JP4554989B2 - 冷陰極管点灯装置 - Google Patents

冷陰極管点灯装置 Download PDF

Info

Publication number
JP4554989B2
JP4554989B2 JP2004153772A JP2004153772A JP4554989B2 JP 4554989 B2 JP4554989 B2 JP 4554989B2 JP 2004153772 A JP2004153772 A JP 2004153772A JP 2004153772 A JP2004153772 A JP 2004153772A JP 4554989 B2 JP4554989 B2 JP 4554989B2
Authority
JP
Japan
Prior art keywords
cold cathode
cathode tube
cold
block
lighting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004153772A
Other languages
English (en)
Other versions
JP2005063941A (ja
Inventor
永至 三宅
明幸 小松
謙治 川高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004153772A priority Critical patent/JP4554989B2/ja
Priority to US10/887,110 priority patent/US7038397B2/en
Priority to TW093121365A priority patent/TW200505288A/zh
Priority to CNA2004100557844A priority patent/CN1578580A/zh
Priority to KR1020040060370A priority patent/KR20050014755A/ko
Publication of JP2005063941A publication Critical patent/JP2005063941A/ja
Application granted granted Critical
Publication of JP4554989B2 publication Critical patent/JP4554989B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2821Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage
    • H05B41/2822Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage using specially adapted components in the load circuit, e.g. feed-back transformers, piezoelectric transformers; using specially adapted load circuit configurations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133604Direct backlight with lamps
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133612Electrical details

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Description

本発明は冷陰極管点灯装置に関し、特に複数の冷陰極管を点灯させる装置に関する。
蛍光管はその電極の構成により熱陰極管と冷陰極管とに大別される。冷陰極管(CCFLともいう)では電極が、高電圧の印加により多数の電子を放出する物質で構成される。すなわち、熱陰極管とは異なり、電極が熱電子放出用のフィラメントを含まない。それにより、冷陰極管は熱陰極管より特に、管径が極めて小さい点、長寿命である点、及び消費電力が小さい点で有利である。それらの利点により、冷陰極管は主に、液晶ディスプレイのバックライト及びFAX/スキャナの光源等、特に薄型化(又は小型化)及び省電力化が強く要求される製品で多用される。
冷陰極管は熱陰極管より、放電開始電圧が高く;放電電流(以下、管電流という)が小さく;かつインピーダンスが高い、という電気特性を持つ。冷陰極管は特に、管電流の増大に伴い抵抗値が急落する、という負性抵抗特性を持つ。このような冷陰極管の電気特性に合わせ、冷陰極管点灯装置の構成が工夫される。特に、冷陰極管の用途では装置の薄型化(小型化)及び省電力化が重視されるので、冷陰極管点灯装置も小型化(特に薄型化)及び省電力化が強く要求される。
バラストインダクタLBと過電流保護コンデンサCPとの直列接続のインピーダンスは第一のブロック1の出力インピーダンスより十分に高い。従って、本発明の実施形態1による冷陰極管点灯装置では、バラストインダクタLBと過電流保護コンデンサCPとの直列接続のインピーダンスが冷陰極管20のインピーダンスと整合するとき、効率が高い。更に、そのインピーダンス整合が冷陰極管20それぞれで実現するとき、複数の冷陰極管20間で点灯時の管電流が一様に維持される。すなわち、共通の電源(第一のブロック1)で複数の冷陰極管20を一様に点灯できる。
冷陰極管FLの消灯時、トランスTの一次巻線L1に対し電圧が印加されると、インピーダンス整合部200のチョークコイルLとコンデンサCとの共振により冷陰極管FLの両端電圧VRが急上昇し、放電開始電圧を超える。それにより、冷陰極管FLは放電を開始し、発光し始める。その後、管電流IRの増大に伴い冷陰極管FLの抵抗値が急落する(負性抵抗特性)。それに伴い冷陰極管FLの両端電圧VRが降下する。そのとき、インピーダンス整合部200の作用により、冷陰極管FLの両端電圧VRの変動に関わらず、管電流IRが安定に維持される。すなわち、冷陰極管FLの輝度が安定に維持される。
図12では、昇圧トランスTの二次巻線L2とチョークコイルLとが異なる回路素子として表示される。しかし、実際の冷陰極管点灯装置では次の通り、一つの漏洩磁束型トランスの二次巻線が、昇圧、チョーク、及びインピーダンス整合の三つに兼用された。
図13は、従来の冷陰極管点灯装置で電源用トランスとして利用される漏洩磁束型トランスTの外観を模式的に示す斜視図である。図14は図13に示される直線XIV−XIVに沿った漏洩磁束型トランスTの断面図である(図13に示される矢印が視線方向を示す)。
漏洩磁束型トランスTでは、棒状コアCRの周りに一次巻線L1と二次巻線L2とが互いに隣り合うように巻かれる。ここで、一次巻線L1と二次巻線L2との間には第一の仕切D1が設けられ、両巻線間の放電を防ぐ。同様に、複数の第二の仕切D2が二次巻線L2を分割し、巻線間の放電を防ぐと共に、巻線間の浮遊容量(以下、線間容量という)を低減させる。このように巻線の巻き幅を仕切で分割する巻き方を分割巻きという。
漏洩磁束型トランスTの昇圧比は一次巻線L1と二次巻線L2との巻数比で決まる。その昇圧比は一般に高いので、二次巻線L2の巻数は一次巻線L1の巻数より大きい。従って、二次巻線L2の巻き幅は一次巻線L1の巻き幅より一般に広い。更に、漏洩磁束型トランスTでは一次巻線L1と二次巻線L2とが棒状コアCRの周りに隣り合うように巻かれる。それ故、漏洩磁束型トランスTでは漏れ磁束が大きい。それにより、出力インピーダンスが高い。この高い出力インピーダンスのインダクタンス成分、すなわち漏れインダクタンスがコンデンサCと共振し、上記のチョークコイルLとして作用する(図12参照)。
漏洩磁束型トランスTでは更に、上記の漏れインダクタンスと二次巻線L2の線間容量との調節が容易である。従って、二次巻線L2と上記のコンデンサCとでインピーダンス整合部200を構成することが容易である。
以上の通り、漏洩磁束型トランスTはその設計が容易であり、特にその二次巻線L2が上記のチョークコイルLとして兼用可能である。従って、従来の冷陰極管点灯装置では、漏洩磁束型トランスが特に小型化で有利であるとみなされ、多用された。
特開平8−273862号公報
液晶ディスプレイのバックライトでは特に高輝度が要求される。従って、そのバックライトとして冷陰極管が利用される場合、複数の冷陰極管の設置が望ましい。そのとき、それら複数の冷陰極管間では輝度が一様に揃えられねばならない。更に、冷陰極管点灯装置は小型でなければならない。それらの要請に適うには、それら複数の冷陰極管を共通の電源で並列に駆動することが望ましい。
しかし、共通の電源による複数の冷陰極管の並列駆動は次の理由で困難であった。
冷陰極管は上記の通り、負性抵抗特性を持つ。従って、複数の冷陰極管を単純に並列接続するだけではいずれか一つの冷陰極管だけに電流が集中し、結局、その一つの冷陰極管しか点灯できない。更に、複数の冷陰極管を共通の電源に接続するとき、それぞれの間の配線、特にその長さが異なる。従って、浮遊容量が冷陰極管ごとに異なる。それ故、複数の冷陰極管の並列駆動では、冷陰極管ごとに管電流を制御し、管電流のばらつきを抑制しなければならない。
一つの漏洩磁束型トランスを複数の冷陰極管に共通のチョークコイルとして利用すること、その漏洩磁束型トランスと冷陰極管それぞれとの間でインピーダンス整合を達成すること、及び個々の管電流を高精度に制御することを全て成立させることは困難であった。ここで、その困難は漏洩磁束型トランスに代え、圧電トランスを利用する場合でも同様であった。それ故、従来の冷陰極管点灯装置では、電源(特に漏洩磁束型トランス)を冷陰極管ごとに一つずつ設置し、それぞれの電源でそれぞれの管電流を一様に制御させた。すなわち、従来の冷陰極管点灯装置では電源が冷陰極管と同数、必要であった。その結果、部品点数の低減が困難であり、それにより、装置全体の更なる小型化が困難であった。
本発明は、共通の電源で複数の冷陰極管を一様に点灯させ、それにより更なる小型化を実現させる冷陰極管点灯装置の提供を目的とする。
本発明による冷陰極管点灯装置は、
複数の冷陰極管それぞれの少なくとも一端の電極に少なくとも一つずつ接続され、前記複数の冷陰極管における各冷陰極管の点灯時の管電流を一様に維持するためのバラストである複数の第二のブロック、および
コアと、前記コアに巻かれる一次巻線と、前記一次巻線の内側若しくは外側又はその両方に巻かれる二次巻線とにより構成されたトランスを有する低インピーダンス電源である第一のブロック、を具備し、
前記第一のブロックは、前記複数の第二のブロックそれぞれを通して前記複数の冷陰極管のそれぞれに接続され、前記トランスが前記複数の冷陰極管の合成インピーダンスより低い出力インピーダンスを有して前記複数の冷陰極管に電力を供給するよう構成されている。この冷陰極管点灯装置は好ましくは、次のような液晶ディスプレイに搭載される。その液晶ディスプレイは、
複数の冷陰極管;及び、
それらの冷陰極管の前側に設置され、冷陰極管の発する光を所定のパターンで遮る液晶パネル;を有する。本発明による上記の冷陰極管点灯装置は、その液晶ディスプレイのバックライトである上記の複数の冷陰極管を駆動する。
複数の冷陰極管間では一般に、特性にばらつきがあり、かつ、配線の相違により周辺の浮遊容量にばらつきが生じる。更に、温度等の環境条件の変動が冷陰極管の動作状態にばらつきを生じさせる。
本発明による上記の冷陰極管点灯装置では従来の装置での前提に反し、電源の出力インピーダンスが抑制される。その代わり、冷陰極管のそれぞれに一つずつバラストが接続される。そのとき、電源の出力インピーダンスが低いので、バラストそれぞれが実質上互いに独立に動作する。それにより、上記のばらつきが冷陰極管ごとに精度良く相殺される。すなわち、複数の冷陰極管間で管電流にばらつきが生じない。従って、複数の冷陰極管間で輝度が一様に、かつ安定に維持される。
こうして、本発明による上記の冷陰極管点灯装置は、共通の低インピーダンス電源で複数の冷陰極管を一様にかつ安定に点灯させ得る。
本発明による上記の冷陰極管点灯装置では電源の出力インピーダンスが低いので、バラストそれぞれが実質上互いに独立に動作する。それにより、低インピーダンス電源とバラストそれぞれとの間の配線が長くても、更にバラストごとに大きく異なっても、複数の冷陰極管間で管電流にばらつきが生じない。従って、配線のレイアウトの柔軟性が高い。それ故、装置全体の小型化が容易に実現する。
以上の結果、本発明による上記の冷陰極管点灯装置が上記の液晶ディスプレイに搭載されるとき、その液晶ディスプレイの輝度が高くかつパネル全体で一様に維持されたまま、その液晶ディスプレイの更なる薄型化が容易に実現できる。
本発明による上記の冷陰極管点灯装置においては、複数の冷陰極管の合成インピーダンスより低い出力インピーダンスを持つトランス、を第一のブロックである低インピーダンス電源が有する。こうして、従来の装置での前提に反し、トランスの出力インピーダンスが抑えられるので、低い出力インピーダンスの電源が実現する。トランスの出力インピーダンスの低減に効果的な手段として、トランスが、コアと、そのコアに巻かれる一次巻線と、その一次巻線の内側若しくは外側又はその両方に巻かれる二次巻線と、を含んでいる。それにより、漏れ磁束が低減するので、出力インピーダンスが抑えられる。更に、漏れ磁束による周辺機器への悪影響(例えばノイズの発生)が抑えられる。
本発明による前記の冷陰極管点灯装置においては、前記第二のブロックが、バラストインダクタと過電流保護コンデンサとの直列接続を有して構成され、前記バラストインダクタと前記過電流保護コンデンサとの直列接続のインピーダンスが、当該第二のブロックにより電力を供給される冷陰極管のインピーダンスと整合するよう構成されて、前記複数の冷陰極管における各冷陰極管の点灯時の管電流を一様に維持するよう構成されている。
ここで、そのトランスの二次巻線が分割巻き又はハネカム巻きの構成を有しても良い。それにより、線間容量が低減するので、二次巻線の自己共振周波数が十分に高く設定できる。従って、本発明による上記の冷陰極管点灯装置は複数の冷陰極管の発光を安定に維持したまま、冷陰極管の駆動周波数を十分に高く設定できる。それ故、トランスの小型化、及びそれによる装置全体の小型化が容易に実現する。
本発明による上記の冷陰極管点灯装置では、低インピーダンス電源が上記のトランスに代え、バラストに接続されるパワートランジスタ、を有しても良い。パワートランジスタの利用は出力インピーダンスを容易に、かつ効果的に低減させ得る。従って、本発明による上記の冷陰極管点灯装置は、より多数の冷陰極管を一様に点灯させ得る。
本発明による上記の冷陰極管点灯装置においては、第二のブロックがバラストインダクタを含む。それにより、そのインダクタがチョークコイルとして機能する。すなわち、そのインダクタと冷陰極管周辺の浮遊容量との共振により、その冷陰極管に対し放電開始電圧以上の高電圧が印加される。ここで、実際の放電開始電圧は複数の冷陰極管間でばらつきを持つ。しかし、本発明による上記の冷陰極管点灯装置では、バラストインダクタが冷陰極管それぞれに少なくとも一つずつ接続される。従って、実際の放電開始電圧のばらつきに関わらず、共通の低インピーダンス電源からの電圧印加が複数の冷陰極管全てを確実に点灯させる。
本発明による上記の冷陰極管点灯装置においては、第二のブロックのバラストインダクタが、分割巻き又はハネカム巻きのコイル、を有しても良い。それにより、線間容量が低減するので、インダクタの自己共振周波数が十分に高く設定できる。従って、本発明による上記の冷陰極管点灯装置は複数の冷陰極管の発光を安定に維持したまま、冷陰極管の駆動周波数を十分に高く設定できる。それ故、バラストの小型化、及びそれによる装置全体の小型化が容易に実現する。
上記のバラストインダクタが可飽和リアクトルを含んでも良い。冷陰極管での放電が突然中断し、その冷陰極管の両端電圧が急激に上昇するとき、バラストインダクタンスが飽和するので、更なる電圧上昇が抑えられる。こうして、過電圧の発生が防止されるので、本発明による上記の冷陰極管点灯装置はその安全性が高い。
本発明による上記の冷陰極管点灯装置は好ましくは、冷陰極管それぞれの両端の電極間に少なくとも一つずつ接続される整合コンデンサ、を有する。その整合コンデンサは例えば基板の層間容量であっても良い。特に好ましくは、第二のブロックのインピーダンスとその整合コンデンサのインピーダンスとが整合する。更に好ましくは、第二のブロックのインピーダンス、その整合コンデンサと冷陰極管周辺の浮遊容量との合成インピーダンス、及び冷陰極管の点灯時のインピーダンスが整合する。こうして、第二のブロックと冷陰極管とのそれぞれの組合せごとに第二のブロックと冷陰極管(及びその周辺の浮遊容量)とのインピーダンス整合が実現する。それにより、複数の冷陰極管間での特性、周辺の浮遊容量、又は両端電圧のばらつきに関わらず、複数の冷陰極管間で管電流が一様に維持されるので、輝度が一様に維持される。
本発明による上記の冷陰極管点灯装置では好ましくは、
冷陰極管の両端の電極のそれぞれと接地電位との間に少なくとも一つずつ接続される整合コンデンサ、を有する。それにより、冷陰極管のそれぞれでは、両端の電極電位の中間点が接地電位に維持され、すなわち、両端の電極電位が接地電位に対し反対称に維持される。従って、冷陰極管それぞれについて、管壁各部と外部との間に流れる漏れ電流の分布が冷陰極管の中央部に対し対称である。それ故、冷陰極管それぞれの長さ方向での輝度の偏りが低減し、すなわちその一様性が向上する。
更に、冷陰極管の両端の電極電位の中間点が接地電位に維持される場合、冷陰極管の一端の電極が接地される場合とは異なり、冷陰極管の両端電圧の振幅が維持されたまま、接地電位に対する電極電位の振幅が半減できる。それにより漏れ電流自体が低減するので、その分布の偏りが低減する。従って、冷陰極管それぞれの長さ方向での輝度の偏りが更に低減し、すなわちその一様性が更に向上する。
その上、冷陰極管の両端の電極電位の中間点が接地電位に維持される場合、冷陰極管の一端の電極が接地される場合とは異なり、上記の整合コンデンサそれぞれの耐圧が半減できる。従って、上記の整合コンデンサの小型化が容易に実現する。
冷陰極管のそれぞれについて両端の電極電位の中間点を接地電位に維持する手段としては上記の他に、例えば、
冷陰極管の両端の電極のそれぞれに第二のブロックが一つずつ接続され;
第一のブロックが二つ具備され、それぞれが冷陰極管の両端の電極のそれぞれに第二のブロックの一つを通して接続され、それらの出力が互いに逆位相に維持されても良い。こうして、冷陰極管のそれぞれでは両端の電極電位が接地電位に対し反対称に、高精度で維持される。
更に、冷陰極管の両端電圧の上限を高く維持したまま、それぞれの第一のブロックである低インピーダンス電源の出力電圧の上限が半減できる。従って、本発明による上記の冷陰極管点灯装置では、回路素子の耐圧が低く抑えられる。それ故、冷陰極管の高輝度を維持したまま、装置全体の小型化が容易に実現する。
そのとき、特に好ましくは、
第一のブロックが第一の基板に実装され;
冷陰極管の一端の電極に接続される第二のブロックの一方が第二の基板に実装され;
冷陰極管の他端の電極に接続される第二のブロックの他方が第三の基板に実装される。
更に好ましくは、第二の基板に冷陰極管の一端が固定され、第三の基板にその冷陰極管の他端が固定される。
バラスト等、他の回路素子は一般に、第一のブロックである低インピーダンス電源よりサイズが小さい。従って、第一のブロックである低インピーダンス電源を搭載する第一の基板が他の基板から分離されるとき、第二の基板と第三の基板、及び冷陰極管から成る部分が容易に薄型化できる。例えば、冷陰極管が上記の液晶ディスプレイに搭載されるとき、その液晶ディスプレイの薄型化が容易に実現する。
その他に、
第一のブロックである低インピーダンス電源と、冷陰極管の一端の電極に接続される第二のブロックであるバラストの一方と、が第一の基板に実装され;
冷陰極管の他端の電極に接続されるバラストの他方が第二の基板に実装されても良い。
本発明による上記の冷陰極管点灯装置では電源の出力インピーダンスが低いので、バラストそれぞれが実質上互いに独立に動作する。それにより、第一のブロックである低インピーダンス電源と第二のブロックであるバラストそれぞれとの間の配線が長くても、更にバラストごとに大きく異なっても、複数の冷陰極管間で管電流にばらつきが生じない。従って、従来の装置とは異なり、複数の冷陰極管間で輝度が一様に維持されたまま、上記の基板の分離が容易に実現する。
冷陰極管のそれぞれについて両端の電極電位の中間点を接地電位に維持する手段としては上記とは更に別に、次のようなものであっても良い。
本発明による上記の冷陰極管点灯装置では、第一のブロックである低インピーダンス電源が上記のトランスを含むとき、好ましくは、
冷陰極管の両端の電極のそれぞれに第二のブロックであるバラストが一つずつ接続され、
両端がそれぞれバラストの一つを通して冷陰極管の両端の電極のそれぞれに接続され、中性点が接地される二次巻線、を上記のトランスが含む。それにより回路素子の数を小さく維持したまま、冷陰極管それぞれの両端の電極電位の中間点を接地電位に維持できる。

本発明による冷陰極管点灯装置は、複数の冷陰極管それぞれに少なくとも一つずつ接続される複数のバラストと共通の低インピーダンス電源とにより、従来の装置とは異なり、共通の電源で複数の冷陰極管を一様にかつ安定に点灯させる。更に、電源とバラストとの間の配線が長くても良く、かつバラストごとに大きく異なっても良いので、配線のレイアウトの柔軟性が高い。それ故、装置全体の小型化が従来の装置より容易に実現する。例えば、本発明による上記の冷陰極管点灯装置が液晶ディスプレイのバックライトに利用されるとき、そのディスプレイの薄型化が容易に実現する。
以下、本発明の最良の実施形態について、図面を参照しつつ説明する。
《実施形態1》
図1は、本発明の実施形態1による冷陰極管点灯装置を搭載する液晶ディスプレイの内部を示す正面図である。図2は図1に示される直線II−IIに沿った液晶ディスプレイの断面図である(図1に示される矢印が視線方向を示す)。
この液晶ディスプレイは、ケース10、複数の冷陰極管20、反射板30、第一の基板40、第二の基板50、第三の基板60、及び液晶パネル70を有する。本発明の実施形態1による冷陰極管点灯装置は主に三つのブロック1、2、及び3に分けられ、第一の基板40、第二の基板50、及び第三の基板60の上にそれぞれ実装される。
ケース10は例えば金属製の箱であり、接地される。ケース10の前側は開いていて、内側に反射板30、冷陰極管20、及び液晶パネル70(図1では図示せず)を奥から順に収める。冷陰極管20は複数本(例えば16本)含まれ、それぞれ水平に固定され、かつ縦方向には等間隔に並ぶ。ケース10の両側には第二の基板50と第三の基板60とが設置される。冷陰極管20それぞれの両端は第二の基板50と第三の基板60とに固定される。更に、冷陰極管20それぞれの両端の電極21、22はそれぞれ、冷陰極管点灯装置の第二のブロック2と第三のブロック3とに接続される。その第二のブロック2と第三のブロック3とは第一の基板40上の第一のブロック1に接続される(その配線は図示せず)。第一の基板40はケース10とは別の部位、例えば液晶ディスプレイの電源ユニット(図示せず)に設置される。第一のブロック1は直流電源(図示せず)に接続される。冷陰極管点灯装置は直流電源から供給される電力を、三つのブロック1、2、及び3を通して冷陰極管20のそれぞれに分配する。それにより、冷陰極管20はそれぞれ発光する。冷陰極管20の発する光は直接、又は反射板30により反射され、液晶パネル70に入射される(図2に示される矢印参照)。液晶パネル70は所定のパターンで冷陰極管20からの入射光を遮る。それにより、液晶パネル70の前面にはそのパターンが映し出される。
図3は、本発明の実施形態1による冷陰極管点灯装置の構成を示す回路図である。その冷陰極管点灯装置は主に、上記の三つのブロック1、2、及び3から成る。
第一のブロック1は高周波発振回路4と昇圧トランス5とを有し、並列共振型プッシュプルインバータとして構成される。高周波発振回路4は、発振器Os、第一のコンデンサC1、第二のコンデンサC2、インダクタL、第一のトランジスタQ1、第二のトランジスタQ2、及びインバータInを含む。昇圧トランス5は、中性点M1で分けられた二つの一次巻線51Aと51B、及び二次巻線52を含む。
直流電源DCの正極はインダクタLの一端に接続され、負極は接地される。第一のコンデンサC1は直流電源DCの両極間に接続される。インダクタLの他端は昇圧トランス5の一次巻線51A、51Bの間の中性点M1に接続される。第一の一次巻線51Aの別の端子53Aと第二の一次巻線51Bの別の端子53Bとの間には第二のコンデンサC2が接続される。第一の一次巻線51Aの端子53Aは更に、第一のトランジスタQ1の一端に接続される。第二の一次巻線51Bの端子53Bは更に、第二のトランジスタQ2の一端に接続される。第一のトランジスタQ1と第二のトランジスタQ2とのそれぞれの他端は共に接地される。ここで、二つのトランジスタQ1とQ2とは好ましくはMOSFETである。その他に、IGBT又はバイポーラトランジスタであっても良い。
発振器Osは、第一のトランジスタQ1の制御端子には直接接続され、第二のトランジスタQ2の制御端子にはインバータInを通して接続される。
直流電源DCは出力電圧Viを一定値(例えば16[V])に維持する。第一のコンデンサC1は直流電源DCからの入力電圧Viを安定に維持する。発振器Osは一定周波数(例えば45[kHz])のパルス波を二つのトランジスタQ1、Q2の制御端子に対し送出する。インバータInは、第二のトランジスタQ2の制御端子に入力されるパルス波の極性を、第一のトランジスタQ1の制御端子に入力されるパルス波の極性とは逆にする。従って、二つのトランジスタQ1、Q2は発振器Osの周波数と同じ周波数で交互にオンオフする。それにより、昇圧トランス5の一次巻線51Aと51Bとに対し入力電圧Viが交互に印加される。その電圧印加ごとにインダクタLと第二のコンデンサC2とが共振し、昇圧トランス5の二次電圧Vの極性が発振器Osの周波数と同じ周波数で反転する。ここで、二次電圧Vの実効値は、一次巻線51Aと51Bとに対する印加電圧Viと昇圧トランス5の昇圧比(すなわち、一次巻線51Aと二次巻線52との巻数比)との積と実質的に等しい。二次電圧Vの実効値は好ましくは、冷陰極管20のランプ電圧(例えば1300[V])程度に設定される。
こうして、第一のブロック1は直流電源DCの出力電圧Viを高周波数(例えば45[kHz])の交流電圧Vに変換する。以下、その周波数を冷陰極管20の駆動周波数という。
ここで、第一のブロック1は、上記の並列共振型プッシュプルインバータには限らず、他のタイプの(トランスを含む)インバータであっても良い。
本発明の実施形態1による冷陰極管点灯装置では従来の装置での前提に反し、上記の昇圧トランス5の漏れ磁束が以下の通り、小さく抑えられる。それにより、第一のブロック1は出力インピーダンスの低い電源、すなわち低インピーダンス電源として機能する。
図4は昇圧トランス5の構成を模式的に示す分解組立図である。図5は図4に示される直線V−Vに沿った昇圧トランス5の断面図である(図4に示される矢印が視線方向を示す)。
昇圧トランス5は、一次巻線51(上記の二つの一次巻線51Aと51Bとを合わせたもの)、二次巻線52、二つのE型コア54と55、ボビン56、及び絶縁テープ58を含む。ボビン56は例えば合成樹脂製であり、中空円筒形状である。その中空部56Aには両方の開口部から、E型コア54と55とのそれぞれの中央の突起54Aと55Aとが挿入される。ボビン56の外周面上には複数の仕切57が軸方向に等間隔で設けられる。まず、それらの仕切57の間に二次巻線52が巻かれる。次に、二次巻線52の外側に絶縁テープ58が巻かれる。最後に、絶縁テープ58の外側に一次巻線51が巻かれる。ここで、二次巻線52は一次巻線51の外側、又は内側と外側との両方に巻かれても良い。このように一次巻線51と二次巻線52とを重ねて巻くことにより漏れ磁束が著しく低減する。従って、昇圧トランス5の出力インピーダンスは低い。その出力インピーダンスは特に、並列に接続される複数の冷陰極管20(図3参照)全ての合成インピーダンスより低く設定される。
上記の昇圧トランス5では二次巻線52が上記の通り、分割巻きで巻かれる。その他に、ハネカム巻きで巻かれても良い。それにより、巻線間の放電が防止されると共に、線間容量が小さく抑えられる。従って、二次巻線52の自己共振周波数が十分に高く設定できる。
冷陰極管点灯装置の第二のブロック2と第三のブロック3とは冷陰極管20ごとに一つずつ接続される(図3参照)。第二のブロック2は、バラストインダクタLBと過電流保護コンデンサCPとの直列接続、及び整合コンデンサCMを含む。第三のブロック3は冷陰極管20の一端の電極と接地端子との間の接続部を含む。
昇圧トランス5の二次巻線52の一端は、第二のブロック2それぞれのバラストインダクタLBと過電流保護コンデンサCPとの直列接続を通して、冷陰極管20のそれぞれの一端の電極に接続される。二次巻線52の他端は接地される。冷陰極管20それぞれの他端の電極は第三のブロック3を通して接地される。整合コンデンサCMは冷陰極管20それぞれの両端の電極間に接続される。
バラストインダクタLBは例えば巻線コイルである。そのインダクタンスは例えば600[mH]程度である。バラストインダクタLBの巻線は好ましくは、昇圧トランス5の二次巻線52と同様、分割巻き(又はハネカム巻き)で巻かれる。それにより、線間容量が小さいので、自己共振周波数が十分に高い。その自己共振周波数は好ましくは、冷陰極管20の駆動周波数より十分に高い。
バラストインダクタLBは更に好ましくは、可飽和リアクトルを含む。それにより、冷陰極管20での放電が突然中断し、その冷陰極管20の両端電圧が急激に上昇するとき、バラストインダクタLBのインダクタンスが飽和するので、更なる電圧上昇が抑えられる。こうして、冷陰極管20及び冷陰極管点灯装置が過電圧から保護される。
過電流保護コンデンサCPは、バラストインダクタLBの短絡時にバッファとして作用し、冷陰極管20を過電流から保護する。過電流保護コンデンサCPの容量は例えば150[pF]程度に設定される。ここで、過電流の発生のおそれが小さいときは、過電流保護コンデンサCPは設置されなくても良い。
バラストインダクタLBと過電流保護コンデンサCBとの直列接続のインピーダンスは第一のブロック1の出力インピーダンスより十分に高い。従って、本発明の実施形態1による冷陰極管点灯装置では、バラストインダクタLBと過電流保護コンデンサCBとの直列接続のインピーダンスが冷陰極管20のインピーダンスと整合するとき、効率が高い。更に、そのインピーダンス整合が冷陰極管20それぞれで実現するとき、複数の冷陰極管20間で点灯時の管電流が一様に維持される。すなわち、共通の電源(第一のブロック1)で複数の冷陰極管20を一様に点灯できる。
しかし、冷陰極管20の周辺には様々な浮遊容量が存在する(図示せず)。その浮遊容量には例えば、冷陰極管20とケース10との間の浮遊容量SC(図2参照)、並びに、第一のブロック1、第二のブロック2、第三のブロック3、冷陰極管20、及び接地導体を結ぶ配線の浮遊容量が含まれる。従って、冷陰極管20の周辺の浮遊容量が冷陰極管20ごとに異なる。
そこで、整合コンデンサCMの容量が例えば20[pF]程度で、第二のブロック2ごとに設定される。特に第二のブロック2間での整合コンデンサCMの容量の差が複数の冷陰極管20間での浮遊容量の差を相殺する。例えば配線が長いほどその浮遊容量は一般に大きいので、昇圧トランス5から遠い冷陰極管20に接続される整合コンデンサCMほど、その容量は小さく設定される。それにより、複数の冷陰極管20間で、整合コンデンサCMと周辺の浮遊容量との合成インピーダンスが実質的に一致する。
その一致の下で更に、整合コンデンサCM、バラストインダクタLB、及び過電流保護コンデンサCPそれぞれのインピーダンスが調節される。それにより、複数の冷陰極管20のそれぞれで、整合コンデンサCMと周辺の浮遊容量との合成インピーダンスがバラストインダクタLBと過電流保護コンデンサCPとの直列接続のインピーダンスと整合する。更に好ましくは、その合成インピーダンスが冷陰極管20それぞれの点灯時のインピーダンス(例えば200[kΩ])と整合する。
こうして、上記のインピーダンス整合が冷陰極管20それぞれで実現する。その結果、複数の冷陰極管20間で点灯時の管電流が一様に維持される。それ故、複数の冷陰極管20が一様な輝度で点灯する。更に、その効率は高い。
上記のインピーダンス整合により、冷陰極管20の点灯時、複数の冷陰極管20間で管電流の実効値が実質上一様に維持される。それは次のように理解される。
昇圧トランス5は漏れ磁束が少ないので、出力インピーダンスの低い交流電圧源とみなせる。更に、複数の冷陰極管20間では、バラストインダクタLBのインダクタンスL、及び整合コンデンサCMと周辺の浮遊容量との合成容量Cが共通である。従って、管電流の実効値が冷陰極管20のインピーダンスに実質上依存しないことは、いずれか一つの冷陰極管20について理解されれば良い。
ここで、過電流保護コンデンサCPの容量は整合コンデンサCMの容量及び冷陰極管20の周辺の浮遊容量より十分に大きいので、以下の説明では無視できる。
冷陰極管20のインピーダンスと管電流とをそれぞれRとIとし、昇圧トランス5の二次電圧Vの周波数、すなわち冷陰極管20の駆動周波数をωとする。そのとき、昇圧トランス5の二次電圧Vと管電流Iとは次式(1)を満たす:
V/I=R(1−ω2LC)+jωL。 (1)
バラストインダクタLBと上記の合成容量Cとの間では上記の通り、インピーダンスが整合する:ωL≒1/ωC。そのとき、式(1)の右辺第一項は実質的に相殺されるので、昇圧トランス5の二次電圧Vと管電流Iとの比は次式(2)で表される:
V/I≒jωL。 (2)
すなわち、管電流Iは実質上、複数の冷陰極管20間で共通のパラメータ、すなわち、昇圧トランス5の二次電圧V、バラストインダクタLBのインダクタンスL、及び冷陰極管20の駆動周波数ωのみで決まる。特に、管電流Iは冷陰極管20のインピーダンスRには実質上依存しない。
こうして、複数の冷陰極管20間では点灯時、管電流が一様に維持されるので、それらの輝度が一様に維持される。
ここで、複数の冷陰極管20間で輝度を一様に維持するという本発明の観点からは上記の通り、バラストインダクタLBのインピーダンスが整合コンデンサCMと周辺の浮遊容量との合成インピーダンスと厳密に整合すべきである。すなわち、冷陰極管20の駆動周波数ωがバラストインダクタLBと上記の合成容量との間の共振周波数ωcと厳密に一致すべきである:ω≒ωc=1/(LC)1/2
しかし、冷陰極管20の駆動周波数ωと上記の共振周波数ωcとのあまりにも厳密な一致は実際には、本発明の観点とは異なる観点から好ましくない場合がある。例えば、管電流の振幅が過大に増幅され、かつその安定性が低下する。その結果、冷陰極管20のちらつきが過剰になり得る。
そのような状態を回避するには好ましくは、冷陰極管20の駆動周波数ωが上記の共振周波数ωcより少しずれて設定される。ここで、複数の冷陰極管20間での輝度の一様性が十分に維持される範囲で駆動周波数ωと共振周波数ωcとの差は調節される。それにより、複数の冷陰極管20間で実質的に一様な管電流が、安定に維持される。
冷陰極管20の消灯時、バラストインダクタLBは更に、次のように機能する。図6は冷陰極管20の電圧−電流特性を示すグラフである。縦軸は冷陰極管20の両端電圧VFを示し、横軸は管電流Iを示す。冷陰極管20は負性抵抗特性により、管電流Iが大きいほど両端電圧VFが低い。
冷陰極管20の消灯時、管電流Iは微小値I0である。その状態で昇圧トランス5から二次電圧が印加され、バラストインダクタLBが整合コンデンサCMと共振する。そのとき、冷陰極管20の両端の電極は実質上開放されているので、バラストインダクタLBは主に整合コンデンサCMと共振する。それにより、冷陰極管20の両端電圧VFが放電開始電圧V0(例えば2000[V])以上に増大する(図6に示される点X0参照)。従って、冷陰極管20では両端の電極間で放電が開始され、管電流Iが増大する。それに伴い、冷陰極管20の両端電圧VFは放電開始電圧V0から降下し(図6に示される矢印参照)、冷陰極管20のランプ電圧VL(例えば1300[V])近傍で安定に維持される(図6に示される点X1参照)。そのとき、管電流Iは一定値IL(例えば6[mA])に安定に維持される。
本発明の実施形態1による冷陰極管点灯装置では、整合コンデンサCMのインピーダンスが複数の冷陰極管20間での浮遊容量の差を相殺するように別々に設定される。その他に、整合コンデンサCMのインピーダンスに代え、又はそれと共に、バラストインダクタLBと過電流保護コンデンサCPとの直列接続のインピーダンスが複数の冷陰極管20間での浮遊容量の差を相殺するように別々に設定されても良い。
本発明の実施形態1による冷陰極管点灯装置では上記の通り、従来の装置での前提に反し、昇圧トランス5の漏れ磁束が抑制される。その代わり、冷陰極管20それぞれにバラストインダクタLBと整合コンデンサCMとが一つずつ接続される。特に、それらのインピーダンスは冷陰極管20ごとに設定され、複数の冷陰極管20間での周辺の浮遊容量の差を相殺する。その結果、複数の冷陰極管20間で管電流Iにばらつきが生じないので、輝度が一様にかつ安定に維持される。
こうして、本発明の実施形態1による冷陰極管点灯装置は、単一の低インピーダンス電源(第一のブロック)1で複数の冷陰極管20を一様にかつ安定に点灯させる。更に、第一のブロック1と第二のブロック2との間の配線が長くても良く、かつ冷陰極管20ごとに大きく異なっても良い。配線の相違による浮遊容量の差はバラストインダクタLB又は整合コンデンサCMのインピーダンスの差で相殺される。従って、本発明の実施形態1による冷陰極管点灯装置では、配線のレイアウトの柔軟性が高い。それ故、装置全体の小型化が容易に実現する。
本発明の実施形態1による冷陰極管点灯装置では、第二のブロック2がバラストインダクタLBに代え、バラストコンデンサを含んでも良い。ここで、バラストコンデンサは整合コンデンサCMと同様、容量が比較的小さい(数[pF]程度)。従って、バラストコンデンサ(及び整合コンデンサCM)は好ましくは、第二の基板50の層間容量として形成される。バラストコンデンサを利用するときは更に、整合コンデンサCMが設置されなくても良い。こうして、第二のブロック2の小型化が容易に実現する。従って、本発明の実施形態1による冷陰極管点灯装置は特に、液晶ディスプレイの薄型化に有利である。
《実施形態2》
本発明の実施形態2による冷陰極管点灯装置は、上記の実施形態1による装置と同様、液晶ディスプレイに搭載される。その液晶ディスプレイの構成は上記の実施形態1によるものと同様であるので、その構成については図1と図2、及び上記の実施形態1での説明を援用する。
図7は、本発明の実施形態2による冷陰極管点灯装置の構成を示す回路図である。その冷陰極管点灯装置は第一のブロック1の構成を除き、実施形態1による装置の構成要素(図3参照)と同様な構成要素を有する。従って、それら同様な構成要素に対し図3に示される符号と同じ符号を付し、それらの説明は実施形態1での説明を援用する。
第一のブロック1は、発振器Os、ハイサイドパワートランジスタQ3、ローサイドパワートランジスタQ4、及びインバータInを含む。
直流電源DCの正極はハイサイドパワートランジスタQ3の一端に接続され、負極は接地される。ハイサイドパワートランジスタQ3の他端はローサイドパワートランジスタQ4の一端に接続され、ローサイドパワートランジスタQ4の他端は接地される。ここで、ハイサイドパワートランジスタQ3とローサイドパワートランジスタQ4とは好ましくはMOSFETである。その他に、IGBT又はバイポーラトランジスタであっても良い。
発振器Osは、ハイサイドパワートランジスタQ3の制御端子には直接接続され、ローサイドパワートランジスタQ4の制御端子にはインバータInを通して接続される。
二つのパワートランジスタQ3とQ4との接続点Jは第二のブロック2のそれぞれを通して、冷陰極管20のそれぞれの一端の電極に接続される。
直流電源DCは出力電圧Viを一定値に維持する。ここで、その一定値は好ましくは、冷陰極管20のランプ電圧(例えば1400[V])程度である。発振器Osは一定周波数(例えば45[kHz])のパルス波を二つのパワートランジスタQ3、Q4の制御端子に対し送出する。インバータInは、ローサイドパワートランジスタQ4の制御端子に入力されるパルス波の極性を、ハイサイドパワートランジスタQ3の制御端子に入力されるパルス波の極性とは逆にする。従って、二つのパワートランジスタQ3、Q4は、発振器Osの周波数と同じ周波数で交互にオンオフする。それにより、接続点Jの電位がViと接地電位(≒0)とのいずれかの値を交互に取る。
こうして、第一のブロック1は直流電源DCの出力電圧Viを高周波数(例えば45[kHz])の交流電圧に変換する。
上記の通り、第一のブロック1の出力段はパワートランジスタQ3とQ4とで構成されるので、出力インピーダンスが低い。すなわち、本発明の実施形態2による冷陰極管点灯装置では上記の実施形態1による装置と同様、第一のブロック1が低インピーダンス電源として機能する。従って、実施形態1での設定と同様に、冷陰極管20ごとにバラストインダクタLBと整合コンデンサCMとのインピーダンスを設定することにより、複数の冷陰極管20間で輝度が一様に、かつ安定に維持される。こうして、本発明の実施形態2による冷陰極管点灯装置は、単一の低インピーダンス電源(第一のブロック)1で複数の冷陰極管20を一様にかつ安定に点灯させる。更に、第一のブロック1と第二のブロック2との間の配線が長くても良く、かつ冷陰極管20ごとに大きく異なっても良いので、配線のレイアウトの柔軟性が高い。それ故、装置全体の小型化が容易に実現する。
本発明の実施形態2による冷陰極管点灯装置では、第二のブロック2がバラストインダクタLBに代え、バラストコンデンサを含んでも良い。バラストコンデンサ(及び整合コンデンサCM)は好ましくは、第二の基板50の層間容量として形成される。バラストコンデンサを利用するときは更に、整合コンデンサCMが設置されなくても良い。こうして、第二のブロック2の小型化が容易に実現するので、本発明の実施形態2による冷陰極管点灯装置は特に、液晶ディスプレイの薄型化に有利である。
《実施形態3》
本発明の実施形態3による冷陰極管点灯装置は、上記の実施形態1による装置と同様、液晶ディスプレイに搭載される。その液晶ディスプレイの構成は上記の実施形態1によるものと同様であるので、その構成については図1と図2、及び上記の実施形態1での説明を援用する。
図8は、本発明の実施形態3による冷陰極管点灯装置の構成を示す回路図である。その冷陰極管点灯装置は第二のブロック2と第三のブロック3との構成を除き、実施形態1による装置の構成要素(図3参照)と同様な構成要素を有する。従って、それら同様な構成要素に対し図3に示される符号と同じ符号を付し、それらの説明は実施形態1での説明を援用する。
冷陰極管20のそれぞれでは一般に、接地されたケース10(又は反射板30)と管壁との間に浮遊容量SCが生じる(図2参照)。上記の実施形態1による冷陰極管点灯装置のように冷陰極管20の一方の電極が接地される構成では他方の電極の電位だけがケース10の電位(=接地電位)に対し大きく変動する。従って、ケース10と管壁との間の浮遊容量SCが過大なとき、特に上記の他方の電極近傍で管壁とケース10との間に流れる漏れ電流が過剰に増大する。液晶ディスプレイのバックライトとして搭載される冷陰極管20は特に長いので、漏れ電流の過剰な増大は管電流の長さ方向での一様性を崩すおそれがある。その結果、冷陰極管20それぞれに長さ方向での輝度の偏りが生じるおそれがある。
長さ方向での輝度の一様性を更に高めるには、冷陰極管20の両端の電極電位の中間点を接地電位に維持すると良い。そのとき、両端の電極電位が接地電位(=ケース10の電位)に対し反対称に維持され、すなわち両端の電極電位が接地電位(=ケース10の電位)に対し均等に変動する。従って、冷陰極管20それぞれについて、管壁各部とケース10との間に流れる漏れ電流の分布が冷陰極管20の中央部に対して対称である。特に、冷陰極管20それぞれで、長さ方向での輝度の偏りが低減する。従って、冷陰極管20それぞれの全体が実質的に一様な輝度で発光する。
更に、冷陰極管20の両端の電極電位の中間点が接地電位に維持される場合、冷陰極管20の一端の電極が接地される場合より、冷陰極管20の両端電圧の振幅が十分に高く(例えばランプ電圧程度)に維持されたまま、接地電位に対する電極電位の振幅が半減できる。それにより上記の漏れ電流自体が低減するので、その分布の偏りが更に低減する。従って、冷陰極管20それぞれの長さ方向での輝度の偏りが更に低減する。
本発明の実施形態3による冷陰極管点灯装置では以下のように、冷陰極管20それぞれについて、両端の電極電位の中間点が接地電位に維持される。
第二のブロック2と第三のブロック3とがそれぞれ整合コンデンサCM1とCM2とを含む。又は、第二のブロック2と第三のブロック3とのいずれか一方が全ての整合コンデンサCM1とCM2とを含んでも良い。二つの整合コンデンサCM1とCM2との容量は好ましくは10[pF]程度である。それらの容量比は好ましくは、1:1に設定される。それらの整合コンデンサCM1とCM2とは更に好ましくは、第二の基板50又は第三の基板60の層間容量として形成される。
二つの整合コンデンサCM1とCM2とは直列に接続され、冷陰極管20のそれぞれの両端の電極間に接続される。特に、二つの整合コンデンサCM1とCM2との接続点JMが接地される。
昇圧トランス5の二次巻線52の一端は第二のブロック2のそれぞれを通して、冷陰極管20のそれぞれの一端の電極に接続される。二次巻線52の他端は冷陰極管20それぞれの他端の電極に接続される。
本発明の実施形態3による冷陰極管点灯装置では上記の実施形態1による装置とは異なり、冷陰極管20それぞれの一方の電極ではなく、整合コンデンサCM1とCM2との直列接続の接続点JMが接地される。それにより、冷陰極管20それぞれでは両端の電極電位の中間点が接地電位に維持される。従って、上記の通り、冷陰極管20それぞれについて、長さ方向での輝度の一様性が更に向上する。
本発明の実施形態3による冷陰極管点灯装置では更に、二つの整合コンデンサCM1とCM2とが直列に接続されるので、それぞれの耐圧が上記の実施形態1による整合コンデンサCM(図3参照)の耐圧(例えば冷陰極管20の放電開始電圧程度)より半減できる。従って、それらの整合コンデンサCM1とCM2との小型化が容易に実現する。
本発明の実施形態3による冷陰極管点灯装置では上記の実施形態1による装置と同様、第一のブロック1が低インピーダンス電源として機能する。そのとき更に、冷陰極管20ごとに、二つの整合コンデンサCM1とCM2、バラストインダクタLB、及び過電流保護コンデンサCP、それぞれのインピーダンスが調節される。それにより、複数の冷陰極管20のそれぞれで、二つの整合コンデンサCM1、CM2、及び周辺の浮遊容量の合成インピーダンスがバラストインダクタLBと過電流保護コンデンサCPとの直列接続のインピーダンスと整合する。更に好ましくは、その合成インピーダンスが冷陰極管20それぞれの点灯時のインピーダンス(例えば200[kΩ])と整合する。
こうして、上記のインピーダンス整合が冷陰極管20それぞれで実現する。その結果、複数の冷陰極管20間で点灯時の管電流が一様に維持される。それ故、複数の冷陰極管20が一様な輝度で点灯する。更に、その効率は高い。
こうして、本発明の実施形態3による冷陰極管点灯装置は、共通の低インピーダンス電源(第一のブロック)1で複数の冷陰極管20を一様にかつ安定に点灯させる。更に、第一のブロック1と第二のブロック2との間の配線が長くても良く、かつ冷陰極管20ごとに大きく異なっても良いので、配線のレイアウトの柔軟性が高い。それ故、装置全体の小型化が容易に実現する。
本発明の実施形態3による冷陰極管点灯装置では、第二のブロック2がバラストインダクタLBに代え、バラストコンデンサを含んでも良い。バラストコンデンサ、及び整合コンデンサCM1、CM2は好ましくは、第二の基板50又は第三の基板60の層間容量として形成される。こうして、第二のブロック2と第三のブロック3との小型化が容易に実現するので、本発明の実施形態3による冷陰極管点灯装置は特に、液晶ディスプレイの薄型化に有利である。
《実施形態4》
本発明の実施形態4による冷陰極管点灯装置は、上記の実施形態1による装置と同様、液晶ディスプレイに搭載される。その液晶ディスプレイの構成は上記の実施形態1によるものと同様であるので、その構成については図1と図2、及び上記の実施形態1での説明を援用する。
図9は、本発明の実施形態4による冷陰極管点灯装置の構成を示す回路図である。その冷陰極管点灯装置は第一のブロック1と第三のブロック3との構成を除き、実施形態3による装置の構成要素(図8参照)と同様な構成要素を有する。従って、それら同様な構成要素に対し図8に示される符号と同じ符号を付し、それらの説明は実施形態3での説明を援用する。
本発明の実施形態4による冷陰極管点灯装置では上記の実施形態3による装置とは異なり、第一のブロック1が二つの昇圧トランス5Aと5Bとを有し、第三のブロック3が第二のブロック2と同様に、第二のバラストインダクタLB2と第二の過電流保護コンデンサCP2との直列接続を有する。
二つの昇圧トランス5Aと5Bとはいずれも上記の実施形態1による昇圧トランス5(図4、図5参照)と同様な構成を有し、特に漏れ磁束が小さい。
第一の昇圧トランス5Aの二次巻線52の一端は第二のブロック2のそれぞれを通して、冷陰極管20のそれぞれの一端の電極に接続される。その二次巻線52の他端は接地される。
第二の昇圧トランス5Bの二次巻線52Cの一端は第三のブロック3のそれぞれを通して、冷陰極管20のそれぞれの他端の電極に接続される。その二次巻線52Cの他端は接地される。
ここで、二つの昇圧トランス5Aと5Bとのそれぞれの二次巻線52と52Cとは、互いに極性を逆にして接続される。それにより、冷陰極管20それぞれの両端の電極電位は互いに逆位相で変化する。
更に、昇圧トランス5Aと5Bとのそれぞれの二次電圧の実効値が好ましくは、冷陰極管20のランプ電圧の半値程度であるように、昇圧トランス5Aと5Bとのそれぞれの昇圧比が設定される。例えば冷陰極管20のランプ電圧が1300[V]の場合、二次電圧の実効値は好ましくは600[V]程度に設定される。
第二のバラストインダクタLB2は例えば巻線コイルである。そのインダクタンスは好ましくはバラストインダクタLBのインダクタンスと等しい。更に好ましくは、バラストインダクタLBとLB2とのインダクタンスが共に820[mH]程度である。第二のバラストインダクタLB2の巻線は好ましくは、バラストインダクタLBと同様、分割巻き(又はハネカム巻き)で巻かれる。それにより、線間容量が小さいので自己共振周波数が十分に高い。その自己共振周波数は好ましくは、冷陰極管20の駆動周波数より十分に高い。
第二のバラストインダクタLB2は更に好ましくは可飽和リアクトルを含む。それにより冷陰極管20での放電が突然中断し、その冷陰極管20の両端電圧が急激に上昇するとき、第二のバラストインダクタLB2のインダクタンスが飽和する。従って、更なる電圧上昇が抑えられる。こうして、冷陰極管20及び冷陰極管点灯装置が過電圧から保護される。
第二の過電流保護コンデンサCP2は、第二のバラストインダクタLB2の短絡時にバッファとして作用し、冷陰極管20を過電流から保護する。第二の過電流保護コンデンサCP2の容量は例えば150[pF]程度に設定される。ここで、過電流の発生のおそれが小さいときは、過電流保護コンデンサCPとCP2とはいずれも設置されなくても良い。
本発明の実施形態4による冷陰極管点灯装置では上記の実施形態3による装置と同様、第一のブロック1が低インピーダンス電源として機能する。そのとき更に、冷陰極管20ごとに、バラストインダクタLBのインピーダンス、第二のバラストインダクタLB2のインピーダンス、及び二つの整合コンデンサCM1、CM2、それぞれのインピーダンスを設定する。それにより、冷陰極管20のそれぞれで、整合コンデンサの一方CM1と周辺の浮遊容量との合成インピーダンスが、バラストインダクタLBと過電流保護コンデンサCPとの直列接続のインピーダンスと整合する。更に、冷陰極管20のそれぞれで、整合コンデンサの他方CM2と周辺の浮遊容量との合成インピーダンスが、第二のバラストインダクタLB2と第二の過電流保護コンデンサCP2との直列接続のインピーダンスと整合する。特に好ましくは、それぞれの合成インピーダンスが冷陰極管20それぞれの点灯時のインピーダンスの半値と整合する。その結果、上記の実施形態3と同様に、複数の冷陰極管20間で輝度が一様にかつ安定に維持される。
こうして、本発明の実施形態4による冷陰極管点灯装置は、共通の低インピーダンス電源(第一のブロック)1で複数の冷陰極管20を一様にかつ安定に点灯させる。更に、第一のブロック1と第二のブロック2との間の配線、及び第一のブロック1と第三のブロック3との間の配線がいずれも長くても良く、かつ冷陰極管20ごとに大きく異なっても良いので、配線のレイアウトの柔軟性が高い。それ故、装置全体の小型化が容易に実現する。
本発明の実施形態4による冷陰極管点灯装置では、昇圧トランスが二つのトランス5Aと5Bとに分けて設置される。更に、それらの二次電圧が同じ振幅で、かつ逆位相に維持される。それにより、冷陰極管20それぞれについて、両端の電極電位の中間点が接地電位に維持される。従って、冷陰極管20それぞれについて、長さ方向での輝度の一様性が更に向上する。
その上、昇圧トランス5A、5Bそれぞれの耐圧は上記の実施形態3による昇圧トランス5(図8参照)の耐圧より半減する。従って、昇圧トランス5Aと5Bとはいずれも上記の実施形態3による昇圧トランス5より小型化が容易である。特に、昇圧トランス5Aと5Bとの高さが上記の実施形態3による昇圧トランス5の高さより低減できる。
同様に、二つの整合コンデンサCM1とCM2とが直列に接続されるので、それぞれの耐圧が上記の実施形態1による整合コンデンサCM(図3参照)の耐圧より半減できる。従って、それらの整合コンデンサCM1とCM2との小型化が容易に実現する。
こうして、本発明の実施形態4による冷陰極管点灯装置は、液晶ディスプレイの薄型化には特に有利である。
本発明の実施形態4による冷陰極管点灯装置では、第一のブロック1が第一の基板40に実装され、第二のブロック2と第三のブロック3とから分離される。その他に、第一のブロック1が第二のブロック2と同じ第二の基板50に実装されても良い。昇圧トランス5Aと5Bとは上記の実施形態3による昇圧トランス5より低いので、第二の基板50上の冷陰極管点灯装置は十分に薄い。従って、液晶ディスプレイは十分に薄くできる。
本発明の実施形態4による冷陰極管点灯装置では、第二のブロック2と第三のブロック3とがそれぞれ、バラストインダクタLBとLB2とに代え、バラストコンデンサを含んでも良い。バラストコンデンサ、及び整合コンデンサCM1、CM2は好ましくは、第二の基板50又は第三の基板60の層間容量として形成される。バラストコンデンサを利用するときは更に、整合コンデンサCM1とCM2とが設置されなくても良い。こうして、第二のブロック2と第三のブロック3との小型化が容易に実現するので、本発明の実施形態4による冷陰極管点灯装置は特に、液晶ディスプレイの薄型化に有利である。
《実施形態5》
本発明の実施形態5による冷陰極管点灯装置は、上記の実施形態1による装置と同様、液晶ディスプレイに搭載される。その液晶ディスプレイの構成は上記の実施形態1によるものと同様であるので、その構成については図1と図2、及び上記の実施形態1での説明を援用する。
図10は、本発明の実施形態5による冷陰極管点灯装置の構成を示す回路図である。その冷陰極管点灯装置は昇圧トランス5の構成を除き、実施形態4による装置の構成要素(図9参照)と同様な構成要素を有する。従って、それら同様な構成要素に対し図9に示される符号と同じ符号を付し、それらの説明は実施形態4での説明を援用する。
本発明の実施形態5による冷陰極管点灯装置では以下のように、冷陰極管20それぞれについて、両端の電極電位の中間点が接地電位に維持される。
昇圧トランス5は上記の実施形態1と同様、一つである(図3参照)。しかし、その昇圧トランス5は上記の実施形態1によるものとは異なり、中性点M2で分けられた二つの二次巻線52Aと52Bとを含む。第一の二次巻線52Aの一端は第二のブロック2のそれぞれを通して冷陰極管20のそれぞれの一端の電極に接続される。第二の二次巻線52Bの一端は冷陰極管20それぞれの他端の電極に接続される。二次巻線52Aと52Bとの中性点M2は接地される。
こうして、冷陰極管20それぞれでは両端の電極電位の中間点が接地電位に維持されるので、上記の通り、冷陰極管20それぞれについて、長さ方向での輝度の一様性が更に向上する。
本発明の実施形態5による冷陰極管点灯装置では上記の実施形態4による装置と同様、第一のブロック1が低インピーダンス電源として機能する。従って、実施形態4での設定と同様に、冷陰極管20ごとに、二つのバラストインダクタLBとLB2、及び二つの整合コンデンサCM1とCM2、それぞれのインピーダンスを設定することにより、複数の冷陰極管20間で輝度が一様にかつ安定に維持される。こうして、本発明の実施形態5による冷陰極管点灯装置は、共通の低インピーダンス電源(第一のブロック)1で複数の冷陰極管20を一様にかつ安定に点灯させる。更に、第一のブロック1と第二のブロック2との間の配線が長くても良く、かつ冷陰極管20ごとに大きく異なっても良いので、配線のレイアウトの柔軟性が高い。それ故、装置全体の小型化が容易に実現する。
本発明の実施形態5による冷陰極管点灯装置では、第二のブロック2と第三のブロック3とがバラストインダクタLBとLB2とに代え、バラストコンデンサを含んでも良い。バラストコンデンサ及び整合コンデンサCM1とCM2は好ましくは、第二の基板50又は第三の基板60の層間容量として形成される。バラストコンデンサを利用するときは更に、整合コンデンサCM1とCM2とが設置されなくても良い。こうして、第二のブロック2と第三のブロック3との小型化が容易に実現するので、本発明の実施形態5による冷陰極管点灯装置は特に、液晶ディスプレイの薄型化に有利である。
《実施形態6》
本発明の実施形態6による冷陰極管点灯装置は、上記の実施形態1による装置と同様、液晶ディスプレイに搭載される。その液晶ディスプレイの構成は上記の実施形態1によるものと同様であるので、その構成については図1と図2、及び上記の実施形態1での説明を援用する。
図11は、本発明の実施形態6による冷陰極管点灯装置の構成を示す回路図である。その冷陰極管点灯装置は第一のブロック1の構成を除き、実施形態4による装置の構成要素(図9参照)と同様な構成要素を有する。従って、それら同様な構成要素に対し図9に示される符号と同じ符号を付し、それらの説明は実施形態4での説明を援用する。
本発明の実施形態6による冷陰極管点灯装置では上記の実施形態4による装置とは異なり、第一のブロック1が上記の実施形態2による第一のブロック1(図7参照)と同様な二つのパワートランジスタの直列接続を二対有する。第一のブロック1は更に、発振器Os、及び二つのインバータIn1とIn2とを含む。
直流電源DCの正極は二つのハイサイドパワートランジスタQ3とQ5とのそれぞれの一端に接続され、負極は接地される。第一のハイサイドパワートランジスタQ3の他端は第一のローサイドパワートランジスタQ4の一端に接続され、第一のローサイドパワートランジスタQ4の他端は接地される。第二のハイサイドパワートランジスタQ5の他端は第二のローサイドパワートランジスタQ6の一端に接続され、第二のローサイドパワートランジスタQ6の他端は接地される。ここで、四つのパワートランジスタQ3、Q4、Q5、及びQ6は好ましくはMOSFETである。その他に、IGBT又はバイポーラトランジスタであっても良い。
発振器Osは、第一のハイサイドパワートランジスタQ3の制御端子と第二のローサイドパワートランジスタQ6の制御端子とには直接接続される。一方、第一のローサイドパワートランジスタQ4の制御端子には第一のインバータIn1を通して接続され、第二のハイサイドパワートランジスタQ5の制御端子には第二のインバータIn2を通して接続される。
第一のハイサイドパワートランジスタQ3と第一のローサイドパワートランジスタQ4との第一の接続点J1は第二のブロック2のそれぞれを通して、冷陰極管20のそれぞれの一端の電極に接続される。第二のハイサイドパワートランジスタQ5と第二のローサイドパワートランジスタQ6との第二の接続点J2は第三のブロック3のそれぞれを通して、冷陰極管20のそれぞれの他端の電極に接続される。
直流電源DCは出力電圧Viを一定値に維持する。ここで、その一定値は好ましくは、冷陰極管20のランプ電圧の半値(例えば700[V])程度である。発振器Osは一定周波数(例えば45[kHz])のパルス波を四つのパワートランジスタQ3、Q4、Q5、及びQ6の制御端子に対し送出する。第一のインバータIn1は、第一のローサイドパワートランジスタQ4の制御端子に入力されるパルス波の極性を、第一のハイサイドパワートランジスタQ3の制御端子に入力されるパルス波の極性とは逆にする。同様に、第二のインバータIn2は、第二のハイサイドパワートランジスタQ5の制御端子に入力されるパルス波の極性を、第二のローサイドパワートランジスタQ6の制御端子に入力されるパルス波の極性とは逆にする。従って、第一のハイサイドパワートランジスタQ3と第二のローサイドパワートランジスタQ6とがオンオフを共にし、第一のローサイドパワートランジスタQ4と第二のハイサイドパワートランジスタQ5とがオンオフを共にする。更に、ハイサイドパワートランジスタQ3、Q5とローサイドパワートランジスタQ4、Q6とは、発振器Osの周波数と同じ周波数で交互にオンオフする。それにより、第一の接続点J1の電位と第二の接続点J2の電位とが互いに逆位相で変化する。
こうして、第一のブロック1は直流電源DCの出力電圧Viを高周波数(例えば45[kHz])の交流電圧に変換する。
上記の通り、第一のブロック1の出力段は四つのパワートランジスタQ3、Q4、Q5、Q6で構成されるので、出力インピーダンスが低い。すなわち、本発明の実施形態6による冷陰極管点灯装置では上記の実施形態4による装置と同様、第一のブロック1が低インピーダンス電源として機能する。従って、実施形態4での設定と同様に、冷陰極管20ごとに、バラストインダクタLB、LB2、及び整合コンデンサCM1、CM2それぞれのインピーダンスを設定することにより、複数の冷陰極管20間で輝度が一様に、かつ安定に維持される。こうして、本発明の実施形態6による冷陰極管点灯装置は、共通の低インピーダンス電源(第一のブロック)1で複数の冷陰極管20を一様にかつ安定に点灯させる。更に、第一のブロック1と第二のブロック2との間の配線、及び第一のブロック1と第三のブロック3との間の配線がいずれも長くても良く、かつ冷陰極管20ごとに大きく異なっても良いので、配線のレイアウトの柔軟性が高い。それ故、装置全体の小型化が容易に実現する。
本発明の実施形態6による冷陰極管点灯装置では上記の実施形態2による装置とは異なり、パワートランジスタ対が二つに分けられ、設置される。更に、それらの出力電圧が同じ振幅で、かつ逆位相に維持される。それにより、冷陰極管20それぞれについて、両端の電極電位の中間点が接地電位に維持される。従って、冷陰極管20それぞれについて、長さ方向での輝度の一様性が更に向上する。
その上、パワートランジスタQ3、Q4、Q5、及びQ6それぞれの耐圧が上記の実施形態2によるパワートランジスタの耐圧より半減する。従って、パワートランジスタの構成が比較的容易である。
同様に、二つの整合コンデンサCM1とCM2とが直列に接続されるので、それぞれの耐圧が上記の実施形態1による整合コンデンサCM(図3参照)の耐圧より半減できる。従って、それらの整合コンデンサCM1とCM2との小型化が容易に実現する。
本発明の実施形態6による冷陰極管点灯装置では、第二のブロック2と第三のブロック3とがそれぞれ、バラストインダクタLBとLB2とに代え、バラストコンデンサを含んでも良い。バラストコンデンサ、及び整合コンデンサCM1、CM2は好ましくは、第二の基板50又は第三の基板60の層間容量として形成される。バラストコンデンサを利用するときは更に、整合コンデンサCM1とCM2とが設置されなくても良い。こうして、第二のブロック2と第三のブロック3との小型化が容易に実現するので、本発明の実施形態6による冷陰極管点灯装置は特に、液晶ディスプレイの薄型化に有利である。
本発明による冷陰極管点灯装置は例えば、液晶ディスプレイにバックライトの駆動装置として搭載され、上記の通り、低インピーダンス電源を採用し、冷陰極管ごとにバラストを設定する。このように本発明は明らかに、産業上利用可能である。
本発明の実施形態1による冷陰極管点灯装置を搭載する液晶ディスプレイの内部を示す正面図である。 図1に示される直線II−IIに沿った液晶ディスプレイの断面図である。 本発明の実施形態1による冷陰極管点灯装置の構成を示す回路図である。 本発明の実施形態1による冷陰極管点灯装置に含まれる昇圧トランス5の構成を模式的に示す分解組立図である。 図4に示される直線V−Vに沿った昇圧トランス5の断面図である。 冷陰極管20の電圧−電流特性を示すグラフである。 本発明の実施形態2による冷陰極管点灯装置の構成を示す回路図である。 本発明の実施形態3による冷陰極管点灯装置の構成を示す回路図である。 本発明の実施形態4による冷陰極管点灯装置の構成を示す回路図である。 本発明の実施形態5による冷陰極管点灯装置の構成を示す回路図である。 本発明の実施形態6による冷陰極管点灯装置の構成を示す回路図である。 従来の冷陰極管点灯装置の構成を示す回路図である。 従来の冷陰極管点灯装置で利用される漏洩磁束型トランスの外観を模式的に示す斜視図である。 図13に示される直線XIV−XIVに沿った漏洩磁束型トランスの断面図である。
符号の説明
DC 直流電源
1 第一のブロック(低インピーダンス電源)
4 高周波発振回路
C1 第一のコンデンサ
C2 第二のコンデンサ
Os 発振器
Q1 第一のトランジスタ
Q2 第二のトランジスタ
In インバータ
L インダクタ
5 昇圧トランス
51A 第一の一次巻線
51B 第二の一次巻線
M1 一次巻線の中性点
52 二次巻線
2 第二のブロック
LB バラストインダクタ
CP 過電流保護コンデンサ
CM 整合コンデンサ
3 接続端子
20 冷陰極管

Claims (16)

  1. 複数の冷陰極管それぞれの少なくとも一端の電極に少なくとも一つずつ接続され、前記複数の冷陰極管における各冷陰極管の点灯時の管電流を一様に維持するためのバラストである複数の第二のブロック、および
    コアと、前記コアに巻かれる一次巻線と、前記一次巻線の内側若しくは外側又はその両方に巻かれる二次巻線とにより構成されたトランスを有する低インピーダンス電源である第一のブロック、を具備し、
    前記第一のブロックは、前記複数の第二のブロックそれぞれを通して前記複数の冷陰極管のそれぞれに接続され、前記トランスが前記複数の冷陰極管の合成インピーダンスより低い出力インピーダンスを有して前記複数の冷陰極管に電力を供給するよう構成された冷陰極管点灯装置。
  2. 前記第二のブロックが、バラストインダクタと過電流保護コンデンサとの直列接続を有して構成され、前記バラストインダクタと前記過電流保護コンデンサとの直列接続のインピーダンスが、当該第二のブロックにより電力を供給される冷陰極管のインピーダンスと整合するよう構成されて、前記複数の冷陰極管における各冷陰極管の点灯時の管電流を一様に維持するよう構成された請求項1記載の冷陰極管点灯装置。
  3. 前記二次巻線が分割巻き又はハネカム巻きの構成を有する、請求項1乃至2記載の冷陰極管点灯装置。
  4. 前記第一のブロックが、前記第二のブロックに接続されるパワートランジスタ、を有する、請求項1乃至2記載の冷陰極管点灯装置。
  5. 前記バラストインダクタが、分割巻き又はハネカム巻きのコイル、を有する、請求項記載の冷陰極管点灯装置。
  6. 前記バラストインダクタが可飽和リアクトルを含む、請求項2または5記載の冷陰極管点灯装置。
  7. 前記冷陰極管それぞれの両端の電極間に少なくとも一つずつ接続される整合コンデンサ、を有する、請求項1乃至2記載の冷陰極管点灯装置。
  8. 前記整合コンデンサが基板の層間容量である、請求項記載の冷陰極管点灯装置。
  9. 前記冷陰極管の両端の電極のそれぞれと接地電位との間に少なくとも一つずつ接続される整合コンデンサ、を有する、請求項1乃至2記載の冷陰極管点灯装置。
  10. 前記冷陰極管の両端の電極のそれぞれに前記第二のブロックが一つずつ接続され;
    前記第一のブロックが二つ具備され、それぞれが前記冷陰極管の両端の電極のそれぞれに前記第二のブロックの一つを通して接続され、それらの出力が互いに逆位相に維持されるよう構成された、請求項1乃至2記載の冷陰極管点灯装置。
  11. 前記第一のブロックが第一の基板に実装され
    前記冷陰極管の一端の電極に接続される前記第二のブロックの一方が第二の基板に実装され
    前記冷陰極管の他端の電極に接続される前記第二のブロックの他方が第三の基板に実装された、請求項10記載の冷陰極管点灯装置。
  12. 前記第二の基板に前記冷陰極管の一端が固定され、前記第三の基板に前記冷陰極管の他端が固定される、請求項11記載の冷陰極管点灯装置。
  13. 前記第一のブロックと、前記冷陰極管の一端の電極に接続される前記第二のブロックの一方が第一の基板に実装され
    前記冷陰極管の他端の電極に接続される前記第二のブロックの他方が第二の基板に実装される請求項10記載の冷陰極管点灯装置。
  14. 前記冷陰極管の両端の電極のそれぞれに前記第二のブロックが一つずつ接続され
    前記トランスの二次巻線の両端がそれぞれ前記第二のブロックを通して前記冷陰極管の両端の電極にそれぞれ接続され、前記二次巻線の中性点が接地された請求項1乃至2記載の冷陰極管点灯装置。
  15. 複数の冷陰極管
    前記冷陰極管の前側に設置され、前記冷陰極管の発する光を所定のパターンで遮る液晶パネル、および
    前記複数の冷陰極管に電力を供給して点灯させる冷陰極管点灯装置、を具備する液晶ディスプレイであって、
    前記冷陰極管点灯装置は、
    前記複数の冷陰極管それぞれの少なくとも一端の電極に少なくとも一つずつ接続され、前記複数の冷陰極管における各冷陰極管の点灯時の管電流を一様に維持するためのバラストである複数の第二のブロック、および
    コアと、前記コアに巻かれる一次巻線と、前記一次巻線の内側若しくは外側又はその両方に巻かれる二次巻線とにより構成されたトランスを有する低インピーダンス電源である第一のブロック、を備え、
    前記第一のブロックは、前記複数の第二のブロックそれぞれを通して前記複数の冷陰極管のそれぞれに接続され、前記トランスが前記複数の冷陰極管の合成インピーダンスより低い出力インピーダンスを有して前記複数の冷陰極管に電力を供給するよう構成された液晶ディスプレイ。
  16. 前記第二のブロックが、バラストインダクタと過電流保護コンデンサとの直列接続を有して構成され、前記バラストインダクタと前記過電流保護コンデンサとの直列接続のインピーダンスが、当該第二のブロックにより電力を供給される冷陰極管のインピーダンスと整合するよう構成されて、前記複数の冷陰極管における各冷陰極管の点灯時の管電流を一様に維持するよう構成された請求項15記載の液晶ディスプレイ。
JP2004153772A 2003-07-30 2004-05-24 冷陰極管点灯装置 Expired - Fee Related JP4554989B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004153772A JP4554989B2 (ja) 2003-07-30 2004-05-24 冷陰極管点灯装置
US10/887,110 US7038397B2 (en) 2003-07-30 2004-07-08 Cold cathode fluorescent lamp driver circuit
TW093121365A TW200505288A (en) 2003-07-30 2004-07-16 Cold cathode fluorescent lamp driver circuit
CNA2004100557844A CN1578580A (zh) 2003-07-30 2004-07-30 冷阴极荧光灯驱动电路
KR1020040060370A KR20050014755A (ko) 2003-07-30 2004-07-30 냉음극 형광 램프 구동 회로

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003282644 2003-07-30
JP2004153772A JP4554989B2 (ja) 2003-07-30 2004-05-24 冷陰極管点灯装置

Publications (2)

Publication Number Publication Date
JP2005063941A JP2005063941A (ja) 2005-03-10
JP4554989B2 true JP4554989B2 (ja) 2010-09-29

Family

ID=34106927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004153772A Expired - Fee Related JP4554989B2 (ja) 2003-07-30 2004-05-24 冷陰極管点灯装置

Country Status (5)

Country Link
US (1) US7038397B2 (ja)
JP (1) JP4554989B2 (ja)
KR (1) KR20050014755A (ja)
CN (1) CN1578580A (ja)
TW (1) TW200505288A (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4312654B2 (ja) * 2004-05-07 2009-08-12 パナソニック株式会社 冷陰極管点灯装置
JP4237097B2 (ja) * 2004-05-10 2009-03-11 パナソニック株式会社 冷陰極管点灯装置
KR101044472B1 (ko) 2004-06-30 2011-06-29 엘지디스플레이 주식회사 다램프 구동을 위한 백라이트 유닛 및 이를 채용한액정표시장치
KR100641907B1 (ko) * 2004-08-09 2006-11-02 금호전기주식회사 냉음극형광램프용 조명장치
US7309964B2 (en) * 2004-10-01 2007-12-18 Au Optronics Corporation Floating drive circuit for cold cathode fluorescent lamp
JP4560680B2 (ja) * 2004-11-12 2010-10-13 ミネベア株式会社 バックライトインバータ及びその駆動方法
KR20060100236A (ko) * 2005-03-15 2006-09-20 마츠시타 덴끼 산교 가부시키가이샤 박막 형상의 급전단자를 구비한 냉음극 형광램프, 그제조방법, 당해 냉음극 형광램프를 구비한 점등장치,백라이트 유닛 및 액정표시장치
JP2007005006A (ja) * 2005-06-21 2007-01-11 Sharp Corp インバータ回路、バックライトユニット、及び液晶表示装置
JP2007027191A (ja) * 2005-07-12 2007-02-01 Minebea Co Ltd トランス
JP4797511B2 (ja) * 2005-08-23 2011-10-19 日本電気株式会社 冷陰極管点灯装置、管電流制御方法、及び集積回路
CN100426056C (zh) 2005-08-26 2008-10-15 鸿富锦精密工业(深圳)有限公司 多灯管驱动系统及方法
JP4552089B2 (ja) * 2005-09-09 2010-09-29 ミネベア株式会社 バックライト装置及び液晶表示装置
CN1980509B (zh) * 2005-12-02 2010-04-21 鸿富锦精密工业(深圳)有限公司 多灯管驱动系统
JP4841302B2 (ja) * 2006-04-25 2011-12-21 スミダコーポレーション株式会社 インバータ回路
TW200744405A (en) * 2006-05-16 2007-12-01 Delta Electronics Inc Driving circuit for multiple discharge lamps
TW200744406A (en) * 2006-05-16 2007-12-01 Delta Electronics Inc Driving circuit for illuminating and protecting multiple discharge lamps with trace-to-trace capacitance
JP4859559B2 (ja) * 2006-07-04 2012-01-25 スミダコーポレーション株式会社 インバータ駆動回路における直列共振回路の定数設定方法
WO2008011810A1 (fr) 2006-07-19 2008-01-31 Shichao Ge Lampe d'éclairage fluorescente à cathode froide et à flux lumineux intense
TWI321797B (en) * 2006-10-05 2010-03-11 Delta Electronics Inc Transformer with adaptable leakage inductance
US7579790B2 (en) * 2006-12-21 2009-08-25 Xenon Corporation Multiple gas discharge lamp interleave trigger circuit
EP1983252B1 (en) * 2007-02-15 2012-12-12 Sharp Kabushiki Kaisha Illuminating apparatus for display device, display device, and television receiver
TWI359316B (en) * 2007-07-02 2012-03-01 Au Optronics Corp Back light module
US7746003B2 (en) * 2008-01-29 2010-06-29 Orion Energy Systems, Inc. Transformer wiring method and apparatus for fluorescent lighting
JP2009224062A (ja) * 2008-03-13 2009-10-01 Sanken Electric Co Ltd 放電管点灯装置
CN101247074B (zh) * 2008-03-17 2010-09-22 王尺 一种交流用电器的节电装置和制作方法
JP4533445B2 (ja) * 2008-04-15 2010-09-01 ノリタケ伊勢電子株式会社 蛍光表示管のフィラメント用電源回路
US8502464B2 (en) * 2011-02-18 2013-08-06 Control Solutions LLC Underwater lighting system and method
US20160065088A1 (en) * 2014-08-28 2016-03-03 Shenzhen Wisepower Innovation Technology Co., Ltd Push pull inverter
CN109856496B (zh) * 2019-02-25 2020-12-15 绵阳立德电子股份有限公司 一种中性电极监测装置
US11063519B2 (en) * 2019-05-02 2021-07-13 Howard Sanders Efficient high voltage power supply for pulse capacitor discharge applications

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135627U (ja) * 1978-03-14 1979-09-20
JPS6158197A (ja) * 1984-08-02 1986-03-25 インノキャップアクティボラグ ガス放電管用スイツチ回路装置
JPH0613117U (ja) * 1992-07-21 1994-02-18 株式会社トーキン コイル巻枠及びインダクタ
JPH0767357A (ja) * 1993-08-30 1995-03-10 Masakazu Ushijima 放電管用インバーター回路
JPH07220891A (ja) * 1994-02-04 1995-08-18 Tec Corp 放電灯点灯装置
JPH08288086A (ja) * 1995-04-18 1996-11-01 Hitachi Ltd 放電灯点灯装置
JP2001244094A (ja) * 2000-02-28 2001-09-07 Toshiba Lighting & Technology Corp 放電灯点灯装置および液晶表示装置
JP2001268941A (ja) * 2000-03-17 2001-09-28 Toko Inc インバータ回路ユニット

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3292788B2 (ja) 1995-03-29 2002-06-17 昌和 牛嶋 放電管用インバータ回路
US7002304B2 (en) * 2004-01-02 2006-02-21 Lien Chang Electronic Enterprise Co., Ltd. Multi-lamp drive device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135627U (ja) * 1978-03-14 1979-09-20
JPS6158197A (ja) * 1984-08-02 1986-03-25 インノキャップアクティボラグ ガス放電管用スイツチ回路装置
JPH0613117U (ja) * 1992-07-21 1994-02-18 株式会社トーキン コイル巻枠及びインダクタ
JPH0767357A (ja) * 1993-08-30 1995-03-10 Masakazu Ushijima 放電管用インバーター回路
JPH07220891A (ja) * 1994-02-04 1995-08-18 Tec Corp 放電灯点灯装置
JPH08288086A (ja) * 1995-04-18 1996-11-01 Hitachi Ltd 放電灯点灯装置
JP2001244094A (ja) * 2000-02-28 2001-09-07 Toshiba Lighting & Technology Corp 放電灯点灯装置および液晶表示装置
JP2001268941A (ja) * 2000-03-17 2001-09-28 Toko Inc インバータ回路ユニット

Also Published As

Publication number Publication date
KR20050014755A (ko) 2005-02-07
CN1578580A (zh) 2005-02-09
US20050023988A1 (en) 2005-02-03
US7038397B2 (en) 2006-05-02
JP2005063941A (ja) 2005-03-10
TW200505288A (en) 2005-02-01

Similar Documents

Publication Publication Date Title
JP4554989B2 (ja) 冷陰極管点灯装置
US7436130B2 (en) Cold-cathode tube lighting device for use in a plurality of cold-cathode tubes lit by two low-impedance power sources
US7545103B2 (en) Cold-cathode tube lighting device for use in a plurality of cold-cathode tubes lit by one low-impedance power source
EP1814367B1 (en) Backlight inverter and its driving method
KR100253127B1 (ko) 방전관용 인버터회로
US6509696B2 (en) Method and system for driving a capacitively coupled fluorescent lamp
KR20060053986A (ko) 방전등 점등 장치
WO2007099683A1 (ja) 放電管点灯回路および電子装置
US7030568B2 (en) Circuit arrangement for operation of one or more lamps
US7230390B2 (en) Cold cathode fluorescent lamp assembly
JP5388816B2 (ja) インバータ回路及びバックライト装置
US7449842B2 (en) Discharge tube drive circuit
KR100951912B1 (ko) 백라이트 어셈블리와 이를 갖는 액정 표시 장치
JP4293206B2 (ja) ワイヤーハーネス、照明装置、バックライト装置および液晶ディスプレイ装置
JP3513613B2 (ja) バックライト用放電灯点灯装置
KR100442204B1 (ko) 액정표시장치의 인버터
JP2004524669A (ja) E級駆動回路により駆動される共振ハーフブリッジ変換器を有する放電ランプ用回路配置
JP4629613B2 (ja) 放電管駆動回路およびインバータ回路
JPH0822894A (ja) 放電灯点灯用装置
KR20040058071A (ko) 유전체 배리어 방전 램프 점등 장치
JP2003017775A (ja) 多数の出力電極を備えたローゼン型圧電トランス及びこれを用いた多灯用安定器
JPH09219291A (ja) 蛍光灯点灯回路
JPH05258877A (ja) 熱陰極放電灯の点灯装置
JP2007188660A (ja) 放電管点灯装置

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050527

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees