領域(14)から放射される前記赤外線(24)を検出し、前記特定領域(14)の形状、若しくは前記赤外線(24)の強度を読み取る前記第2ステップは、前記特定領域(14)が設定されていない面から発せられる前記赤外線(24)を検出することを特徴とする印刷物(12)の真偽判定方法。
    The method of determining authenticity of a printed matter (12) according to any one of claims 1 to 7,
    In the first step of irradiating the specific region (14) with the ultraviolet ray (16), the surface on which the specific region (14) is set is irradiated with the ultraviolet ray (16),
    The infrared ray (24) emitted from the specific region (14) with the irradiation of the ultraviolet ray (16) is detected, and the shape of the specific region (14) or the intensity of the infrared ray (24) is read. In step 2, the authenticity determination method for the printed matter (12), wherein the infrared ray (24) emitted from a surface on which the specific area (14) is not set is detected.
  10.  請求項1~9のいずれか1項に記載の印刷物(12)の真偽判定方法において、
     前記第1ステップは、紫外線照射装置(18)を使用して前記紫外線(16)を照射し、
     前記第2ステップは、赤外線検出装置(20)を使用して前記赤外線(24)を検出することを特徴とする印刷物(12)の真偽判定方法。
    The method for determining authenticity of a printed matter (12) according to any one of claims 1 to 9,
    The first step irradiates the ultraviolet rays (16) using an ultraviolet irradiation device (18),
    The method of determining authenticity of a printed matter (12), wherein the second step detects the infrared ray (24) using an infrared detecting device (20).
  11.  請求項10記載の印刷物(12)の真偽判定方法において、
     前記紫外線照射装置(18)は、長波長の紫外線を放射する装置であることを特徴とする印刷物(12)の真偽判定方法。
    The method of determining authenticity of a printed matter (12) according to claim 10,
    The method of determining authenticity of a printed matter (12), wherein the ultraviolet irradiation device (18) is a device that emits ultraviolet light having a long wavelength.
  12.  請求項10又は11記載の印刷物(12)の真偽判定方法において、
     前記赤外線検出装置(20)に使用される検出素子が固体撮像素子であることを特徴とする印刷物(12)の真偽判定方法。
    The method of determining authenticity of a printed matter (12) according to claim 10 or 11,
    A method for determining the authenticity of a printed matter (12), wherein the detection element used in the infrared detection device (20) is a solid-state image sensor.
  13.  請求項10又は11記載の印刷物(12)の真偽判定方法において、
     前記赤外線検出装置(20)は、光電子増倍管を用いて近赤外線を可視化する装置であることを特徴とする印刷物(12)の真偽判定方法。
    The method of determining authenticity of a printed matter (12) according to claim 10 or 11,
    The method of determining authenticity of a printed matter (12), wherein the infrared detection device (20) is a device that visualizes near infrared rays using a photomultiplier tube.
  14.  請求項10又は11記載の印刷物(12)の真偽判定方法において、
     前記赤外線検出装置(20)は、前記赤外線(24)を受け、可視光を発光する塗料が塗布されたカードであることを特徴とする印刷物(12)の真偽判定方法。
    The method of determining authenticity of a printed matter (12) according to claim 10 or 11,
    The method for determining the authenticity of a printed matter (12), wherein the infrared detection device (20) is a card applied with a paint that receives the infrared ray (24) and emits visible light.
  15.  請求項10~14のいずれか1項に記載の印刷物(12)の真偽判定方法において、
     前記印刷物(12)と前記赤外線検出装置(20)との間の距離は、前記特定領域(14)を規定する最大長さより大きいことを特徴とする印刷物(12)の真偽判定方法。
    The method for determining the authenticity of a printed matter (12) according to any one of claims 10 to 14,
    The method of determining authenticity of a printed matter (12), wherein a distance between the printed matter (12) and the infrared detection device (20) is greater than a maximum length that defines the specific area (14).
  16.  請求項1~15のいずれか1項に記載の印刷物(12)の真偽判定方法において、
     前記紫外線(16)を照射することで前記赤外線(24)を発光する物質は、BaSnOで表されるペロブスカイト型構造を有する蛍光体を主成分とすることを特徴とする印刷物(12)の真偽判定方法。
    The printed matter (12) authenticity determination method according to any one of claims 1 to 15,
    The substance that emits the infrared rays (24) by irradiating the ultraviolet rays (16) contains a phosphor having a perovskite structure represented by BaSnO 3 as a main component. False judgment method.
  17.  印刷物(12)の偽造防止方法であって、
     前記印刷物(12)は、紫外線(16)を照射することで赤外線(24)を発光する物質を印刷した特定領域(14)を有し、
     前記特定領域(14)に、前記紫外線(16)を照射する第1ステップと、
     前記紫外線(16)の照射に伴って前記特定領域(14)から放射される前記赤外線(24)を検出し、前記特定領域(14)の形状、若しくは前記赤外線(24)の強度を読み取る第2ステップと、
     読み取った結果に基づいて前記印刷物(12)の真偽を判定する第3ステップとを有することを特徴とする印刷物(12)の偽造防止方法。
    A method for preventing forgery of printed matter (12),
    The printed matter (12) has a specific region (14) printed with a substance that emits infrared rays (24) when irradiated with ultraviolet rays (16).
    A first step of irradiating the specific region (14) with the ultraviolet light (16);
    The infrared ray (24) emitted from the specific region (14) with the irradiation of the ultraviolet ray (16) is detected, and the shape of the specific region (14) or the intensity of the infrared ray (24) is read. Steps,
    And a third step of determining the authenticity of the printed matter (12) based on the read result. A method for preventing forgery of the printed matter (12).
PCT/JP2017/008650 2017-03-06 2017-03-06 Method for assessing authenticity of printed matter and method for preventing counterfeiting of printed matter WO2018163228A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/008650 WO2018163228A1 (en) 2017-03-06 2017-03-06 Method for assessing authenticity of printed matter and method for preventing counterfeiting of printed matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/008650 WO2018163228A1 (en) 2017-03-06 2017-03-06 Method for assessing authenticity of printed matter and method for preventing counterfeiting of printed matter

