WO2007099683A1 - 放電管点灯回路および電子装置 - Google Patents

放電管点灯回路および電子装置 Download PDF

Info

Publication number
WO2007099683A1
WO2007099683A1 PCT/JP2006/325157 JP2006325157W WO2007099683A1 WO 2007099683 A1 WO2007099683 A1 WO 2007099683A1 JP 2006325157 W JP2006325157 W JP 2006325157W WO 2007099683 A1 WO2007099683 A1 WO 2007099683A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge tube
transformer
lighting circuit
transformers
shaped discharge
Prior art date
Application number
PCT/JP2006/325157
Other languages
English (en)
French (fr)
Inventor
Kiyoshi Hiramatsu
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2007513573A priority Critical patent/JP4458166B2/ja
Priority to EP06834884.6A priority patent/EP1991034A4/en
Priority to CN2006800013950A priority patent/CN101124855B/zh
Publication of WO2007099683A1 publication Critical patent/WO2007099683A1/ja
Priority to US11/928,386 priority patent/US7683555B2/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/24Circuit arrangements in which the lamp is fed by high frequency ac, or with separate oscillator frequency
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/24Circuit arrangements in which the lamp is fed by high frequency ac, or with separate oscillator frequency
    • H05B41/245Circuit arrangements in which the lamp is fed by high frequency ac, or with separate oscillator frequency for a plurality of lamps
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133604Direct backlight with lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/04Fixed transformers not covered by group H01F19/00 having two or more secondary windings, each supplying a separate load, e.g. for radio set power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/10Single-phase transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/08High-leakage transformers or inductances
    • H01F38/10Ballasts, e.g. for discharge lamps

Definitions

  • the present invention relates to a discharge tube lighting circuit for lighting a discharge tube such as a cold cathode tube.
  • the present invention relates to a discharge tube lighting circuit for lighting a U-shaped discharge tube or a pseudo-U-shaped discharge tube (hereinafter, a pseudo-U-shaped discharge tube is also simply referred to as a U-shaped discharge tube).
  • the present invention also relates to an electronic device that includes the discharge tube lighting circuit and constitutes a backlight.
  • cold cathode fluorescent lamps are used for knock lights such as large liquid crystal displays.
  • a U-shaped discharge tube or a pseudo U-shaped discharge tube is used for the discharge tube.
  • a U-shaped discharge tube is a long discharge tube bent at the center.
  • the pseudo U-shaped discharge tube is a connection of two I-shaped discharge tubes.
  • a backlight for this type of display is usually provided with a plurality of U-shaped discharge tubes, for example, a dozen or so for a liquid crystal display knocklight with a screen size of 30 to 40 inches.
  • Patent Document 1 discloses a discharge tube lighting circuit for lighting a U-shaped discharge tube.
  • FIG. 1 shows a discharge tube lighting circuit that lights two U-shaped discharge tubes.
  • the knocklight 101 is obtained by connecting U-shaped discharge tubes 102A and 102B to a discharge tube lighting circuit 105.
  • the U-shaped discharge tube 102A is a pseudo U-shaped discharge tube in which two I-shaped discharge tubes 103A and 103B are connected to each other.
  • the U-shaped discharge tube 102B is a pseudo U-shaped discharge tube in which two I-shaped discharge tubes 103C and 103D are connected to each other.
  • Resonant capacitors C1A to C1D and transformers T1A to T1D of the discharge tube lighting circuit 105 are connected to the power supply electrodes 104A to 104D of the I-shaped discharge tubes 103A to 103D, respectively.
  • the transformers T1A to T1D are connected so that the polarities of the output voltages of the secondary windings N2A to N2D are reversed at both ends of the U-shaped discharge tubes 102A and 102B, respectively.
  • the primary feeders N1A to N1D are connected in parallel, and the parallel circuit Is connected to the high-frequency driving circuit 110.
  • the high frequency drive circuit 110 is an inverter, and supplies an AC voltage to the U-shaped discharge tubes 102A and 102B via the transformers T1A to T1D.
  • Transformers T1A to T1D boost the primary side voltage according to the power ratio to obtain a predetermined secondary side output voltage (1 to 2 kV).
  • the U-shaped discharge tubes 102A and 102B are applied with a drive voltage of about 2 to 4 kV by applying a secondary output voltage of opposite polarity to both terminals and adding the amplitude of the secondary output voltage applied to both terminals. To drive.
  • this U-shaped discharge tube requires a high start-up voltage during start-up lighting (at the first turn-on), but can be lit at a drive voltage lower than the start-up voltage during continuous lighting. Therefore, to set the transformer step-up ratio low, and to compensate for the voltage shortage during start-up lighting, each transformer is provided with a capacitor that resonates in series with the leakage inductance of the secondary winding. The system is activated using the characteristic that the step-up ratio increases near the point.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-5059
  • an object of the present invention is to provide a discharge tube lighting circuit having a simple configuration with a reduced number of parts, to improve the reliability and reduce the cost of the discharge tube lighting circuit, and to install a u-shaped discharge tube.
  • the aim is to increase the number of lamps and increase the brightness of the knock light of the electronic device.
  • the present invention includes a high-frequency driving circuit and a plurality of transformers in which a primary winding is connected in parallel to the high-frequency driving circuit, and a secondary winding of each transformer.
  • the discharge tube lighting circuit in which the terminals of the U-shaped discharge tube are connected to the first and second electrodes to which one terminal of each of the two U-shaped discharge tubes is connected, and the two The other terminal of the U-shaped discharge tube is connected in common, and the voltage applied to the first and second electrodes has the same polarity and is applied to the third electrode.
  • the secondary winding of the first transformer is connected to the first electrode and the secondary winding of the second transformer is connected to the first electrode so that the voltage has the opposite polarity to the voltage applied to the first and second electrodes.
  • the secondary electrode of the third transformer is connected to the second electrode and the third electrode, respectively.
  • the number of transformers can be reduced as compared with the conventional art. That is, the first and second transformers are connected to the first and second electrodes (hereinafter referred to as independent electrodes) to which one terminal of each of the two U-shaped discharge tubes is connected. By connecting only one third transformer to a third electrode (hereinafter referred to as a common electrode) that connects the other terminals of the two U-shaped discharge tubes in common, these two The total number of transformers connected to the U-shaped discharge tube can be reduced to three, and the number of parts can be reduced.
  • each U-shaped discharge tube can be lit continuously at the same time.
  • the number of resonance capacitors can be reduced to one for each terminal, that is, a total of two U-shaped discharge tubes, and the number of components can be reduced.
  • the third transformer of the present invention is a secondary winding line than the first and second transformers.
  • the diameter is large.
  • the third transformer for the common electrode supplies a current to each of the two U-shaped discharge tubes, so that a combined current flows. Therefore, by increasing the diameter of the secondary winding of the third transformer for the common electrode as well as the diameter of the secondary winding of the first 'second transformer for the independent electrode, Copper loss in the transformer can be suppressed, and heat generated in the secondary winding can be suppressed.
  • the third transformer has a larger core cross-sectional area than the first and second transformers.
  • the core cross-sectional area of the third transformer for the common electrode larger than the core cross-sectional area of the first and second transformers for the independent electrode, the iron loss in the third transformer is reduced. Suppressing the heat generated in the core can be suppressed.
  • the present invention provides the parasitic capacitance distributed from the secondary winding of the first to third transformers to the periphery of the first to third electrode portions, and the leakage inductance of the transformers. Resonant voltage is supplied to each of the two U-shaped discharge tubes.
  • the first to third transformers of the present invention include a common magnetic core that forms a closed magnetic circuit, and the secondary core of the first to third transformers is included in the common magnetic core. Each wire is wound to form one piece.
  • each transformer is formed as a unitary module, and the number of parts of the magnetic core and the mounting area of the transformer can be reduced.
  • one or two primary windings are wound around the common magnetic core, and the primary windings are secondary windings of the first to third transformers. Are commonly combined.
  • the third transformer has a simple configuration, making it easy to wind the primary winding in the manufacturing process.
  • a single primary winding is wound around the common magnetic core, and the primary winding is commonly coupled to secondary windings of the first to third transformers.
  • the magnetic core has at least three magnetic legs, and the secondary windings of the first to third transformers are respectively wound around different magnetic legs, and the primary winding is connected to the secondary winding. Either one of the magnetic legs to be wound or the secondary winding is wound, and the other magnetic leg is wound.
  • each secondary side output connected to the independent electrode can be equalized by providing each of the secondary windings on a small magnetic leg wound by the primary winding.
  • the present invention comprises an electronic device provided with a backlight including the above-described discharge tube lighting circuit and a cold cathode tube driven by the discharge tube lighting circuit.
  • a U-shaped discharge tube lighting circuit can be provided by suppressing the number of terminals for supplying power to the U-shaped discharge tube, the number of transformers connected to each terminal, and the number of resonance capacitors connected to each terminal.
  • the increase in the number of parts can be suppressed to suppress the manufacturing cost, the part cost, and the size of the equipment.
  • FIG. 1 is a diagram illustrating a configuration of a conventional backlight.
  • FIG. 2 is a diagram illustrating a knock light and a discharge tube lighting circuit according to the first embodiment.
  • FIG. 3 is a waveform diagram illustrating a secondary output waveform of each transformer.
  • FIG. 4 is a configuration diagram illustrating configurations of a discharge tube lighting circuit and a transformer module according to a second embodiment.
  • FIG. 5 is a configuration diagram illustrating configurations of a discharge tube lighting circuit and a transformer module according to a third embodiment.
  • a discharge tube lighting circuit for lighting four U-shaped discharge tubes will be described as an example.
  • a backlight used in a liquid crystal display device is generally provided with several to 10 or more U-shaped discharge tubes, but here a simple configuration is used to avoid complicated explanation. The explanation is based on a configuration with four U-shaped discharge tubes.
  • FIG. 2 is a diagram showing a circuit configuration of the discharge tube lighting circuit of the present embodiment.
  • the backlight 1 is used for a liquid crystal display device, and includes U-shaped discharge tubes 2A to 2D and a discharge tube lighting circuit 5.
  • the U-shaped discharge tubes 2A and 2B are connected to the discharge tube lighting circuit 5 through the connector 6A, and the U-shaped discharge tubes 2C and 2D are connected to the discharge tube lighting circuit 5 through the connector 6B.
  • the connector 6A includes power supply electrodes 4A to 4D.
  • the I-shaped discharge tube 3A is connected to the transformer T1A via the power supply electrode 4A, and the I-shaped discharge tube 3D is connected to the power supply electrode 4D. Is connected to the transformer T1C.
  • the power supply electrodes 4A and 4D are independent electrodes.
  • the power supply electrode 4B and the power supply electrode 4C are connected to the transformer T1B on the mounting board.
  • the power supply electrode 4B and the power supply electrode 4C constitute a common electrode together with a connection line (not shown) provided on the mounting substrate.
  • the power supply electrode 4B and the power supply electrode 4C are connected on the mounting board without being connected in the connector, but the present invention can naturally be implemented even if they are connected in the connector.
  • the connector 6B has the same configuration as the connector 6A.
  • the I-shaped discharge tube 3E is used as a transformer T1D
  • the I-shaped discharge tube 3F and the I-shaped discharge tube 3G are used as a transformer TIE
  • an I-shaped discharge Connect tube 3H to transformer T 1F.
  • the power supply electrode 4F and the power supply electrode 4G constitute a set of common electrodes.
  • the power supply electrodes 4E and 4H are independent electrodes.
  • Each of the four U-shaped discharge tubes 2A to 2D constitutes a pseudo U-shaped discharge tube from two I-shaped discharge tubes.
  • U-shaped discharge tube 2A is an I-shaped discharge tube 3A and one end of I-shaped discharge tube 3B connected to each other.
  • U-shaped discharge tube 2B is connected to I-shaped discharge tube 3C and I-shaped discharge tube.
  • One end of tube 3D is connected to each other,
  • U-shaped discharge tube 2C is one in which one ends of I-shaped discharge tube 3E and I-shaped discharge tube 3F are connected to each other, U-shaped discharge tube In 2D, one ends of the I-shaped discharge tube 3G and the I-shaped discharge tube 3H are connected to each other.
  • These I-shaped discharge tubes 3A to 3H are arranged at equal intervals on the back surface of a liquid crystal panel (not shown).
  • the discharge tube lighting circuit 5 is an inverter provided on the mounting board, and generates a power source (not shown) power of the electronic device, a direct current voltage force to be supplied, and an alternating current voltage having a predetermined frequency.
  • This discharge tube lighting circuit 5 includes connectors 6A and 6B, capacitors C1A to C1F, transformers T1A to T1F having primary windings N1A to N1 F and secondary windings N2A to N2F, current detection circuits 8A to 8D, high frequency drive Circuit 10 is provided.
  • the high-frequency driving circuit 10 of the discharge tube lighting circuit 5 generates a rectangular-wave-shaped primary voltage from a DC voltage that is also supplied with the power supply of the electronic device, and this primary voltage is applied to each of the transformers T1A to T1F. This is applied to the primary windings N1A to N1F.
  • the primary side voltage is controlled using a half-bridge type or full-bridge type switching circuit so that the rectangular wave has a 50% on-duty ratio. Since the details of this control are not related to the essence of the present invention, the on-duty ratio for performing general switching control that is not described here is not limited to 50%.
  • the transformers T1A to T1F of the discharge tube lighting circuit 5 are obtained by connecting the respective primary windings N1A to N1 F in parallel and connecting the parallel circuit to the high-frequency driving circuit 10.
  • the winding end ends of the primary windings N1A to N1F of the transformers T1A to T1F are connected to the ground.
  • This connection method is changed by the applied switching circuit.
  • the third transformers TIB and TIE are connected to the common electrode. In this transformer TIB, TIE, the winding start end of the secondary winding is connected to the common electrode, and the winding end end is connected to the ground as it is.
  • a current detection circuit may be connected between the winding end and the ground.
  • the first and third transformers T1A, TIC, T1D, and T1F are connected to independent electrodes.
  • this transformer T1A, TIC, T1D, T1F the winding end of the secondary winding is connected to an independent electrode, and current detection circuits 8A to 8D are connected between the winding start and ground.
  • the diameters of the primary and secondary windings of the transformers TIB and TIE connected to the common electrode are larger than those of other transformers.
  • the core cross-sectional area of transformers TIB and TIE is larger than the core cross-sectional area of other transformers.
  • the capacitors C1A to C1F of the discharge tube lighting circuit 5 are connected between the secondary wires of the transformers T1A to T1F and the ground. These capacitors C1A to C1F resonate in series with the leakage inductance of each of the transformers T1A to T1F when the knocklight is turned on, and apply the high voltage required for the starting lamp to the U-shaped discharge tubes 2A to 2D. Capacitors C1A to CIF are not necessarily provided in the discharge tube lighting circuit 5. The frequency of the secondary output voltage is high. If the transformer is not used, it is possible to obtain the resonance voltage by using the parasitic capacitance distributed around the secondary winding force connectors 6A and 6B of each transformer and the U-shaped discharge tube instead of the capacitors C1A to C1F. It is.
  • the current detection circuits 8A to 8D of the discharge tube lighting circuit 5 detect the tube current of the U-shaped discharge tubes 2A to 2D, and are used to stabilize the tube current. Since the configuration for stabilizing the tube current is not related to the essence of the present invention, a general configuration excluding the description may be used here.
  • the knocklight 1 and the discharge tube lighting circuit 5 of the present embodiment turn on the U-shaped discharge tubes 2A to 2D.
  • the transformers T1A to T1F it is preferable to adjust the power, the power ratio, the degree of coupling between the primary side and the secondary side, and the leakage inductance so that the output characteristics of the transformers T1A to T1F are substantially the same. Also, it is preferable to adjust the capacitance of capacitors C1A to C1F so that the output characteristics of each transformer Tl A to T1F are approximately the same.
  • the high frequency drive circuit 10 switches a DC current supplied also to the power supply component of the electronic device by a switching circuit (not shown) such as a single-bridge type and applies the DC current to each of the transformers T1A to T1F.
  • a switching circuit such as a single-bridge type
  • the primary windings N1A to N1F of the transformers T1A to T1F are applied with a rectangular-wave-shaped primary voltage, which is the output voltage of the high-frequency drive circuit 10, and each transformer uses the primary voltage as a power ratio. In response, boost the voltage to the specified secondary output voltage. Specifically, during the positive voltage output period, the winding start end force of the primary windings N1A to N1F is set so that the exciting current flows at the winding end end. As a result, the magnetic flux of the cores of the transformers T1A to T1F increases with time, and a current flows through the secondary windings N2A to N2F in the direction of the winding end end force and the winding start end.
  • the magnetic flux of the cores of the transformers T1A to T1F decreases with time, and current flows through the secondary windings N2A to N2F in the direction of the winding start end force and the winding end end.
  • the transformer T1B and transformer TIE have the winding start end and winding end connected in reverse to the other transformers, they output a secondary output voltage with the opposite polarity to the other transformers.
  • the transformer T1B connected to the common electrode and the transformer TIE are connected to independent electrodes.
  • FIG. 3 shows the voltage waveform of the secondary output voltage of each transformer.
  • A is the voltage waveform of the secondary output voltage Va of the transformer Tl A.
  • B is the voltage waveform of the secondary output voltage Vb of transformer T1B.
  • C is the voltage waveform of the secondary output voltage Vc of the transformer T1C.
  • the secondary output voltages Va to Vc of the transformers T1A to T1C show sine wave waveforms of the same frequency, respectively.
  • the secondary output voltages Va and Vc of the transformers Tl A and T1C connected to the independent electrodes are the same.
  • a phase sine wave waveform is shown.
  • the secondary output voltage Vb of the transformer T1B connected to the common electrode shows a sine wave waveform opposite in polarity to the secondary output voltages Va and Vc, that is, 180 degrees out of phase.
  • the voltage waveforms of the secondary output voltages of the transformers T1D to T1F not shown here are the same as the voltage waveforms Va to Vc of the secondary output voltages of the transformers T1A to T1C, respectively.
  • the U-shaped discharge tubes 2A and 2B are applied with a common secondary power voltage Vb, but the secondary output voltage Va or the secondary output voltage Vb applied to the independent electrode is Since the U-shaped discharge tubes 2A and 2B are independent of each other, the U-shaped discharge tubes 2A and 2B are turned on even when the U-shaped discharge tubes 2A and 2B are connected in parallel to the common electrode. be able to. Also, the U-shaped discharge tubes 2C and 2D can be turned on in the same manner.
  • the number of high-voltage transformers and resonance capacitors can be reduced to 3Z4 compared to the conventional discharge tube lighting circuit, and the mounting area of the transformer and capacitors can be reduced with a simple configuration.
  • a circuit can be provided. Therefore, even if the mounting board area of the discharge tube lighting circuit is the same, more discharge tubes can be arranged as a backlight. In that case, a higher-brightness liquid crystal display device can be configured. Also, Since the number of parts of the high-voltage output section that requires high reliability is reduced, the reliability of the high-voltage output section is improved compared to the conventional one.
  • Two U-shaped discharge tubes can be connected together in a single connector.
  • a separate connector was required for each U-shaped discharge tube in order to maintain insulation between adjacent terminals of the U-shaped discharge tubes.
  • the power supply electrodes 4B and 4C which are common electrodes, are connected in an adjacent state, so that different U-shaped discharge tubes are connected.
  • the terminals have the same potential, and insulation can be secured even if two U-shaped discharge tubes are connected to a single connector.
  • the number of connectors as the entire discharge tube lighting circuit can be reduced, the connection work process can be simplified, and the number of work processes can be reduced.
  • the drive voltage of each U-shaped discharge tube is distributed to both terminals, the rated output voltage of each transformer T1A to T1F can be reduced, and the transformers T1A to T1F having a simple configuration can be used.
  • the power shown in the example in which the backlight is configured by four U-shaped discharge tubes is configured by four U-shaped discharge tubes.
  • the two U-shaped discharge tubes may be configured by more U-shaped discharge tubes.
  • the present invention can be implemented by configuring the backlight so that one transformer is provided on the common electrode.
  • a discharge tube lighting circuit for lighting two U-shaped discharge tubes will be described as an example. Further, in the present embodiment, the description will be made with a configuration using a transformer module in which a plurality of transformers are provided in a single magnetic core instead of the transformer shown in the first embodiment.
  • a backlight 21 having a circuit configuration shown in FIG. 4 (A) is used in a liquid crystal display device, and includes U-shaped discharge tubes 2 A and 2 B and a discharge tube lighting circuit 25.
  • the U-shaped discharge tubes 2A and 2B are connected to a discharge tube lighting circuit 25 through a connector 6A.
  • the connector 6A includes power supply electrodes 4A to 4D, and the power supply electrodes 4A and 4D are independent electrodes.
  • Ma The power supply electrode 4B and the power supply electrode 4C constitute a common electrode together with connection lines (not shown) provided on the mounting substrate.
  • the discharge tube lighting circuit 25 is an inverter provided on the mounting board, and generates a power source (not shown) power of the electronic device, a DC voltage force to be supplied, and an AC voltage having a predetermined frequency.
  • This discharge tube lighting circuit 25 consists of a transformer module T2, which consists of a connector 6A, capacitors C1A to C1C, primary windings N1A to N1C and secondary windings N2A to N2C, and a pair of magnetic cores. 8 ⁇ , 8 ⁇ , high frequency drive circuit 10 is provided.
  • the transformer module ⁇ 2 includes two ⁇ -shaped magnetic cores 22 ⁇ and 22 ⁇ , three bobbins 23A to 23C, primary windings N1 A to N1C, and secondary windings N2A to N2C.
  • Each of the E-shaped magnetic cores 22A and 22B has a similar shape having three magnetic legs, and each of the three magnetic legs is put together to form a closed magnetic circuit. Pass through each of the three magnetic legs through the tubular bobbins 23A-23C!
  • the bobbins 23A to 23C have a plurality of partition portions 27 that circulate in the outer circumferential direction.
  • the primary windings N1A to N1C are wound around one end of the plurality of regions partitioned by the partition portions 27.
  • the secondary windings N2A to N2C are configured by winding the windings in order to draw the windings in the region on the other end side that is finely partitioned by the plurality of partition portions 27.
  • Each bobbin 23A-23C has two primary side terminals 26 and two secondary side terminals 24, respectively, which are connected by connecting both ends of the primary and secondary wires Nl and N2.
  • the primary winding N1A to N1C winding start end (here, the left end in the figure) is connected to the primary side terminals 26A, 26C, 26E, and the primary winding N1A to The winding end of N1C (here, the right side of the figure) is connected to the primary side terminals 26B, 26D, and 26F.
  • primary windings N1A to N1C are the primary terminals connected to the winding start end. 26A, 26C, and 26E are connected in parallel, and the parallel circuit is connected to the high-frequency drive circuit 10.
  • the primary windings N1A to N1C of each transformer module T2 are connected to the ground via primary terminals 26B, 26D, and 26F connected to the winding end. Note that the above connection method is changed depending on the applied switching circuit.
  • the secondary winding N2B of the transformer module T2 is connected to the common electrode via the secondary side terminal 24C connected to the winding start end.
  • secondary windings N2A and N2C are connected to independent electrodes via secondary terminals 24B and 24F connected to the winding end.
  • a current detection circuit may be connected between the winding end of each secondary winding N2A to N2C and the ground.
  • the current detection circuit 8A is connected between the secondary terminals 24A and 24E and the ground. , 8B is connected.
  • the secondary winding N2B connected to the common electrode is provided on the bobbin 23B inserted through the magnetic leg at the center of the E-shaped magnetic core, and the secondary winding N2A, N2C connected to the independent electrode Are installed on bobbins 23A and 23C that pass through the magnetic legs at both ends of the E-shaped magnetic core.
  • two closed magnetic circuits shown by arrows in the figure (C) are generated, and the secondary winding N2A and the secondary winding N2C are configured in different closed magnetic circuits, so each outputs a voltage independently. This configuration equalizes the output characteristics of secondary wires N2A and N2C connected to independent electrodes.
  • the diameter of the secondary winding N2B is made larger than the diameters of the other secondary windings N2A and N2C (which is clearly shown in the figure).
  • the core cross-sectional area of the center magnetic leg is larger than the core cross-sectional area of the magnetic legs at the other ends (not shown in the figure).
  • the transformer module T2 is provided with three secondary windings and three primary windings, thereby reducing the number of components and the mounting area of the transformer.
  • the high-frequency drive circuit 10 of the discharge tube lighting circuit 25 shown in Fig. 6A generates a rectangular-wave-shaped primary voltage from a DC voltage supplied from the power source of the electronic device, and this primary voltage is generated. Apply side voltage to the primary winding N1A to N1C of transformer T2.
  • the capacitors C1A to C1C of the discharge tube lighting circuit 25 are connected between the secondary windings N2A to N2C of the transformer module T2 and the ground. These capacitors C1A to C1C resonate in series with the leakage inductance of the transformer module T2 when the knocklight starts and lights up, and apply a high voltage necessary for starting and lighting to the U-shaped discharge tubes 2A and 2B.
  • the knock light 21 and the discharge tube lighting circuit 25 of the present embodiment turn on the U-shaped discharge tubes 2A and 2B.
  • the transformer module T2 it is preferable to adjust the power, the power ratio, the degree of coupling with the primary side, and the leakage inductance so that the output characteristics of the secondary power wires N2A to N2C are substantially the same. Further, it is preferable that the capacitances of the capacitors C1A to C1C are also adjusted so that the output characteristics of the secondary windings N2A to N2C are substantially matched.
  • the present invention is not limited to such a configuration.
  • the secondary terminals 24A, 24C, and 24E are connected to the power supply electrodes in order, and the secondary terminals 24B, 24B, 24D and 24F may be connected to the ground, and the winding direction of the secondary winding may be alternately reversed.
  • one transformer has two primary terminals and two secondary terminals, but the secondary ground terminal is arranged as the primary terminal, and the primary side It does not matter if there is only one terminal.
  • this discharge tube lighting circuit for lighting two U-shaped discharge tubes with a simplified primary winding circuit configuration will be described as an example.
  • this discharge tube lighting circuit has a magnetic core, bobbin, and secondary winding similar to the transformer module T2 shown in the second embodiment as a transformer module, and only one primary winding is provided.
  • a backlight 41 having a circuit configuration shown in FIG. 5 (A) is used in a liquid crystal display device, and includes U-shaped discharge tubes 2 A and 2 B and a discharge tube lighting circuit 45.
  • the U-shaped discharge tubes 2A and 2B are connected to the discharge tube lighting circuit 45 via the connector 6A.
  • Connector 6A includes power supply electrodes 4A to 4D, and power supply electrodes 4A and 4D are independent electrodes.
  • the power supply electrode 4B and the power supply electrode 4C constitute a common electrode together with a connection line (not shown) provided on the mounting board.
  • the discharge tube lighting circuit 45 is an inverter provided on the mounting board, and generates a power source (not shown) power of the electronic device, a direct current voltage force to be supplied, and an alternating current voltage having a predetermined frequency.
  • This discharge tube lighting circuit 45 consists of a connector 6A, capacitors C1A to C1C, a primary winding N1A and secondary windings N2A to N2F wound around a pair of magnetic cores T3, current detection circuits 8 and 8
  • the high-frequency drive circuit 10 is provided.
  • the transformer module ⁇ 3 includes two ⁇ -shaped magnetic cores 22 ⁇ , 22 ⁇ , three bobbins 23A to 23C, a primary winding N1, and secondary windings N2A to N2C.
  • Each of the E-shaped magnetic cores 22A and 22B has a similar shape having three magnetic legs, and constitutes a closed magnetic circuit by bringing the three magnetic legs together.
  • Tubular bobbins 23A to 23C are threaded through each of the three magnetic legs.
  • the primary winding N1 is wound around one end of the plurality of regions partitioned by the partitioning portion 27.
  • the primary winding N1 has a winding start end (here, the left end in the figure) connected to the primary terminal 26C and a winding end end (here, the right end in the figure) is connected to the primary side. Connected to terminal 26D.
  • each of the bobbins 23A to 23C is configured to form secondary windings N2A to N2C by winding while drawing the windings in order to the area (at the other end) partitioned by the plurality of partitioning portions 27.
  • the winding start end (here, the left end in the figure) is connected to the secondary terminals 24A, 24C, 24E, and the winding end ends of the secondary windings N2A to N2C (here, the right end in the figure). ) Is connected to the secondary terminals 24B, 24D, 24F.
  • the number of primary terminals may be increased and the secondary ground may be arranged as the primary terminal! /.
  • the primary winding N1 is connected to the high-frequency drive circuit 10 via a primary side terminal 26C connected to the winding start end. Further, the primary winding N1 is connected to the ground via the primary side terminal 26D connected to the winding end. Note that this connection method is changed depending on the applied switching circuit.
  • the secondary winding N2B of the transformer module T3 is connected to the common electrode via the secondary terminal 24C connected to the winding start end, and to the ground via the secondary terminal 24D connected to the winding end end. ing.
  • secondary wires N2A and N2C are independent electrodes through secondary terminals 24B and 24F connected to the winding end.
  • current detection circuits 8 A and 8 B are connected between the secondary terminals 24 A and 24 E connected to the winding start end and the ground.
  • the secondary winding N2B and the primary winding N1 connected to the common electrode are provided on the bobbin 23B passing through the center magnetic leg of the E-shaped magnetic core, and are connected to the independent electrodes.
  • Secondary windings N2A and N2C are provided on bobbins 23A and 23C that pass through the magnetic legs at both ends of the E-shaped magnetic core.
  • two closed magnetic circuits shown by arrows in FIG. 2B are generated, and the secondary winding N2A and the secondary winding N2C are configured as different closed magnetic circuits, so that each outputs a voltage independently. This configuration equalizes the output characteristics of the secondary windings N2A and N2C connected to the independent electrodes.
  • the diameter of secondary winding N2B is larger than the diameters of other secondary windings N2A and N2C (not shown in the figure).
  • the core cross-sectional area of the magnetic leg at the center is made larger than the core cross-sectional area of the magnetic legs at the other ends (not shown in the figure).
  • the transformer module T3 is provided with one primary winding and modularized, thereby reducing the number of parts of the primary winding.
  • the high-frequency drive circuit 10 of the discharge tube lighting circuit 25 shown in Fig. 3A generates a rectangular-wave-shaped primary voltage from a DC voltage supplied from the power source of the electronic device, and this primary voltage is generated.
  • the side voltage is applied to the primary wire N1 of the transformer T3! ]
  • the capacitors C1A to C1C of the discharge tube lighting circuit 25 are connected between the secondary windings N2A to N2C of the transformer module T3 and the ground. These capacitors C1A to C1C resonate in series with the leakage inductance of the transformer module T3 when the knocklight starts and lights up, and apply a high voltage necessary for starting and lighting to the U-shaped discharge tubes 2A and 2B.
  • the knock light 41 and the discharge tube lighting circuit 45 of the present embodiment turn on the U-shaped discharge tubes 2A and 2B.
  • the transformer module T3 it is preferable to adjust the power, the power ratio, the degree of coupling with the primary side, and the leakage inductance so that the output characteristics of the secondary power wires N2A to N2C are substantially the same.
  • the capacitance of capacitors C1A to C1C It is preferable to adjust so that the output characteristics of the secondary windings N2A to N2C are substantially matched.
  • the present invention can be practiced regardless of the configuration of the transformer and the transformer module used.
  • one magnetic leg for primary winding and secondary winding Contrary to the configuration of the transformer module having three magnetic legs and the configuration shown in the third embodiment, separate primary windings are wound around the bobbin 23A and the bobbin 23C, respectively.
  • Even a transformer module configuration that does not wind the primary winding can be suitably implemented.
  • even a configuration in which a plurality of primary windings are provided by winding a plurality of primary windings in a multiple manner can be suitably implemented.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

 バックライト(1)は、放電管点灯回路(5)のコネクタ(6A)にU字型放電管(2A)(2B)を接続して構成している。U字型放電管(2A)の一方の端子には電力供給用電極(4A)を介してトランス(T1A)の2次側出力電圧を印加する。また、U字型放電管(2B)の一方の端子には電力供給用電極(4D)を介してトランス(T1C)の2次側出力電圧を印加する。U字型放電管(2A)とU字型放電管(2B)のそれぞれの他方の端子には電力供給用電極(4B)(4C)を介して、トランス(T1B)の2次側出力電圧を印加する。トランス(T1A)とトランス(T1C)のそれぞれの2次側出力電圧は互いに同極性であり、トランス(T1B)の2次側出力電圧は、それとは逆極性である。

Description

明 細 書
放電管点灯回路および電子装置
技術分野
[0001] この発明は、冷陰極管などの放電管を点灯させる放電管点灯回路に関する。特に は、 U字型放電管または擬似 U字型放電管(以下、擬似 U字型放電管も単に U字型 放電管という。)を点灯させる放電管点灯回路に関する。また、その放電管点灯回路 を備えてバックライトを構成した電子装置に関する。
背景技術
[0002] 従来、大型液晶ディスプレイなどのノ ックライトに冷陰極管 (放電管)が用いられる。
放電管には、 U字型放電管や擬似 U字型放電管などが用いられる。 U字型放電管 は、 1本の長尺な放電管を中央で屈曲させたものである。また、擬似 U字型放電管は 2本の I字型放電管を接続したものである。この種のディスプレイのバックライトには、 通常、 U字型放電管が複数個、例えば画面サイズが 30〜40インチクラスの液晶ディ スプレイ用のノ ックライトでは 10数個、設けられる。
[0003] 特許文献 1には、 U字型放電管を点灯するための放電管点灯回路が開示されてい る。
[0004] ここで、上記文献を参考にした放電管点灯回路の簡易構成例を説明する。図 1に は 2つの U字型放電管を点灯する放電管点灯回路を示している。ノ ックライト 101は 放電管点灯回路 105に U字型放電管 102A, 102Bを接続したものである。 U字型放 電管 102Aは 2本の I字型放電管 103A, 103Bを互いに接続し、擬似 U字型放電管 としたものである。また、 U字型放電管 102Bは 2本の I字型放電管 103C, 103Dを互 いに接続し、擬似 U字型放電管としたものである。
[0005] 各 I字型放電管 103A〜103Dの電力供給用電極 104A〜104Dには、それぞれ 放電管点灯回路 105の共振用のコンデンサ C1A〜C1Dとトランス T1A〜T1Dを接 続している。トランス T1A〜T1Dはそれぞれ、 2次卷線 N2A〜N2Dの出力電圧の極 性が U字型放電管 102A, 102Bの両端で逆になるように接続している。また、トラン ス T1A〜T1Dの 1次側では、 1次卷線 N1A〜N1Dを並列に接続し、その並列回路 を高周波駆動回路 110に接続して 、る。
[0006] 高周波駆動回路 110はインバータであり、各トランス T1A〜T1Dを介して交流電圧 を U字型放電管 102A, 102Bに供給する。トランス T1A〜T1Dは 1次側電圧を卷数 比に応じて昇圧し、所定の 2次側出力電圧(l〜2kV)とする。 U字型放電管 102A, 102Bには両端子にそれぞれ逆極性の 2次側出力電圧を印加し、両端子に印加する 2次側出力電圧の振幅を足し合わせた 2〜4kV程度の駆動電圧によって駆動する。
[0007] このように U字型放電管の両端子に逆極性の電圧を印加することで、 U字型放電 管の駆動に必要な駆動電圧を両端子力 分散して供給し、各端子に接続されるトラ ンスの定格出力電圧の低減を可能にしている。また、複数の U字型放電管の端子を 全て独立したトランスに接続しているために、各 U字型放電管の両端電圧を所定の 駆動電圧にし、他の U字型放電管の点灯に影響されることなく U字型放電管を点灯 させている。
[0008] なお、この U字型放電管は起動点灯時 (最初の点灯時)に高い起動電圧を必要と するが、継続点灯している間は起動電圧より低い駆動電圧で点灯させることができる ために、トランスの昇圧比を低く設定しておき、起動点灯時の電圧不足分を補うため に、 2次卷線の漏れインダクタンスと直列共振するコンデンサを各トランスに設け、こ の直列共振の共振点近傍で昇圧比が高くなる特性を利用して起動させるようにして いる。
特許文献 1:特開 2005 - 5059号公報
発明の開示
発明が解決しょうとする課題
[0009] 近年、液晶ディスプレイの大型化に伴 ヽ、液晶ディスプレイに設ける U字型放電管 の設置本数は増加する傾向にある。上記構成の放電管点灯回路では、 U字型放電 管の端子と同数のトランスと共振用コンデンサが必要であり、 U字型放電管の設置本 数の増加に従い、トランスや共振用コンデンサなどの部品点数も増やす必要があつ た。
[0010] 部品点数の増加は、製造コスト、部品コスト、装置サイズをそれぞれ増大させ、また
、信頼性を低下させる問題があり、したがってその抑制が課題となっていた。また、部 品点数の増加はトランスの実装面積の大型化も引き起こし、 u字型放電管の設置本 数の制約になってしまう問題もあった。
[0011] そこで、本発明の目的は、部品点数を削減した簡易な構成の放電管点灯回路を提 供して、放電管点灯回路の信頼性向上とコストダウンを図り、 u字型放電管の設置本 数を増やして電子装置のノ ックライトを高輝度化することにある。
課題を解決するための手段
[0012] 上記課題を解決するため、この発明は、高周波駆動回路と、 1次卷線が前記高周 波駆動回路に並列に接続される複数のトランスとを備え、各トランスの 2次卷線に U字 型放電管の端子を接続される放電管点灯回路において、 2つの U字型放電管のそ れぞれの一方の端子が接続される第 1 ·第 2の電極と、前記 2つの U字型放電管の他 方の端子がそれぞれ共通に接続される第 3の電極とを備え、第 1 ·第 2の電極に印加 する電圧が同極性で、且つ前記第 3の電極に印加する電圧が前記第 1 ·第 2の電極 に印加する電圧とは逆極性となるように、第 1のトランスの 2次卷線を第 1の電極に、 第 2のトランスの 2次卷線を第 2の電極に、第 3のトランスの 2次卷線を第 3の電極にそ れぞれ接続したことを特徴とする。
[0013] したがって、従来よりもトランスの数を低減することができる。即ち、 2つの U字型放 電管のそれぞれの一方の端子が接続される第 1 ·第 2の電極 (以下、独立電極と 、う 。;)に、それぞれ第 1 ·第 2のトランスを接続し、 2つの U字型放電管の他方の端子をそ れぞれ共通に接続する第 3の電極 (以下、共通電極という。)に第 3のトランスひとつ のみを接続することで、この 2つの U字型放電管に接続するトランスを合計で 3つに低 減することができ、部品点数を抑制できる。このように放電管点灯回路を構成し、第 3 のトランスの 2次卷線を共通電極を介して並列に各 U字型放電管に接続しても、各 U 字型放電管の他方の独立電極には、第 1 ·第 2のトランス力もそれぞれ独立した 2次 側出力電圧を印加するので、各 U字型放電管を同時に連続して点灯させることがで きる。また、共振用コンデンサを設ける場合にも、共振用コンデンサの数を各端子に 1 つ、即ち 2つの U字型放電管で合計して 3つに低減することができ、部品点数を抑制 できる。
[0014] また、本発明の前記第 3のトランスは、前記第 1 ·第 2のトランスよりも、 2次卷線の線 径が大きいものである。
[0015] 本構成の放電管点灯回路では、共通電極用の第 3のトランスは、 2つの U字型放電 管それぞれに電流を供給するため合成電流が流れる。そこで、共通電極用の第 3の トランスの 2次卷線の線径を、独立電極用の第 1 '第 2のトランスの 2次卷線の線径ょり も大きくすることで、第 3のトランスでの銅損を抑制し、その 2次卷線に生じる発熱を抑 制できる。
[0016] また、前記第 3のトランスは、前記第 1 ·第 2のトランスよりも、コア断面積が大きいもの である。
[0017] したがって、共通電極用の第 3のトランスのコア断面積を、独立電極用の第 1 ·第 2 のトランスのコア断面積よりも大きくすることで、第 3のトランスでの鉄損を抑制して、そ のコアに生じる発熱を抑制できる。
[0018] また、本発明は、前記第 1〜第 3のトランスの 2次卷線から前記第 1〜第 3の各電極 部分周辺に分布する寄生容量と、前記各トランスの漏れインダクタンスとにより前記 2 つの U字型放電管のそれぞれに共振電圧を供給する。
[0019] したがって、各 U字型放電管の両端子に共振用のコンデンサを設ける必要が無くな り、部品点数をさらに抑制することができる。
[0020] また、本発明の前記第 1〜第 3のトランスは、閉磁路を形成する共用の磁性体コア を備え、当該共用の磁性体コアに前記第 1〜第 3のトランスの 2次卷線をそれぞれ卷 回して一体に構成してなる。
[0021] したがって、各トランスを一体にモジュールィ匕して形成し、磁性体コアの部品点数、 およびトランスの実装面積をそれぞれ低減できる。
[0022] また、本発明は、前記共用の磁性体コアに 1つまたは 2つの 1次卷線を卷回して、そ の 1次卷線を前記第 1〜第 3のトランスの 2次卷線に共通に結合させる。
[0023] したがって、 1次卷線の数を低減することができ、この一体にモジュールィ匕した第 1
〜第 3のトランスを簡易な構成にし、製造工程における 1次卷線の卷回作業を容易に できる。
[0024] また、この発明は、前記共用の磁性体コアに 1つの 1次卷線を卷回して、当該 1次 卷線を前記第 1〜第 3のトランスの 2次卷線に共通に結合させる、また、前記共用の 磁性体コアは少なくとも 3つの磁脚を有し、前記第 1〜第 3のトランスの 2次卷線を互 いに異なる磁脚にそれぞれ卷回し、前記 1次卷線を、前記 2次卷線が卷回されたい ずれかの磁脚、または 2次卷線が卷回されて 、な 、他の磁脚に卷回してなる。
[0025] したがって、複数の 1次卷線を備えず、 1次卷線の構成精度の違いによらずに各 2 次卷線に流れる電流を定めることができ、 2次側出力を安定化できる。また、独立電 極に接続される 2つの 2次卷線それぞれを 1次卷線の卷回されて ヽな ヽ磁脚に設け ることで、それぞれの 2次側出力を均等化できる。
[0026] また、本発明は上記の放電管点灯回路、および当該放電管点灯回路によって駆動 される冷陰極管をバックライトに備えて電子装置を構成する。
[0027] したがって、簡易な構成でトランスの実装面積を低減した放電管点灯回路を用いて 、より多くの U字型放電管をバックライトに用いることができる。
発明の効果
[0028] U字型放電管の電力供給用の端子の数、および各端子に接続するトランス、各端 子に接続する共振用コンデンサの数を抑制して U字型放電管点灯回路を提供でき、 部品点数の増加を抑えて製造コストや部品コスト、装置の大型化を抑制できる。また 、高圧出力部の信頼性の低下を防ぐことができる。これにより、従来 U字型放電管の 設置本数の制約となっていたトランスおよびコンデンサの実装面積を小さくして、 U字 型放電管の設置本数を増やすことが可能になる。
図面の簡単な説明
[0029] [図 1]従来のバックライトの構成を説明する図である。
[図 2]第 1の実施形態のノ ックライトおよび放電管点灯回路を説明する図である。
[図 3]各トランスの 2次側出力波形を説明する波形図である。
[図 4]第 2の実施形態の放電管点灯回路およびトランスモジュールの構成を説明する 構成図である。
[図 5]第 3の実施形態の放電管点灯回路およびトランスモジュールの構成を説明する 構成図である。
符号の説明
[0030] 1, 21, 101—バックライト 2. 102— U字型放電管
3. 103— I字型放電管
4. 104 電力供給用電極
5, 25, 105 放電管点灯回路
6—コネクタ
8—電流検知回路
10, 110—高周波駆動回路
22— E字型磁性体コア
23 ボビン
24— 2次側端子
26— 1次側端子
27 仕切り部
C1一共振用コンデンサ
T1 トランス
T2, T3 トランスモジユーノレ
N1— 1次卷線
N2— 2次卷線
発明を実施するための最良の形態
[0031] 以下、第 1の実施形態として 4つの U字型放電管を点灯するための放電管点灯回 路を例に説明する。なお、液晶ディスプレイ装置に用いられるバックライトでは、実際 には数個〜 10数個の U字型放電管を設ける構成が一般的であるが、ここでは説明 の煩雑を避けるために簡易な構成、 4つの U字型放電管を設ける構成により説明を 行う。
[0032] 図 2は、本実施形態の放電管点灯回路の回路構成を示す図である。このバックライ ト 1は、液晶ディスプレイ装置に用いられるものであり、 U字型放電管 2A〜2Dと放電 管点灯回路 5を備えている。 U字型放電管 2A, 2Bはコネクタ 6Aを介して放電管点 灯回路 5に接続し、 U字型放電管 2C, 2Dはコネクタ 6Bを介して放電管点灯回路 5 に接続している。 [0033] コネクタ 6Aは電力供給用電極 4A〜4Dを含み、電力供給用電極 4 Aを介して I字 型放電管 3Aをトランス T1Aに、電力供給用電極 4Dを介して I字型放電管 3Dをトラン ス T1Cに接続している。この電力供給用電極 4A, 4Dはそれぞれ独立電極である。 また電力供給用電極 4Bおよび電力供給用電極 4Cはそれぞれ実装基板上でトラン ス T1Bに接続している。この電力供給用電極 4Bおよび電力供給用電極 4Cは実装 基板に設けた接続線 (不図示)とともに共通電極を構成している。なお、この実施形 態ではコネクタ内では電力供給用電極 4Bおよび電力供給用電極 4Cを接続しない で実装基板上で接続するが、コネクタ内で接続するようにしても当然本発明は実施で きる。
[0034] またコネクタ 6Bは、コネクタ 6Aと同様な構成であり、 I字型放電管 3Eをトランス T1D に、 I字型放電管 3Fと I字型放電管 3Gをトランス TIEに、 I字型放電管 3Hをトランス T 1Fにそれぞれ接続して ヽる。電力供給用電極 4Fおよび電力供給用電極 4Gは一組 の共通電極を構成している。また、電力供給用電極 4E, 4Hはそれぞれ独立電極で ある。
[0035] 4つの U字型放電管 2A〜2Dは、それぞれ 2本の I字型放電管から擬似 U字型放電 管を構成して!/、る。 U字型放電管 2Aは I字型放電管 3Aと I字型放電管 3Bの一端同 士を互いに接続したものであり、 U字型放電管 2Bは I字型放電管 3Cと I字型放電管 3 Dの一端同士を互いに接続したものであり、 U字型放電管 2Cは I字型放電管 3Eと I 字型放電管 3Fの一端同士を互いに接続したものであり、 U字型放電管 2Dは I字型 放電管 3Gと I字型放電管 3Hの一端同士を互いに接続したものである。これらの I字 型放電管 3A〜3Hは液晶パネル (不図示)の背面に等間隔に配置している。
[0036] 放電管点灯回路 5は実装基板に設けたインバータであり、電子装置の電源 (不図 示)力 供給される直流電圧力 所定周波数の交流電圧を生成するものである。この 放電管点灯回路 5はコネクタ 6A, 6B、コンデンサ C1A〜C1F、 1次卷線 N1A〜N1 Fと 2次卷線 N2A〜N2Fを有するトランス T1A〜T1F、電流検知回路 8A〜8D、高 周波駆動回路 10を備えている。
[0037] 放電管点灯回路 5の高周波駆動回路 10は、電子装置の電源力も供給される直流 電圧から矩形波状の 1次側電圧を生成し、この 1次側電圧を各トランス T1A〜T1Fの 1次卷線 N1A〜N1Fに印加するものである。具体的には、ハーフブリッジ型やフル ブリッジ型のスイッチング回路を用いて、 50%オンデューティ比の矩形波になるよう 1 次側電圧を制御する。なお、この制御の詳細については本発明の本質とは係わらな いためここでは説明を除ぐ一般的なスイッチング制御を行えばよぐオンデューティ 比も 50%に限られるものではない。
[0038] また、放電管点灯回路 5のトランス T1A〜T1Fは、それぞれの 1次卷線 N1A〜N1 Fを並列に接続し、その並列回路を高周波駆動回路 10に接続したものである。ここ では、トランス T1A〜T1Fそれぞれの 1次卷線 N1A〜N1Fの巻き終わり端をグラン ドに接続している。この接続の方法は、適用されるスイッチング回路により変更される ものである。また、第 3のトランスであるトランス TIB, TIEは共通電極に接続している 。このトランス TIB, TIEは 2次卷線の巻き始め端を共通電極に、巻き終わり端をそ のままグランドに接続している。なお、この巻き終わり端とグランドとの間に電流検知 回路を接続してもよい。一方、第 1 ·第 3のトランスであるトランス T1A, TIC, T1D, T 1Fは独立電極に接続している。このトランス T1A, TIC, T1D, T1Fは 2次卷線の 巻き終わり端を独立電極に、巻き始め端と接地との間に電流検知回路 8A〜8Dを接 続している。このようにトランス T1A〜T1Fを構成することで、共通電極に接続される トランス TIB, TIEの 2次側の交流出力電圧の極性と、独立電極に接続されるトラン ス T1A, TIC, T1D, T1Fの 2次側の交流出力電圧の極性とを、互いに逆極性にし ている。また、共通電極に接続されるトランス TIB, TIEの 1次卷線および 2次卷線の 線径は、他のトランスの線径よりも大きくしている。また、トランス TIB, TIEのコア断 面積は、他のトランスのコア断面積よりも大きくしている。このように構成することで、合 成電流の流れるトランス TIB, TIEの 1次卷線および 2次卷線による銅損、コアによる 鉄損を抑制し、温度上昇を抑えるようにしている。
[0039] また、放電管点灯回路 5のコンデンサ C1A〜C1Fは、トランス T1A〜T1Fの 2次卷 線と接地との間に接続している。これらコンデンサ C1A〜C1Fは、ノ ックライトの起動 点灯時に、トランス T1A〜T1Fそれぞれの漏れインダクタンスと直列共振し、起動点 灯に必要な高電圧を U字型放電管 2A〜2Dに印加する。なお、コンデンサ C1A〜C IFを必ずしも放電管点灯回路 5に設ける必要は無ぐ 2次側出力電圧の周波数が高 い場合には、各トランスの 2次卷線力 コネクタ 6A, 6B周辺、および U字型放電管に 分布する寄生容量をコンデンサ C 1A〜C 1Fの代わりに用いることで共振電圧を得る ことも可能である。
[0040] また、放電管点灯回路 5の電流検知回路 8A〜8Dは、 U字型放電管 2A〜2Dの管 電流を検出するものであり、管電流を安定ィ匕するために用いる。管電流の安定化の ための構成については本発明の本質とは係わらないためここでは説明を除ぐ一般 的な構成を用いればよい。
[0041] 以上の構成により、本実施形態のノ ックライト 1および放電管点灯回路 5は U字型 放電管 2A〜2Dを点灯させる。なお、トランス T1A〜T1Fについては各トランス T1A 〜T1Fの出力特性が略一致するように卷数、卷数比、 1次側と 2次側の結合度、漏れ インダクタンスを調整すると好ましい。また、コンデンサ C1A〜C1Fの静電容量も、各 トランス Tl A〜T1Fの出力特性を略一致させるように調整すると好ま 、。
[0042] 次に、継続点灯時の動作について説明する。
[0043] 高周波駆動回路 10は、電子装置の電源部力も供給される直流電流をノ、一フブリッ ジ型などのスイッチング回路(不図示)によりスイッチングして各トランス T1A〜T1Fに 印加する。
[0044] 各トランス T1A〜T1Fの 1次卷線 N1A〜N1Fには高周波駆動回路 10の出力電圧 である矩形波状の 1次側電圧が印加され、各トランスは 1次側電圧を卷数比に応じて 昇圧し、所定の 2次側出力電圧とする。具体的には正電圧出力期間に 1次卷線 N1A 〜N1Fの巻き始め端力 巻き終わり端に励磁電流が流れるようにして 、る。これによ り各トランス T1A〜T1Fのコアの磁束は時間とともに増加し、 2次卷線 N2A〜N2Fに は、巻き終わり端力 巻き始め端の方向に電流が流れる。一方、負電圧出力期間に は各トランス T1A〜T1Fのコアの磁束は時間とともに減少し、 2次卷線 N2A〜N2F には巻き始め端力 巻き終わり端の方向に電流が流れる。トランス T1Bとトランス TIE は、巻き始め端と巻き終わり端を他のトランスとは逆に接続しているために、他のトラ ンスとは逆極性の 2次側出力電圧を出力する。また、共通電極に I字型放電管 3B, 3 C、 I字型放電管 3F, 3Gが接続されるので、共通電極に接続されるトランス T1Bとトラ ンス TIEには、独立電極に接続されるトランス T1A, TIC, T1D, T1Fに対して(2 倍の)合成電流が流れる。
[0045] ここで、図 3に各トランスの 2次側出力電圧の電圧波形について示す。 (A)は、トラ ンス Tl Aの 2次側出力電圧 Vaの電圧波形である。(B)は、トランス T1Bの 2次側出力 電圧 Vbの電圧波形である。(C)は、トランス T1Cの 2次側出力電圧 Vcの電圧波形で ある。
各トランス T1A〜T1Cの 2次側出力電圧 Va〜Vcはそれぞれ等しい周波数の正弦 波波形を示し、独立電極に接続されるトランス Tl Aとトランス T1Cの 2次側出力電圧 Va, Vcは、それぞれ同位相の正弦波波形を示す。また、共通電極に接続されるトラ ンス T1Bの 2次側出力電圧 Vbは、 2次側出力電圧 Va, Vcとは逆極性、即ち位相が 180度ずれた正弦波波形を示す。なお、ここで図示していないトランス T1D〜T1Fの 2次側出力電圧の電圧波形は、それぞれトランス T1A〜T1Cの 2次側出力電圧の電 圧波形 Va〜Vcと同様である。
[0046] U字型放電管 2Aの両端子には、それぞれ逆極性の 2次側出力電圧 Va, Vbが印 カロされる。したがって両端子間電圧は、 2次側出力電圧 Va, Vb同士の電圧振幅(1 〜2kV)を足し合わせた電圧振幅(2〜4kV)〖こなり、 2次側出力電圧 Va, Vbの 2倍 の駆動電圧が印加されることになる。また、 U字型放電管 2B, 2C, 2Dも同様に、両 端子にそれぞれ逆極性の 2次側出力電圧が印加され、両端子間に高い駆動電圧が 印カロされること〖こなる。
[0047] U字型放電管 2A, 2Bには共通電極力 単一の 2次側出力電圧 Vbを印加するが、 独立電極に印加する 2次側出力電圧 Vaまたは 2次側出力電圧 Vbは、 U字型放電管 2A, 2Bにとつて独立したものであるので、共通電極に並列に U字型放電管 2A, 2B を接続していても、 U字型放電管 2A, 2Bをそれぞれ点灯させることができる。また、 U字型放電管 2C, 2Dも同様に点灯させることができる。
[0048] 以上の構成により従来構成の放電管点灯回路に比べて、高圧用のトランスと共振 用のコンデンサの数を 3Z4にでき、簡易な構成でトランスとコンデンサの実装面積を 小さくした放電管点灯回路を提供できる。したがって、放電管点灯回路の実装基板 の面積が同じであってもより多くの放電管をバックライトとして配置することが可能にな る。その場合には、より高輝度な液晶ディスプレイ装置を構成することができる。また、 高信頼性を必要とする高圧出力部の部品点数が削減されるために、従来より高圧出 力部の信頼性が高まる。
[0049] また、単一のコネクタに 2つの U字型放電管を一緒に接続することができる。従来は U字型放電管同士の隣接する端子間の絶縁を維持するために、 U字型放電管ごと に個別のコネクタが必要であった。しかしながら本発明の構成では、異なる U字型放 電管の端子であっても、例えば共通電極である電力供給用電極 4B, 4Cを隣接した 状態で接続することで、異なる U字型放電管の端子同士が同電位になり、単一のコ ネクタに 2つの U字型放電管を接続しても絶縁を確保できるようになる。この構成によ り、放電管点灯回路全体としてのコネクタ数を低減でき、接続の作業工程を簡易にし 、また作業工程数を減らすことが可能になる。また、各 U字型放電管の駆動電圧を両 端子に分散させるので、各トランス T1A〜T1Fの定格出力電圧を小さくでき、トランス T1A〜T1Fとして簡易な構成のものを用いることができる。
[0050] なお、ここでは 4つの U字型放電管によりバックライトを構成した例を示した力 より 多くの U字型放電管によりバックライトを構成してもよぐ 2つの U字型放電管の共通 電極に一つのトランスを設けるようにバックライトを構成することで本発明は実施でき る。
[0051] またこの実施形態では、 1次側の回路構成として高周波駆動回路に並列にトランス を接続する例を示したが、本発明はどのような 1次側の回路構成であっても実施でき る。 2次側の回路構成が、共通電極と独立電極に印加される電圧が互いに逆極性に なるものであればよい。
[0052] 次に、第 2の実施形態として 2つの U字型放電管を点灯するための放電管点灯回 路を例に説明する。また、本実施形態では第 1の実施形態で示したトランスではなく 複数のトランスを単一の磁性体コアに設けたトランスモジュールを用いる構成により説 明を行う。
[0053] 図 4 (A)に回路構成を示すバックライト 21は液晶ディスプレイ装置に用いられるもの であり U字型放電管 2A, 2Bと放電管点灯回路 25を備えている。 U字型放電管 2A, 2Bはコネクタ 6Aを介して放電管点灯回路 25に接続している。コネクタ 6Aは電力供 給用電極 4A〜4Dを含み、電力供給用電極 4A, 4Dはそれぞれ独立電極である。ま た電力供給用電極 4Bおよび電力供給用電極 4Cは実装基板に設けた接続線 (不図 示)とともに共通電極を構成して 、る。
[0054] 放電管点灯回路 25は実装基板に設けたインバータであり、電子装置の電源 (不図 示)力 供給される直流電圧力 所定周波数の交流電圧を生成するものである。この 放電管点灯回路 25はコネクタ 6A、コンデンサ C1A〜C1C、 1次卷線 N1A〜N1Cと 2次卷線 N2A〜N2Cを 1対の磁性体コアに卷回してなるトランスモジュール T2、電 流検知回路 8Α, 8Β、高周波駆動回路 10を備えている。
[0055] ここで、放電管点灯回路 25のトランスモジュール Τ2の詳細構成を図 4 (Β) , 4 (C) に示す。同図(Β)は概観図であり、同図(C)は断面図である。トランスモジュール Τ2 は、 2つの Ε字型磁性体コア 22Α, 22Βと、 3つのボビン 23A〜23Cと、 1次卷線 N1 A〜N1Cと、 2次卷線 N2A〜N2Cとを備えている。 E字型磁性体コア 22A, 22Bは それぞれ 3つの磁脚を有する相似な形状であり、互いの 3つの磁脚同士をつき合わ せて閉磁路を構成するものである。つき合わせる 3つの磁脚それぞれには管状のボ ビン 23A〜23Cを揷通して!/、る。
[0056] このボビン 23A〜23Cは外周方向に周回する複数の仕切り部 27を有し、仕切り部 27により仕切られた複数の領域のうち一端の領域に 1次卷線 N1A〜N1Cを卷回し ている。また、複数の仕切り部 27により細カゝく仕切られた他端側の領域に卷線を順に 引き出しながら卷回して 2次卷線 N2A〜N2Cを構成している。ここでは仕切り部 27 により 2次卷線 N2A〜N2Cを卷回する領域を仕切ることで、重なった 2次卷線間に 大きな電位差が生じることを抑制して 、る。また各ボビン 23A〜23Cはそれぞれ 1次 側端子 26と 2次側端子 24とを 2つづつ備え、それぞれに 1次卷線 Nl、 2次卷線 N2 の両端を接続して ヽる。具体的には 1次卷線 N 1 A〜N 1 Cの巻き始め端 (ここでは図 左側端とする。)を、 1次側端子 26A, 26C, 26Eに接続し、 1次卷線 N1A〜N1Cの 巻き終わり端 (ここでは図右側端とする。)を、 1次側端子 26B, 26D, 26Fに接続し ている。また、 2次卷線 N2A〜N2Cの巻き始め端 (ここでは図左側端とする。)を、 2 次側端子 24A, 24C, 24Eに接続し、 2次卷線 N2A〜N2Cの巻き終わり端 (ここで は図右側端とする。)を、 2次側端子 24B, 24D, 24Fに接続している。
[0057] 同図 (A)に示すように 1次卷線 N1A〜N1Cは巻き始め端に接続された 1次側端子 26A, 26C, 26E同士を接続することで並列に接続し、その並列回路を高周波駆動 回路 10に接続している。また、トランスモジュール T2それぞれの 1次卷線 N1A〜N1 Cは巻き終わり端に接続された 1次側端子 26B, 26D, 26Fを介してグランドに接続 している。なお、以上の接続の方法は適用されるスイッチング回路により変更されるも のである。また、トランスモジュール T2の 2次卷線 N2Bは巻き始め端に接続された 2 次側端子 24Cを介して共通電極に接続している。一方、 2次卷線 N2A, N2Cは巻き 終わり端に接続された 2次側端子 24B, 24Fを介して独立電極に接続している。なお 、それぞれの 2次卷線 N2A〜N2Cの巻き終わり端とグランドとの間に電流検知回路 を接続してもよぐここでは 2次側端子 24A, 24Eと接地との間に電流検知回路 8A, 8Bを接続している。このようにトランスモジュール T2を構成することで、共通電極に 接続される 2次卷線 N2Bからの交流出力電圧の極性と、独立電極に接続される 2次 卷線 N2A, N2C力ゝらの交流出力電圧の極性とを、互いに逆極性にしている。
[0058] また、共通電極に接続される 2次卷線 N2Bを E字型磁性体コアの中央の磁脚に挿 通したボビン 23Bに設け、独立電極に接続される 2次卷線 N2A, N2Cを E字型磁性 体コアの両端の磁脚に揷通したボビン 23A, 23Cに設けている。また、同図(C)に矢 印で図示する 2つの閉磁路が生じ、 2次卷線 N2Aと 2次卷線 N2Cが異なる閉磁路に 構成されるため、それぞれ独立して電圧を出力する。この構成により、独立電極に接 続される 2次卷線 N2A, N2Cの出力特性を均等化している。また、 2次卷線 N2Bの 線径を他の 2次卷線 N2A, N2Cの線径よりも大きくして 、る(図では明示して ヽな 、) 。また、中央の磁脚のコア断面積を、他の両端の磁脚のコア断面積よりも大きくしてい る(図では明示していない)。このように構成することで、合成電流の流れる 2次卷線 N 2Bによる銅損、コアによる鉄損を抑制し、温度上昇を抑えるようにしている。
[0059] このようにトランスモジュール T2に 3つの 2次卷線および 3つの 1次卷線を設けてモ ジュールィ匕することで、部品点数およびトランスの実装面積をそれぞれ低減して 、る
[0060] また、同図 (A)に示す放電管点灯回路 25の高周波駆動回路 10は、電子装置の電 源から供給される直流電圧から矩形波状の 1次側電圧を生成し、この 1次側電圧をト ランス T2の 1次卷線 N1A〜N1Cに印加する。 [0061] また、放電管点灯回路 25のコンデンサ C1A〜C1Cは、トランスモジュール T2の各 2次卷線 N2A〜N2Cと接地との間に接続している。これらコンデンサ C1A〜C1Cは 、 ノ ックライトの起動点灯時に、トランスモジュール T2の漏れインダクタンスと直列共 振し、起動点灯に必要な高電圧を U字型放電管 2A, 2Bに印加する。
[0062] 以上の構成により、本実施形態のノ ックライト 21および放電管点灯回路 25は U字 型放電管 2A, 2Bを点灯させる。なお、トランスモジュール T2については各 2次卷線 N2A〜N2Cの出力特性が略一致するように卷数、卷数比、 1次側との結合度、漏れ インダクタンスを調整すると好ましい。また、コンデンサ C1A〜C1Cの静電容量も、各 2次卷線 N2A〜N2Cの出力特性を略一致させるように調整すると好ましい。
[0063] なお、ここでは、独立電極や共通電極に接続される 2次側端子を互 ヽ違いにするこ とで、独立電極や共通電極に印加する交流出力電圧の極性を逆極性にする例を示 したが、本発明はこのような構成に限らず、例えば 2次側端子の接続は順に、 2次側 端子 24A, 24C, 24Eを電力供給用電極に接続し、 2次側端子 24B, 24D, 24Fを グランドに接続し、 2次卷線の卷回方向を互い違いに逆にするようにしても良い。なお 、本実施形態においては、 1つのトランスにっき 1次側端子を 2つ、 2次側端子を 2つ としたが、 2次卷線のグランド端子を 1次側端子として配置し、 1次側端子を 1つとして も構わない。
[0064] 次に第 3の実施形態として、 1次卷線の回路構成をより簡易にした、 2つの U字型放 電管を点灯するための放電管点灯回路を例に説明する。また、この放電管点灯回路 では、トランスモジュールとして第 2の実施形態で示したトランスモジュール T2と同様 な磁性体コアとボビンと 2次卷線とを備え、 1つの 1次卷線のみを設けたトランスモジュ ール T3を用いる。
[0065] 図 5 (A)に回路構成を示すバックライト 41は液晶ディスプレイ装置に用いられるもの であり U字型放電管 2A, 2Bと放電管点灯回路 45を備えている。 U字型放電管 2A, 2Bはコネクタ 6Aを介して放電管点灯回路 45に接続している。
[0066] コネクタ 6Aは電力供給用電極 4A〜4Dを含み、電力供給用電極 4A, 4Dはそれ ぞれ独立電極である。また電力供給用電極 4Bおよび電力供給用電極 4Cは実装基 板に設けた接続線 (不図示)とともに共通電極を構成して ヽる。 [0067] 放電管点灯回路 45は実装基板に設けたインバータであり、電子装置の電源 (不図 示)力 供給される直流電圧力 所定周波数の交流電圧を生成するものである。この 放電管点灯回路 45はコネクタ 6A、コンデンサ C1A〜C1C、 1次卷線 N1Aと 2次卷 線 N2A〜N2Fを 1対の磁性体コアに卷回してなるトランスモジュール T3、電流検知 回路 8Α, 8Β、高周波駆動回路 10を備えている。
[0068] ここで、放電管点灯回路 45のトランスモジュール Τ3の詳細構成を図 5 (Β)に示す。
同図(Β)は概観図である。トランスモジュール Τ3は、 2つの Ε字型磁性体コア 22Α, 2 2Βと、 3つのボビン 23A〜23Cと、 1次卷線 N1と、 2次卷線 N2A〜N2Cとを備えて いる。 E字型磁性体コア 22A, 22Bはそれぞれ 3つの磁脚を有する相似な形状であり 、互いの 3つの磁脚同士をつき合わせて閉磁路を構成するものである。つき合わせる 3つの磁脚それぞれには管状のボビン 23A〜23Cを揷通している。
[0069] ボビン 23Bには、仕切り部 27により仕切られた複数の領域のうち一端の領域に 1次 卷線 N1を卷回している。この 1次卷線 N1は、巻き始め端 (ここでは図左側端とする。 )を、 1次側端子 26Cに接続し、巻き終わり端 (ここでは図右側端とする。)を、 1次側 端子 26Dに接続している。また、ボビン 23A〜23Cのそれぞれには、複数の仕切り 部 27により細力べ仕切られた (他端側の)領域に卷線を順に引き出しながら卷回して 2次卷線 N2A〜N2Cを構成し、その巻き始め端 (ここでは図左側端とする。)を、 2次 側端子 24A, 24C, 24Eに接続し、 2次卷線 N2A〜N2Cの巻き終わり端(ここでは 図右側端とする。)を、 2次側端子 24B, 24D, 24Fに接続している。なお、本実施形 態においても第 2の実施形態と同様、 1次側端子を増やし、 2次卷線のグランドを 1次 側端子として配置しても構わな!/、。
[0070] 同図 (A)に示すように 1次卷線 N1は巻き始め端に接続された 1次側端子 26Cを介 して高周波駆動回路 10に接続している。また、 1次卷線 N1は巻き終わり端に接続さ れた 1次側端子 26Dを介してグランドに接続している。なお、この接続の方法は適用 されるスイッチング回路により変更されるものである。また、トランスモジュール T3の 2 次卷線 N2Bは巻き始め端に接続された 2次側端子 24Cを介して共通電極に、巻き 終わり端に接続された 2次側端子 24Dを介してグランドに接続している。一方、 2次卷 線 N2A, N2Cは巻き終わり端に接続された 2次側端子 24B, 24Fを介して独立電極 に、巻き始め端に接続された 2次側端子 24A, 24Eと接地との間に電流検知回路 8 A, 8Bを接続している。このようにトランスモジュール T3を構成することで、共通電極 に接続される 2次卷線 N2Bからの交流出力電圧の極性と、独立電極に接続される 2 次卷線 N2A, N2C力もの交流出力電圧の極性とを、互いに逆極性にしている。
[0071] また、共通電極に接続される 2次卷線 N2Bと 1次卷線 N1を E字型磁性体コアの中 央の磁脚に揷通したボビン 23Bに設け、独立電極に接続される 2次卷線 N2A, N2C を E字型磁性体コアの両端の磁脚に揷通したボビン 23A, 23Cに設けている。また、 同図(B)に矢印で図示する 2つの閉磁路が生じ、 2次卷線 N2Aと 2次卷線 N2Cが異 なる閉磁路に構成されるため、それぞれ独立して電圧を出力する。この構成により、 独立電極に接続される 2次卷線 N2A, N2Cの出力特性を均等化している。また、 2 次卷線 N2Bの線径を他の 2次卷線 N2A, N2Cの線径よりも大きくしている(図には 明示していない)。また、中央の磁脚のコア断面積を、他の両端の磁脚のコア断面積 よりも大きくしている(図には明示していない)。このように構成することで、合成電流 の流れる 2次卷線 N2Bによる銅損、コアによる鉄損を抑制し、温度上昇を抑えるよう にしている。
[0072] このようにトランスモジュール T3に 1つの 1次卷線を設けてモジュール化することで 、 1次卷線の部品点数を削減している。
[0073] また、同図 (A)に示す放電管点灯回路 25の高周波駆動回路 10は、電子装置の電 源から供給される直流電圧から矩形波状の 1次側電圧を生成し、この 1次側電圧をト ランス T3の 1次卷線 N1に印力!]する。
[0074] また、放電管点灯回路 25のコンデンサ C1A〜C1Cは、トランスモジュール T3の各 2次卷線 N2A〜N2Cと接地との間に接続している。これらコンデンサ C1A〜C1Cは 、 ノ ックライトの起動点灯時に、トランスモジュール T3の漏れインダクタンスと直列共 振し、起動点灯に必要な高電圧を U字型放電管 2A, 2Bに印加する。
[0075] 以上の構成により、本実施形態のノ ックライト 41および放電管点灯回路 45は U字 型放電管 2A, 2Bを点灯させる。なお、トランスモジュール T3については各 2次卷線 N2A〜N2Cの出力特性が略一致するように卷数、卷数比、 1次側との結合度、漏れ インダクタンスを調整すると好ましい。また、コンデンサ C1A〜C1Cの静電容量も、各 2次卷線 N2A〜N2Cの出力特性を略一致させるように調整すると好ましい。
なお、本発明は用いるトランス、およびトランスモジュールの構成によらずに実施で き、例えば特開 2001— 126937〖こ開示された、 1次卷線用の 1つの磁脚と 2次卷線 用の 3つの磁脚とを備えるトランスモジュールの構成や、第 3の実施形態で示した構 成とは逆に、ボビン 23Aとボビン 23Cにそれぞれ個別の 1次卷線を卷回し、ボビン 23 Bには 1次卷線を卷回しないようなトランスモジュールの構成であっても好適に実施で きる。また、複数の 1次卷線を多重に卷回して、 3より多くの 1次卷線を設ける構成で あっても好適に実施できる。

Claims

請求の範囲
[1] 高周波駆動回路と、 1次卷線が前記高周波駆動回路に並列に接続される複数のト ランスとを備え、各トランスの 2次卷線に U字型放電管の端子を接続される放電管点 灯回路において、
2つの u字型放電管のそれぞれの一方の端子が接続される第 1 ·第 2の電極と、前 記 2つの U字型放電管の他方の端子がそれぞれ共通に接続される第 3の電極とを備 え、
第 1 ·第 2の電極に印加する電圧が同極性で、且つ前記第 3の電極に印加する電 圧が前記第 1 ·第 2の電極に印加する電圧とは逆極性となるように、第 1のトランスの 2 次卷線を第 1の電極に、第 2のトランスの 2次卷線を第 2の電極に、第 3のトランスの 2 次卷線を第 3の電極にそれぞれ接続したことを特徴とする放電管点灯回路。
[2] 前記第 3のトランスは、前記第 1 ·第 2のトランスよりも、 2次卷線の線径が大きいもの である請求項 1に記載の放電管点灯回路。
[3] 前記第 3のトランスは、前記第 1 ·第 2のトランスよりも、コア断面積が大きいものであ る請求項 1または 2に記載の放電管点灯回路。
[4] 前記第 1〜第 3のトランスの 2次卷線から前記第 1〜第 3の各電極部分周辺に分布 する寄生容量と、前記各トランスの漏れインダクタンスとにより前記 2つの U字型放電 管のそれぞれに共振電圧を供給する請求項 1〜3のいずれか 1項に記載の放電管 点灯回路。
[5] 前記第 1〜第 3のトランスは、閉磁路を形成する共用の磁性体コアを備え、
前記共用の磁性体コアに前記第 1〜第 3のトランスの 2次卷線をそれぞれ卷回して 一体に構成してなる請求項 1〜4のいずれか 1項に記載の放電管点灯回路。
[6] 前記共用の磁性体コアに 1つまたは 2つの 1次卷線を卷回して、その 1次卷線を前 記第 1〜第 3のトランスの 2次卷線に共通に結合させた請求項 5に記載の放電管点灯 回路。
[7] 前記共用の磁性体コアに 1つの 1次卷線を卷回して、該 1次卷線を前記第 1〜第 3 のトランスの 2次卷線に共通に結合させた請求項 6に記載の放電管点灯回路であつ て 前記共用の磁性体コアは少なくとも 3つの磁脚を有し、前記第 1〜第 3のトランスの 2 次卷線を互いに異なる磁脚にそれぞれ卷回し、前記 1次卷線を、前記 2次卷線が卷 回された 、ずれかの磁脚、または 2次卷線が卷回されて ヽな 、他の磁脚に卷回した 記載の放電管点灯回路。
請求項 1〜7のいずれか 1項に記載の放電管点灯回路、および当該放電管点灯回 路によって駆動される冷陰極管をバックライトに備えた電子装置。
PCT/JP2006/325157 2006-02-28 2006-12-18 放電管点灯回路および電子装置 WO2007099683A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007513573A JP4458166B2 (ja) 2006-02-28 2006-12-18 放電管点灯回路および電子装置
EP06834884.6A EP1991034A4 (en) 2006-02-28 2006-12-18 DISCHARGE LAMP LIGHTING CIRCUIT AND ELECTRONIC DEVICE
CN2006800013950A CN101124855B (zh) 2006-02-28 2006-12-18 放电管点亮电路及电子装置
US11/928,386 US7683555B2 (en) 2006-02-28 2007-10-30 Discharge tube lighting circuit and electronic apparatus provided with the discharge tube lighting circuit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-053184 2006-02-28
JP2006053184 2006-02-28
JP2006083646 2006-03-24
JP2006-083646 2006-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/928,386 Continuation US7683555B2 (en) 2006-02-28 2007-10-30 Discharge tube lighting circuit and electronic apparatus provided with the discharge tube lighting circuit

Publications (1)

Publication Number Publication Date
WO2007099683A1 true WO2007099683A1 (ja) 2007-09-07

Family

ID=38458807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325157 WO2007099683A1 (ja) 2006-02-28 2006-12-18 放電管点灯回路および電子装置

Country Status (6)

Country Link
US (1) US7683555B2 (ja)
EP (1) EP1991034A4 (ja)
JP (1) JP4458166B2 (ja)
KR (1) KR100867552B1 (ja)
CN (1) CN101124855B (ja)
WO (1) WO2007099683A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266454A (ja) * 2006-03-29 2007-10-11 Murata Mfg Co Ltd トランス接続回路、放電管点灯回路、および電子装置
JP2008166624A (ja) * 2006-12-29 2008-07-17 Matsushita Electric Works Ltd トランス及びそれを用いた共振型スイッチング電源
JP2009246328A (ja) * 2008-03-31 2009-10-22 Samsung Electro Mech Co Ltd 多出力トランス
WO2011070873A1 (ja) * 2009-12-11 2011-06-16 シャープ株式会社 照明装置、表示装置及びテレビ受信装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090080292A (ko) * 2008-01-21 2009-07-24 삼성전자주식회사 전원 공급 모듈 및 이를 갖는 백라이트 어셈블리
TW200938003A (en) * 2009-04-01 2009-09-01 Verticil Electronics Corp Lamp and driving circuit thereof
US20120223653A1 (en) * 2009-12-10 2012-09-06 Sharp Kabushiki Kaisha Inverter device, display apparatus lighting device provided with same, and display apparatus
CN102194380A (zh) * 2010-01-20 2011-09-21 三星电机株式会社 平板显示装置以及用于其的共模滤波器
US8872439B2 (en) * 2010-04-30 2014-10-28 Texas Instruments Incorporated System and methods for providing equal currents to current driven loads

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09161980A (ja) * 1995-12-11 1997-06-20 Sanyo Electric Works Ltd サイン灯用電源装置
JP2004273396A (ja) * 2003-03-12 2004-09-30 Nec Lighting Ltd 面光源、バックライト装置及び液晶ディスプレイパネル
JP2004335422A (ja) * 2003-05-12 2004-11-25 Harison Toshiba Lighting Corp 放電灯点灯装置
JP2005032940A (ja) * 2003-07-11 2005-02-03 Toko Inc インバータトランスとそれを用いた放電灯点灯装置
JP2005203338A (ja) * 2004-01-15 2005-07-28 Hon Hai Precision Industry Co Ltd 連続駆動照明ユニットにより形成される照明装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919595A (en) * 1972-09-01 1975-11-11 Gen Electric Lamp ballast device
US4016477A (en) * 1975-04-29 1977-04-05 Isodyne Inc. Novel multi-path leakage transformer and inverter ballast
US5192896A (en) * 1992-04-10 1993-03-09 Kong Qin Variable chopped input dimmable electronic ballast
WO1999055125A1 (en) * 1998-04-21 1999-10-28 Power Circuit Innovations, Inc. Dimming ballast and drive method for lamps using a frequency controlled, loosely-coupled transformer
US6104146A (en) * 1999-02-12 2000-08-15 Micro International Limited Balanced power supply circuit for multiple cold-cathode fluorescent lamps
JP3951176B2 (ja) * 2002-09-06 2007-08-01 ミネベア株式会社 放電灯点灯装置
US7309964B2 (en) * 2004-10-01 2007-12-18 Au Optronics Corporation Floating drive circuit for cold cathode fluorescent lamp
TWM267478U (en) * 2004-11-10 2005-06-11 Logah Technology Corp Lamp current controller
JP4560680B2 (ja) * 2004-11-12 2010-10-13 ミネベア株式会社 バックライトインバータ及びその駆動方法
JP4645647B2 (ja) * 2005-02-09 2011-03-09 パナソニック株式会社 トランスとそれを用いた照光装置およびディスプレイ装置
KR100674714B1 (ko) * 2005-06-23 2007-01-25 삼성전기주식회사 트랜스포머

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09161980A (ja) * 1995-12-11 1997-06-20 Sanyo Electric Works Ltd サイン灯用電源装置
JP2004273396A (ja) * 2003-03-12 2004-09-30 Nec Lighting Ltd 面光源、バックライト装置及び液晶ディスプレイパネル
JP2004335422A (ja) * 2003-05-12 2004-11-25 Harison Toshiba Lighting Corp 放電灯点灯装置
JP2005032940A (ja) * 2003-07-11 2005-02-03 Toko Inc インバータトランスとそれを用いた放電灯点灯装置
JP2005203338A (ja) * 2004-01-15 2005-07-28 Hon Hai Precision Industry Co Ltd 連続駆動照明ユニットにより形成される照明装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1991034A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266454A (ja) * 2006-03-29 2007-10-11 Murata Mfg Co Ltd トランス接続回路、放電管点灯回路、および電子装置
JP2008166624A (ja) * 2006-12-29 2008-07-17 Matsushita Electric Works Ltd トランス及びそれを用いた共振型スイッチング電源
JP2009246328A (ja) * 2008-03-31 2009-10-22 Samsung Electro Mech Co Ltd 多出力トランス
WO2011070873A1 (ja) * 2009-12-11 2011-06-16 シャープ株式会社 照明装置、表示装置及びテレビ受信装置

Also Published As

Publication number Publication date
JP4458166B2 (ja) 2010-04-28
JPWO2007099683A1 (ja) 2009-07-16
US20080129227A1 (en) 2008-06-05
EP1991034A1 (en) 2008-11-12
CN101124855A (zh) 2008-02-13
KR20070117535A (ko) 2007-12-12
EP1991034A4 (en) 2014-04-16
CN101124855B (zh) 2011-02-09
KR100867552B1 (ko) 2008-11-06
US7683555B2 (en) 2010-03-23

Similar Documents

Publication Publication Date Title
WO2007099683A1 (ja) 放電管点灯回路および電子装置
JP2005063941A (ja) 冷陰極管点灯装置
US8344643B2 (en) Driver system and method for multiple cold-cathode fluorescent lamps and/or external-electrode fluorescent lamps
JP4830579B2 (ja) トランス接続回路、放電管点灯回路、および電子装置
US20090195175A1 (en) Direct Coupled Balancer Drive For Floating Lamp Structure
JP2007035503A (ja) 放電灯点灯装置
JP4560686B2 (ja) 多灯式放電灯点灯装置
US8587226B2 (en) Driver system and method with cyclic configuration for multiple cold-cathode fluorescent lamps and/or external-electrode fluorescent lamps
JP4664226B2 (ja) 放電管駆動回路
US20080303449A1 (en) Cold cathode fluorescent lighting discharge tube device
JP2006210279A (ja) 放電灯駆動装置
JP2008258166A (ja) 蛍光灯駆動電源
JP4752610B2 (ja) 放電管点灯回路および光源システム
JP2007265897A (ja) 放電管用インバータ回路
JP2010055878A (ja) 放電管均流点灯装置
JP2008099545A (ja) 自励式共振システム
JP2007234267A (ja) 多灯用インバータ回路
JP2009054413A (ja) 放電灯点灯装置
KR101463566B1 (ko) 램프 병렬 구동 장치
JP2009231000A (ja) 放電管均流点灯装置
JP2009054416A (ja) 冷陰極放電灯点灯装置
JP2004213994A (ja) 放電灯点灯装置
JP2007087738A (ja) 放電灯駆動装置
US20110103109A1 (en) Ac power source apparatus
JP2009231107A (ja) 電源装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007513573

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006834884

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077012581

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680001395.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE