JP4587251B2 - 熱処理装置 - Google Patents

熱処理装置 Download PDF

Info

Publication number
JP4587251B2
JP4587251B2 JP2001044569A JP2001044569A JP4587251B2 JP 4587251 B2 JP4587251 B2 JP 4587251B2 JP 2001044569 A JP2001044569 A JP 2001044569A JP 2001044569 A JP2001044569 A JP 2001044569A JP 4587251 B2 JP4587251 B2 JP 4587251B2
Authority
JP
Japan
Prior art keywords
heat treatment
reaction tube
film
semiconductor film
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001044569A
Other languages
English (en)
Other versions
JP2002246327A (ja
JP2002246327A5 (ja
Inventor
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2001044569A priority Critical patent/JP4587251B2/ja
Publication of JP2002246327A publication Critical patent/JP2002246327A/ja
Publication of JP2002246327A5 publication Critical patent/JP2002246327A5/ja
Application granted granted Critical
Publication of JP4587251B2 publication Critical patent/JP4587251B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱処理装置に関する。特に本発明は、ランプなど光源からの輻射により被処理物を加熱する熱処理装置に関し、結晶構造を有する半導体膜を用いる半導体装置に適用される。尚、本明細書において半導体装置とは半導体特性を利用して機能しうる装置全般を指していう。
【0002】
【従来の技術】
近年、集積回路はシリコンウエハーなどの半導体基板を用いて作製されるものばかりでなく、ガラスや石英などの基板上に形成した薄膜トランジスタ(以下、TFTという)を用いる方法も開発されている。半導体装置の製造工程においてファーネスアニール炉による熱アニール法に代表される熱処理は必須の工程であり、特に半導体膜の結晶化、ドーピング処理後等には欠かすことができない。
【0003】
なぜなら、半導体装置を製造するために用いる半導体膜を非晶質半導体膜で形成するより、該非晶質半導体膜を熱処理によって結晶化させた結晶構造を有する半導体膜(以下、結晶質半導体膜と記す)で形成する方が良好な電気的特性を得ることができるからである。
【0004】
また、ドーピング処理において、半導体膜へ打ち込まれるイオンのエネルギーは、半導体膜を形成する元素の結合エネルギーと比較して非常に大きい。そのため、前記半導体膜へ打ち込まれるイオンは前記半導体膜を形成する元素を格子点から弾き飛ばして結晶に欠陥を生じさせる。したがって、ドーピング処理後は前記欠陥の回復を行い、同時に打ち込んだ不純物元素を活性化させるために加熱処理を行う。また、不純物元素を活性化させることは、不純物元素が添加された領域を低抵抗領域にしてLDD領域、ソース領域およびドレイン領域として機能させるために重要なプロセスである。
【0005】
さらに、結晶化を促進する金属元素を用いて半導体膜の結晶化を行うと、形成される結晶質半導体膜の結晶性は良好なものとなる。しかしながら、結晶質半導体膜の膜中或いは膜表面には、前記金属元素が残存し、得られる素子の特性をばらつかせるなどの問題がある。即ち、結晶化を促進する作用のある金属元素は、一旦、結晶質半導体膜が形成されてしまえば、かえって不要な存在となってしまう。そのため、結晶質半導体膜から金属元素を除去する技術(ゲッタリング技術)が開発され、特開平10−270363号公報に開示している。前記ゲッタリング技術とは、まず、結晶質半導体膜に15族に属する元素を選択的に添加して熱処理を行う。前記熱処理により、前記15族に属する元素が添加されていない領域(被ゲッタリング領域)の前記金属元素は前記被ゲッタリング領域から放出され、拡散し、前記15族に属する元素の添加領域(ゲッタリング領域)に捕獲される。その結果、前記被ゲッタリング領域において前記金属元素の除去または低減することができる。また、15族に属する元素だけでなく13族に属する元素も併せて導入しても、金属元素をゲッタリングできることは確認されている。
【0006】
【発明が解決しようとする課題】
半導体装置の高性能化が進むにつれ、ゲート電極がメタル化するなど、比較的耐熱温度の低い層の形成が増えてきている。特に、ドーピング処理後の熱処理はゲート電極や配線形成後に行われることが多いため、低温でしかも短時間で処理することが望まれており、ファーネスアニール炉のように加熱及び冷却にかなりの時間を必要とする方法は必ずしも適切ではないと考えられている。
【0007】
また、既に述べたように、半導体装置の製造工程において熱処理は複数の工程において必須の工程となっている。そのため、少しでも低温、かつ、短時間で熱処理を行うことができれば、加熱のための消費電力を大幅に低減することが可能となる。これは、製造コストの低減のために非常に重要になっている。
【0008】
本発明はこのような問題点を解決するための技術であり、TFTを用いて作製するアクティブマトリクス型の液晶表示装置に代表される半導体装置において、該半導体装置の動作特性および信頼性を向上させると共に、製造コストの低減を実現する熱処理装置を提供することを目的としている。
【0009】
【課題を解決するための手段】
上記問題点を解決するため、本発明は、急速加熱及び急速冷却を行う熱処理技術として、瞬間熱アニール(Rapid Thermal Anneal:以下、RTAと記す)を適用する。RTAは主に赤外線ランプを用いて基板を急速に加熱し、短時間で熱処理を行う方法である。
【0010】
そして、本発明の熱処理装置の構成は、反応管と、反応管内を高圧にする加圧手段と、反応管内に設置される被処理体を加熱するための光源とを備えている。
【0011】
そして、本発明の熱処理装置の他の構成は、反応管と、反応管内を高圧にする加圧手段と、反応管内に設置される被処理体を加熱または冷却する気体を導入する手段と、反応管内に設置される被処理体を加熱するための光源とを備えている。
【0012】
光源にはハロゲンランプ、メタルハライドランプ、高圧水銀ランプ、高圧ナトリウムランプ、キセノンランプなどが採用されるが、いずれにしても放射光として被処理体が吸収する波長帯を含むものを用いる。例えば、シリコン膜であれば0.5〜1.5μmの波長帯の光を放射するハロゲンランプやメタルハライドランプなどが適している。
【0013】
また、反応管内に導入する気体は窒素、ヘリウム、アルゴン、クリプトン、キセノンなどの不活性気体を用い、加熱された被処理体と反応することを防ぐ。もちろん、水素などの還元ガスや、酸素などを導入して、故意に被処理体と反応させることもできる。
【0014】
また、このような構成を用いた本発明の半導体装置の作製方法は、反応管内を高圧に保持し、前記反応管の外側に備えられた光源から射出された光により、前記反応管内に置かれた被処理体を加熱することを特徴としている。
【0015】
被処理体の熱処理の方法は、光源から射出した光を被処理体に照射して加熱する方法である。この熱処理は結晶化、不純物元素の活性化、ゲッタリングなど所望の熱処理を行うためのものである。
【0016】
また、このような構成を用いた本発明の他の半導体装置の作製方法は、反応管内を高圧に保持すると共に、前記反応管内に加熱された気体を供給し、前記反応管の外側に備えられた光源から射出された光により、前記反応管内に置かれた被処理体を加熱することを特徴としている。また、加熱を終了した後には、反応管内に気体を供給し前記被処理体を冷却することによりスループットを向上させることもできる。
【0017】
被処理体の熱処理の方法は、加熱した不活性気体を被処理体に吹き付けて行う他に、光源を点灯して被処理体を加熱することにより行う方法も採用される。この熱処理は結晶化、不純物元素の活性化、ゲッタリングなど所望の熱処理を行うためのものである。
【0018】
また、被処理体の熱処理の方法は、加熱した不活性気体を被処理体に吹き付けて行う他に、光源を周期1秒以下でパルス状に点滅して被処理体を加熱する第1の段階と、前記光源を周期1秒以上でパルス状に点滅して被処理体を加熱する第2の段階により行う方法も採用される。この第1の段階は所定の温度まで被処理体を予熱するために行い、第2の熱処理は結晶化、不純物元素の活性化、ゲッタリングなど所望の熱処理を行うためのものである。
【0019】
被処理体としては、ガラスまたは石英などの基板上に形成された半導体膜などであり、半導体膜には一導電型の不純物が添加された不純物領域が形成されていても良い。また、ゲート絶縁膜、ゲート電極などが形成されていても良い。
【0020】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。本発明の熱処理装置の構成を図1により説明する。図1に示す熱処理装置は、基板を移動させる搬送手段108を備えた搬送室101の周りに、ロード室102、アンロード室103、予備加熱室104、熱処理室105、レーザー処理室106を備えた構成となっている。これらの部屋は、加圧手段127により高圧に保持することが可能となっている。また、ゲート107a〜107eを介して搬送室101と連結されている。
【0021】
熱処理室105には光源118が備えられ、電源ユニット119により点灯させる。
【0022】
反応管160内を高圧にする際に導入する気体は窒素やヘリウム、アルゴン、クリプトン、ネオンなどの不活性気体を用いる。いずれにしても光源118の輻射熱に対し吸収率の小さい媒質であることが望ましい。この気体はシリンダー116bから供給されるが、このような気体を供給する手段として、反応管160に導入する前に気体の加熱手段112b及び冷却手段113bが設けられている。これは反応管160に設置される被処理体の加熱又は冷却をするためのものであり、気体はこのいずれか一方の経路により反応管160に導入される。反応管160に供給した気体は、サーキュレータ115bにより循環させて基板を冷却する。この場合、気体の純度を維持するために精製器114bを途中に設けておくことが望ましい。精製器114bはゲッター材を用いても良いし、液体窒素によるコールドトラップを用いても良い。また、高圧にする前に排気手段により真空にした後、所望のガスを用いて高圧にすることもできる。排気手段111としてターボ分子ポンプ109とドライポンプ110が備えられている。勿論、排気手段には、その他の真空ポンプを用いることが可能である。また、高圧から大気圧に減圧する排気手段131として自動制御弁128およびドライポンプ110が備えられている。さらに、排気の流量を調節するために、自動制御弁とドライポンプの間にマスフローメータ等を用いてもよい。もちろん、手動式の開閉弁を設置してもよいし、他の排気ポンプを用いても良い。
【0023】
光源118はその電源ユニット119により点灯する。光源118の点灯及び消灯と、熱処理室105に流す気体の流量は連動して変化させている。被処理体は光源118の点灯により急速に加熱される。昇温期間は100〜200℃/秒という昇温速度で設定温度(例えば1150℃)まで加熱する。設定温度は、被処理基板近傍に置かれた温度検出手段により検知される温度である。温度検知手段としてはサーモパイルや熱電対などを用いる。
【0024】
例えば、150℃/秒の昇温速度で加熱すれば、1100℃まで7秒弱で加熱できる。その後、ある一定時間設定温度に保持し、光源の点灯を遮断する。
【0025】
光源にはハロゲンランプ、メタルハライドランプ、高圧水銀ランプ、高圧ナトリウムランプ、キセノンランプなどを用いることができる。光源118は所望の時間点灯し続けてもよいし、周期1秒以下でパルス状に点滅して被処理体を加熱する第1の段階と、周期1秒以上でパルス状に点滅して被処理体を加熱する第2の段階とに分けて行ってもよい。第1の段階は被処理体を予備加熱するために行い、200〜400℃程度までの加熱を行う。第2の段階は、熱処理を目的とした加熱であり、光源118の点灯時間を長くして所望の温度まで基板を加熱する。
【0026】
光源118のパルス状の点灯は、被処理体の所定の領域を選択的に加熱するために行っている。例えば、被処理体としてガラス基板上の半導体膜がある場合、赤外領域に強いスペクトル分布を持つハロゲンランプを用いれば、ガラス基板を変形させることなく実質的に半導体膜を600℃以上に加熱することができる。
【0027】
周期1秒以下でパルス状に点滅して被処理体を加熱する第1の段階のように、短い周期でパルス状の放電を可能とする回路の一例は図6に示されている。図6(A)の回路はパルスフォーミングネットワーク(Pulse Forming Network)回路であり、L1、C1、Rによる臨界制動放電に、L2、C2、Rによる3倍の周期の減衰振動を加えることでパルス波形を方形波としている。このような放電回路によりパルス幅10ナノ秒〜100ミリ秒で、10MA程度の出力が可能となる。放電の持続時間はLとCの値や接続段数により可変可能である。その出力は図6(B)に示すように光源H1〜Hnに供給される。一方、周期1秒以上でパルス状に点滅して被処理体を加熱する第2の段階は、バッテリーを用やフライホイール発電機などにより行う。
【0028】
熱処理は、大気圧下に保持された熱処理室105内に被処理体を設置し、第1の段階として加圧手段127および加熱手段112bにより加熱された気体を導入し、1.1×105〜2.5×105Paに保つ。同時に、導入された気体により被処理体は200〜400程度まで加熱される。この気体は精製器114b、循環器115b、加熱手段112bの経路により循環させても良い。この第1の段階として光源118を周期1秒以下の短い間隔で点滅させる加熱を加えても良い。その後、第2の段階として光源118より1〜60秒の点灯時間のパルス光を複数回照射する熱処理を行う。所定の熱処理が終わった後、気体の流入経路を変更し、冷却手段113bを介して導入する。これは、被処理体を冷却するために行うものであり、冷却される気体の温度は室温〜液体窒素温度程度までとする。
【0029】
このように、本発明の熱処理装置は、被処理体の加熱と冷却にかかる時間を短縮するために室温以上の温度に加熱、又は室温からそれ以下の温度に冷却した気体を用いることを特徴としている。また、導入する気体を用いて、反応管内を高圧にすることを特徴としている。導入する気体が媒体となって熱を伝えるため、反応管内の雰囲気および被処理体において均熱性の向上が可能となる。また、反応管内を排気したのち(好ましくは真空状態にする。)、気体を導入して前記反応管内を加圧すると、大気中やCR内に存在する不純物元素が前記反応管内において著しく低減されるため、熱処理を好適に行うことができる。特に、前記反応管内の酸素濃度を著しく低下することができるため、被処理体の酸化が抑制されて不純物の活性化を促進し、再現性の高い熱処理を行うことができる。このように、半導体膜に選択的に吸収される光を光源から照射することにより、基板自体はそれ程加熱することなく、半導体膜のみを選択的に加熱することが可能となる。
【0030】
予備加熱室104は被処理体の加熱及び冷却をより積極的に行うものであり、シリンダー116aから供給される不活性気体を加熱手段112a又は冷却手段113aにより加熱又は冷却し、被処理体に吹き付ける構成となっている。予備加熱室104は同様に排気手段111により高圧に保持され、導入された気体は精製器114a、循環器115aにより循環させることも可能である。
【0031】
また、付属するレーザー処理室106はレーザー光により被処理体の熱処理を行う処理室であり、レーザー発振器121及びレーザー光を被処理体に所定のエネルギー密度で照射するための光学系122などが備えられている。
【0032】