Publications (1)

Publication Number Publication Date
WO2018163228A1 true WO2018163228A1 (en) 2018-09-13

Family

ID=63448531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008650 WO2018163228A1 (en) 2017-03-06 2017-03-06 Method for assessing authenticity of printed matter and method for preventing counterfeiting of printed matter

Country Status (1)

Country Link
WO (1) WO2018163228A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306137A (en) * 1999-04-22 2000-11-02 Toppan Printing Co Ltd Negotiable instrument verification system and negotiable instrument used in the system
JP2002086889A (en) * 2000-09-20 2002-03-26 Hitachi Maxell Ltd Forgery preventive printed product
JP2003335085A (en) * 2002-05-22 2003-11-25 National Printing Bureau Security printed matter printed with fine symbol character group comprising a large number of fine symbol characters
JP2005045763A (en) * 2003-07-04 2005-02-17 Victor Co Of Japan Ltd Optical radio transmission apparatus
JP2009037418A (en) * 2007-08-01 2009-02-19 Fuji Electric Retail Systems Co Ltd Discrimination apparatus
JP2009047597A (en) * 2007-08-21 2009-03-05 Sekisui Chem Co Ltd Specimen container and recording method of specimen discrimination data
JP2011065478A (en) * 2009-09-17 2011-03-31 Toshiba Corp Information recording medium, medium inspection method, and medium inspection device
WO2015159438A1 (en) * 2014-04-18 2015-10-22 グローリー株式会社 Paper-sheet authenticity determination device and paper-sheet authenticity determination method
JP2016078273A (en) * 2014-10-14 2016-05-16 大日本印刷株式会社 Antifalsifying medium

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306137A (en) * 1999-04-22 2000-11-02 Toppan Printing Co Ltd Negotiable instrument verification system and negotiable instrument used in the system
JP2002086889A (en) * 2000-09-20 2002-03-26 Hitachi Maxell Ltd Forgery preventive printed product
JP2003335085A (en) * 2002-05-22 2003-11-25 National Printing Bureau Security printed matter printed with fine symbol character group comprising a large number of fine symbol characters
JP2005045763A (en) * 2003-07-04 2005-02-17 Victor Co Of Japan Ltd Optical radio transmission apparatus
JP2009037418A (en) * 2007-08-01 2009-02-19 Fuji Electric Retail Systems Co Ltd Discrimination apparatus
JP2009047597A (en) * 2007-08-21 2009-03-05 Sekisui Chem Co Ltd Specimen container and recording method of specimen discrimination data
JP2011065478A (en) * 2009-09-17 2011-03-31 Toshiba Corp Information recording medium, medium inspection method, and medium inspection device
WO2015159438A1 (en) * 2014-04-18 2015-10-22 グローリー株式会社 Paper-sheet authenticity determination device and paper-sheet authenticity determination method
JP2016078273A (en) * 2014-10-14 2016-05-16 大日本印刷株式会社 Antifalsifying medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIZOGUCHI HIROSHI ET AL.: "Strong Near- Infrared Luminescence in BaSn03", J.AM.CHEM.SOC, vol. 126, 2004, pages 9796 - 9800, XP055219451 *

Similar Documents

Publication Publication Date Title
RU2534367C2 (en) Banknote validator
US8400509B2 (en) Authentication apparatus for value documents
EP2239711A1 (en) Fluoresence detection device
US8263948B2 (en) Authentication apparatus for moving value documents
JPS58109989A (en) Discriminator for printed matter
US7462840B2 (en) Secure tag reader
WO2015178384A1 (en) Fluorescence/phosphorescence detection device
JP2010072933A (en) Fluorescence detection apparatus
CN110494899B (en) Luminescent security feature and method and apparatus for detecting same
US20140339807A1 (en) Method for authenticating uv absorbing security mark
US20190066428A1 (en) Invisible-feature detection device, sheet recognition device, sheet handling device, print inspection device, and invisible-feature detection method
JP2004127235A (en) Optoelectronic document reading apparatus and method for reading indicia
JP2001052232A (en) Paper sheet genuine/false discrimination device
WO2018163228A1 (en) Method for assessing authenticity of printed matter and method for preventing counterfeiting of printed matter
JP4552331B2 (en) Media discrimination device
KR101117359B1 (en) Apparatus and method for medium recognition
CN100573601C (en) Fake member detecting instrument
JP6009992B2 (en) Paper sheet identification device and optical sensor device
JPH10337935A (en) Inspection system for printed matter using infrared reflection absorption ink
JP2019185245A (en) Light detection sensor, light detection device, sheet processing device, and light detection method
WO2021193465A1 (en) Optical sensor and paper sheet identifying device
KR102660115B1 (en) Authentification device and method for security pattern
JP5738668B2 (en) Information recording medium and information recording medium inspection method
KR101307424B1 (en) security module reading apparatus having a plural of light emitting display and method for reading security module
KR101000114B1 (en) Apparatus for counterfeit bill automatic detection and method for counterfeit bill automatic detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP