JP4589737B2 - 粒成長後の磁気特性が優れたセミプロセス電磁鋼板およびその製造方法 - Google Patents

粒成長後の磁気特性が優れたセミプロセス電磁鋼板およびその製造方法 Download PDF

Info

Publication number
JP4589737B2
JP4589737B2 JP2005012453A JP2005012453A JP4589737B2 JP 4589737 B2 JP4589737 B2 JP 4589737B2 JP 2005012453 A JP2005012453 A JP 2005012453A JP 2005012453 A JP2005012453 A JP 2005012453A JP 4589737 B2 JP4589737 B2 JP 4589737B2
Authority
JP
Japan
Prior art keywords
rolling
steel sheet
less
strain
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005012453A
Other languages
English (en)
Other versions
JP2006199999A (ja
Inventor
英邦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005012453A priority Critical patent/JP4589737B2/ja
Publication of JP2006199999A publication Critical patent/JP2006199999A/ja
Application granted granted Critical
Publication of JP4589737B2 publication Critical patent/JP4589737B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、モーターやトランス用の鉄芯材料として用いられる、鉄損および磁束密度ともに優れた電磁鋼板およびその製造方法に関するものである。
電磁鋼板の磁気特性、特に鉄損は鋼板の結晶粒径が適度に粗大である方が良好であることが知られている。このため、高級材は一般の薄鋼板としては非常に高い温度で焼鈍し、結晶粒径を十分に大きくしたものが用いられている。一方、鉄心への打抜き加工性等の観点からは、結晶粒が粗大な材料は問題が多く、鋼材メーカーで比較的低温で焼鈍し出荷され、鉄心への加工が行われるまでは結晶粒が微細で、鉄心への加工が完了した後に、熱処理により結晶粒径を増大させる工法がある。
この用途で用いられる材料は、セミプロセス電磁鋼板と呼ばれ、結晶粒の成長を促進し、かつ粒成長時に好ましい集合組織が形成されるよう制御するため、鋼材メーカーでの最終焼鈍の後、圧延により鋼板に歪を付与した材料が、多く使用されている。このセミプロセス電磁鋼板で、特性を向上させるため、様々な検討がなされている。例えば、特許文献1は圧延ロール径を規定し、最終焼鈍板の集合組織を好ましく制御しようとするものである。しかし、圧延ロール径の制御程度では、効果は小さく、逆に、十分な効果を得ようとすると圧延ロール径が実用的でないほどに極端に小径になるなどがあり、実用化は進んでいない。
特許文献2は最終焼鈍時点で未再結晶組織を残存させ、その方位からの再結晶を付与した歪を利用して制御しようとするものである。しかし、残存させた未再結晶組織は、組織自体が未再結晶状態としての歪を元々有しており、最終焼鈍後に付与した歪の影響があるとは言え、本来、最終焼鈍で再結晶する状況との大きな差は期待できず、特異な特性は発現しない。さらに、特許文献3は鋼中の介在物の組成・形態を制御することで特性向上を図ったものだが、現在のように非常に高純度化されている鋼においては、効果は小さく、また集合組織への影響は小さく、磁束密度の面からの魅力はない。
特開平8−176663号公報 特開平10−81942号公報 特開平11−50208号公報
本発明はこのような状況に鑑みなされたもので、特に最終的な粒成長時の結晶方位を特異なものとするため、再結晶集合組織を好ましく制御することで、粒成長後に従来の電磁鋼板ではなし得なかった良好な特性を付与するものである。
本発明者は、磁気特性の板面内異方性が小さい無方向性電磁鋼板の製造方法を見出すべく最適製造条件(特に熱延条件)について検討を行い、低温大圧下熱延技術を適用することにより、{411}<148>近傍の、従来の電磁鋼板ではそれほど強い集積が見られなかった方位に、非常に強い集積が起きることを見出した。この集合組織の形成には熱延時の剪断変形が重要な役割を有しており、特に熱延板表層での剪断変形が原因となり、冷延再結晶後に磁気特性の板面内平均特性が大幅に向上するだけでなく、特に圧延方向から45°方向の磁気特性が顕著に改善されることを知見し、特願2004−8173、2276989、230693号の出願を行っている。
この再結晶板表層で見られる特異な集合組織を有する材料を、さらに粒成長させた際の磁気特性の変化を検討するうち、この方位は、特に、再結晶後に歪を付与して歪誘起粒成長を起こさせた場合に、良好な粒成長性および好ましい集合組織形成により、従来の鋼板では見られない顕著に良好な磁気特性が得られることを明確にして本発明を完成したものである。
従来の技術開発では、粒成長前の集合組織として単に、一般的に磁気特性にとって好ましいとされている{100}方位や{110}方位への集積のみを課題にしているため向上効果が不十分であった。具体的には従来技術のように{100}<011>や{100}<001>方位への集積を目的としたのではより好ましい特性を得ることは困難で、{411}<148>、技術的には、圧延方向が<011>方向となっている、いわゆるα−fiber方位をさらに板面内で20°程度回転させた方位(α−fiber±20°方位)への集積を利用することが良好な特性を従来より簡易に得ることができ工業的な効果が大きいことを知見して本発明がなされた。
本発明は、熱延温度を単に低くして低温で大圧下を付与するだけでなく、各パスで付与される歪量、圧延温度および圧延後の再結晶が起こりうる高温域での保持時間を考慮して最適化し、特性に十分な効果が得られるような熱延組織を形成させることに特徴がある。本発明の特徴を集約すると次のとおりとなる。
(1)質量%で、C:0.040%以下、Si:0.05〜3.5%、Mn:3.0%以下、Al:3.5%以下、S:0.015%以下、P:0.25%以下、N:0.040%を含有した鋼板で、特に鋼板表層部での{411}<148>、{111}<211>方位の集積強度を特定範囲に限定する。
(2)スラブ加熱中の結晶粒成長を抑制し、かつ熱間圧延における比較的高い温度域での圧延において表層部で大きな剪断歪が付与されても再結晶が起きないよう、Cu、Nb、Cr、Ni等の元素を適量含有させる。
(3)熱延板時点で表層部に未再結晶組織を残存させ、この未再結晶組織が残存したまま冷間圧延を行う。
(4)熱間圧延における特定温度以下の温度域での圧延において圧下パススケジュールさらに圧延後の高温保持時間、冷却条件等の関係を制御する。
(5)特定温度以下の低温域での圧延おける剪断歪または剪断歪/(板厚方向圧縮歪)を特に板厚方向への歪分布を考慮し制御する。
そして、本発明の具体的要旨は次のとおりである。
(1)質量%で、C:0.040%以下、Si:0.05〜6.5%、Mn:3.0%以下、Al:3.5%以下、S:0.055%以下、P:0.25%以下、N:0.040%以下を含み、残部Feおよび不可避的不純物からなるセミプロセス電磁鋼板のうち、製品板の表層1/4またはそれより表層側の部位において{411}<148>方位の集積強度/{411}<011>方位の集積強度≧4.0かつ{411}<148>方位の集積強度≧4.0を満たすことを特徴とするセミプロセス電磁鋼板。
(2)質量%で、C:0.040%以下、Si:0.05〜6.5%、Mn:3.0%以下、Al:3.5%以下、S:0.055%以下、P:0.25%以下、N:0.040%以下を含み、残部Feおよび不可避的不純物からなるセミプロセス電磁鋼板のうち、鋼板表層1/4またはそれより表層側の部位において<411>//ND方位の集積強度の板面内の方位分布について極大値が4個以上存在することを特徴とするセミプロセス電磁鋼板。
(3)請求項1または2記載の鋼板のうち、製品板の表層1/4またはそれより表層側の部位において{111}<211>方位の集積強度≦2.0を満たすことを特徴とするセミプロセス電磁鋼板。
(4)(1)〜(3)のいずれかの項に記載の鋼板のうち、製品板の表層1/4位置またはそれより表層側の位置での{411}<148>方位の集積強度が鋼板板厚中心での集積強度の2倍以上となっていることを特徴とするセミプロセス電磁鋼板。
(5)(1)〜(4)のいずれかの項に記載の鋼板のうち、(B0+B90)/2−B45≦0.040を満たすことを特徴とするセミプロセス電磁鋼板。
ここで各変数は誘起電流密度を5000A/mとした時の圧延方向から0°、45°、90°方向の磁束密度/TをB0、B45、B90とする。
(6)(1)〜(5)のいずれかの項に記載の鋼板のうち、質量%で、Cu+Nb+Cr+B+Ni+Co+Mo+Ti:0.2〜8.0%であることを特徴とするセミプロセス電磁鋼板。
(7)(1)〜(6)のいずれかの項に記載の鋼板のうち、質量%で、Cu:0.2〜8.0%、Nb:0.1〜4.0%、Cr:1.0〜15.0%、B:0.0020〜0.0150%、Ni:0.2〜8.0%、Co:0.2〜8.0%、Mo:0.2〜8.0%、Ti:0.2〜2.0%のいずれか一種以上を含有することを特徴とするセミプロセス電磁鋼板。
(8)(1)〜(7)のいずれかの項に記載の鋼板のうち、質量%で、W,Sn,Sb,Mg,Ca,Ce、REMの1種または2種以上を合計で0.5%以下含有することを特徴とするセミプロセス電磁鋼板。
(9)(1)〜(8)のいずれかの項に記載の鋼板のうち、鋼成分が同じでかつ熱延の全圧延パスがF℃以上で行われた鋼板との比較において、製品板の表層1/4位置またはそれより表層側の位置での{411}<148>方位の集積強度が2倍以上となっていることを特徴とするセミプロセス電磁鋼板。ここでFは、
F=820+(10×Si+50×Cu+50×Nb+10×Cr+5000×B+10×Ni+20×Co+40×Mo+20×Ti)、である。
(10)(1)〜(9)のいずれかの項に記載の鋼板のうち、鋼成分が同じでかつ熱延の全圧延パスがF℃以上で行われた鋼板との比較において、B45−B’45≧0.030を満たすことを特徴とするセミプロセス電磁鋼板。
ここで各変数は誘起電流密度を5000A/mとした時の圧延方向から45°方向の磁束密度/TをB45とする。Bは発明鋼、B’は比較鋼についての特性を示す。
(11)(1)〜(10)のいずれかの項に記載の鋼板のうち、製品板の表層1/4を取り除き板厚中心層1/2厚さで測定するとB45が0.02T以上低下することを特徴とするセミプロセス電磁鋼板。
(12)(1)〜(11)のいずれかの項に記載の鋼板の製造方法のうち、冷延直前の熱延板時点で表層1/4領域の再結晶率が90%以下であることを特徴とするセミプロセス電磁鋼板の製造方法。
(13)(1)〜(12)のいずれかの項に記載の鋼板の製造方法のうち、溶鋼を鋳造で厚さ50mm以上の鋼片に凝固させ、熱間圧延工程において500℃以上F℃以下の温度域で圧延が行われ、熱延板時点で表層1/4領域に未再結晶組織を残存させ、さらに酸洗後、この未再結晶組織が残存したまま圧下率50%以上の冷間圧延を行うことを特徴とするセミプロセス電磁鋼板の製造方法。
(14)(1)〜(13)のいずれかの項に記載の鋼板の製造方法のうち、熱間圧延におけるF℃以下の温度域での圧延において圧下による累積歪(対数歪)Hと各パス出側温度T(℃)および、最終パスを除く圧延パスにおいては圧延後次の圧延パス開始までの時間t(秒)または最終パスの場合は最終パス圧延後水冷開始までの時間t(秒)の関係が
T<F−H×10−t×10
を満たして行われることを特徴とするセミプロセス電磁鋼板の製造方法。
(15)(1)〜(14)のいずれかの項に記載の鋼板の製造方法のうち、熱間圧延におけるF℃以下の温度域での圧延において、そのうちの少なくとも一回の圧延パスについて圧延時の鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上であることを特徴とするセミプロセス電磁鋼板の製造方法。
(16)(1)〜(15)のいずれかの項に記載の鋼板の製造方法のうち、熱間圧延におけるF℃以下の温度域での圧延において、鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である圧延パスについて、剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である領域が圧延時の板厚で全板厚の10%以上に及ぶことを特徴とするセミプロセス電磁鋼板の製造方法。
(17)(1)〜(16)のいずれかの項に記載の鋼板の製造方法のうち、熱間圧延におけるF℃以下の温度域での圧延において、鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である圧延パスについて、圧延ワークロールの直径が700mm以下とすることを特徴とするセミプロセス電磁鋼板の製造方法。
(18)(1)〜(17)のいずれかの項に記載の鋼板の製造方法のうち、熱間圧延におけるF℃以下の温度域での圧延において、鋼板表層での剪断歪または剪断歪/( 板厚方向圧縮歪)が0.2以上である圧延パスについて、摩擦係数が0.10以上であることを特徴とするセミプロセス電磁鋼板の製造方法。
(19)(1)〜(18)のいずれかの項に記載の鋼板の製造方法のうち、熱間圧延におけるF℃以下の温度域での圧延において、鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である圧延パスについて、剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である部位の剪断歪速度が10/s以上であることを特徴とするセミプロセス電磁鋼板の製造方法。
(20)(1)〜(19)のいずれかの項に記載の鋼板の製造方法のうち、熱間圧延におけるF℃以下の温度域での圧延において、鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である圧延パスを複数回かつ連続して行うに際し、各圧延パス間時間が4.0秒以下であることを特徴とするセミプロセス電磁鋼板の製造方法の製造方法。
(21)(1)〜(20)のいずれかの項に記載の鋼板の製造方法のうち、熱間圧延におけるF℃以下の温度域での圧延において、鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である圧延パスを複数回行い、これによる鋼板表層での剪断歪の累計を0.6以上とすることを特徴とするセミプロセス電磁鋼板の製造方法の製造方法。
(22)(1)〜(21)のいずれかの項に記載の鋼板の製造方法のうち、熱間圧延におけるF℃を超える温度域での圧延において、圧延歪が2.0以下、または1回の圧延パスあたりの圧延歪が0.6以下、または複数回かつ連続したパスを行うに際し各圧延パス間時間が4. 0秒以上であることを特徴とするセミプロセス電磁鋼板の製造方法の製造方法。
(23)(1)〜(22)のいずれかの項に記載の鋼板の製造方法のうち、熱間圧延の最終パス後、水冷開始までの時間を2秒以下とすることを特徴とするセミプロセス電磁鋼板の製造方法。
(24)(1)〜(23)のいずれかの項に記載の鋼板の製造方法のうち、熱間圧延の最終パス後の水冷時の冷却速度を10℃/s以上とし700℃以下まで冷却することを特徴とするセミプロセス電磁鋼板の製造方法。
(25)(1)〜(24)のいずれかの項に記載の鋼板の製造方法のうち、熱間圧延の最終パス後の水冷後、500℃以上に昇温することなく冷延し、焼鈍することを特徴とするセミプロセス電磁鋼板の製造方法。
(26)(1)〜(25)のいずれかの項に記載の鋼板の製造方法のうち、最終焼鈍後に0.5%以上、50%以下の歪を付与することを特徴とするセミプロセス電磁鋼板の製造方法。
本発明によれば磁気特性が良好なセミプロセス電磁鋼板が製造できる。
以下に本発明の詳細をその限定理由とともに説明する。含有量はすべて質量%である。
Cは本発明のように熱間圧延温度が低い材料では特に結晶方位を好ましく制御し磁束密度を向上させる効果が強く現れるので通常のセミプロセス電磁鋼板より高めに制御することで特性向上が期待できる。また、固溶Cとして残存するCは単なる材料の高強度化効果ばかりでなくクリープ変形を抑制することで高回転モーター等で問題となるローターの耐変形性を向上させる効果も有するが、過度なC含有は磁気特性を劣化させるので0.040%以下とする。好ましくは0.030〜0.0001%、さらに好ましくは0.020〜0.0005%、さらに好ましくは0.010〜0.0010%、さらに好ましくは0.008〜0.0015%である。
Siは、鋼板の電気抵抗を高め鉄損を低減することがよく知られており、電磁鋼板では当然のごとく添加される元素で、現状の一般的なSi含有量のすべての電磁鋼板への適用が可能である。磁気特性と通板性の兼ね合いから0.05〜6.5%とする。0.05%未満では良好な磁気特性が得られず、6.5%を超えると脆化のため製造工程での通板性が顕著に劣化する。好ましくは0.3〜5.5%、さらに好ましくは0.5〜4.5%、さらに好ましくは0.8〜3.5%である。
Mnは、Sと反応し硫化物を形成するため本発明では重要な元素である。通常Mnが中途半端に少ない場合には熱間圧延中に微細なMnSが析出し鉄損および磁束密度を著しく劣化させる場合がある。しかし、本発明においては熱間圧延条件を特定の範囲で制御することで、この悪影響を回避する効果も現れることから、Mnの下限は特に設けない。一方、Mnは固溶Mnとして鋼板の電気抵抗を上昇させ鉄損を低減させる効果を有するが、あまりに多量に含有させると材料本来の飽和磁束密度を低下させてしまうため上限を3.0%とする。
Alは、Siと同様、鋼板の電気抵抗を高め鉄損を低減する目的で積極的に添加される。Alが高くなると鋳造性が顕著に劣化するため3.5%以下とする。下限は特に設ける必要はなく、Al=0%でもよいが、0.01〜0.05%程度の量では微細なAlNを形成し磁気特性、特に鉄損を劣化させる場合があるので注意が必要である。好ましくは0.005%以下および0.1〜3.0%、さらに好ましくは0.003%以下および0.3〜2.5%、さらに好ましくは0.002%以下および0.5〜2.0%、さらに好ましくは0.001%以下および0.7〜1.5%である。
Sは硫化物量に直接関係する。鋼中に硫化物を形成させることで本発明が目的とする熱延工程での粒成長や再結晶を抑制することも可能であるが、含有S量が多いと熱延条件を適当に制御したとしても析出量が多くなり粒成長性を阻害し特に鉄損を劣化させるためあまり好ましくはない手段である。このため、上限は0.015%とする。なお、鋼板の磁気特性をより高めるためには、0.005%以下とすることが好しく、さらに好ましくは0.003%以下、さらに好ましくは0.002%以下、さらに好ましくは0.001%以下であり、0%でもよい。
Pは、磁気特性にとって好ましくない比較的低温で析出するCuまたはMnの硫化物の析出温度を上昇させる効果を有するので積極的に添加することが可能である。一方、鋼板の硬度を高め、打ち抜き性に強く影響するので、所望の打ち抜き硬度によりその添加量は制限される。また、過剰に含有すると冷延性などが顕著に劣化し鋼板の製造に支障をきたす場合があるので上限を0.25%とする。
Nは、Alを含有する鋼においては含有量が多いと窒化物が多くなり結晶粒成長性を阻害するため0.004%程度以下に低く制御されている。しかし、Al含有量を0.005%程度以下に抑えればこの悪影響は全く考慮する必要はない。むしろCと同様に鋼中に固溶することで結晶方位を好ましくする効果やモーターコアの耐クリープ変形性や温間での疲労特性を向上させ、またNb含有鋼の場合にはNbNにより再結晶を遅延させる効果も有するため積極的に添加することも可能である。ただし、過剰な添加は磁気時効性の問題や溶鋼からの凝固時に生成するミクロボイドに起因する鋼板欠陥が多発するため上限を0.040%とする。生産性を考慮し好ましくは0.020%以下、さらに好ましくは0.015%以下とする。結晶方位制御の観点からは0.0002%以上とすることが好ましく、さらに好ましくは0.0005%以上、さらに好ましくは0.001%以上、さらに好ましくは0.0015%以上、さらに好ましくは0.003%以上、さらに好ましくは0.005%以上である。
Cuは本発明では、固溶Cuとしてのみならず、鋼板中にCuを主体とする金属相(以降、本明細書では「Cu金属相」と記述)を形成させ鋼板の特に再結晶または粒成長を遅延させるために活用される。この範囲として0.1〜8.0%に限定する。好ましくは0.8〜4.9%である。Cuの含有量が低いと再結晶・粒成長遅延効果が小さくなるとともに再結晶・粒成長遅延効果を得るための熱処理条件が狭い範囲に限定され、製造条件の管理、生産調整の自由度が小さくなる。また、Cuの含有量が過度に高いと磁気特性への影響が大きくなり特に鉄損の上昇が著しくなる。また、過剰なCuは熱履歴によっては望まない工程において鋼中にCu金属相を形成し、例えば、熱延中などに高温で比較的粗大なCu金属相を形成し、磁気特性に悪影響を及ぼすばかりでなく鋼板を過度に硬質化または脆化させ通板性を顕著に劣化させ生産性を阻害する場合もある。特に好ましい範囲は1.0〜3.9%である。さらに好ましくは1.3〜3.4%、さらに好ましくは1.5〜2.9%である。
NbもCu同様、本発明では固溶Nbとしてのみならず、鋼板中にNbの主として炭・窒化物(以降、本明細書では「Nb析出物」と記述)を形成させ鋼板の再結晶または粒成長を遅延させるために活用される。この範囲として0.05〜8.0%に限定する。好ましくは0.08〜2.0%である。Nbの含有量が低いと再結晶遅延効果が小さくなるとともに再結晶・粒成長遅延効果を得るための熱処理条件が狭い範囲に限定され、製造条件の管理、生産調整の自由度が小さくなる。また、Nbの含有量が過度に高いと磁気特性への影響が大きくなり特に鉄損の上昇が著しくなる。一方、C、N含有量にもよるが、過剰なNbは熱履歴によっては鋼中に過剰なNb析出物を形成し、再結晶を遅延させるものの上述のCu金属相よりも磁気特性劣化要因となりやすい。また例えば、熱延中などに高温で比較的粗大なNb析出物を形成した場合には、再結晶・粒成長遅延効果が小さくなるばかりか、磁気特性への悪影響が大きくなる場合もある。特に好ましい範囲は0.1〜1.5%である。さらに好ましくは0.12〜1.0%、さらに好ましくは0.15〜0.8%である。
さらに上述のCu、Nbと再結晶・粒成長遅延において同様の効果を有する元素としてCr、B、Ni、Co、Mo、Tiが挙げられる。これらの含有量はCuとNbと同様に再結晶・粒成長遅延効果と磁気特性への影響を勘案し、Cr:1.0〜15.0%、B:0.0020〜0.0150%、Ni:0.2〜8.0%、Co:0.2〜8.0%、Mo:0.2〜8.0%、Ti:0.2〜2.0%とする。なお、再結晶遅延効果を明確に得るには、これらの元素のうち少なくとも一種を目的とする再結晶・粒成長遅延効果を発揮する量だけ含有することが重要である。二種以上の元素を少量ずつ含有させることで目的とする再結晶・粒成長遅延効果を得ることも可能である。
この他にW,Sn,Sb,Mg,Ca,Ce、REM等、従来の電磁鋼板において、磁気特性の更なる向上、窒化や酸化の制御、表面コーティング制御、強度、耐食性や疲労特性等の部材としての付加機能、また鋳造性や焼鈍通板性、スクラップ使用など製造工程上の生産等を向上させる目的で添加が検討されている元素を公知技術により想定されている量程度まで添加することは本発明にとって何ら影響を及ぼすものではない。むしろ相乗効果として好ましい効果を発揮する場合もある。また、これら元素が原料やスクラップ等から不可避的に含有された場合、さらには他の各種の微量元素が含まれる場合も本発明の効果になんら影響を与えるものではない。言い換えればこれらの元素の影響にあえて言及するまでもなく、本発明で開示している製造工程において何ら問題なく製品を得ることができる。
次に本発明鋼の特徴を説明する。
本発明鋼は最終的な使用状況において従来にない、非常に良好な特性を示すものであるが、その特性は、従来からも特性にとって好ましいものと考えられていた方位への集積を高めたものであり、この集積度で本発明を規定することも可能であるが、理論的には、良好な方位への集積度を高めれば特性が向上するのは当然のことであり、この点を説明したのでは本発明の特徴が明確になりにくい。本発明の特徴は、むしろ、二次再結晶や歪誘起粒成長が起きる前の状態で定義すると明確となる。以下の記述では、セミプロセス電磁鋼板を使用するにあたって、最終的に二次再結晶や、歪誘起粒成長、また歪誘起ではなくとも、鋼板メーカーから出荷されて以降に熱処理により粒成長させる前、すなわち、鋼板メーカーで冷延後の未再結晶組織から、最終的な再結晶焼鈍を含めた熱処理を完了した状態での、集合組織および磁気特性の観点から述べる。
本発明の特徴の記述において「方位の集積強度」という表現を用いるが、これは通常、結晶材料の集合組織を表示する際に用いられる、「ランダム強度に対する比」を意味するものであり、通常、X線、電子線や中性子線を用いて測定される当業者においては普通に用いられるものである。
本発明鋼の特徴は鋼板の表層部、すなわち鋼板表層1/4またはそれより表層側の部位においての集合組織を制御していることである。なお、本発明で限定する鋼板表層1/4またはそれより表層側の部位においての集合組織に関する条件は、ロールによる圧延に類する製造条件であれば、表層部ほど満足しやすくなるものである。ただし、最表層の非常に薄い層のみで満足するのでは、発明の効果が非常に小さくなってしまう。このため、少なくとも表層の1/10位置で満足することが好ましく、さらに1/8位置で満足すれば十分な効果が得られるものである。
集合組織について一つ目の特徴は、従来の鋼板と比較し、特に表層部でα−fiber±20°の方位への集積が高く、発明鋼においてもこの方位への集積は中心部よりも表層部で顕著に高くなっていることである。α−fiber±20°方位とは前述のように圧延方向が<011>方向となっている、いわゆるα−fiber方位をさらに板面内で20°程度回転させた方位のことであり、本発明で重要な方位である{411}<148>方位はα−fiber±20°方位上の方位である。
まず、この方位への集積の必要性、効果について説明する。従来から電磁鋼板において磁気特性に好ましい方位は{100}方位であることが知られている。このために従来の開発の一つの目標として{100}方位への集積強化が挙げられ、{100}方位中の代表的な方位である{100}<001>や{100}<011>への集積強化が図られてきた。しかし、これらの方位への集積は現在主流であり、製造コスト等も含め将来も主流であるであろう工業的なプロセス、鋳造−熱延(−熱延板焼鈍)−冷延−焼鈍というプロセスではそれほど高くならず{100}方位を顕著に強化した製品は一般的には実用化されていない。これに対し本発明で特徴とするα−fiber±20°方位は本発明における製造方法によれば比較的簡単に集積度を高めることができる。
さらに本発明の特徴は鋼板の表層部でこの方位への集積が高くなっていることである。特に特殊な条件ではない製造範囲においてはα−fiber±20°方位の中でも{411}<148>近傍がピーク強度となる。もちろんこれはこれ以外の方位がピークとなったものを除外するものではなく、α−fiber±20°方位が表層部で高くなっていることが本発明鋼の明確な特徴である。本発明では代表的に{411}<148>方位により本発明鋼を特徴付け、鋼板の表層部での{411}<148>方位の集積強度≧4.0を制限条件として規定する。好ましくは6.0以上、さらに好ましくは8.0以上、好ましい成分や熱延条件では10.0以上にもなり、非常に好ましい特性が得られる。またα−fiber上の方位である{411}<011>方位の集積強度との関係で{411}<148>方位の集積強度/{411}<011>方位の集積強度≧4.0とする。従来から通常の工業的プロセスではα−fiberへの集積は比較的簡単で{411}<001>方位も少なからず存在する方位であるが、本発明では通常発達しない{411}<148>方位をその数倍以上に集積させ、むしろ通常存在する{411}<001>方位の発達を抑制したものである。
この点から本発明で制御する{411}<148>方位への集積の高さは非常に特異なものと言える。好ましくは6.0以上、さらに好ましくは8.0以上、さらに成分や製造条件などが好ましい場合には{411}<011>の10.0倍以上に強く集積させることも可能である。ここで興味を引くのは本発明において特徴的なα−fiber±20°方位が顕著に増加した場合、そこからの広がり、つまり副方位として{411}<011>方位が増加するのではなく、むしろ{411}<011>方位の減少を伴って{411}<148>方位が増加する傾向があることである。むろんこれは絶対的なものではないが、この点から{411}方位に関する上述の比はできるだけ大きいほうが好ましい特性を示すようになる。
また、本発明鋼ではα−fiber±20°方位への集積を高めているため他の方位への集積が低下している。α−fiber方位そのものが低下することが集合組織上の一つの特徴であるが、発明の効果においては{111}<211>方位の集積強度が低下していることに特徴があり、{111}<211>方位の平均集積強度<2.0を満たすことを特徴とする。好ましくは1.5以下、さらに好ましくは1.0以下、さらに好ましくは0.7以下である。集合組織的には以上のような範囲を外れると本発明の効果が小さくなる。
集合組織について二つ目の特徴は、特定の結晶面が板表面に平行になっている方位について、板面内での方位分布が従来の鋼板と比較し、ある意味で、よりランダムになっていることである。
特定の方位の一つは結晶の{411}面が板表面と平行である方位で、一般的には{411}方位または<411>//NDなどと記述される方位である。従来の集合組織制御においてはこの方位に関しては板面内で<011>方向が板圧延方向と平行になっている方位、一般的にはα−fiberと呼ばれる方位への集積が強くなる。この方位は{411}<011>方位であるが、{411}方位においてこの{411}<011>方位に方位集積すると{411}方位に関して板面内の強度分布は180°毎の周期性しか有さないため板面内の異方性が強くなる。言い換えると、α−fiber上の{411}方位に関して板面内の全周にわたる強度分布は2つの極大値しか示さない。これに対し、本発明は{411}方位に関しては{411}<011>方位ではなく{411}<148>方位近傍に集積強度のピークを有する。この方位のピークが明確になると{411}方位に関して板面内の強度分布は約40°と約140°の間隔が交互に現れる周期性を示し板面内の異方性が小さくなる。言い換えると、{411}方位に関して板面内の全周にわたる強度分布は4つの極大値を示すようになる。
上記の特定方位の説明においては代表的に{411}方位に関しては{411}<148>方位で説明したが、本発明は集積強度が極大となる方位をこれらに限定するものではない。{411}方位に関しては一般的に形成される{411}<011>方位による2個の極大値より多くの極大値を有することを特徴とし、{411}方位に関しては4個以上の極大値を有するものである。{411}方位においては例えば、上記の{411}<148>に加えて、{411}<011>にもピークを有する場合があり、この場合は、極大値は6個にもなる。
なお、本発明では板面内の集積強度分布における極大値の数を規定しているが、実際の板では結晶方位の局所的な変動やばらつき、また測定条件や測定ばらつき等または測定データの解析精度等により、集積強度は微妙に変動し、これらの条件によっても極大値の数が影響される。このため本発明では極大値を次のように規定するものとする。測定方法は特に問わないが、一般的に集合組織を測定するために用いられている方法によるものとする。一般的には電子線やX線を用いた方法が広く利用されている。例えばX線で測定する場合、通常70μm程度の厚さのサンプルを製品から取り出すが製品厚さが薄い場合、例えば0.12mm程度の厚さの板からこのようなサンプルを取り出すと最表層から中心層までの情報を含んだものとなってしまう。このような場合には板厚方向の集合組織の変化が明確になるようにサンプル厚さを通常より薄くすることや厚さ方向の情報が混在し難い電子線、たとえばEBSPなどによる方法を用いるべきであることは注意を要する。
また方位分布を求めるには数値的な解析処理が必要になるが、一般的にはODFやベクトル法と呼ばれる三次元集合組織解析法が用いられている。測定条件や解析条件は一般的に認知されている程度の条件で十分である。特定面に関しての板面内の強度分布は5°毎、全周72点で表示するものとする。この表示点数が極端に少なくなれば本発明で数えられるべき極大値が見落とされ極大値の数も減ることになり、極端に多くなると強度のばらつき等の誤差をも計測するようになり不当に極大値の数が増大してしまう。また、極大に関しても特性への影響を無視できる程度の小さな変動まで数えることは本発明の本意ではない。また、極大であっても、集積強度が低いものは、本発明で期待している特性の向上には寄与しない。本発明では特定面に関しての板面内の平均強度より高い強度を示し、かつ、極大の両隣の極小の集積強度の平均値の1.1倍以上の集積強度を持つ極大のみを極大の数として数えるものとする。または、特定面に関しての板面内の平均強度より高い強度を示し、かつ、集積強度を1.0間隔の等高線で示した場合に極大として認識できる極大のみを極大の数として数えるものとする。
次に本発明鋼に関する鋼板の特性上の特徴を説明する。
本発明鋼板の特徴は上述のような特異な集合組織の制御に起因し、従来の鋼板と比較し圧延方向から45°の方向の特性が優れることである。以下、単に0°特性、45°特性または90°特性などの記述はそれぞれ鋼板製造時の圧延方向から0°、45°または90°の方向の特性を示すものとする。また以下で各変数に関し、B0、B45、B90は誘起電流密度を5000(A/m)とした時の圧延方向から0°、45°、90°方向の磁束密度(T)であり、さらにBは本発明鋼、B’は比較鋼についての特性を示すものとする。45°特性の特異性は次の点で記述できる。つまり、(B0+B90)/2−B45≦0.040の条件を満足することである。通常の鋼板でこれらの特性を満足することはほとんどない。好ましくは(B0+B90)/2−B45の値は0.030以下、さらに好ましくは0.020以下、さらに好ましくは0.010以下である。これらの条件を満足しない鋼板は本発明が目的とする良好な特性を得ることができない。
別の面からの材料的な特徴は本発明鋼板では上述の集合組織制御が主として鋼板の表層部において行われていることに起因するものである。本発明鋼板は表層1/4またはそれより表層側の部位において上述の集合組織や特性の条件を満たすものである。また、特に表層部の集合組織を制御しているため中心部の集合組織とは少なからざる差異を生じ、これが本発明鋼板の特徴でもある。つまり、鋼板の表層1/4位置またはそれより表層側の位置での{411}<148>方位の集積強度が板厚中心での集積強度の2倍以上となるものである。好ましくは3倍、さらに好ましくは4倍である。ただし、本発明において主として表層部に対して行っている集合組織制御を特に熱延工程で行う場合には、圧延という変形方法であるためその影響は少なからず中心層にも及ぶことがある。このため本発明方法の非常に好ましい条件においては鋼板中心部においてさえも表層部と同等の集合組織制御の効果が現れ表層と中心層の集合組織の差が小さくなる場合もあるので注意を要する。
このような集合組織制御を熱延での比較的低い温度域での圧延により行う場合には、通常の鋼板のうち、熱延の全圧延パスがF℃以上で行われた鋼板との比較において、製品板の表層1/4位置またはそれより表層側の位置での{411}<148>方位の集積強度が2倍以上となっていることが特徴になる。好ましくは3倍、製造条件が非常に好ましいものであれば4倍以上にも到達するものである。
また、45°特性は鋼成分が実質的に同じでかつ熱延の全圧延パスがF℃以上で行われた鋼板との比較において、B45−B’45≧0.030を満たすという点で非常に特異なものである。好ましくは0.040以上、後述の最適な製造条件を適用することにより0.050以上とすれば非常に良好な特性を得ることができる。なお、上記の鋼成分が実質的に同じでかつ熱延の全圧延パスがF℃以上で行われた鋼板との比較においては、冷延率や焼鈍温度等の磁気特性に大きな影響を及ぼすことがよく知られている因子が大きく異なると本請求項が目的とする比較が意味をなさなくなるので、これらの条件は磁気特性に大きな差を生じない範囲で同一にすることが必要である。特性の向上が一般的に知られている要因によるものであるか、本発明の効果であるかは、通常業務として特性向上を目的に製造条件の影響を検討している当業者であれば容易に判別が可能なものである。
さらに、本発明鋼は上述のように特に鋼板の表層部の特性を改善することで鋼板全体の特性を改善するものであるため、例えば鋼板の表層部を除去すると発明の効果が小さくなる。特性の劣化代は表層の研削量によるが、これにより発明鋼を規定し、鋼板の表と裏の表層1/4を取り除き板厚中心層1/2厚さで測定するとB45が0.02T以上低下するものを本発明鋼の一つの特徴とする。ただし、上述のように発明の特徴的な集合組織制御が板厚中心まで相当に及んでいると表層部除去による特性劣化代は小さくなるので注意が必要である。これは従来鋼のようにB45が低い材料で表層を除去してもB45の劣化が小さいこととは本質的に異なるものであり、このようなきわめて良好なB45を有する鋼板が本発明に含まれることは当然である。
上述のような集合組織制御を行う一つの方法としては熱延板において特に表層部に圧延組織を残存させたまま冷延し、焼鈍を行うことが有効である。未再結晶組織は少なくとも表層1/4の領域内に残存している必要がある。言い換えれば板厚中心層に未再結晶組織が残存していても表層1/4の領域が完全再結晶組織である場合は本発明の効果が小さくなってしまう。発明の効果をより顕著に得るには最表層に近い部位に未再結晶組織が多く残存していることが好ましく、表層1/8領域が完全に未再結晶組織であれば目的とする特性は非常に良好となる。また発明の効果は表層1/4領域が完全未再結晶であれば非常に好ましいが、完全に未再結晶でなくとも再結晶率が90%以下であれば有効な効果が得られる。好ましくは70%以下、さらに好ましくは50%以下、さらに好ましくは30%以下、完全未再結晶が理想的であることは言うまでもない。
また、冷延前の熱延板に、部分的に再結晶組織を含ませることは、以下のような理由でも有用である。つまり、鋼成分や熱延条件によっては完全な加工組織である熱延板を冷延、焼鈍して製品を製造した場合にリジングまたは結晶模様と呼ばれる表面品位の劣化が起きる場合があることや、析出物形態の制御により冷延後、焼鈍時の粒成長性を改善し磁気特性の向上が必要な場合がある場合にはこれを改善する目的で適当な熱処理により加工組織の一部を再結晶させることも可能である。その条件は鋼成分等により異なるため一概には言えないが、通常の技術を有する当業者であれば、一般的に行っている熱延巻取温度の制御や熱延板焼鈍条件により適当な範囲に制御することは簡単なことである。目安としては熱延後の巻取温度が750℃を越えると再結晶組織が現れるようになり、連続式の熱延板焼鈍を行う場合はSi量が1%程度以下の材料であれば700℃を超えると、Si量が2%程度以上の材料であれば750℃を超えると、再結晶組織が現れるようになる。これらの温度は、特にCuやNbなど、本発明鋼で熱延での再結晶を抑制する効果を発揮する元素を適当量添加することで、より広い温度範囲で制御することが可能となる。
本発明の効果が得られるメカニズムは以下のようなものと考えられる。すなわち、熱延時に鋼板表層に付与される剪断変形を主とする変形により結晶回転は通常の圧延で想定されるものとは大きく異なったものとなっている。具体的には一般的に圧延による結晶回転によりα−fiber方位が強く発達すると考えられており、これをそのままさらに冷延してα−fiber方位への集積を高め最終焼鈍を行うと磁性にとって好ましくない{111}方位が強く発達してしまう。そのため一般の電磁鋼板では熱延板組織を再結晶させることにより冷延前の時点でα−fiber方位への集積を和らげ比較的ランダムな方位としておくような工程条件がとられる。また熱延時に鋼板表面での剪断変形に起因して発達する特異な変形集合組織は鋼板表面での歪量が中心層より高くなることから通常の製法では熱延中またはコイル巻取後に再結晶してしまい、その存在による最終製品への効果が顧みられることはなかった。
これに対し、本発明鋼は意識的に熱延中の鋼板表層に付与される剪断変形による歪を保持し、再結晶を抑制することでこれを蓄積し冷延前の鋼板においてその特異な結晶方位を保持させるものである。具体的には{311}<233>および{110}<001>近傍に集積した方位である。これを冷延すると、一般的なランダム方位を起点としたものとは異なった結晶回転が起きる。bcc金属では原理的に冷延加工によりα−fiber方位が強く発達するため冷延後の時点では集合組織的な特徴は顕著ではないが、その中には通常の材料にはそれほど強く発達しないα−fiber±20°方位の再結晶核が存在し再結晶後に特異なα−fiber±20°方位が強く発達するという特徴を示すものである。他にもメカニズムは考えられるが、本明細書に記述している鋼板表層に熱延での加工組織が残存したまま冷延を行う方法については上のような機構が強く働いているものと思われる。
次に本発明の効果を顕著に得るため、重要な制限要因である製造条件について説明する。
本発明による電磁鋼板は、上述した成分からなる溶鋼を鋳造して鋼片とし、熱間圧延し、酸洗し、冷間圧延し、一次再結晶焼鈍、必要に応じて二次再結晶焼鈍することで得ることが可能である。この場合、工程の概略は通常の工程と大きく異なるものではないが、特に、以下のような特徴的な熱延条件により発明の効果を十分に得ることができる。
特に、熱延で圧延による歪が付与される温度域と付与される歪の量、歪を付与した後の再結晶が起きる可能性がある温度域での保持時間が本発明での重要な要件であって、これを発明範囲内に制御することで本発明の効果を的確に得ることができる。
温度に関しては、熱間での圧延の大きな部分が、質量%で表される含有元素量により決定されるF℃以下の温度範囲で行われることが好ましい。
F=820+(10×Si+50×Cu+50×Nb+10×Cr+5000×B+10×Ni+20×Co+40×Mo+20×Ti)・・・・・・・・・・・(式1)
この温度域を以下では低温域と呼ぶ。温度範囲が低すぎると圧延が困難となるばかりでなく発明の効果も小さくなり、高すぎると本発明の効果が消失する。圧延温度の下限は熱延工程での圧延により形成される加工組織の再結晶進行を抑制するには低いほうが好ましいが、圧延性の観点から温度範囲の下限は好ましくは500℃、さらに好ましくは550℃、さらに好ましくは600℃、さらに好ましくは650℃である。熱延温度に関しては、通常の熱延板を再結晶させて製造している一般材に比べ温度条件が大きく異なると作業性の面でも問題が発生する。通常、850〜950℃程度の仕上温度で圧延されている一般材と同チャンスで通板した際の作業性等を考えると、Cu、Nb、Ni等の再結晶抑制元素を添加し、この程度の温度域で熱延することが好ましい。
温度範囲の上限は好ましくはF−40℃、さらに好ましくはF−80℃、さらに好ましくはF−120℃である。F−150℃以下であれば本発明の効果を非常に顕著に得ることが可能となる。この温度域で圧延を行えば極端な低速、軽圧下パススケジュールでない限り加工発熱により好ましい温度域を保つことも可能となる。このような低温域での圧延条件は圧延温度と付与する歪量、保持時間に関し、低温域での圧下による累積歪(対数歪)Hと各パス出側温度T(℃)および圧延後の時間t(秒)の関係が、
T<F−H×10−t×10・・・・・・・・・・(式2)
を満たすことが好ましい。これはTがF以上では熱延中に再結晶が進行してしまい好ましい未再結晶組織を得ることが困難になることに対応している。また、圧延により付与する歪が大きいほど再結晶の進行が促進されるためHが大きいほどTを低くして再結晶を抑制することが好ましいことを示している。
ここでtに関しては、最終パスを除く圧延パスにおいては圧延後次の圧延パス開始までの時間、または最終パスの場合は最終パス圧延後水冷開始までの時間である。これは圧延後の時間の経過とともに再結晶が進行してしまうためで、あるパスで圧延後、次の圧延または水冷開始までに再結晶がおき得る温度域での保持時間が長くなる場合には再結晶を抑制するためTを低くする必要があることを示している。または言うまでもないことではあるが、言い換えれば再結晶を抑制するためtを短くする必要性をも同時に示している。
このtに関しては現状設備を使用する場合、最終パスを除くとロールスタンド間隔と圧延速度で一義的に決まってしまうものであり、ロールスタンド間隔の変更は現実的でなく、また圧延速度の変更は生産性にも影響するため制御因子としては制約が大きい。一方で最終パスの場合には水冷開始までの時間であり、条件によっては水冷ノズルの新設等の設備的な対策も必要となるが、一般的には大幅な制御が行われている因子となる。本発明では最終パス後水冷開始までの時間を2秒以下とすることで効果が顕著になる。好ましくは1.5秒以下、さらに好ましくは1.0秒以下、さらに好ましくは0.5秒以下、さらに好ましくは0.2秒以下である。
また、熱延板の再結晶進行を抑制するため最終パス後の水冷時の冷却速度を高めることも有効である。好ましくは10℃/s以上、さらに好ましくは20℃/s以上、さらに好ましくは40℃/s以上とする。水冷後の温度はそのままコイルの巻取温度となり、その近傍の温度域で比較的長時間保持されることになるので再結晶抑制のため低くすることが有効である。成分や鋼板に蓄積された歪量等にもよるが、700℃以下とする。コイル温度は巻取後低下するとは言え、冷却速度は非常に遅く、巻取温度近傍での保持時間は長い場合、数時間以上にも及ぶ。このため純度が高い材料では巻取温度が700℃に近いと再結晶が十分に進行してしまうことがある。このため好ましくは650℃以下、さらに好ましくは600℃以下、さらに好ましくは550℃以下であり、500℃以下とすればほとんどの場合、再結晶の進行は停止する。
このように書くと難しいように思われるが、要は鋼板の再結晶を抑えることが必要で、高歪量、高温、長時間の条件で再結晶が起きやすくなるという一般的な知見を元にして条件を決定するだけのことである。この条件はパススケジュールや熱延板厚等の製品仕様、用途に応じた鋼成分などが変化すると変わるものであるため一概に規定することは不可能で、目安として(式1)を含む、上の条件を提示しているが、通常のメタラジー知識を有する当業者であれば、数度の試行の後に、各仕様、用途毎に容易に条件を決定できる程度のものである。
また、特に、低温域の熱延で付与される歪の種類も本発明での重要な要件となる。歪は剪断歪が大きいことが必要で、鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である必要がある。好ましくは0.3以上、さらに好ましくは0.4以上、さらに好ましくは0.6以上、さらに好ましくは0.8以上、さらに好ましくは1.0以上である。このように圧延温度と剪断歪を制御することで単に低温で圧延した場合や、圧延温度の考慮なしに大きな歪を付与した場合には得ることができなかった非常に特異な効果を得ることが可能となる。ここで述べた圧延温度及び圧延歪に関する条件を以下では「低温域での剪断歪条件」と呼ぶ。「低温域での剪断歪条件」に関し、特に歪に関する条件については熱延中にその歪が付与された際の熱延中の板の表層で満足している必要がある。これらは実測することも可能であるが手間がかかるため有限要素法等の一般的に認知されている数値計算によることも可能である。一般的には温度や歪は板厚方向に分布を有しており、本発明が規定する剪断歪または剪断歪/(板厚方向圧縮歪)の値は板厚方向での位置により異なるものになることが通常である。この分布を考慮した場合、「低温域での剪断歪条件」を満足する領域が圧延時の板厚で全板厚の10%以上に及ぶことが好ましい。
さらに好ましくは20%以上、さらに好ましくは25%以上であり、特に限定されるものではないが、板の表面および裏面の歪または温度分布が板厚中心に関し対称となっている場合には、表層25%以上は、全板厚では50%以上を意味するものとなり、十分な効果を得ることが可能となる。さらに好ましくは30%以上、さらに好ましくは40%以上であり、全板厚がこの条件を満足することが好ましいことは言うまでもない。
このような「低温域での剪断歪条件」を満足する剪断歪を生ずる圧延パスはそのパスでの摩擦係数、ロール径等を変化させることで制御することが可能であるが、本発明では、摩擦係数が0.05以上、圧延ワークロールの直径が700mm以下を満たして行われることが好ましい。摩擦係数はさらに好ましくは0.10以上、さらに好ましくは0.15以上、さらに好ましくは0.20以上、さらに好ましくは0.25以上、さらに好ましくは0.30以上、さらに好ましくは0.40以上、さらに好ましくは0.50以上である。また圧延ワークロールの直径はさらに好ましくは600mm以下、さらに好ましくは500mm以下、さらに好ましくは400mm以下、さらに好ましくは300mm以下、さらに好ましくは250mm以下である。
また本発明では条件は特に限定しないが、圧延時の上下ロールの回転速度に差をつける、いわゆる「異周速圧延」によって剪断歪を付与することも可能である。この場合にも本発明の効果を得るには温度や歪量などは本発明の範囲内にあることが必要であることは言うまでもない。このような異周速圧延は一般的な圧延操業では行われているものではないが、剪断歪を制御する技術としてその効果はよく知られているものであり、本発明で目的とする特性への影響としては上述のように本発明で条件を詳細に記述している熱延条件の制御と同様の変化、効果を及ぼすことが期待できる。異周速圧延においては原理的によく知られているように周速差を大きくするほど効果も大きくなることは言うまでもない。
本発明では「低温域での剪断歪条件」を満足する剪断歪の歪速度、複数回で付与する場合の積算値、時間的な間隔が重要な意味を有する。通常は連続的な多パスの圧延で歪が付与されるのでこれを想定して以下に記述する。「低温域での剪断歪条件」を満足する圧延パスについて各圧延パスの歪速度が10/s以上であることが好ましい。さらに好ましくは20/s以上、さらに好ましくは40/s以上、さらに好ましくは80/s以上、さらに好ましくは120/s以上、さらに好ましくは180/s以上、さらに好ましくは260/s以上である。また「低温域での剪断歪条件」を満足する圧延パスが複数回行われる場合、「低温域での剪断歪条件」を満足する剪断歪の累計が0.6以上となると発明の効果が特に著しい。さらに好ましくは0.8以上、さらに好ましくは1.0以上、さらに好ましくは1.5以上、さらに好ましくは2.0以上、さらに好ましくは2.5以上、さらに好ましくは3.0以上、さらに好ましくは3.3以上、さらに好ましくは3.5以上である。さらに「低温域での剪断歪条件」を満足する圧延パスが複数回かつ連続して行われる場合、各圧延パス間時間が4.0秒以下であることが好ましい。さらに好ましくは3.0秒以下、さらに好ましくは2.0秒以下、さらに好ましくは1.0秒以下、さらに好ましくは0.5秒以下である。これらの歪を付与する条件が影響を及ぼす原因は明確ではないが、低温域とは言えこの温度域では圧延中または直後に回復、再結晶が少なからず進行するため本発明が目的とする歪の蓄積や結晶回転が効率的に起きなくなるためと考えられる。特に、近年の材料のように極低C、N、S化に加え、TiやCu等のトランプエレメントまでも含めて高純度化された材料では、回復、再結晶挙動が従来材以上に早く起きるようになるためこのような考慮が重要になる。
本発明鋼は上述の低温域での圧延により鋼板表層で特異な結晶回転を起こすことで、特異な集合組織を有するものとなるが、これより高温の温度域で圧延歪を適当量付与することで表面の凹凸(以下「リジング」と記す)を抑制するという重要な効果も発揮する。リジングが大きくなると、いわゆる占積率が低下し、鉄心としての使用時に、素材特性を発揮できなくなる。この効果は特に(式1)による、F℃をわずかに超える温度域で圧下することで好ましい作用を発揮する。この温度域を以下では中温域と呼ぶ。この温度はF℃を超える温度であるが、後述のようにあまりに高温だと効果が小さくなるので注意が必要である。好ましくはF+150℃以下、さらに好ましくはF+100℃以下、さらに好ましくはF+50℃以下である。この中温域で付与される歪を3.0以下とする。ただし、本発明の効果はあくまでも低温域での大きな歪によって発現するものであるから、中音域での歪が低温域での歪を上回らないことが好ましい。歪量は好ましくは2.0以下、さらに好ましくは1.5以下、さらに好ましくは1.0以下、さらに好ましくは0.5以下である。下限は最終製品の異方性をより小さくするとともに特に非変態鋼で問題となるリジングを抑制するため好ましくは0.1以上、さらに好ましくは0.2以上、さらに好ましくは0.3以上とする。さらに中温域での圧延を複数回のパスで行う場合は、1パスあたりの平均歪は0.6以下、好ましくは0.5以下、さらに好ましくは0.4以下とする。また、これらの好ましい範囲は高温域での圧延のパス間時間にも依存し、各パス間時間を4.0秒以上とすることが好ましい。これらの条件の一つを満足すれば、リジング低減の効果を得ることができるが、二つ以上の条件を満足すれば、効果がより顕著になることは言うまでもない。
この中温域で付与する歪は鋳造時に形成される柱状組織に起因する集合組織を破壊し、その後、ただちに低温域で圧延されることで、従来技術で問題とされていたリジング、結晶模様といった表面欠陥を回避する効果を有する。
本発明法がリジング低減に有効であるメカニズムは明確ではないが、以下のように考えられる。すなわち、中温域での圧延条件を再結晶がわずかに起きる条件とし、実質的に低温域での圧延が始まる前の結晶組織を微細にすることが一因と思われる。さらに、この中温域での圧延が完了した微細組織を、低温域で剪断歪により特殊な変形を付与することで、リジングの原因となる類似結晶方位の空間的な偏在、コロニーと呼ばれるものが破壊されるものと思われる。このリジング抑制効果は特に非変態鋼である高Si系材料では非常に好ましいもので、従来技術では実現できなかったもので、{411}<148>方位に代表される方位への集積を高めた本発明鋼に特徴的な効果である。
上のような現象の発現は付与される歪量に依存するため熱延前の鋼片の厚みがある程度以上必要となる。本発明では熱延前の鋼片の厚さを20mm以上とする。好ましくは50mm以上、好ましくは100mm以上、さらに好ましくは150mm以上、さらに好ましくは200mm以上である。鋼片の厚さが20mm以下の場合は本発明範囲内の低温大圧下の熱延を行ったとしても、鋳造時の凝固に伴い形成される柱状組織に起因する{100}集合組織が残存し、本発明で特徴的な集合組織の効果を発揮できなくなる。この原因は明確ではないが、柱状組織に起因する非常に強い面内異方性を有する{100}方位を破壊するには本発明が特徴とする低温域での歪量が発明範囲内であったとしても十分なものとは言えず、熱延トータルでの大きな歪が必要なためと考えられる。
鋼片の製造工程は特に限定しないが、通常の溶製工程から連続鋳造で製造されることが現状ではコスト面から最良である。また、熱間圧延時のスラブの加熱温度は1100℃以下とすることが好ましい。これは析出物、特に硫化物、窒化物を粗大化させ無害化し鉄損を低減するのに効果的であるとともに、本発明の特徴である低温圧延に好ましい熱履歴となるからである。つまり、通常の熱延条件のように1100℃以上でスラブを加熱してしまうと本発明で必要な圧延の大部分が低温域で行われるような熱履歴をとろうとすると、加熱炉からスラブを取り出した後、冷却を行う必要が生じ、コスト、生産性を阻害することになるためである。好ましくは1050℃以下、さらに好ましくは1000℃以下とする。
熱延以降の工程としては未再結晶組織が残存したまま冷延が行われる必要があり、一般的に一部の材料で行われる熱延板焼鈍はあえて行う必要はない。通板性の改善など何らかの必要性があって温度を上げる場合には500℃以上に昇温しなければ再結晶が進行し本発明の効果が失われる心配は無用である。冷延、焼鈍は通常と同様に行えばよい。冷間圧延の後は通常のセミプロセス電磁鋼板と同様の工程で再結晶焼鈍、皮膜形成等が行われる。これらの条件は本発明の効果に関して特に限定されるものではないが、上記の熱延条件を適用した場合、冷延率は50%以上とすることが磁束密度の向上の観点からは好ましい。冷延率があまりに低いと本発明で特徴的な集合組織の発達が起こり難い場合がある。
本発明の効果は磁束密度の向上、鉄損の低減や応力感受性も改善する。これらは基本的には本発明における集合組織の改善による効果と考えられる。例えば本発明により主としてヒステリシス損が改善するが、磁束密度が3%改善するとヒステリシス損が10%程度低減する。この値は鋼種や製造条件にも依存するが、磁束密度0.05Tの改善により約0.2W/kg低減する効果に相当する。また本発明鋼は特に鋼板表層の特性が改善されるため、鋼板表層部の特性の寄与が大きくなる高周波特性においてより好ましい効果を発揮する。さらには再結晶抑制元素として添加したCu,Nb,Ni等は固溶強化に加え、析出強化等の効果を発揮するものもあり、高強度電磁鋼板としても有効なものとなる。
本発明では鋼板特性の特徴を45°方向の特性が優れるとしているが、厳密には最も良好な特性は45°方向ではなく、これからずれたものになることも考えられる。これは磁気特性が本発明で特徴的なα−fiber±20°方位以外にも様々な方位を有する鋼板内の全ての結晶の影響によるものであることから当然であるが、それによって発明の効果が全く得られなくなったり逆になるようなものではなく影響は小さく、本発明では代表的に45°方向特性が優れるとの記述をしているものである。
また、特徴を記述する特性を「誘起電流密度を5000A/mとした時の圧延方向から0°、45°、90°方向の磁束密度」すなわちB0、B45、B90で行っているが、これ以外の特性での記述も可能なものである。例えば誘起電流密度が異なる場合の磁束密度で規定することも可能で、この場合、当然のことながら規定する値の絶対値等も異なることになる。さらに磁束密度ではなく鉄損や磁歪などによっても発明の効果を評価することも可能である。磁束密度が最高の方向では、鉄損は最低値を示すなど、対象とする特性によっては絶対値の高低が逆になる場合もある。これらの特性は互いに密接に関連し定性的な関連は公知であり、一般的な知識を有する当業者であれば容易に想定できる程度のもので「誘起電流密度を5000A/mとした時の圧延方向から0°、45°、90°方向の磁束密度」で評価した本発明と本質的に同様のものに過ぎないものである。
磁気特性は55mm×55mmの大きさのサンプルでコイルの圧延方向から0°、45°、90°の方向について特性を測定した。磁束密度は通常用いられるB50およびW15/50で評価した。B0、B45、B90、Baveはそれぞれ0°、45°、90°の方向の磁束密度、および{(0°特性)+2×(45°特性)+(90°特性)}/4で得られる面内平均磁束密度を意味する。集合組織はサンプルの表層1/8部位および中心部についてX線により測定し、三次元ベクトル法で解析した。
表1に示す成分の鋼を溶製し、連鋳スラブとなし、さらに表2、表3(表2につづき)に示す条件で熱間圧延、酸洗、冷延、連続焼鈍し製品とし特性評価した。熱延は粗熱延6パス、仕上熱延6または7パスで行い、各パスについて本発明製造法への適合を評価した。
表中で、請求項15に関する条件判定(「低温域での剪断歪条件」の判定)、請求項16に関する剪断領域厚さに関する判定、請求項19に関する剪断歪速度、請求項21に関する累計剪断歪は、FEM計算により判定を行った。FEM計算は、圧延される鋼材を板厚方向に20等分したモデルを用い、ロール径や温度などのパス条件において行った。判定は表層1/4位置に相当する部位についての結果で行った。通常の条件であれば、これより表層側で判定すれば、剪断歪量が多くなり、本発明条件を満足しやすくなり、中心側で判定すれば、剪断歪量が少なくなるため、本発明条件を満足し難くなるものである。本発明では、実際に製造された板の板厚方向での集合組織変化と、特性に及ぼす影響を考え、板厚の1/4位置で判定した。
鉄損は磁束密度と逆相関を示すことがよく知られており各方向についての表示を省き、{(0°特性)+2×(45°特性)+(90°特性)}/4で得られる面内平均値を示した。占積率は、製造した鋼板を一定の面積に切断したものを100枚重ね、重量を測定し、さらに重ねた方向に0.4kg/cm2の圧力を掛けた時の積み厚さを求め、重量、積み高さ、鋼板面積、また、別途測定した鋼板の密度から、求めた。95%未満では製品としては不都合を生じるようになる。
表の結果から、本発明範囲内にある鋼板は、本発明に特徴的な集合組織制御がなされ、その結果としてセミプロセス電磁鋼板としての特性が向上する。
特性の向上は、同じ成分で請求項1、2の集合組織的な特徴を満足していないもの、すなわち、実施例では請求項15に関する条件1を満足していない鋼板との比較から、明確である。また、占積率も集合組織制御を行っていない比較材と同等以上で、特に、中温域での圧下条件の効果が明確に現れている。
Figure 0004589737
Figure 0004589737
Figure 0004589737

Claims (26)

  1. 質量%で、C:0.040%以下、Si:0.05〜6.5%、Mn:3.0%以下、Al:3.5%以下、S:0.055%以下、P:0.25%以下、N:0.040%以下を含み、残部Feおよび不可避的不純物からなるセミプロセス電磁鋼板のうち、製品板の表層1/4またはそれより表層側の部位において{411}<148>方位の集積強度/{411}<011>方位の集積強度≧4.0かつ{411}<148>方位の集積強度≧4.0を満たすことを特徴とするセミプロセス電磁鋼板。
  2. 質量%で、C:0.040%以下、Si:0.05〜6.5%、Mn:3.0%以下、Al:3.5%以下、S:0.055%以下、P:0.25%以下、N:0.040%以下を含み、残部Feおよび不可避的不純物からなるセミプロセス電磁鋼板のうち、鋼板表層1/4またはそれより表層側の部位において<411>//ND方位の集積強度の板面内の方位分布について極大値が4個以上存在することを特徴とするセミプロセス電磁鋼板。
  3. 請求項1または2記載の鋼板のうち、製品板の表層1/4またはそれより表層側の部位において{111}<211>方位の集積強度≦2.0を満たすことを特徴とするセミプロセス電磁鋼板。
  4. 請求項1〜3のいずれかの項に記載の鋼板のうち、製品板の表層1/4位置またはそれより表層側の位置での{411}<148>方位の集積強度が鋼板板厚中心での集積強度の2倍以上となっていることを特徴とするセミプロセス電磁鋼板。
  5. 請求項1〜4のいずれかの項に記載の鋼板のうち、(B0+B90)/2−B45≦0.040を満たすことを特徴とするセミプロセス電磁鋼板。
    ここで各変数は誘起電流密度を5000A/mとした時の圧延方向から0°、45°、90°方向の磁束密度/TをB0、B45、B90とする。
  6. 請求項1〜5のいずれかの項に記載の鋼板のうち、質量%で、Cu+Nb+Cr+B+Ni+Co+Mo+Ti:0.2〜8.0%であることを特徴とするセミプロセス電磁鋼板。
  7. 請求項1〜6のいずれかの項に記載の鋼板のうち、質量%で、Cu:0.2〜8.0%、Nb:0.1〜4.0%、Cr:1.0〜15.0%、B:0.0020〜0.0150%、Ni:0.2〜8.0%、Co:0.2〜8.0%、Mo:0.2〜8.0%、Ti:0.2〜2.0%のいずれか一種以上を含有することを特徴とするセミプロセス電磁鋼板。
  8. 請求項1〜7のいずれかの項に記載の鋼板のうち、質量%で、W,Sn,Sb,Mg,Ca,Ce、REMの1種または2種以上を合計で0.5%以下含有することを特徴とするセミプロセス電磁鋼板。
  9. 請求項1〜8のいずれかの項に記載の鋼板のうち、鋼成分が同じでかつ熱延の全圧延パスがF℃以上で行われた鋼板との比較において、製品板の表層1/4位置またはそれより表層側の位置での{411}<148>方位の集積強度が2倍以上となっていることを特徴とするセミプロセス電磁鋼板。ここでFは、
    F=820+(10×Si+50×Cu+50×Nb+10×Cr+5000×B+10×Ni+20×Co+40×Mo+20×Ti)、である。
  10. 請求項1〜9のいずれかの項に記載の鋼板のうち、鋼成分が同じでかつ熱延の全圧延パスがF℃以上で行われた鋼板との比較において、B45−B’45≧0.030を満たすことを特徴とするセミプロセス電磁鋼板。
    ここで各変数は誘起電流密度を5000A/mとした時の圧延方向から45°方向の磁束密度/TをB45とする。Bは発明鋼、B’は比較鋼についての特性を示す。
  11. 請求項1〜10のいずれかの項に記載の鋼板のうち、製品板の表層1/4を取り除き板厚中心層1/2厚さで測定するとB45が0.02T以上低下することを特徴とするセミプロセス電磁鋼板。
  12. 請求項1〜11のいずれかの項に記載の鋼板の製造方法のうち、冷延直前の熱延板時点で表層1/4領域の再結晶率が90%以下であることを特徴とするセミプロセス電磁鋼板の製造方法。
  13. 請求項1〜12のいずれかの項に記載の鋼板の製造方法のうち、溶鋼を鋳造で厚さ50mm以上の鋼片に凝固させ、熱間圧延工程において500℃以上F℃以下の温度域で圧延が行われ、熱延板時点で表層1/4領域に未再結晶組織を残存させ、さらに酸洗後、この未再結晶組織が残存したまま圧下率50%以上の冷間圧延を行うことを特徴とするセミプロセス電磁鋼板の製造方法。
  14. 請求項1〜13のいずれかの項に記載の鋼板の製造方法のうち、熱間圧延におけるF℃以下の温度域での圧延において圧下による累積歪(対数歪)Hと各パス出側温度T(℃)および、最終パスを除く圧延パスにおいては圧延後次の圧延パス開始までの時間t(秒)または最終パスの場合は最終パス圧延後水冷開始までの時間t(秒)の関係が
    T<F−H×10−t×10
    を満たして行われることを特徴とするセミプロセス電磁鋼板の製造方法。
  15. 請求項1〜14のいずれかの項に記載の鋼板の製造方法のうち、熱間圧延におけるF℃以下の温度域での圧延において、そのうちの少なくとも一回の圧延パスについて圧延時の鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上であることを特徴とするセミプロセス電磁鋼板の製造方法。
  16. 請求項1〜15のいずれかの項に記載の鋼板の製造方法のうち、熱間圧延におけるF℃以下の温度域での圧延において、鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である圧延パスについて、剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である領域が圧延時の板厚で全板厚の10%以上に及ぶことを特徴とするセミプロセス電磁鋼板の製造方法。
  17. 請求項1〜16のいずれかの項に記載の鋼板の製造方法のうち、熱間圧延におけるF℃以下の温度域での圧延において、鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である圧延パスについて、圧延ワークロールの直径が700mm以下とすることを特徴とするセミプロセス電磁鋼板の製造方法。
  18. 請求項1〜17のいずれかの項に記載の鋼板の製造方法のうち、熱間圧延におけるF℃以下の温度域での圧延において、鋼板表層での剪断歪または剪断歪/( 板厚方向圧縮歪)が0.2以上である圧延パスについて、摩擦係数が0.10以上であることを特徴とするセミプロセス電磁鋼板の製造方法。
  19. 請求項1〜18のいずれかの項に記載の鋼板の製造方法のうち、熱間圧延におけるF℃以下の温度域での圧延において、鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である圧延パスについて、剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である部位の剪断歪速度が10/s以上であることを特徴とするセミプロセス電磁鋼板の製造方法。
  20. 請求項1〜19のいずれかの項に記載の鋼板の製造方法のうち、熱間圧延におけるF℃以下の温度域での圧延において、鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である圧延パスを複数回かつ連続して行うに際し、各圧延パス間時間が4.0秒以下であることを特徴とするセミプロセス電磁鋼板の製造方法の製造方法。
  21. 請求項1〜20のいずれかの項に記載の鋼板の製造方法のうち、熱間圧延におけるF℃以下の温度域での圧延において、鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である圧延パスを複数回行い、これによる鋼板表層での剪断歪の累計を0.6以上とすることを特徴とするセミプロセス電磁鋼板の製造方法の製造方法。
  22. 請求項1〜21のいずれかの項に記載の鋼板の製造方法のうち、熱間圧延におけるF℃を超える温度域での圧延において、圧延歪が2.0以下、または1回の圧延パスあたりの圧延歪が0.6以下、または複数回かつ連続したパスを行うに際し各圧延パス間時間が4. 0秒以上であることを特徴とするセミプロセス電磁鋼板の製造方法の製造方法。
  23. 請求項1〜22のいずれかの項に記載の鋼板の製造方法のうち、熱間圧延の最終パス後、水冷開始までの時間を2秒以下とすることを特徴とするセミプロセス電磁鋼板の製造方法。
  24. 請求項1〜23のいずれかの項に記載の鋼板の製造方法のうち、熱間圧延の最終パス後の水冷時の冷却速度を10℃/s以上とし700℃以下まで冷却することを特徴とするセミプロセス電磁鋼板の製造方法。
  25. 請求項1〜24のいずれかの項に記載の鋼板の製造方法のうち、熱間圧延の最終パス後の水冷後、500℃以上に昇温することなく冷延し、焼鈍することを特徴とするセミプロセス電磁鋼板の製造方法。
  26. 請求項1〜25のいずれかの項に記載の鋼板の製造方法のうち、最終焼鈍後に0.5%以上、50%以下の歪を付与することを特徴とするセミプロセス電磁鋼板の製造方法。
JP2005012453A 2005-01-20 2005-01-20 粒成長後の磁気特性が優れたセミプロセス電磁鋼板およびその製造方法 Active JP4589737B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005012453A JP4589737B2 (ja) 2005-01-20 2005-01-20 粒成長後の磁気特性が優れたセミプロセス電磁鋼板およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005012453A JP4589737B2 (ja) 2005-01-20 2005-01-20 粒成長後の磁気特性が優れたセミプロセス電磁鋼板およびその製造方法

Publications (2)

Publication Number Publication Date
JP2006199999A JP2006199999A (ja) 2006-08-03
JP4589737B2 true JP4589737B2 (ja) 2010-12-01

Family

ID=36958258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005012453A Active JP4589737B2 (ja) 2005-01-20 2005-01-20 粒成長後の磁気特性が優れたセミプロセス電磁鋼板およびその製造方法

Country Status (1)

Country Link
JP (1) JP4589737B2 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710458B2 (ja) * 2005-07-19 2011-06-29 住友金属工業株式会社 回転子用無方向性電磁鋼板の製造方法
JP4710465B2 (ja) * 2005-07-25 2011-06-29 住友金属工業株式会社 回転子用無方向性電磁鋼板の製造方法
KR100973627B1 (ko) 2005-07-07 2010-08-02 수미도모 메탈 인더스트리즈, 리미티드 무방향성 전자 강판 및 그 제조 방법
JP4779474B2 (ja) * 2005-07-07 2011-09-28 住友金属工業株式会社 回転子用無方向性電磁鋼板およびその製造方法
JP4790537B2 (ja) * 2006-08-10 2011-10-12 新日本製鐵株式会社 全周特性かつ加工性の良好な無方向性電磁鋼板の製造方法
JP5196807B2 (ja) * 2007-02-26 2013-05-15 新日鐵住金ステンレス株式会社 加工肌荒れの小さい成形性に優れたフェライト系ステンレス鋼板およびその製造方法
JP5333415B2 (ja) * 2010-11-08 2013-11-06 新日鐵住金株式会社 回転子用無方向性電磁鋼板およびその製造方法
CN103415638B (zh) * 2011-08-18 2015-09-02 新日铁住金株式会社 无方向性电磁钢板、其制造方法、电机铁心用层叠体及其制造方法
JP6554805B2 (ja) * 2015-02-05 2019-08-07 日本製鉄株式会社 電磁鋼板およびその製造方法とクローポールモータ
JP6651759B2 (ja) * 2015-09-16 2020-02-19 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
JP6575269B2 (ja) * 2015-09-28 2019-09-18 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
JP6763148B2 (ja) * 2016-02-04 2020-09-30 日本製鉄株式会社 無方向性電磁鋼板
JP6828292B2 (ja) * 2016-07-20 2021-02-10 日本製鉄株式会社 無方向性電磁鋼板及びその製造方法
JP6633025B2 (ja) 2016-07-21 2020-01-22 株式会社デンソー コア板の製造方法
JP6855894B2 (ja) * 2017-04-14 2021-04-07 日本製鉄株式会社 無方向性電磁鋼板及びその製造方法
JP6855895B2 (ja) * 2017-04-14 2021-04-07 日本製鉄株式会社 無方向性電磁鋼板及びその製造方法
CN109013711B (zh) * 2018-07-16 2019-11-08 东北大学 一种提高特厚板心部质量和探伤合格率的方法
JP7315811B2 (ja) * 2018-09-06 2023-07-27 日本製鉄株式会社 無方向性電磁鋼板の製造方法
JP7284383B2 (ja) * 2019-02-28 2023-05-31 日本製鉄株式会社 無方向性電磁鋼板
CN110172634B (zh) * 2019-06-28 2020-11-24 辽宁石油化工大学 一种高硅电工钢薄板及其制备方法
JP7288215B2 (ja) * 2019-11-15 2023-06-07 日本製鉄株式会社 無方向性電磁鋼板
EP4060061A4 (en) * 2019-11-15 2023-01-25 Nippon Steel Corporation NON-ORIENTED ELECTROMAGNETIC STEEL SHEET
JP7381941B2 (ja) * 2019-11-15 2023-11-16 日本製鉄株式会社 積層コアおよび電気機器
JP7184226B1 (ja) * 2021-03-31 2022-12-06 日本製鉄株式会社 回転電機、ステータの鉄心およびロータの鉄心のセット、回転電機の製造方法、無方向性電磁鋼板の製造方法、回転電機のロータおよびステータの製造方法並びに無方向性電磁鋼板のセット

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417821A (en) * 1987-07-13 1989-01-20 Kawasaki Steel Co Manufacture of non-oriented electromagnetic steel strip
JPH0759725B2 (ja) * 1988-12-28 1995-06-28 新日本製鐵株式会社 磁気特性の優れたセミプロセス無方向性電磁鋼板の製造方法
JPH04362128A (ja) * 1991-06-10 1992-12-15 Kawasaki Steel Corp 磁気特性の優れたセミプロセス無方向性電磁鋼板の製造法

Also Published As

Publication number Publication date
JP2006199999A (ja) 2006-08-03

Similar Documents

Publication Publication Date Title
JP4589737B2 (ja) 粒成長後の磁気特性が優れたセミプロセス電磁鋼板およびその製造方法
JP4593317B2 (ja) 磁気特性が優れた方向性電磁鋼板の製造方法
JP4724431B2 (ja) 無方向性電磁鋼板
RU2398894C1 (ru) Лист высокопрочной электротехнической стали и способ его производства
KR20190112757A (ko) 무방향성 전자 강판 및 무방향성 전자 강판의 제조 방법
JP4533036B2 (ja) 圧延方向から45°方向の磁気特性が優れた無方向性電磁鋼板およびその製造方法
JP7172100B2 (ja) 無方向性電磁鋼板
WO2016204288A1 (ja) 鋼板及び製造方法
JPWO2007144964A1 (ja) 高強度電磁鋼板およびその製造方法
WO2007007423A1 (ja) 無方向性電磁鋼板およびその製造方法
JP6855895B2 (ja) 無方向性電磁鋼板及びその製造方法
JP6432173B2 (ja) 全周の磁気特性が良好な無方向性電磁鋼板
JP2024041844A (ja) 無方向性電磁鋼板の製造方法
JP2018178196A (ja) 無方向性電磁鋼板及びその製造方法
JP4403038B2 (ja) 圧延方向から45°方向の磁気特性が優れた無方向性電磁鋼板およびその製造方法
JP6432671B2 (ja) 方向性電磁鋼板の製造方法
JP3941363B2 (ja) 延性、加工性および耐リジング性に優れたフェライト系ステンレス冷延鋼板およびその製造方法
WO2022210998A1 (ja) 無方向性電磁鋼板
JP4855221B2 (ja) 分割コア用無方向性電磁鋼板
JP6879320B2 (ja) 方向性電磁鋼板の製造方法
JP4283687B2 (ja) 無方向性電磁鋼板の製造方法
JPH0443981B2 (ja)
WO2019132039A1 (ja) クラッド鋼板
JP2008308704A (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP7269527B2 (ja) 無方向性電磁鋼板およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100910

R151 Written notification of patent or utility model registration

Ref document number: 4589737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350