図2は熱処理室105の詳細を説明する図である。熱処理室105には石英で形成された反応管160があり、その外側に光源118が設けられている。反応管160内に被処理体が設置されるが、温度分布を均一なものとするために被処理基板はピン上に乗せられる。加圧手段127は、反応管内の気体を供給し高圧に保持するために用いる。また、排気手段111は、好ましくはターボ分子ポンプ109とドライポンプ111とからなり、反応管内の気体を排気するために用いる。また、排気手段131は、高圧から大気圧に減圧するために用い、排気手段111は、大気圧から減圧するために用いる。光源118により加熱される温度の測定は、熱電対を用いた温度検出手段124により行う。反応管160内にはサーモパイルなどのセンサー125が設けられ、間接的に被処理体の加熱温度をモニターしている。
【0033】
高圧下での熱処理においても、光源からの輻射が被処理体に吸収される波長帯を用いることにより、効率良く加熱することが可能である。
【0034】
光源118は電源ユニット119により点灯と消灯の動作をする。コンピュータ120はこの電源ユニット119と、気体の加熱手段112b及び冷却手段113b、精製器114b、循環器115bの動作を集中して制御している。
【0035】
反応管160は二重構造になっており、内管161の内側に被処理体が設置されている。加熱手段112b又は冷却手段113bを介して供給される不活性気体は反応管(外管)160と内管161との間に供給され、内管161に設けられた細孔から内管161の内側に供給されるようになっている。
【0036】
反応管160内を高圧にするため、該反応管160は高圧に耐え得る材質や厚みにする必要がある。必要に応じて、129および130からなる高圧容器で反応管160を密閉してもよい。前記高圧容器を用い、該高圧容器内を大気圧より高く、かつ、反応管より少し高圧または低圧とすれば、実質的な反応管に対する加圧が小さくなるので、前記反応管の材質や厚みの制約が少なくなる。また、光源118からの光を被処理体に照射するため、少なくとも被処理体への照射する領域に対応する高圧容器部分は前記光に対する透過材料であるとする。例えば、前記光が可視光であるなら、129を合成石英で形成し、130をステンレスで形成すれば、光源からの光を遮ることなく被処理体に照射することができる。また、反応管と同様に、高圧容器にも加圧手段および加熱手段127と、排気手段111、131を設置する。また、高圧容器および反応管に導入する気体は同じものが望ましい。
【0037】
図3は熱処理室105における他の構成例であり、反応管160内に供給する不活性気体を加熱及び冷却する手段としてラジエター162を用い、反応管160に直結した構成を示している。ラジエター162は熱交換器126に接続し加熱又は冷却を行う。その他の構成は図2と同様なものとする。
【0038】
図4は予備加熱室104の構成を示し、シリンダー116aから加熱手段112a又は冷却手段113aを介して供給される不活性気体は多孔質材107を通して予備加熱室104内に供給される。細孔を多数設けたシャワー板などを用いても良いが、基板100により均一に不活性気体を吹き付けるにはセラミックなどで形成される多孔質材を用いて行うことが望ましい。その他排気手段111などの構成は図1の説明に従うものとする。
【0039】
本発明の熱処理装置に適した不活性気体の加熱手段及び冷却手段の構成の一例を図5に示す。図5(A)は加熱手段の一例を示し、気体を通過させるシリンダー150の内側に高純度のチタンやタングステンで形成されたフィン152が設けられている。シリンダー150は透光性の石英などで形成され、その外側に設けられた光源150の輻射によりフィン152を加熱する。気体はフィン152に接触して加熱されるが、熱源をシリンダー150の外部に設けることにより汚染が防止され、通過させる気体の純度を維持することができる。
【0040】
図5(B)は冷却手段の一例を示し、気体を通過させるシリンダー153内に高純度のチタンやタングステンで形成されたフィン154が設けられ、ヒートパイプにより熱交換器155と接続している。気体はフィン154に接触して加熱される。
【0041】
以上、本発明を用いることにより、ガラス等の耐熱性の低い基板を用いた場合においても、短時間の熱処理で半導体膜に添加した不純物元素の活性化や、半導体膜のゲッタリング処理をする方法及びそのような熱処理を可能とすることができる。そしてこのような熱処理は半導体装置の製造工程に組み入れることができる。本実施例において示す熱処理装置の構成は一例であり、ここで示す構成に限定されるものではない。本発明の熱処理装置は、被処理基板を冷却する手段と、高圧下でパルス状に光源からの光を照射して半導体膜を加熱させる構成に特徴があり、このような構成が満足されれば、その他の構成は特に限定されるものではない。
【0042】
勿論、本発明の熱処装置はTFTのみならず半導体基板を用いた集積回路の熱処理工程に用いることができる。
【0043】
【実施例】
[実施例1]
本発明の熱処理装置を用いて、非晶質半導体膜を結晶化させる実施例を図7により説明する。
【0044】
図7において、基板201はアルミノホウケイ酸ガラスまたはバリウムホウケイ酸ガラスなどによる透光性の基板である。厚さは0.3〜1.1mmのものを用いる。この基板201上に非晶質シリコン膜203をプラズマCVD法で形成する。また、基板201から非晶質シリコン膜に熱処理などにより不純物元素が混入しないようにブロッキング層201を形成する。通常はシリコンを成分とする絶縁膜を用いて形成するが、本実施例では、SiH4、N2O、NH3からプラズマCVD法で作製される第1酸化窒化シリコン膜を50nm、SiH4、N2OからプラズマCVD法で作製される第2酸化窒化シリコン膜を100nmの厚さに形成し、これらを積層させてブロッキング層202としている。
【0045】
非晶質シリコン膜203上には、シリコンの結晶化に必要な加熱温度を低温化することが可能な金属元素を添加する。このような触媒作用のある金属元素としては鉄(Fe)、ニッケル(Ni)、コバルト(Co)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)、銅(Cu)、金(Au)などであり、これらから選ばれた一種または複数種を用いることができる。
【0046】
重量換算で0.1〜100ppm、好ましくは1〜5ppmのニッケルを含む酢酸ニッケル塩溶液をスピナーで塗布してニッケル含有層204を形成する。この場合、当該溶液の馴染みをよくするために、非晶質シリコン膜204の表面処理として、オゾン含有水溶液で極薄い酸化膜を形成し、その酸化膜をフッ酸と過酸化水素水の混合液でエッチングして清浄な表面を形成した後、再度オゾン含有水溶液で処理して極薄い酸化膜を形成しておくと良い。シリコンの表面は本来疎水性なので、このように酸化膜を形成しておくことにより酢酸ニッケル塩溶液を均一に塗布することができる。
【0047】
このような形態の被処理体を、大気圧下に保持された熱処理室105内に設置する。第1の段階として加圧手段127および加熱手段112bにより250℃に加熱された不活性気体を導入し、1.1×105〜2.5×105Paに保つ。同時に、導入された不活性気体により被処理体には予備加熱が行なわれる。予備加熱の時間は任意なものとするが、一例として5分間のその状態で保持する。或いは、他に設けられた予備加熱室であらかじめ加熱されている場合には、1分間の予備加熱とすることもできる。
【0048】
この第1の段階として光源118を点灯させる加熱を加えても良い。その後、第2の段階として光源118より所望の点灯時間照射する熱処理を行う。所定の熱処理が終わった後、気体の流入経路を変更し、冷却手段113bを介して導入する。これは、被処理体を冷却するために行うものであり、冷却される気体の温度は室温〜液体窒素温度程度までとする。
【0049】
光源から射出された光により加熱される半導体膜の温度は直接的に測定されないが、熱電対を用いた温度センサーの測定値として1250℃となるように輻射強度を調節する。この熱処理により非晶質シリコン膜を結晶化させることができる。その後、不活性気体の導入経路を切り換え、冷却手段により室温またはそれ以下の温度に冷却した不活性気体により冷却を行う。
【0050】
また、プラズマCVD法で作製された非晶質シリコン膜は膜中に水素が10〜30原子%程度残留しており、この水素を加熱により脱離させてから結晶化を行うことが通常行われる。そのための熱処理として、点灯時間0.1秒程度のパルス光を複数回照射して半導体膜を500℃程度まで加熱し、脱水素処理を行っても良い。この脱水素処理は高圧下で行うことにより、より促進させることができる。
【0051】
こうして、実質的には数秒十秒〜数分の加熱時間で非晶質シリコン膜を結晶化することができ、歪み点が660℃のガラス基板を用いても、基板を歪ませること無く結晶化を行うことができる。
【0052】
[実施例2]
このようにして作製される結晶質半導体膜を用いてTFTを作製する方法を図8を用いて説明する。
【0053】
まず、図8(A)において、アルミノホウケイ酸ガラスまたはバリウムホウケイ酸ガラスなどによる透光性の基板301上に島状に分離された結晶質半導体膜303、304を形成する。また、基板301と半導体膜との間には、窒化シリコン、酸化シリコン、窒化酸化シリコンから選ばれた一つまたは複数種を組み合わせた第1絶縁膜302を50〜200nmの厚さで形成する。
【0054】
第1絶縁膜302の一例として、プラズマCVD法でSiH4とN2Oを用い酸化窒化シリコン膜を50〜200nmの厚さに形成する。その他の形態として、プラズマCVD法でSiH4とNH3とN2Oから作製される酸化窒化シリコン膜を50nm、SiH4とN2Oから作製される酸化窒化シリコン膜を100nm積層させた2層構造や、或いは、窒化シリコン膜とTEOS(Tetraethyl Ortho Silicate)を用いて作製される酸化シリコン膜を積層させた2層構造としても良い。
【0055】
そして、第2絶縁膜305を80nmの厚さで形成する。第2絶縁膜305はゲート絶縁膜として利用するものであり、プラズマCVD法またはスパッタ法を用いて形成する。第2絶縁膜305として、SiH4とN2OにO2を添加させて作製する酸化窒化シリコン膜は膜中の固定電荷密度を低減させることが可能となり、ゲート絶縁膜として好ましい材料である。勿論、ゲート絶縁膜はこのような酸化窒化シリコン膜に限定されるものでなく、酸化シリコン膜や酸化タンタル膜などの絶縁膜を単層または積層構造として用いても良い。
【0056】
その後、図8(B)に示すように、第2絶縁膜305上にゲート電極を形成するための第1導電膜と第2導電膜とを形成する。第1導電膜は窒化タンタルであり、第2導電膜はタングステンを用いて形成する。この導電膜はゲート電極を形成する為のものであり、それぞれの厚さは30nm及び300nmとする。
【0057】
その後、光露光工程により、ゲート電極を形成するためのレジストパターン308を形成する。このレジストパターンを用いて第1のエッチング処理を行う。エッチング方法に限定はないが、好適にはICP(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法を用いる。タングステン及び窒化タンタルのエッチング用ガスとしてCF4とCl2を用い、0.5〜2Pa、好ましくは1Paの圧力でコイル型の電極に500WのRF(13.56MHz)電力を投入してプラズマを生成して行う。この時、基板側(試料ステージ)にも100WのRF(13.56MHz)電力を投入して、実質的に負の自己バイアス電圧を印加する。CF4とCl2を混合した場合にはタングステン、窒化タンタルをそれぞれ同程度の速度でエッチングすることができる。
【0058】
上記エッチング条件では、レジストによるマスクの形状と、基板側に印加するバイアス電圧の効果により端部をテーパー形状とすることができる。テーパー部の角度は15〜45度となるようにする。また、ゲート絶縁膜上に残渣を残すことなくエッチングするためには、10〜20%程度の割合でエッチング時間を増加させると良い。W膜に対する酸化窒化シリコン膜の選択比は2〜4(代表的には3)であるので、オーバーエッチング処理により第2の絶縁層が露出した面は20〜40nm程度エッチングされる。こうして、第1のエッチング処理により窒化タンタルとタングステンから成る第1形状電極306、307を形成することができる。
【0059】
そして、第1のドーピング処理を行いn型の不純物(ドナー)を半導体膜にドーピングする。その方法に限定はないが、好ましくは、イオンドープ法またはイオン注入法で行う。イオンドープ法の条件はドーズ量を1×1013〜5×1014/cm2として行う。n型を付与する不純物元素として15族に属する元素、典型的にはリン(P)または砒素(As)を用いる。この場合、第1形状電極306、307はドーピングする元素に対してマスクとなり、加速電圧を適宣調節(例えば、20〜60keV)して、第2絶縁膜を通過した不純物元素により第1不純物領域309、310を形成する。第1の不純物領域309、310おけるリン(P)濃度は1×1020〜1×1021/cm3の範囲となるようにする。
【0060】
続いて、図8(C)に示すように第2のエッチング処理を行う。エッチングはICPエッチング法を用い、エッチングガスにCF4とCl2とO2を混合して、1Paの圧力でコイル型の電極に500WのRF電力(13.56MHz)を供給してプラズマを生成する。基板側(試料ステージ)には50WのRF(13.56MHz)電力を投入し、第1のエッチング処理に比べ低い自己バイアス電圧を印加する。このような条件によりタングステン膜を異方性エッチングし、第1の導電層である窒化タンタル膜を残存させるようにする。こうして、第1のエッチング処理により窒化タンタルとタングステンから成る第2形状電極311、312を形成する。第2絶縁膜はこのエッチング処理により窒化タンタルで覆われていない部分が10〜30nm程度エッチングされ薄くなる。
【0061】
第2のドーピング処理におけるドーズ量は第1のドーピング処理よりも少なくし、かつ高加速電圧の条件でn型不純物(ドナー)をドーピングする。例えば、加速電圧を70〜120keVとし、1×1013/cm2のドーズ量で行い、第1の不純物領域の内側に第2の不純物領域を形成する。ドーピングは露出した窒化タンタルを通過させ、その下側の半導体膜に不純物元素を添加する。こうして、窒化タンタルと重なる第2不純物領域313、314を形成する。この不純物領域は、窒化タンタルの膜厚によって変化するが、そのピーク濃度は1×1017〜1×1019/cm3の範囲で変化する。この領域のn型不純物の深さ分布は一様ではなくある分布をもって形成される。
【0062】
そして図8(D)に示すようにレジストによるマスク315を形成し、半導体膜303、304にp型不純物(アクセプタ)をドーピングする。典型的にはボロン(B)を用いる。第1のp型不純物添加領域316、317の不純物濃度は2×1020〜2×1021/cm3となるようにし、含有するリン濃度の1.5〜3倍のボロンを添加して導電型をp型になっている。
【0063】
その後、図9に示すように、半導体膜の結晶性の回復および添加した不純物を活性化する熱処理を行う。この熱処理は実施形態において説明する熱処理装置を用い、高圧状態に保持された反応管内に被処理体を導入し、光源から射出された光の照射により行う。前記光はタングステンハロゲンランプ319を光源として基板の片面または両面から照射する。高圧下とし酸素濃度を10ppm以下に低減した状態で行う熱処理は、この段階で露出しているゲート電極の表面を酸化させることなく行うことができる。
【0064】
この熱処理によって、不純物が活性化すると共に、第2形状の電極と重なる半導体膜の領域、即ちチャネル形成領域から結晶化に用いた触媒元素を燐とボロンが添加された不純物領域にゲッタリングすることができる。ここでは、ボロンが添加された領域にはイオンドーピング時に同時に水素が取り込まれ、その水素がこの熱処理により再放出することにより一時的にダングリングボンドが多量に生成され、それがゲッタリングサイトとして作用するものと考えられる。
【0065】
その後、図10に示すように酸化窒化シリコン膜または窒化シリコン膜から成る保護絶縁膜318をプラズマCVD法で50nmの厚さに形成する。クリーンオーブンを用いる410℃の熱処理はこの保護絶縁膜318からの水素放出をもたらし、半導体膜の水素化を行い欠陥を補償することができる。
【0066】
層間絶縁膜321は、ポリイミドまたはアクリルなどの有機絶縁物材料で形成し表面を平坦化する。勿論、プラズマCVD法でTEOSを用いて形成される酸化シリコンを適用しても良い。
【0067】
次いで、層間絶縁膜321の表面から各半導体膜の不純物領域に達するコンタクトホールを形成し、Al、Ti、Taなどを用いて配線を形成する。図8(D)において322〜323はソース線またはドレイン電極となる。こうしてnチャネル型TFTとpチャネル型TFTを形成することがでぃる。ここではそれぞれのTFTを単体として示しているが、これらのTFTを使ってCMOS回路やNMOS回路、PMOS回路を形成することができる。
【0068】
[実施例3]
