JPH08148692A - 薄膜半導体装置の製造方法 - Google Patents

薄膜半導体装置の製造方法

Info

Publication number
JPH08148692A
JPH08148692A JP31415194A JP31415194A JPH08148692A JP H08148692 A JPH08148692 A JP H08148692A JP 31415194 A JP31415194 A JP 31415194A JP 31415194 A JP31415194 A JP 31415194A JP H08148692 A JPH08148692 A JP H08148692A
Authority
JP
Japan
Prior art keywords
thin film
film
semiconductor thin
light energy
amorphous semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31415194A
Other languages
English (en)
Inventor
Nobuaki Suzuki
信明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP31415194A priority Critical patent/JPH08148692A/ja
Publication of JPH08148692A publication Critical patent/JPH08148692A/ja
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 非晶質半導体薄膜の含有水素を効率的に除去
する。 【構成】 薄膜半導体装置の製造において、先ず成膜工
程を行ない絶縁基板10上に水素を含有した状態で非晶
質シリコン膜15を形成する。次に脱水素工程を行な
い、非晶質半導体薄膜15に第一種の光エネルギーhν
を照射して含有水素を離脱させ、所謂水素抜きを実施す
る。次に多結晶化工程を行ない、非晶質シリコン薄膜1
5に第二種の光エネルギーhνを照射して多結晶シリコ
ン薄膜17に転換する。この光アニール処理の後、多結
晶シリコン薄膜17を活性層として薄膜トランジスタを
集積形成する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は多結晶半導体薄膜を活性
層として薄膜トランジスタを集積形成する薄膜半導体装
置の製造方法に関する。詳しくは、非晶質半導体薄膜に
光エネルギーを照射して多結晶半導体薄膜に転換する光
アニール方法に関する。さらに詳しくは、光アニールに
先立って非晶質半導体薄膜の含有水素を離脱させる前処
理方法に関する。
【0002】
【従来の技術】図4及び図5を参照して従来の薄膜半導
体装置の製造方法を簡潔に説明する。先ず図4の工程
(A)で絶縁基板10の上に金属のゲート電極11をパ
タニング形成する。次に工程(B)でゲート電極11の
表面に陽極酸化膜12を形成する。工程(C)に進み、
プラズマ化学気相成長(P−CVD)により、SiNx
膜13、SiO2 膜14、非晶質シリコン(a−Si)
膜15を順次積層して成膜する。P−CVDを用いると
a−Si膜15を比較的低温で成膜できる為有利であ
る。しかしながら、原料気体としてシランと水素の混合
ガスを用いる為、a−Si膜15には比較的多量の水素
が含有されている。そこで、従来この含有水素を離脱さ
せる為、窒素雰囲気中で400℃2時間程度の加熱処理
を行なっていた。この後工程(D)に進み、エキシマレ
ーザ光等の光エネルギーhνを照射し、a−Si膜15
を多結晶シリコン膜17に転換する。この処理は光アニ
ールと呼ばれている。前処理として含有水素の離脱(水
素抜き)を行なわないと、この光アニールで水素が突沸
し、多結晶シリコン膜17の表面ラフネスが悪化する。
【0003】次に図5の工程(E)に進み、多結晶シリ
コン膜17の上にエッチングストッパ16をパタニング
形成する。続いて工程(F)で不純物を高濃度に含有し
た低抵抗シリコン膜(doped Si膜)18を成膜
する。さらに工程(G)で光エネルギーhνを照射し不
純物を活性化する。最後に工程(H)でdopedSi
膜18をエッチングしソース領域19及びドレイン領域
20に加工する。その上にソース電極21及びドレイン
電極22をパタニング形成する。以上によりボトムゲー
ト型の薄膜トランジスタが完成する。
【0004】
【発明が解決しようとする課題】上述した従来の薄膜半
導体装置製造方法では、水素抜きの工程で熱処理(熱ア
ニール)を採用しており、その加熱条件は窒素雰囲気中
400℃2時間程度である。しかしながら、熱アニール
を行なうと絶縁基板とその上に形成した膜との間の熱膨
張率の差等から、熱ストレスにより膜剥離が生じるとい
う課題があった。又、生産性の観点からも、熱アニール
にかかる時間が長いという欠点がある。
【0005】
【課題を解決するための手段】上述した従来の技術の課
題に鑑み、本発明は簡便且つ信頼性の高い方法で水素抜
きを可能とする薄膜半導体装置の製造方法を提供する事
を目的とする。かかる目的を達成する為に以下の手段を
講じた。即ち、本発明によれば薄膜半導体装置は以下の
工程により製造される。先ず成膜工程を行ない、絶縁基
板上に水素を含有した状態で非晶質半導体薄膜を形成す
る。次に脱水素工程を行ない該非晶質半導体薄膜に第一
種の光エネルギーを照射して含有水素を離脱させる。続
いて多結晶化工程を行ない、該非晶質半導体薄膜に第二
種の光エネルギーを照射して多結晶半導体薄膜に転換す
る。最後に加工工程を行ない、該多結晶半導体薄膜を活
性層として薄膜トランジスタを集積形成する。例えば、
前記脱水素工程(水素抜き工程)では、第一種の光エネ
ルギーとして比較的低出力のレーザ光を連続的に照射す
る。一方、前記多結晶化工程では第二種の光エネルギー
として比較的高出力のレーザ光を単発的に照射する。
又、前記加工工程では予めパタニングされたゲート電極
の上に形成された多結晶半導体薄膜を活性層として、ボ
トムゲート型の薄膜トランジスタを集積形成している。
【0006】本発明は一応用として、アクティブマトリ
クス型液晶表示装置の製造にも適用できる。この場合、
先ず成膜工程を行ない絶縁基板上に水素を含有した状態
で非晶質半導体薄膜を形成する。次に脱水素工程を行な
い該非晶質半導体薄膜に第一種の光エネルギーを照射し
て含有水素を予め除去する。続いて多結晶化工程を行な
い該非晶質半導体薄膜に第二種の光エネルギーを照射し
て多結晶半導体薄膜に転換する。さらに第一加工工程を
行ない該多結晶半導体薄膜を活性層として薄膜トランジ
スタを集積形成する。次に第二加工工程に進み、個々の
薄膜トランジスタに接続して画素電極をパタニング形成
する。最後に組立工程を行ない、所定の間隙を介して該
絶縁基板に対向基板を接合し且つ該間隙に液晶を封入す
る。以上により、アクティブマトリクス型の液晶表示装
置が完成する。
【0007】
【作用】本発明によれば、非晶質半導体薄膜(例えばa
−Si膜)をP−CVD等で成膜した後、この半導体材
料の光学吸収端より高いエネルギーを持つ短波長側の光
を照射し、水素抜きを行なっている。この脱水素工程の
後通常の光アニールを行ない、安定且つ効率的に非晶質
半導体薄膜の多結晶化を実施する。半導体材料として非
晶質シリコン(a−Si)を例に挙げると、その光学吸
収端(バンドギャップ)は1.7〜1.8eV程度であ
る。これを波長に換算すると700nm近辺の光エネルギ
ーとなる。これより短波長側の光を照射する事により、
a−Siは光吸収により励起状態となる。この光吸収に
より様々な反応を起すが、その中で水素の離脱が生じ、
膜が緻密化する。この光吸収反応は熱反応に比べ速度が
速く効率的である。又、基板と薄膜の熱膨張率の差に起
因する膜剥離がない為、生産性や信頼性も良い。
【0008】
【実施例】以下図面を参照して本発明の好適な実施例を
詳細に説明する。図1及び図2は本発明にかかる薄膜半
導体装置製造方法の基本的な工程図である。本例では低
温プロセスによりボトムゲート型の薄膜トランジスタを
集積形成している。先ず図1の工程(A)で、ガラス等
からなる絶縁基板10の上にゲート電極11を形成す
る。ゲート電極材料としてはMo,Ta,Al等の金属
あるいはこれらの合金を用いる事ができる。次に工程
(B)で、ゲート電極11を陽極酸化し、陽極酸化膜1
2で被覆する。続いて成膜工程(C)に移り、P−CV
DによりSiNx膜13、SiO2 膜14、a−Si膜
15を連続成膜する。SiNx 膜13とSiO2 膜14
はゲート絶縁膜として機能する。特にSiNx 膜13は
Na+等可動イオンのゲッターとして機能する。一方、
a−Si膜15は後工程で多結晶シリコン膜(poly
Si膜)に転換され薄膜トランジスタの活性層として
用いられる。P−CVDを用いた場合300℃程度でa
−Si膜15を低温成膜できるが、原料気体としてシラ
ンと水素の混合ガス等を用いる為、a−Si膜は比較的
多量の水素を含有している。
【0009】続いて脱水素工程(D)に移り、a−Si
膜15に第一種の光エネルギーhνを照射して含有水素
を離脱させる。即ち、水素抜きを行なう。例えば、超高
圧水銀灯等を光源として用い、紫外線を一定時間照射し
て水素抜きを行なう。あるいは、ArレーザやYAGレ
ーザ等の連続発振型レーザ光源を用い、第一種の光エネ
ルギーとして比較的低出力のレーザ光を連続的に照射
し、水素抜きを行なっても良い。なお、Si−Hの結合
エネルギーは3.1eVであり、波長に換算すると400
nm程度である。又、Si−Siの結合エネルギーは2.
7eVであり、波長に換算すると460nmである。光エネ
ルギーの吸収によりこれらの結合の解離反応が生じ、含
有水素が効率的に除去できる。なお、この水素抜き処理
は真空中もしくは窒素ガス等の不活性ガス雰囲気中で実
施する事が望ましい。
【0010】次に多結晶化工程(E)に進み、a−Si
膜15に第二種の光エネルギーを照射して多結晶シリコ
ン膜(poly Si膜)17に転換する。この第二種
の光エネルギーとして比較的高出力のレーザ光を単発的
に照射する事ができる。例えばレーザパルスをワンショ
ットで照射し、a−Si膜15の一括加熱処理を行な
う。この光アニールによりa−Si膜15は一旦溶融し
た後結晶化し比較的大粒径のpoly Si膜17に転
換される。レーザパルスとしては例えばエキシマレーザ
光を用いる事ができる。エキシマレーザ光は強力なパル
ス紫外光である為、a−Si膜15の表面層で吸収さ
れ、その部分の温度を上昇させるが、絶縁基板10まで
加熱する事はない。ガラス等からなる絶縁基板10に例
えば厚み30nmのa−Si膜15をP−CVDで成膜し
た場合、XeClエキシマレーザ光を照射した時の溶融
閾値エネルギーは130mJ/cm2 程度である。膜厚全体
が溶融するには例えば220mJ/cm2 程度のエネルギー
が必要である。
【0011】次に図2の工程(F)に移り、SiO2
16をエッチングストッパーとしてパタニング形成す
る。これは、活性層の保護膜として機能するものであ
る。次に工程(G)で、燐等のn型不純物を高濃度にド
ーピングしたドープトシリコン膜(doped Si
膜)18を成膜する。工程(H)に進み、再び光エネル
ギーhνを照射して、doped Si膜18にドーピ
ングされた不純物の活性化を図る。これによりdope
d Si膜18が低抵抗化される。最後に工程(I)
で、低抵抗化されたdoped Si膜18をアイラン
ド状にパタニングし、ソース領域19及びドレイン領域
20に加工する。さらに、これらに重ねてソース電極2
1及びドレイン電極22をパタニング形成する。以上に
より、ボトムゲート型の薄膜トランジスタが完成する。
【0012】最後に、図3を参照して本発明により製造
された薄膜半導体装置を組み込んだアクティブマトリク
ス型液晶表示装置の一例を説明する。図示する様に、本
表示装置はガラス等からなる絶縁基板101と同じくガ
ラス等からなる対向基板102と両者の間に保持された
液晶103とを備えたパネル構造を有する。絶縁基板1
01には画素アレイ部104と駆動回路部とが集積形成
されている。駆動回路部は垂直駆動回路105と水平駆
動回路106とに分れている。画素アレイ部104には
互いに直交してゲートライン107と信号ライン108
が形成されている。両ライン107,108の交差部に
は画素スイッチング用の薄膜トランジスタ109が形成
されている。この薄膜トランジスタ109は本発明に従
って集積形成されたものである。これと対応して画素電
極110も形成されている。薄膜トランジスタ109の
ソース電極は対応する信号ライン108に接続され、ゲ
ート電極は対応するゲートライン107に接続され、ド
レイン電極は対応する画素電極110に接続されてい
る。又、垂直駆動回路105及び水平駆動回路106を
構成する薄膜トランジスタも本発明に従って集積形成さ
れたものである。この絶縁基板101の周辺部上端には
外部接続用の端子111が形成されている。この端子1
11は配線112を介して垂直駆動回路105及び水平
駆動回路106に接続している。対向基板102の内表
面には図示しないが対向電極が形成されている。
【0013】かかる構成を有する液晶表示装置は以下の
工程により製造される。先ず成膜工程を行ない絶縁基板
101上に水素を含有した状態で非晶質半導体薄膜を形
成する。次に脱水素工程を行ない、非晶質半導体薄膜に
第一種の光エネルギーを照射して含有水素を予め除去す
る。続いて多結晶化工程を行ない、非晶質半導体薄膜に
第二種の光エネルギーを照射して多結晶半導体薄膜に転
換する。この後第一加工工程を行ない、該多結晶半導体
薄膜を活性層として薄膜トランジスタ109を集積形成
する。さらに第二加工工程を行ない、個々の薄膜トラン
ジスタ109に接続して画素電極110をパタニング形
成する。最後に組立工程を行ない、所定の間隙を介して
絶縁基板101に対向基板102を接合し且つ該間隙に
液晶103を封入する。
【0014】
【発明の効果】以上説明した様に、本発明によれば、非
晶質半導体薄膜に第一種の光エネルギーを照射して含有
水素を離脱させた後、これに第二種の光エネルギーを照
射して多結晶半導体薄膜に転換している。この多結晶半
導体薄膜を活性層として薄膜トランジスタを集積形成す
る。従来の熱アニールに代え、光アニールで水素抜きを
行なっている為、絶縁基板と薄膜間の熱膨張率の違いに
よる膜剥れが生じない。又、熱アニールに比べ光アニー
ルによる水素抜きは反応が早く生産性が高いという効果
がある。
【図面の簡単な説明】
【図1】本発明にかかる薄膜半導体装置製造方法の工程
図である。
【図2】同じく本発明にかかる薄膜半導体装置製造方法
の工程図である。
【図3】本発明に従って製造されたアクティブマトリク
ス型液晶表示装置の一例を示す斜視図である。
【図4】従来の薄膜半導体装置製造方法の一例を示す工
程図である。
【図5】同じく従来の薄膜半導体装置製造方法の一例を
示す工程図である。
【符号の説明】
10 絶縁基板 11 ゲート電極 15 非晶質シリコン膜 17 多結晶シリコン膜 19 ソース領域 20 ドレイン領域 21 ソース電極 22 ドレイン電極
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/12 R

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 絶縁基板上に水素を含有した状態で非晶
    質半導体薄膜を形成する成膜工程と、 該非晶質半導体薄膜に第一種の光エネルギーを照射して
    含有水素を離脱させる脱水素工程と、 該非晶質半導体薄膜に第二種の光エネルギーを照射して
    多結晶半導体薄膜に転換する多結晶化工程と、 該多結晶半導体薄膜を活性層として薄膜トランジスタを
    集積形成する加工工程とを行なう薄膜半導体装置の製造
    方法。
  2. 【請求項2】 前記脱水素工程は第一種の光エネルギー
    として比較的低出力のレーザ光を連続的に照射し、前記
    多結晶化工程は第二種の光エネルギーとして比較的高出
    力のレーザ光を単発的に照射する請求項1記載の薄膜半
    導体装置の製造方法。
  3. 【請求項3】 前記加工工程は予めパタニングされたゲ
    ート電極の上に形成された多結晶半導体薄膜を活性層と
    してボトムゲート型の薄膜トランジスタを集積形成する
    請求項1記載の薄膜半導体装置の製造方法。
  4. 【請求項4】 絶縁基板上に水素を含有した状態で非晶
    質半導体薄膜を形成する成膜工程と、 該非晶質半導体薄膜に第一種の光エネルギーを照射して
    含有水素を予め除去する脱水素工程と、 該非晶質半導体薄膜に第二種の光エネルギーを照射して
    多結晶半導体薄膜に転換する多結晶化工程と、 該多結晶半導体薄膜を活性層として薄膜トランジスタを
    集積形成する第一加工工程と、 個々の薄膜トランジスタに接続して画素電極をパタニン
    グ形成する第二加工工程と、 所定の間隙を介して該絶縁基板に対向基板を接合し且つ
    該間隙に液晶を封入する組立工程とを行なう液晶表示装
    置の製造方法。
JP31415194A 1994-11-24 1994-11-24 薄膜半導体装置の製造方法 Pending JPH08148692A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31415194A JPH08148692A (ja) 1994-11-24 1994-11-24 薄膜半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31415194A JPH08148692A (ja) 1994-11-24 1994-11-24 薄膜半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JPH08148692A true JPH08148692A (ja) 1996-06-07

Family

ID=18049850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31415194A Pending JPH08148692A (ja) 1994-11-24 1994-11-24 薄膜半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JPH08148692A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001078045A1 (en) * 2000-04-11 2001-10-18 Sony Corporation Production method for flat panel display
JP2002246327A (ja) * 2001-02-21 2002-08-30 Semiconductor Energy Lab Co Ltd 熱処理装置並びに半導体装置の作製方法
JP2005327925A (ja) * 2004-05-14 2005-11-24 Dainippon Printing Co Ltd 多結晶シリコン膜の製造方法
US7396742B2 (en) 2000-09-13 2008-07-08 Hamamatsu Photonics K.K. Laser processing method for cutting a wafer-like object by using a laser to form modified regions within the object
US8865566B2 (en) 2002-12-03 2014-10-21 Hamamatsu Photonics K.K. Method of cutting semiconductor substrate
US8889525B2 (en) 2002-03-12 2014-11-18 Hamamatsu Photonics K.K. Substrate dividing method
US8969752B2 (en) 2003-03-12 2015-03-03 Hamamatsu Photonics K.K. Laser processing method

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001078045A1 (en) * 2000-04-11 2001-10-18 Sony Corporation Production method for flat panel display
US7396742B2 (en) 2000-09-13 2008-07-08 Hamamatsu Photonics K.K. Laser processing method for cutting a wafer-like object by using a laser to form modified regions within the object
US10796959B2 (en) 2000-09-13 2020-10-06 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8969761B2 (en) 2000-09-13 2015-03-03 Hamamatsu Photonics K.K. Method of cutting a wafer-like object and semiconductor chip
US7615721B2 (en) * 2000-09-13 2009-11-10 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US9837315B2 (en) 2000-09-13 2017-12-05 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8927900B2 (en) 2000-09-13 2015-01-06 Hamamatsu Photonics K.K. Method of cutting a substrate, method of processing a wafer-like object, and method of manufacturing a semiconductor device
US8933369B2 (en) 2000-09-13 2015-01-13 Hamamatsu Photonics K.K. Method of cutting a substrate and method of manufacturing a semiconductor device
US8937264B2 (en) 2000-09-13 2015-01-20 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8946591B2 (en) 2000-09-13 2015-02-03 Hamamatsu Photonics K.K. Method of manufacturing a semiconductor device formed using a substrate cutting method
US8946589B2 (en) 2000-09-13 2015-02-03 Hamamatsu Photonics K.K. Method of cutting a substrate, method of cutting a wafer-like object, and method of manufacturing a semiconductor device
US8946592B2 (en) 2000-09-13 2015-02-03 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
JP2002246327A (ja) * 2001-02-21 2002-08-30 Semiconductor Energy Lab Co Ltd 熱処理装置並びに半導体装置の作製方法
US8889525B2 (en) 2002-03-12 2014-11-18 Hamamatsu Photonics K.K. Substrate dividing method
US9553023B2 (en) 2002-03-12 2017-01-24 Hamamatsu Photonics K.K. Substrate dividing method
US9142458B2 (en) 2002-03-12 2015-09-22 Hamamatsu Photonics K.K. Substrate dividing method
US9287177B2 (en) 2002-03-12 2016-03-15 Hamamatsu Photonics K.K. Substrate dividing method
US9543256B2 (en) 2002-03-12 2017-01-10 Hamamatsu Photonics K.K. Substrate dividing method
US9543207B2 (en) 2002-03-12 2017-01-10 Hamamatsu Photonics K.K. Substrate dividing method
US9548246B2 (en) 2002-03-12 2017-01-17 Hamamatsu Photonics K.K. Substrate dividing method
US11424162B2 (en) 2002-03-12 2022-08-23 Hamamatsu Photonics K.K. Substrate dividing method
US9711405B2 (en) 2002-03-12 2017-07-18 Hamamatsu Photonics K.K. Substrate dividing method
US10622255B2 (en) 2002-03-12 2020-04-14 Hamamatsu Photonics K.K. Substrate dividing method
US10068801B2 (en) 2002-03-12 2018-09-04 Hamamatsu Photonics K.K. Substrate dividing method
US8865566B2 (en) 2002-12-03 2014-10-21 Hamamatsu Photonics K.K. Method of cutting semiconductor substrate
US8969752B2 (en) 2003-03-12 2015-03-03 Hamamatsu Photonics K.K. Laser processing method
JP2005327925A (ja) * 2004-05-14 2005-11-24 Dainippon Printing Co Ltd 多結晶シリコン膜の製造方法

Similar Documents

Publication Publication Date Title
KR100881992B1 (ko) 반도체장치 제조방법
JP3212060B2 (ja) 半導体装置およびその作製方法
JP3030368B2 (ja) 半導体装置およびその作製方法
US6309917B1 (en) Thin film transistor manufacturing method and thin film transistor
JP2003100636A (ja) 半導体装置の作製方法
JP4209638B2 (ja) 半導体装置の作製方法
JPH1050607A (ja) 半導体装置の製造方法
JPH05160153A (ja) 半導体装置の作製方法
JP3409576B2 (ja) 半導体装置の製造方法
JP2003173968A (ja) 半導体装置の作製方法
JPH08148692A (ja) 薄膜半導体装置の製造方法
JPH06333823A (ja) 多結晶シリコン膜の製造方法、薄膜トランジスタの製造方法及びリモートプラズマ装置
JP2805590B2 (ja) 半導体装置の作製方法
JP4312741B2 (ja) 液晶表示装置用薄膜トランジスタ基板およびその製造方法
JP4860055B2 (ja) 半導体装置の作製方法
JP4216003B2 (ja) 半導体装置の作製方法
JP4176362B2 (ja) 半導体装置の作製方法
JP4212844B2 (ja) 半導体装置の作製方法
JPH1065181A (ja) 半導体装置およびその作製方法
JP4837871B2 (ja) 半導体装置の作製方法
JP4211085B2 (ja) 薄膜トランジスタの製造方法
JP2000150907A (ja) 半導体装置の作製方法
JPH10163112A (ja) 半導体装置の製造方法
JP2002270843A (ja) 薄膜トランジスタの製造方法、不純物の活性化方法及び薄膜トランジスタ
JP4176366B2 (ja) 半導体装置の作製方法