図11(A)は、実施例2の工程により、同一基板上にpチャネル型TFT403、nチャネル型TFT404から成る駆動回路401と、nチャネル型TFT405から成る画素部402が形成された構成を示している。nチャネル型TFT405はマルチゲート構造を有しているが、作製工程は同様にして行われる。また、画素部402には半導体膜414、第2絶縁膜、ゲート電極と同じ工程で作られる容量電極409からなる保持容量が形成されている。412は画素電極であり、410はデータ線408と半導体膜413の不純物領域とを接続する接続電極である。また、411はゲート線であり、図中には示されていないが、ゲート電極として機能する第3形状電極407と接続している。この第3形状電極407は、第2形状電極の窒化タンタルをエッチングすることにより形成されるものである。
【0069】
駆動回路401のpチャネル型TFT403、nチャネル型TFT404を用いてシフトレジスタ、レベルシフタ、ラッチ、バッファ回路など様々な機能回路を形成することができる。図11(A)で示すA−A'間の断面構造は、図12で示す画素の上面図において示すA−A'線に対応している。また、図11(B)で示すB−B'間の断面構造は、図12で示す画素の上面図において示すB−B'線に対応している。
【0070】
このような基板から液晶表示装置や、発光素子で画素部を形成する発光装置を形成することができる。図13はTFTによって駆動回路と画素部が形成されている基板の外観図である。基板501上には画素部506、駆動回路504、505が形成されている。また、基板の一方の端部には入力端子502が形成され、各駆動回路に接続する配線503が引き回されている。
【0071】
液晶表示装置を作製するには対向基板をシール材を用い間隙をもって貼り合わせ、その間隙に液晶を注入する。また、発光装置は有機発光素子を画素部に形成する。このように、本実施例によれば各種の半導体装置を作製することができる。
【0072】
[実施例4]
実施例1において示すように、非晶質半導体膜の全面に触媒作用のある金属元素を全面に添加して結晶化する方法は、本発明の熱処理装置を用いて行うことが可能であるが、より好ましくはその後金属元素をゲッタリングして除去することが望ましい。
【0073】
図14はその一実施例を説明する図であり、非晶質半導体膜の全面に触媒作用のある金属元素を全面に添加して結晶化した後、ゲッタリングを行う方法である。図14(A)において、基板601はバリウムホウケイ酸ガラスやアルミノホウケイ酸ガラス、或いは石英などを用いることができる。基板601の表面には、ブロッキング層602として無機絶縁膜を10〜200nmの厚さで形成する。ブロッキング層602はガラス基板に含まれるアルカリ金属がこの上層に形成する半導体膜中に拡散しないために設けるものであり、石英を基板とする場合には省略することも可能である。
【0074】
ブロッキング層602の上に形成する非晶質構造を有する半導体膜603は、シリコンを主成分とする半導体材料を用いる。代表的には、非晶質シリコン膜又は非晶質シリコンゲルマニウム膜などが適用され、プラズマCVD法や減圧CVD法、或いはスパッタ法で10〜100nmの厚さに形成する。良質な結晶を得るためには、非晶質構造を有する半導体膜603に含まれる酸素、窒素、炭素などの不純物濃度を極力低減する必要があり、高純度の材料ガスを用いることはもとより、超高真空対応のCVD装置を用いることが望ましい。
【0075】
その後、非晶質構造を有する半導体膜603の表面に、結晶化を促進する触媒作用のある金属元素を添加する。重量換算で1〜10ppmのニッケルを含む酢酸ニッケル塩溶液をスピナーで塗布して触媒含有層604を形成する。この場合、当該溶液の馴染みをよくするために、非晶質構造を有する半導体膜603の表面処理として、オゾン含有水溶液で極薄い酸化膜を形成し、その酸化膜をフッ酸と過酸化水素水の混合液でエッチングして清浄な表面を形成した後、再度オゾン含有水溶液で処理して極薄い酸化膜を形成しておく。シリコンなど半導体膜の表面は本来疎水性なので、このように酸化膜を形成しておくことにより酢酸ニッケル塩溶液を均一に塗布することができる。
【0076】
勿論、触媒含有層604はこのような方法に限定されず、スパッタ法、蒸着法、プラズマ処理などにより形成しても良い。
【0077】
その後、実施例1と同様にして本発明の熱処理装置を用い、1.1×105〜2.5×105Paの高圧下にてパルス光の照射により図14(B)に示す結晶質半導体膜605を形成することができる。
【0078】
さらに結晶化率(膜の全体積における結晶成分の割合)を高め、結晶粒内に残される欠陥を補修するためには、結晶質半導体膜605に対してレーザー光を照射することも有効である。レーザーには波長400nm以下のエキシマレーザー光や、YAGレーザーの第2高調波、第3高調波を用いる。いずれにしても、繰り返し周波数10〜1000Hz程度のパルスレーザー光を用い、当該レーザー光を光学系にて100〜800mJ/cm2に集光し、50〜98%のオーバーラップ率をもって結晶質半導体膜605に対するレーザー処理を行っても良い。
【0079】
こうして得られる結晶質半導体膜605には、金属元素(ここではニッケル)が残存している。それは膜中において一様に分布していないにしろ、平均的な濃度とすれば、1×1019/cm3を越える濃度で残存している。勿論、このような状態でもTFTをはじめ各種半導体素子を形成することが可能であるが、より好ましくはゲッタリングにより当該元素を除去することが望ましい。
【0080】
図14(B)はゲッタリングサイト608を形成するために、イオンドープ法で希ガス元素、或いは希ガス元素と一導電型の不純物元素を結晶質半導体膜605に添加する工程を示している。結晶質半導体膜605の表面には、マスク用の酸化シリコン膜606が100〜200nmの厚さに形成され、開孔部607が設けられ結晶質半導体膜が露出した領域に希ガス元素、或いは希ガス元素と一導電型の不純物元素を添加する。希ガス元素の結晶質半導体膜中における濃度は1×1019〜1×1021/cm3とする。
【0081】
このドーピングは、水素で1〜10%、好ましくは3〜5%に希釈したフォスフィン(PH3)またはジボラン(B26)を添加した後に希ガス元素を添加する。または、希ガスで1〜10%、好ましくは3〜5%に希釈したPH3またはB26を添加する。しかし、より好ましくは、希ガス元素のみをイオンドープ法で添加してゲッタリングサイトを形成する。
【0082】
希ガス元素としてはヘリウム(He)、ネオン(Ne)、アルゴン(Ar)、クリプトン(Kr)、キセノン(Xe)から選ばれた一種または複数種を用いる。代表的にはアルゴンを用いる。本発明はゲッタリングサイトを形成するためにこれら不活性気体をイオンソースとして用い、イオンドープ法或いはイオン注入法で半導体膜に注入することに特徴を有している。これら不活性気体のイオンを注入する意味は二つある。一つは注入によりダングリングボンドを形成し半導体膜に歪みを与えることであり、他の一つは半導体膜の格子間に当該イオンを注入することで歪みを与えることである。不活性気体のイオンを注入はこの両者を同時に満たすことができるが、特に後者はアルゴン(Ar)、クリプトン(Kr)、キセノン(Xe)などシリコンより原子半径の大きな元素を用いた時に顕著に得られる。
【0083】
ゲッタリングは窒素雰囲気中で450〜800℃、1〜24時間、例えば550℃にて14時間の熱処理を行うと、ゲッタリングサイト608に金属元素を偏析させることができる。或いは、実施例1と同様にして本発明の熱処理装置を用い、1.1×105〜2.5×105Paの高圧下にて光源から射出された光の照射により行うこともできる。その場合、ゲッタリングを効果的に成し遂げる為には、前記光により加熱される半導体膜の温度は格子を緩和して歪みを除去しない程度の温度とする。
【0084】
その後、エッチングによりゲッタリングサイトを除去すると、図14(C)に示すように金属元素の濃度が低減された結晶質半導体膜609が得られる。こうして形成された結晶質シリコン膜608は棒状または針状の結晶が集合して成り、その各々の結晶は巨視的に見ればある特定の方向性をもって成長している。特に、希ガス元素のみを用いてゲッタリングサイトを形成した場合には、この結晶質半導体膜609をそのまま用いて実施例2または3で示すTFTを形成することができる。
【0085】
[実施例5]
半導体膜の結晶化を助長する元素を選択的に導入する方法を図15により説明する。図15(A)において、基板601としてガラス基板を用いる場合にはブロッキング層602を設ける。また、非晶質構造を有する半導体膜603も実施例1と同様に形成する。
【0086】
そして、非晶質構造を有する半導体膜603上に上に100〜200nmの厚さの酸化シリコン膜610を形成する。酸化シリコン膜の作製方法は限定されないが、例えば、オルトケイ酸テトラエチル(Tetraethyl Ortho Silicate:TEOS)とO2とを混合し、反応圧力40Pa、基板温度300〜400℃とし、高周波(13.56MHz)電力密度0.5〜0.8W/cm2で放電させ形成する。
【0087】
次に、酸化シリコン膜610に開口部611を形成し、重量換算で1〜10ppmのニッケルを含む酢酸ニッケル塩溶液を塗布する。これにより、触媒金属含有層612が形成され、それは開口部611の底部のみで半導体膜603と接触する。
【0088】
実施例1と同様にして本発明の熱処理装置を用い、1.1×105〜2.5×105Paの高圧下にて光源から射出された光の照射により図15(B)に示す結晶質半導体膜605を形成することができる。この場合、結晶化は触媒となる金属元素が接した半導体膜の部分でシリサイドが形成され、それを核として基板の表面と平行な方向に結晶化が進行する。こうして形成された結晶質シリコン膜614は棒状または針状の結晶が集合して成り、その各々の結晶は巨視的に見ればある特定の方向性をもって成長している。
【0089】
次いで、開口部611を利用して、同様にイオンドープ法で希ガス元素のみ、或いは希ガス元素と一導電型の不純物元素を添加してゲッタリングサイト615を形成する。ゲッタリングは窒素雰囲気中で450〜800℃、1〜24時間、例えば550℃にて14時間の熱処理を行うと、ゲッタリングサイト615に金属元素を偏析させることができる。或いは、実施例1と同様にして本発明の熱処理装置を用い、1.1×105〜2.5×105Paの高圧下にて光源から射出された光の照射により行うことができる。その場合にも、ゲッタリングを効果的に成し遂げる為には、前記光により加熱される半導体膜の温度は格子を緩和して歪みを除去しない程度の温度とする。
【0090】
その後、エッチングによりゲッタリングサイトを除去すると、図15(D)に示すように金属元素の濃度が低減された結晶質半導体膜616が得られる。この結晶質半導体膜609をそのまま用いて実施例2または3で示すTFTを形成することができる。
【0091】
[実施例6]
実施例4または実施例5で示すような希ガス元素を用いたゲッタリングは、実施例2で示すTFTの製造工程において、ソース領域およびドレイン領域を形成するための不純物領域に希ガス元素を添加することで、同様な効果を得ることができる。即ち、当該不純物領域の抵抗率を下げるために行う活性化のための熱処理を行うことで、チャネル形成領域に残存する金属元素の濃度を低減させることができる。
【0092】
[実施例7]
本発明を用いることにより様々な半導体装置を製造することができる。その様な半導体装置として、ビデオカメラ、デジタルカメラ、ゴーグル型表示装置(ヘッドマウントディスプレイ)、ナビゲーションシステム、音響再生装置(カーオーディオ、オーディオコンポ等)、ノート型パーソナルコンピュータ、ゲーム機器、携帯情報端末(モバイルコンピュータ、携帯電話、携帯型ゲーム機または電子書籍等)、記録媒体を備えた画像再生装置などが挙げられる。それら半導体装置の具体例を図16および図17に示す。
【0093】
図16(A)はディスクトップ型パーソナルコンピュータなどのモニターであり、筐体3301、支持台3302、表示部3303などから成っている。本発明を用いることにより、表示部3303やその他集積回路を製造することができる。
【0094】
図16(B)はビデオカメラであり、本体3311、表示部3312、音声入力部3313、操作スイッチ3314、バッテリー3315、受像部3316等を含む。本発明を用いることにより、表示部3312やその他集積回路を製造することができる。
【0095】
図16(C)はヘッドマウントELディスプレイの一部(右片側)であり、本体3321、信号ケーブル3322、頭部固定バンド3323、投影部3324、光学系3325、表示部3326等を含む。本発明を用いることにより、表示部3326やその他集積回路を製造することができる。
【0096】
図16(D)は記録媒体を備えた画像再生装置(具体的にはDVD再生装置)であり、本体3331、記録媒体(DVD等)3332、操作スイッチ3333、表示部(a)3334、表示部(b)3335などから成っている。表示部(a)3334は主として画像情報を表示し、表示部(b)3335は主として文字情報を表示するが、本発明を用いることにより、表示部(a)3334、表示部(b)3335やその他集積回路を製造することができる。なお、記録媒体を備えた画像再生装置には家庭用ゲーム機器なども含まれる。
【0097】
図16(E)はゴーグル型表示装置(ヘッドマウントディスプレイ)であり、本体3341、表示部3342、アーム部3343を含む。本発明を用いることにより、表示部3342やその他集積回路を製造することができる。
【0098】
図16(F)はノート型パーソナルコンピュータであり、本体3351、筐体3352、表示部3353、キーボード3354等を含む。本発明を用いることにより、表示部3353やその他集積回路を製造することができる。
【0099】
図17(A)は携帯電話であり、本体3401、音声出力部3402、音声入力部3403、表示部3404、操作スイッチ3405、アンテナ3406を含む。本発明を用いることにより、表示部3404やその他集積回路を製造することができる。
【0100】
図17(B)は音響再生装置、具体的にはカーオーディオであり、本体3411、表示部3412、操作スイッチ3413、3414を含む。本発明の発光装置は表示部3412にて用いることが出来る。また、本実施例では車載用オーディオを示すが、携帯型や家庭用の音響再生装置に用いても良い。
【0101】
図17(C)はデジタルカメラであり、本体3501、表示部(A)3502、接眼部3503、操作スイッチ3504、表示部(B)3505、バッテリー3506を含む。本発明を用いることにより、表示部(A)3502表示部(B)3505やその他集積回路を製造することができる。
【0102】
以上の様に、本発明の適用範囲は極めて広く、様々な電子装置に適用することが可能である。また、本実施例の電子装置は実施例1〜6のどのような組み合わせからなる構成を用いても実現することができる。
【0103】
【発明の効果】
以上説明したように、本発明の熱処理装置により、短時間で非晶質半導体膜の結晶化や、半導体膜に添加した不純物元素の活性化などを目的とした熱処理をすることができる。
【0104】
また、熱処理時間を短くすることで、耐熱性の低いガラス基板を用いても熱処理効果を高め、半導体基板に形成された耐熱性の低い層のダメージを防ぐことができる。
【0105】
また、導入する気体が媒体となって熱を伝えるため、反応管内の雰囲気および被処理体において均熱性の向上が可能となる。また、反応管内を排気した後、高圧状態にすれば、大気中やCR内に存在する不純物元素が前記反応管内において著しく低減されるため、熱処理を好適に行うことができる。特に、前記反応管内の酸素濃度が低減され、半導体膜の表面の酸化が抑制されて不純物の活性化を促進し、再現性の高い熱処理を行うことができる。
【図面の簡単な説明】
【図1】本発明の熱処理装置の構成を説明する図。
【図2】本発明の熱処理装置の構成を説明する図。
【図3】本発明の熱処理装置の構成を説明する図。
【図4】本発明の熱処理装置の構成を説明する図。
【図5】加熱手段及び冷却手段の一例を説明する図。
【図6】ハロゲンランプなどを光源とし、該光源をパルス状に点滅させるのに適した制御回路の一例を示す図。
【図7】本発明の熱処理装置による半導体膜の熱処理方法を説明する図。
【図8】半導体装置の作製工程を説明する図。
【図9】本発明の熱処理装置による半導体膜の熱処理方法を説明する図。
【図10】半導体装置の作製工程を説明する図。
【図11】駆動回路、画素部を同一基板上に形成した基板の構成を説明する図。
【図12】画素部の構成を説明する図。
【図13】表示装置の素子基板の外観を説明する図。
【図14】本発明の結晶質半導体膜の作製方法を説明する図。
【図15】本発明の結晶質半導体膜の作製方法を説明する図。
【図16】半導体装置の一例を示す図。
【図17】半導体装置の一例を示す図。

Claims (3)

  1. 内部に挿入されている被処理体を加熱する反応管と、
    前記反応管内に供給する気体を加熱する第1の加熱手段と、
    前記反応管内を高圧にする第1の加圧手段と、
    前記被処理体を覆うように前記反応管内に設けられ、複数の細孔が穿設された内管と、
    前記反応管を密閉するように覆う容器と、
    前記容器内に供給する気体を加熱する第2の加熱手段と、
    前記容器内を高圧にする第2の加圧手段と、
    前記容器の外側に設けられ、ハロゲンランプ、メタルハライドランプ、高圧水銀ランプ、高圧ナトリウムランプ、キセノンランプから選ばれた一つの光源と、
    を有することを特徴とする熱処理装置。
  2. 請求項1において、前記容器および前記反応管に導入する気体は、同一であることを特徴とする熱処理装置。
  3. 請求項1または請求項2において、前記反応管は、石英から構成され、前記容器は、光を透過させる部分が石英で、かつ、その他の部分がステンレスから構成されていることを特徴とする熱処理装置。
JP2001044569A 2001-02-21 2001-02-21 熱処理装置 Expired - Fee Related JP4587251B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001044569A JP4587251B2 (ja) 2001-02-21 2001-02-21 熱処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001044569A JP4587251B2 (ja) 2001-02-21 2001-02-21 熱処理装置

Publications (3)

Publication Number Publication Date
JP2002246327A JP2002246327A (ja) 2002-08-30
JP2002246327A5 JP2002246327A5 (ja) 2008-04-03
JP4587251B2 true JP4587251B2 (ja) 2010-11-24

Family

ID=18906540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001044569A Expired - Fee Related JP4587251B2 (ja) 2001-02-21 2001-02-21 熱処理装置

Country Status (1)

Country Link
JP (1) JP4587251B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5439122B2 (ja) * 2008-12-24 2014-03-12 エヌ・ティ・ティ・アドバンステクノロジ株式会社 加熱処理方法および加熱処理装置
JP6652886B2 (ja) * 2015-08-26 2020-02-26 株式会社Screenホールディングス 熱処理方法および熱処理装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012478A (ja) * 1998-06-18 2000-01-14 Dainippon Screen Mfg Co Ltd 基板熱処理装置
JP2000068520A (ja) * 1997-12-17 2000-03-03 Matsushita Electric Ind Co Ltd 半導体薄膜、その製造方法、および製造装置、ならびに半導体素子、およびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567436A (en) * 1979-06-29 1981-01-26 Sony Corp High pressure treating device
JPS61251128A (ja) * 1985-04-30 1986-11-08 Toshiba Corp 半導体基板の熱処理方法および装置
JPH01301865A (ja) * 1988-05-30 1989-12-06 Nippon Telegr & Teleph Corp <Ntt> 薄膜成長方法および薄膜成長装置
JP2979550B2 (ja) * 1989-05-24 1999-11-15 ソニー株式会社 ランプアニール装置
JPH05206048A (ja) * 1992-01-30 1993-08-13 Hitachi Ltd ランプアニール装置
US5345534A (en) * 1993-03-29 1994-09-06 Texas Instruments Incorporated Semiconductor wafer heater with infrared lamp module with light blocking means
JPH0758189A (ja) * 1993-08-20 1995-03-03 Hitachi Ltd 改質装置
JPH07297201A (ja) * 1994-04-20 1995-11-10 Sony Corp 半導体基板の熱処理方法及び熱処理装置
JPH0817731A (ja) * 1994-06-28 1996-01-19 New Japan Radio Co Ltd 半導体装置の製造方法
JPH08148692A (ja) * 1994-11-24 1996-06-07 Sony Corp 薄膜半導体装置の製造方法
JPH09306860A (ja) * 1996-05-13 1997-11-28 Kokusai Electric Co Ltd 熱処理炉
US6450116B1 (en) * 1999-04-22 2002-09-17 Applied Materials, Inc. Apparatus for exposing a substrate to plasma radicals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068520A (ja) * 1997-12-17 2000-03-03 Matsushita Electric Ind Co Ltd 半導体薄膜、その製造方法、および製造装置、ならびに半導体素子、およびその製造方法
JP2000012478A (ja) * 1998-06-18 2000-01-14 Dainippon Screen Mfg Co Ltd 基板熱処理装置

Also Published As

Publication number Publication date
JP2002246327A (ja) 2002-08-30

Similar Documents

Publication Publication Date Title
US7485553B2 (en) Process for manufacturing a semiconductor device
US7534977B2 (en) Heat treatment apparatus and method of manufacturing a semiconductor device
US7821005B2 (en) Method of manufacturing semiconductor device and semiconductor device
US6913956B2 (en) Semiconductor device and method of manufacturing the same
US7052943B2 (en) Method of manufacturing a semiconductor device
US7566625B2 (en) Semiconductor device manufacturing method, heat treatment apparatus, and heat treatment method
JP5106136B2 (ja) 半導体装置の作製方法
US7534670B2 (en) Semiconductor device and manufacturing method of the same
JPH10223534A (ja) 半導体装置の作製方法
JP4071005B2 (ja) 半導体装置の作製方法
JP4050902B2 (ja) 半導体装置の作製方法
JP4587251B2 (ja) 熱処理装置
JP4216003B2 (ja) 半導体装置の作製方法
JP4176362B2 (ja) 半導体装置の作製方法
JP4212844B2 (ja) 半導体装置の作製方法
JP4326734B2 (ja) 半導体装置の作製方法
JP4421104B2 (ja) 半導体装置の作製方法
JP2000252212A (ja) 半導体装置の作製方法
JP4342843B2 (ja) 半導体装置の作製方法
JP4461731B2 (ja) 薄膜トランジスタの製造方法
JPH09171965A (ja) 半導体装置の作製方法
JP2002176001A (ja) 熱処理装置
JP2001308335A (ja) 薄膜トランジスタの製造方法および表示装置
JP2006108135A (ja) 結晶質半導体膜の製造方法および結晶質半導体膜

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090311

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100902

R150 Certificate of patent or registration of utility model

Ref document number: 4587251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees