この発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付し、説明の重複を避けるためにその説明は繰返さない。
まず、この発明が関わるところの、フォトクロミック化合物を含む表示層を基体上に形成した画像表示媒体、およびそれに対して光照射によりカラー画像を形成する方法の基本的なメカニズムについて説明する。
図1は、この発明に用いられる画像表示媒体1の構成を示す模式図である。
この画像表示媒体1は、支持基体10上に、発色状態における極大吸収波長が異なる、つまり発色状態において認識される色が異なる、2種類以上のフォトクロミック化合物を含む表示層が形成される。図1に示したものは、極大吸収波長が異なる3種類のフォトクロミック化合物を含む表示層11、12、13が積層されて形成される。第1のフォトクロミック化合物を含む表示層11は、図2の(A)で示す極大吸収波長の特性を有し、第2のフォトクロミック化合物を含む表示層12は、図2の(B)で示す極大吸収波長の特性を有し、第3のフォトクロミック化合物を含む表示層13は、図2の(C)で示す極大吸収波長の特性を有するものでそれぞれ構成されている。
これに、紫外光照射によって表示層に含有される全種類のフォトクロミック化合物を発色させた後、発色した各々のフォトクロミック化合物の可視域吸収帯に対応した波長域(極大吸収波長付近の波長域)の光をそれぞれ所定の領域に照射して対応する特定のフォトクロミック化合物を選択的に消色することにより、所望のカラー画像が得られる。図1に示す例においては、波長Aの光に対して、第1の表示層11が消色し、波長Bの光に対して、第2の表示層12が消色し、波長Cの光に対して第3の表示層13が消色する。
もう少し詳しく説明すれば、発色状態における極大吸収波長が異なるということは、つまり認識される色が異なるということであり、この極大吸収波長は、表示に用いたい色に対応して設定されればよく、また当該フォトクロミック化合物の種類も、表示に用いたい色の数に対応して設定されればよい。発色状態における色相がそれぞれイエロー、マゼンタ、シアンとなるフォトクロミック化合物を用いることにより、カラー表示の3原色が構成され、例えば可視光照射工程で各フォトクロミック化合物の消色の程度を調整することで、各フォトクロミック化合物により得られる色の濃度を制御することが可能となり、前述の画像表示方法により色再現範囲が広い多色表示が可能となる。
以上は、発色状態における極大吸収波長が異なる、2種類以上のフォトクロミック化合物を含む表示層からなる画像表示媒体に対して画像を形成する場合について述べた。1種類のフォトクロミック化合物のみを含む表示層からなる画像表示媒体を対象とする場合は、発色の色相は1つでその濃度が異なる、いわゆるモノクロ画像が形成されることになるが、その表示層に含まれるフォトクロミック化合物の発色の程度を制御して画像を形成するという基本的な方法については上述のカラー画像の形成の場合と同様である。
また、表示層に含まれるフォトクロミック化合物が1種類の場合でも、発色状態における極大吸収波長が異なる2種類以上の場合でも、全てのフォトクロミック化合物が消色している状態に対して、所定の領域に紫外光を照射して発色させることによってモノクロの画像を形成することができる。
この発明は、以上に述べたフォトクロミック化合物を含む表示層を基体上に形成した画像表示媒体、およびそれに対して光照射により画像を形成する方法をもとに、光照射によりカラー画像が形成でき、かつ画像の書き換えが可能であり、さらに形成した画像が光に対して十分な安定性を有するような実用性に優れる画像表示媒体および画像形成方法について検討した結果得られたものである。
以下、この発明をさらに詳細に説明する。
この発明の特徴の一つは、下記一般式(1)で表わされるフォトクロミック化合物および長鎖アルキル化合物を含むフォトクロミック組成物を構成することである。
(ただし、R1、R2、R3、R4はアルキルであり、R1、R2の炭素数の合計、およびR3、R4の炭素数の合計がともに12以上である。XおよびYはそれぞれ独立して水素結合性基または会合性基を1つあるいは複数含む構造である。Z1、Z2は存在しないか、あるいは−CH2OCO−、−NHCO−、−O−、−OCO−の中から選択される1つであり、R5〜R15は独立して水素であるかまたは置換基である。)
一般式(1)で表されるスピロピラン系のフォトクロミック化合物は紫外光照射によりメロシアニン構造に変化して発色し、加熱によって安定な会合体を形成して、可視光を照射しても消色が起こらなくなる。
従来よく報告されているフォトクロミック化合物に比べて、ここで示した一般式(1)のフォトクロミック化合物は母体骨格から伸びる長鎖構造の途中に水素結合性基を挿入した構造とすることで会合状態における分子間の長鎖構造同士の相互作用が強固となり、水素結合性のない化合物に比べ、会合体の熱に対する安定性が向上する。
長鎖構造内の水素結合性基または会合性基としてはエステル基、カルボニル基、アミド基、イミド基、ウレア基、ウレタン基、ジイミド基などがある。
一般式(1)において、R5〜R15は独立して水素またはハロゲン、アルキル基、アルコキシ基、アルコキシカルボニル基、ジアルキルアミノ基、シアノ基、アミノ基、ニトロ基などの置換基である。
一般式(1)において、Z1、Z2は存在しないか、あるいは−CH2OCO−、−NHCO−、−O−、−OCO−、中から選択される1つであり、Z1、Z2が存在しない場合はR1、R3が直接フォトクロミック化合物に結合している。
一般式(1)の長鎖構造の長さ、すなわち全体としての炭素数については、一般的に長鎖構造が12よりも短い場合には充分な自己会合性が発現しない。この発明においても長鎖構造化合物全体としての炭素数が12よりも短い場合には充分な自己会合性が発現せず、したがって、前記会合促進効果も発現しないため、12以上であることが必要である。
長鎖アルキル化合物はポリマー媒体中でフォトクロミック化合物の会合形成の効率を向上させる作用が実験結果として確認されている。
長鎖アルキルの構造としては分子間の凝集力をコントロールするため、炭素数は12以上が望ましい。例えばn−ヘキサデカン、n−ペンタデカン、n−ヘプタデカン、n−オクタデカン、n−ノナデカン、n−エイコサン、n−ドコサンなどが挙げられる。
表示層を構成する材料としてはフォトクロミック化合物、長鎖アルキル化合物の他に、バインダー材料があるが、フォトクロミック化合物のフォトクロミズム機能に悪影響を与えることなく、またフォトクロミック化合物および長鎖アルキル化合物と相溶性がよく、成膜可能であり、硬化後の透明性に優れる樹脂材料を用いることが好ましい。このような材料としては、例えば、ポリスチレン、ポリエステル、ポリメタクリル酸メチル、塩化ビニル−塩化ビニリデン共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルフェノールなどが挙げられる。
この発明におけるフォトクロミック組成物を、一般式(1)で表わしたフォトクロミック化合物/長鎖アルキル化合物/ポリマーで構成する場合のそれぞれの割合については、ポリマー100重量部に対して、フォトクロミック化合物は0.1〜50重量部、長鎖アルキル化合物は10〜200重量部となるようにするが望ましい。
この発明のもう一つの特徴は、上述のフォトクロミック組成物を表示層として支持基体上に形成して画像表示媒体を構成することである。
支持基体の材料としては、ポリエチレンテレフタレート、ポリエーテルサルフォン、ポリカーボネート、フェノキシ樹脂、芳香族ポリエステル、フェノール樹脂、エポキシ樹脂等、あるいはこれらに白色顔料を含ませて成形された不透明材料、および紙などの材料を用いることができる。
支持基体の形状としては、シート状、カード状、フィルム状のものに限らず、例えばブロック状のものでもよく、形状は限定されない。
表示層を形成する方法としては、塗布法のほかに蒸着法も挙げられるが、塗布法が簡便であり、当該フォトクロミック化合物、当該長鎖構造化合物およびポリマー材料を共に溶媒に溶かして、印刷法、スピンコート法などの方法により塗布し、乾燥して成膜すればよい。表示層は必ずしも支持基体の全体に形成する必要はなく、一部に形成してもよい。表示層の好ましい厚みについては、フォトクロミック組成物中に含まれるフォトクロミック化合物の濃度等によっても異なるが、およそ0.1〜10μm程度が好ましい。
この発明のもう一つの特徴は、上述の画像表示媒体の表示層が、会合状態における色相が異なる2種以上のフォトクロミック化合物を含むように構成することである。
この発明のもう一つの特徴は、会合状態における極大吸収波長が異なる、2種以上の一般式(1)で表したフォトクロミック化合物および長鎖アルキルを含む表示層を支持基板上に形成して画像表示媒体を構成したことである。
このように会合状態における極大吸収波長が異なる2種以上の一般式(1)で表されるフォトクロミック化合物を用いることによって、色相が異なる複数の色の表示が可能となる。
この発明のもう一つの特徴は、表示層が、会合状態における色相がイエローを示すフォトクロミック化合物と、会合状態における色相がマゼンタを示すフォトクロミック化合物と、会合状態における色相がシアンを示すフォトクロミック化合物をすべて含有するものであることである。
これによりカラー表示に必要な3原色が構成され、それぞれのフォトクロミック化合物発消色状態を制御して組み合わせることにより、フルカラー画像の形成が可能となる。
上述したように、一般式(1)で表わされるフォトクロミック化合物は紫外光照射によりメロシアニン構造に変化して発色し、加熱により安定な会合体を形成して、可視光を照射しても消色がほとんど起こらなくなるが、会合体形成の前後で吸収特性が変化するために色相が若干変化する。これを考慮して会合体が形成された状態での色相に着目してフォトクロミック化合物を設定する必要がある。
前記各フォトクロミック化合物の会合状態において、イエロー、マゼンタ、シアンの3原色が構成されるため、多色表示が可能となる。
会合状態における色相がイエローを示す一般式(1)で表されるフォトクロミック化合物としては、例えば、3−((5’−(ジメチルアミノ)−3’,3’−ジメチル−6−ニトロ−1’−(2−(ペンタデカノイルオキシ)エチル)スピロ[クロメン−2,2’−インドリン]−8−イル)メトキシ)−3−オキソプロピルペンタデカネートまたは、(6−シアノ−5’−(ジメチルアミノ)−3’,3’−ジメチル−1’−(2−ペンタデカンアミドエチル)スピロ[クロメン−2,2’−インドリン]−8−イル)メチル 3−ペンタデカンアミドプロパネートが挙げられる。
会合状態における色相がマゼンタを示す一般式(1)で表されるフォトクロミック化合物としては、例えば、3−((5’−クロロ−6−シアノ−3’,3’−ジメチル−1’−(2−(ペンタデカノイルオキシ)エチル)スピロ[クロメン−2,2’−インドリン]−8−イル)メトキシ)−3−オキソプロピルペンタデカノネート または、(5’,7’−ジクロロ−3’,3’−ジメチル−6−ニトロ−1’−(2−ペンタデカンアミドエチル)スピロ[クロメン−2,2’−インドリン]−8−イル)メチル 3−ペンタデカンアミドプロパネートが挙げられる。
会合状態における色相がシアンを示す一般式(1)で表されるフォトクロミック化合物としては、例えば、3−((6−シアノ−3’,3’−ジメチル−1’−(2−(ペンタデカノイルオキシ)エチル)スピロ[クロメン−2,2’−インドリン]−8−イル)メトキシ)−3−オキソプロピルペンタデカネート または、(5’−ブロモ−3’,3’−ジメチル−6−ニトロ−1’−(2−ペンタデカンアミドエチル)スピロ[クロメン−2,2’−インドリン]−8−イル)メチル 3−ペンタデカンアミドプロパネート または、(5’,7’−ジブロモ−3’,3’−ジメチル−6−ニトロ−1’−(2−(3−トリデシルウレイド)エチル)スピロ[クロメン−2,2’−インドリン]−8−イル)メチル 3−(3−トリデシルウレイド)プロパネートが挙げられる。
この発明のもう一つの特徴は、前記表示層において、会合状態における色相がイエローを示す一般式(1)で表されるフォトクロミック化合物および長鎖アルキル化合物を含む第一の表示層と、会合状態における色相がイエローを示す一般式(1)で表されるフォトクロミック化合物および長鎖アルキル化合物を含む第二の表示層と、会合状態の色相がシアンを示す一般式(1)で表されるフォトクロミック化合物および長鎖アルキル化合物を含む第三の表示層が積層された構造であることである。
各層間に中間層を設けてもよい。各層を積層する過程で、積層膜の形成方法によっては各層の境界近傍を中心として、各層の構成要素が混合してしまう場合があるため、中間層を設けることによりこのような混合を防ぎ、結果として各層での会合形成変化を適切に維持した状態で表示層を形成することが可能となる。
中間層を形成する材料としては、透明であるか、あるいは着色していてもその程度が小さく、表示層の形成に好適に用いられる塗布法で使用する有機溶媒に対し、ある程度の耐性を有するものが好ましく、シリコーン樹脂やPVA(ポリビニルアルコール)等が挙げられる。形成方法は、表示層と同様であってどのような方法でもよいが、塗布法が簡便である。
次に、上述した画像表示媒体およびそれを、例えば、シート状の印刷体や光ディスクのレーベル記録面に印刷面を形成したものに対して、画像を形成および消去する装置に関して説明する。それに際して、まずは、画像を形成および消去する方法について説明する。
(モノクロ画像を形成する方法)
上述の画像表示媒体(表示層に含まれるフォトクロミック化合物が1種でも2種類以上でも)に対し、画像データに従い部分的に紫外光を照射する工程と、会合に必要な所定温度に昇温する工程を施すことでモノクロ画像を形成することが可能となる。また、消去に必要な所定温度に昇温する工程を施すことで画像の消去を行なうことが可能となる。
まず、表示層に含まれる全てのフォトクロミック化合物が消色している状態を初期状態として、これに形成したい画像に対応させたデータに基づき部分的に紫外光を照射して発色させることによりモノクロ画像が形成される。
次に、表示層を例えば例えば40℃程度の温度に昇温させることにより表示層中に含まれるフォトクロミック化合物が会合体を形成して、前記モノクロ画像は安定化し、照明などの光に長時間晒しても画像が薄くなったり、消えてしまうことがなくなる。そして、この画像を消去したい場合は、表示層を例えば100℃程度の温度に昇温させることにより表示層中に含まれるフォトクロミック化合物の会合状態が解けるとともに消色して画像は消去される。
部分的に紫外光を照射する方法としては、ランプ状のUV光源とアレイ型あるいは面型のシャッターを組み合わせる方法、それ自体で照射のON/OFFを制御できるUVアレイ光源を用いる方法、あるいはUVレーザースキャンなどが挙げられる。
会合に必要な所定温度に昇温させる手段としては、ヒートローラー、サーマルヘッド、ハロゲンヒーター、セラミックヒーター、石英管ヒーターなどをはじめとする従来のヒーター類を用いることができ、前記ヒーター類の加熱温度や、画像表示媒体との近接距離と時間、あるいは当接圧と時間などの条件により、画像表示媒体の感光層の加熱温度、加熱時間などを調整できる。したがって、これらは、消去に必要な所定温度に昇温させる手段としても用いることができる。
(多色画像を形成する方法)
上述の画像表示媒体に対し、紫外光を照射することによって表示層に含有される全てのフォトクロミック化合物を発色させる工程と、発色した各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を画像データに基づき照射してフォトクロミック化合物を選択的に消色する工程と、会合に必要な所定温度に昇温する工程を施すことで、表示層に含まれるフォトクロミック化合物が1種類の画像表示媒体に対してはモノクロ画像が形成され、表示層に含まれるフォトクロミック化合物が2種類以上の画像表示媒体に対しては多色画像を形成することができる。
まず、表示層全面に紫外光を照射して表示層に含まれる全てのフォトクロミック化合物を発色させる。次に形成したい画像に対応させて、発色した各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を画像データに基づき部分的に照射してフォトクロミック化合物を選択的に消色することにより、所望の画像が形成される。次に、表示層を例えば40℃程度の温度に昇温させることにより表示層中に含まれるフォトクロミック化合物が会合体を形成して前記画像は安定化し、照明などの光に長時間晒しても画像が薄くなったり消えてしまうことがなくなる。そしてこの画像を消去したい場合は、表示層を例えば100℃程度の温度に昇温させることにより表示層中に含まれるフォトクロミック化合物の会合状態が解けるとともに消色して画像は消去される。
表示層全面に紫外光を照射する方法としては、水銀ランプやキセノンランプなどに光学フィルターを組み合わせて所望の波長域の紫外光を取り出して用いてもよいし、LEDやLDなどの特定波長域の光を発する発光素子を用いてもよい。
可視光を部分的に照射する方法としては、白色光光源に光学フィルターを組み合わせた構成のランプ類を用いてもよいし、LEDやLDなどの特定波長域の光を発する発光素子を用いてもよい。所望の領域にのみ照射する方法としては、例えば微小な領域ごとに照射のオン/オフが制御できる発光面を連続して並べて形成した光源アレイと、画像表示媒体とを相対的に移動させながら光源アレイの各発光面の照射のオン/オフを制御することによっても可能となる。
会合に必要な所定温度に昇温させる手段としては、ヒートローラー、サーマルヘッド、ハロゲンヒーター、セラミックヒーター、石英管ヒーターなどをはじめとする従来のヒーター類を用いることができ、前記ヒーター類の加熱温度や、画像表示媒体との近接距離と時間、あるいは当接圧と時間などの条件により、画像表示媒体の感光層の加熱温度、加熱時間などを調整できる。したがってこれらは、消去に必要な所定温度に昇温させる手段としても用いることができる。
本発明のもう一つの特徴は、上述の画像表示媒体に対し、画像データに対応して部分的に紫外光を照射する紫外光照射手段、および画像安定化に必要な所定温度に表示層を昇温する加熱手段を備えた装置を構築することである。
この発明における画像表示媒体に用いる支持基体はシート状に限らずどんな形状でもよいが、ここではシート状の画像表示媒体を例にとってモノクロ画像の形成および消去が可能な装置の構成例および動作を図3を用いて説明する。
図3は、この発明の画像形成装置の第1の実施形態を示し、シート状の画像表示媒体をモノクロ画像形成を行う画像形成装置の一例を示す模式図である。
この発明にかかるシート状の画像表示媒体1が画像形成装置20のシート載置台26上にセットされる。画像表示媒体1は、基体10上にこの発明にかかるフォトクロミック化合物を含む表示層が設けられている。基体10の色は白色であり、フォトクロミック化合物が発色していない状態においては、画像表示媒体1は白色を呈している。
画像表示媒体1が挿入口21から搬送ローラ22によって装置20内に搬送される。紫外光照射手段24により、形成したい画像に対応させて部分的に紫外光を照射して発色させることによりモノクロ画像を形成する。この紫外光照射手段24は、ランプ状のUV光源とアレイ型あるいは面型のシャッターを組み合わせる方法、それ自体で照射のON/OFFを制御できるUVアレイ光源を用いる方法、あるいはUVレーザースキャンなどで構成される。
紫外光照射手段24により、表示層にモノクロ画像が形成された画像表示媒体1は、搬送ローラ22により、更に送られ、加熱手段25により、会合に必要な所定温度に昇温して画像が安定化される。会合に必要な所定温度に昇温させる手段としては、ヒートローラー、サーマルヘッド、ハロゲンヒーター、セラミックヒーター、石英管ヒーターなどが用いられる。
加熱手段24により、画像の安定化処理が終わった画像表示媒体1は、搬送ローラ23により、搬送され、排出口24より排出され、排紙トレイ27上に排出される。
例えば、このような構成で装置を作製することで、モノクロ画像の形成が可能となる。
次に、上述した表示層が形成された光ディスクレーベル記録面に対し、部分的に紫外光を照射する紫外光照射手段、および画像安定化に必要な所定温度に昇温する加熱手段を備えて、光ディスクレーベル記録面に画像を形成する装置につき説明する。
近年、情報記録メデイアとして、CDやDVDのような光ディスクが普及している。CDとしては、再生専用のCD−ROM、追記可能なCD−R、書き換え可能なCD−RW等があり、DVDとしては、再生専用のDVD−ROM、追記可能なDVD−R、書き換え可能なDVD−RAM、DVD−RW等がある。記録型光ディスクは、例えば、追記可能な或いは書き換え可能な光ディスクは情報記録層を有している。この情報記録層の側の面とは逆の反対側のレーベル記録面には、インクジェットプリンタや手書きで文字や画像を記録できるレーベル記録面を有する光ディスクが普及している。
インクジェットプリンタや手書きで文字や画像を一旦レーベル記録面に記録すると、この画像等を消去することができない。書き換え可能な光ディスクにおいては、内容を書き換えた際に、レーベル記録面も対応して書き換えられることが望まれる。そこで、レーベル記録面にこの発明にかかる画像表示媒体からなる記録層を設ければ、画像形成および消去が容易に行える。そこで、この発明は、光ディスクレーベル記録面に対し、部分的に紫外光を照射する紫外光照射手段、および画像安定化に必要な所定温度に昇温する加熱手段を備えて、光ディスクレーベル記録面に画像を形成するとともに、必要に応じて消去も可能にした装置を提供するものである。
図4を用いて、光ディスクレーベル記録面に画像を形成する装置の構成例およびその動作の概略を説明する。図4は、この発明の画像形成装置の第2の実施形態を示し、光ディスクレーベル記録面に画像を形成する装置を示す模式図である。図4を用いて、光ディスクレーベル記録面に画像を形成する装置の構成例およびその動作の概略を説明する
例えば、既存の光ディスクドライブ装置のように、光ディスク100を固定し、さらに回転の制御が可能な装置をベースに用いる。光ディスク100の情報記録面と反対側の面にレーベル記録面100aが設けられる。このレーベル記録面100aには、上述したこの発明にかかる画像記録媒体が設けられている。この場合、光ディスクが基板が基体10を構成することになる。
そして、このレーベル記録面100aに対向して加熱手段110および紫外光照射手段111を設ける。
画像の記録は、まず、光ディスク100を図中矢印方向に回転させ、紫外光照射手段111により、形成したい画像に対応させて部分的に紫外光を照射して発色させることによりモノクロ画像を形成する。次に、加熱手段110により会合に必要な所定温度に昇温して画像を安定化させることでモノクロ画像の形成が可能となる。
光ディスクレーベル記録面100aへの画像の形成は、基本的には、上記したように行われるが、実際には、光ディスクの回転速度、ディスクの径方向に対応する紫外光の照射タイミングなどを画像データに応じて制御する必要がある。
次に、上記した光ディスクドライブ装置にこの発明の画像記録装置を設けた装置の構成例につき、図5のブロック図に従い説明する。
光ディスクのレーベル記録面100aにこの発明の画像記録媒体を設けた光ディスク100に対して、光ディスクを再セットすることなく、レーベル記録面への画像形成を行うことができる画像記録装置を設けた光ディスク装置を提供する。
図5は、この発明の第2の実施の形態における画像記録装置を設けた光ディスク装置の構成を示すブロック図である。
図5において、120はドライブ機構部、123はスピンドルモータ、124は光ピックアップ、127はフィード部、111は、紫外光照射手段、125は、加熱手段、128は第1アナログ処理部、129はサーボ処理部、130はモータ駆動部、131はコントローラ、132はレーザ駆動部、133はディジタル信号処理部、134はバッファメモリ、135は第2モータ駆動部、137は照射手段駆動部、138は第2サーボ処理部、100は光ディスクである。
上記のように構成された本発明の一実施の形態における光ディスク装置の動作について説明する。図5において、ドライブ機構部120は、光ディスク100を回転させるスピンドルモータ123と、光ディスク100の情報記録面に対して情報の記録又は再生を行なう光ピックアップ124と、光ディスクのレーベル記録面100aに対して紫外線を照射することにより可視画像の形成を行なう紫外光照射手段111と、光ピックアップ124が搭載されたキャリッジを光ディスク100の半径方向に移動させるためのフィード部127と、会合に必要な所定温度に昇温して画像を安定化させる加熱手段125とによって構成されたものである。
第1アナログ信号処理部128は、ドライブ機構部120の内部に設けられた光ピックアップ124の内部の光センサ(図示せず)からの信号出力を基に、フォーカスエラー信号とトラッキングエラー信号とを生成し、サーボ処理部129に出力する。
サーボ処理部129は、ピックアップ124の対物レンズとキャリッジとの相対的な位置関係を示すレンズ位置信号を生成し、第1モータ駆動部130に出力する。第1モータ駆動部130は、光ピックアップ124とスピンドルモータ123とフィード部127を駆動する。
また、サーボ処理部129はON/OFF回路、演算回路、フィルタ回路、増幅回路等によって構成され、光ビームスポットが光ディスク100の情報トラックに追従するように光ピックアップ124の対物レンズをフォーカス/トラッキング制御し、さらにトラッキングエラー信号の低域成分を用いて対物レンズが概略中立位置を保持するようにフィード制御を行う。
フィード部127は、フィードモータ、ギヤ、スクリューシャフト(図示せず)等から構成され、フィードモータを回転させることによってキャリッジが光ディスク100の半径方向に移動するようになっている。
ディジタル信号処理部133は、第1アナログ信号処理部128から送られてきたアナログ信号をディジタル信号に変換し、コントローラ131、レーザ駆動部132、紫外光照射手段駆動部137、バッファメモリ134の各部に送出する。
コントローラ131は、このように構成されたサーボ部の全体のコントロールを行うものであり、第1アナログ信号処理部128、サーボ処理部129、モータ駆動部130、ディジタル信号処理部133、137は照射手段駆動部の各部から送られる信号が入力され、これらの信号の演算処理等を行い、この演算処理の結果(信号)を各部に送出し、各部にて駆動、処理を実行させ、各部の制御を行うものである。
モータ駆動部130は、スピンドルモータ123から得られる逆起電流を利用してスピンドルモータ123の回転数に応じた周波数のFGパルス信号をディジタル信号処理部13内にあるPLL回路に出力する。
PLL回路は、FGパルス信号を逓倍し、可視画像形成のために用いられるPLLクロック信号を生成する。例えば、スピンドルモータ123が1回転、すなわち光ディスクが1回転している間にn個のFGパルスを生成するものである場合に、PLL回路はFGパルスを逓倍したPLLクロック信号を生成する。
ディジタル信号処理部133は、PLLクロック信号毎、つまりある一定角度分だけ光ディスクが回転する毎に1つの座標の階調度を示す画像形成に必要なデータをバッファメモリ134から読み出して、照射手段駆動部137に点灯制御信号を送る。
この実施形態における紫外光照射手段111は、光ディスク100の半径方向にライン状に複数の照射部を有して構成される。このライン状の紫外光照射手段111としては、ランプ状のUV光源とアレイ型のシャッターを組み合わせたものや、それ自体で照射のON/OFFを制御できるUVアレイ光源が用いられる。シャッターを用いたものでは、シャッターの開閉を画像データに対応して、照射駆動手段137が制御する。また、UVアレイ光源を用いた場合には、照射駆動手段137がON/OFFを制御する。
ところで、図6のレーベル記録面の記録トラックの概念図に示すように、光ディスク100は外周方向に従って記録するドット数が多くなる。ライン状の紫外光照射手段126を用いた場合、内周側と外周側では記録するドット数が異なる。このため、内周側の光照射手段126のドットに対応する光発光部は、外周側の発光部に比べて、点灯されるドットが少なくなる。図6の例によれば、まずL3、L2ラインに対応するドットを点灯させる。この時L1ラインは、点灯されていない。続いて、L3ラインの1ドット分光ディスク100が回転されると、L3ラインに対応するドットを点灯させる。この時L1、L2ラインは、点灯されていない。続いて、3ラインの1ドット分光ディスク100が回転されると、L1、L2、L3ラインに対応するドットを点灯させる。更に、L3ラインの1ドット分光ディスク100が回転されると、L2、L3ラインに対応するドットを点灯させる。この時L1ラインは、点灯されていない。
このように、この例では、L3ラインの4ドットの点灯する間に、L2ラインは3ドット、L1ラインは1ドットと点灯制御され、内周側と外周側において記録するドット数を異ならせて記録するように、制御される。
次に、光ディスク100のレーベル記録面への画像記録動作につき説明する。光ディスク装置は、光ディスク100が挿入されると、スピンドルモータ123を回転させ、起動処理を開始し、フォーカスサーボ、トラッキングサーボをかけ、ディスク判別を行なう。
次に、使用者の指示により、レーベル記録面100aへの可視画像記録動作を行なう。レーベル記録面100aへの画像記録動作では、最初にディスク回転速度の設定が行なわれる。
光ディスク100の回転速度の設定は,使用者の各種入力情報がホスト装置からディジタル信号処理部133を介してコントローラ131に伝えられ、コントローラ131はその情報を基に、サーボ処理部129を介してモータ駆動部130へ指示を出し、スピンドルモータ123を動作させる。また、コントローラ131は、第2サーボ処理部138、紫外線照射駆動手段137を介して、紫外光照射手段111へ情報を伝え、紫外光照射手段111の点灯制御動作を開始する。
次に、コントローラ131は、スピンドルモータ123の動作状況から各記録位置線速度検出を行なう。記録位置線速度検出は、紫外光照射手段126の各照射部の半径位置とスピンドルモータ123の回転速度から計算される。
続いて、光ディスク100のレーベル記録面100aへの画像記録動作が開始される。光ディスク100のレーベル記録面100aへの画像記録動作は、使用者から既に受け取っている情報を基に、まずコントローラ131がディジタル信号処理部133に指示を出し、それが紫外線照射駆動手段137を介して、紫外光照射手段111の順に伝わり、紫外光照射手段111の所望の照射部が点灯することにより行なわれる。
光ディスク1が1回転することにより、光ディスク100のレーベル記録面100aに画像が記録される。ここで、紫外光照射手段111の記録パワーの出力に限界がある場合には、同一箇所に複数回の記録動作を行なう重ね記録を行うために、光ディスク100を数回転させ、同じ箇所に重ね記録するように構成すればよい。
そして、光ディスク100のレーベル記録面100aに画像が記録した後、画像を安定化させる動作に入る。画像の安定化は、加熱手段110を会合に必要な所定温度に昇温し、スピンドルモータ123を駆動させ、光ディスク100を回転させ、加熱手段110の下を通過させる。1度の通過により会合に必要な所定温度まで昇温される場合には、光ディスク1の回転は1度でよいが、加熱手段110のパワーによれば、複数回、光ディスク100を回転させ安定化させればよい。
次に、この発明の第3の実施形態につき説明する。第3の実施形態は、図7に示すように、上述の画像表示媒体に対し、部分的に紫外光を照射する紫外光照射手段24と、画像安定化に必要な所定温度に表示層を昇温する加熱手段25b、および形成された画像の消去に必要な所定温度に表示層を昇温する加熱手段25aを備えたものである。
図7は、この発明の第3の実施形態を示し、シート状の画像表示媒体をモノクロ画像形成および消去を行う画像形成装置の一例を示す模式図である。
この発明にかかるシート状の画像表示媒体1が画像形成装置20のシート載置台26上にセットされる。画像表示媒体1は、基体10上にこの発明にかかるフォトクロミック化合物を含む表示層が設けられている。基体10の色は白色であり、フォトクロミック化合物が発色していない状態においては、画像表示媒体1は白色を呈している。
画像表示媒体1が挿入口21から搬送ローラ22によって装置20内に搬送される。必要に応じて第一加熱手段25aにより表示層を画像の消去に必要な所定温度に昇温して画像を消去する。そして、紫外光照射手段24により、形成したい画像に対応させて部分的に紫外光を照射して発色させることによりモノクロ画像を形成する。
紫外光照射手段24により、表示層にモノクロ画像が形成された画像表示媒体1は、搬送ローラ22により、更に送られ、第2の加熱手段25bにより、会合に必要な所定温度に昇温して画像が安定化される。
第2の加熱手段25bにより、画像の安定化処理が終わった画像表示媒体1は、搬送ローラ23により、搬送され、排出口24より排出され、排紙トレイ27上に排出される。
例えば、このような構成で装置を作製することで、モノクロ画像の形成及び消去が可能となる。
上記した構成例では消去用の第一加熱手段25aと画像安定化用の第二加熱手段25bをそれぞれ別に設けたが、一つの加熱手段のみを用いて消去工程および安定化工程のそれぞれに必要な温度に加熱して使い分けても良い。その場合、画像表示媒体1は搬送されながら加熱手段による消去工程および紫外光照射手段24による画像形成工程を経た後に、再び加熱手段に搬送されて安定化工程が行なわれるように装置を構成することが必要となるが、様々な構成が考えられる。
次に、この発明の第4の実施形態につき説明する。この実施形態は、図8に示すように、上述の表示層が形成された光ディスクレーベル記録面100aに対し、部分的に紫外光を照射する紫外光照射手段111と、画像安定化に必要な所定温度に表示層を昇温する加熱手段25b、および形成された画像の消去に必要な所定温度に表示層を昇温する加熱手段25aを備えた装置を構築することである。
装置の構成例としては、図4及び図5に示したものと同様に構成される。図4及び図5の構成と異なるところは、画像安定化に必要な所定温度に表示層を昇温する加熱手段25b、および形成された画像の消去に必要な所定温度に表示層を昇温する加熱手段25aを有することである。
尚、図4及び図5に示したものと同じ構成で、同一の加熱手段を消去工程および安定化工程に必要なそれぞれの温度に加熱することで使い分けるようにしてもよい。この場合、例えばまず必要に応じて表示層を画像の消去に必要な所定温度に昇温してディスクの回転を制御して画像を消去する。次に、紫外光照射手段により、形成したい画像に対応させて部分的に紫外光を照射して発色させることによりモノクロ画像を形成する。次に加熱手段により会合に必要な所定温度に昇温して画像を安定化させることでモノクロ画像の形成および消去が可能となる。
次に、この発明の第5の実施形態につき説明する。この実施形態は、図9に示すように、上述の画像表示媒体1に対し、表示層に紫外光を照射する紫外光照射手段24と、発色状態における各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を照射する可視光照射手段26、および画像安定化に必要な所定温度に表示層を昇温する加熱手段25を備えて構成するものである。
図9を用いて、この第5の実施形態の構成例および動作を説明する。
この発明にかかるシート状の画像表示媒体1が画像形成装置20のシート載置台26上にセットされる。画像表示媒体1は、基体10上にこの発明にかかるフォトクロミック化合物を含む表示層が設けられている。基体10の色は白色であり、フォトクロミック化合物が発色していない状態においては、画像表示媒体1は白色を呈している。
画像表示媒体1が挿入口21から搬送ローラ22によって装置20内に搬送される。必要に応じて第一加熱手段25aにより表示層を画像の消去に必要な所定温度に昇温して画像を消去する。そして、紫外光照射手段24により、表示層中に含まれる全てのフォトクロミック化合物を発色させる。
そして、搬送ローラ22により、発色された画像表示媒体1は、可視光照射手段26へ送られる。可視光照射手段26により、形成したい画像に対応させて、発色した各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を部分的に照射して、図1に示すように、フォトクロミック化合物を選択的に消色させる。選択的に消色させることにより、所望の画像が形成される。
次に、加熱手段25により、表示層を会合に必要な所定温度に昇温して画像を安定化させ、排出口29から装置外に排出する。例えば、このような構成で装置を作製することでモノクロ画像または多色画像の形成が可能となる。
次に、この発明の第6の実施形態を説明する。この実施形態は図10に示すように、上述の表示層が形成された光ディスクレーベル記録面100aに対し、表示層に紫外光を照射する紫外光照射手段111と、発色状態における各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を照射する可視光照射手段126、および画像安定化に必要な所定温度に表示層を昇温する加熱手段110を備えて構成される。
図10を用いて、この第6の実施形態の装置の構成例および動作を説明する。
例えば、既存の光ディスクドライブ装置のように、光ディスク100を固定し、さらに回転の制御が可能な装置をベースに用いる。光ディスク100の情報記録面と反対側の面にレーベル記録面100aが設けられる。このレーベル記録面100aには、上述したこの発明にかかる画像記録媒体が設けられている。この画像記録媒体1としては、カラー表示が可能に構成する。図1に示すように、画像表示媒体1は、第一、第二、第三の感光層11、12、13を有するものと同様に構成されている。なお、第1の感光層11は、極大吸収波長が400nm以上500nm未満の範囲にある上記したフルギド化合物を含む層、第2の感光層12は、極大吸収波長が500nm以上600nm未満の範囲にある上記したフルギド化合物を含む層、第3の感光層13は、極大吸収波長が400nm以上500nm未満の範囲にある上記したフルギド化合物を含む層で構成されている。このようにして形成した感光層は無色であり、基体10の色が白である。この画像表示媒体1は観察者には白と認識される。
そして、このレーベル記録面100aに対向して加熱手段110、紫外光照射手段111、可視光照射手段126を設ける。可視光照射手段126は、カラー表示を行うために、それぞれの極大吸収波長に対応した3種類の可視光を照射を照射することができるように構成されている。例えば、3種類の発光ダイオードアレイで構成される。例えば、第1の発光ダイオードアレイとしては、中心波長460nm、半値幅10nmの可視光照射し、第2の発光ダイオードアレイとしては、中心波長560nm、半値幅10nmの可視光を照射し、発光ダイオードアレイとしては、中心波長660nm、半値幅10nmの可視光を照射できるように構成すればよい。上記した3種類の発光ダイオードアレイを対応する画像データに基づき照射することにより、照射された可視光に吸収波長を有する表示層が選択的に消色され、カラー画像が表示される。
まず、光ディスク100を図中矢印方向に回転させ、紫外光照射手段111により、形成したい画像に対応させて部分的に紫外光を照射して発色させると、3つの表示層が全て発色し、黒色となる。次に、可視光照射手段126により、形成したい画像に対応させて発色した各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を部分的に照射してフォトクロミック化合物を選択的に消色することにより、所望の画像を形成する。
その後、加熱手段110により、会合に必要な所定温度に昇温して画像を安定化させることでモノクロ画像または多色画像の形成が可能となる。
次に、上記した装置を光ディスクドライブ装置に適用した第6の実施形態につき、図11のブロック図に従い説明する。基本構成は図5に示したものと同じであるが、図5に示したものは紫外光照射手段111の照射により、画像記録を行っていたが、この図11に示すものは、可視光照射手段126にて、画像データに基づく画像記録を行っている。尚、図5と同じ構成については同じ符号を付し、説明の重複を避けるために、ここでは、その説明を省略する。
図11は、この発明の第6実施の形態における画像記録装置を設けた光ディスク装置の構成を示すブロック図である。
図11において、120はドライブ機構部、123はスピンドルモータ、124は光ピックアップ、125はフィード部、111aは、紫外光照射手段、126は、可視光照射手段、125は、加熱手段、128は第1アナログ処理部、129はサーボ処理部、130はモータ駆動部、131はコントローラ、132はレーザ駆動部、133はディジタル信号処理部、134はバッファメモリ、135は第2モータ駆動部、136は第2アナログ信号処理部、137aは可視光駆動部、138は第2サーボ処理部、100は光ディスクである。
図5にした実施形態は、紫外光照射手段にて、画像データの記録を行っている。このため、画素ドットに対応してオンオフ可能なように構成されている。これに対し、図11に示す実施形態においては、紫外光照射手段111aは、画素ドットに関係なく、画像表示媒体1全体を発色させればよい。このため、水銀ランプ等で光ディスク100の半径方向をライン状に照射できるようなものであればよい。そして、この実施形態においては、画像データに基づく光照射は、可視光照射手段126にて行う。このため、上述したように、可視光照射手段126は、カラー表示を行うために、それぞれの極大吸収波長に対応した3種類の可視光を照射を照射することができるように構成されている。この実施形態においては、第1の発光ダイオードアレイとして、中心波長460nm、半値幅10nmの可視光照射が可能なもの、第2の発光ダイオードアレイとして、中心波長560nm、半値幅10nmの可視光を照射が可能なもの、発光ダイオードアレイとして、中心波長660nm、半値幅10nmの可視光を照射が可能なものを用意し、この3つの発光ダイオードアレイで可視光照射手段126を構成している。この可視光照射手段126は、可視光駆動部137aから与えられ駆動信号により、画像データに対応した発光ダイオードアレイの各ドットの点灯制御が行われる。
次に、光ディスク100のレーベル記録面への画像記録動作につき説明する。光ディスク装置は、光ディスク100が挿入されると、スピンドルモータ123を回転させ、起動処理を開始し、フォーカスサーボ、トラッキングサーボをかけ、ディスク判別を行なう。
次に、使用者の指示により、レーベル記録面100aへの可視画像記録動作を行なう。レーベル記録面100aへの画像記録動作では、最初にディスク回転速度の設定が行なわれる。
光ディスク100の回転速度の設定は,使用者の各種入力情報がホスト装置からディジタル信号処理部133を介してコントローラ131に伝えられ、コントローラ131はその情報を基に、サーボ処理部129を介して第1モータ駆動部130へ指示を出し、スピンドルモータ123を動作させる。また、コントローラ131は、第2サーボ処理部138、紫外線照射駆動手段137を介して、紫外光照射手段111a、可視光照射手段126へ情報を伝え、紫外光照射手段111a、可視光照射手段126の点灯制御動作を開始する。
次に、コントローラ131は、スピンドルモータ123の動作状況から各記録位置線速度検出を行なう。記録位置線速度検出は、可視光照射手段126の各照射部の半径位置とスピンドルモータ123の回転速度から計算される。
続いて、光ディスク100のレーベル記録面100aへの画像記録動作が開始される。光ディスク100のレーベル記録面100aへの画像記録動作は、まず、紫外光照射手段11aにより、レーベル記録面100aに紫外線を照射する。紫外線照射により、3つの表示層が全て発色し、黒色となる。紫外光照射手段111aは、光ディスク100が、紫外光照射手段111aにおいて、1回転したことを検出すると、その照射が停止する。このように制御することで、可視光照射手段126で消色されたドットが再発色することを防止している。
そして、使用者から既に受け取っている情報を基に、まずコントローラ131がディジタル信号処理部133に指示を出し、それが可視光駆動部137aを介して、可視光照射手段126の順に伝わり、可視光照射手段126の所望の発光ダイオードが点灯することにより、照射された可視光に吸収波長を有する表示層が選択的に消色され、カラー画像又はモノクロ画像が表示される。
光ディスク1が1回転することにより、光ディスク100のレーベル記録面100aに画像が記録される。ここで、可視光照射手段126の記録パワーの出力に限界がある場合には、同一箇所に複数回の記録動作を行なう重ね記録を行うために、光ディスク100を数回転させ、同じ箇所に重ね記録するように構成すればよい。
そして、光ディスク100のレーベル記録面100aに画像が記録した後、画像を安定化させる動作に入る。画像の安定化は、加熱手段110を会合に必要な所定温度に昇温し、スピンドルモータ123を駆動させ、光ディスク100を回転させ、加熱手段110の下を通過させる。1度の通過により会合に必要な所定温度まで昇温される場合には、光ディスク1の回転は1度でよいが、加熱手段110のパワーによれば、複数回、光ディスク100を回転させ安定化させればよい。加熱手段110はセラミックヒータを用い、画像表示媒体の表示層をそれぞれ100℃および50℃に昇温できるように、画像表示媒体の搬送速度によってその温度が制御されるように構成している。
次に、この発明の第7の実施形態は、図12に示すように、上述の画像表示媒体に対し、表示層に紫外光を照射する紫外光照射手段24と、発色状態における各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を照射する可視光照射手段26と、画像安定化に必要な所定温度に表示層を昇温する加熱手段25b、および形成された画像の消去に必要な所定温度に表示層を昇温する加熱手段25aを備えたものである。
図12は、この発明の第7の実施形態を示し、シート状の画像表示媒体を多色画像形成又はモノクロ画像形成および消去を行う画像形成装置の一例を示す模式図である。
この発明にかかるシート状の画像表示媒体1が画像形成装置20のシート載置台26上にセットされる。画像表示媒体1は、基体10上にこの発明にかかるフォトクロミック化合物を含む3つの表示層が積層して設けられている。基体10の色は白色であり、フォトクロミック化合物が発色していない状態においては、画像表示媒体1は白色を呈している。
画像表示媒体1が挿入口21から搬送ローラ22によって装置20内に搬送される。必要に応じて第一加熱手段25aにより表示層を画像の消去に必要な所定温度に昇温して画像を消去する。そして、紫外光照射手段24により、紫外光を照射して、表示層に含まれる全てのフォトクロミック化合物を発色させる。
可視光照射手段26により、発色した各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を部分的に照射してフォトクロミック化合物を選択的に消色することにより、所望の画像を形成する。
表示層に画像が形成された画像表示媒体1は、搬送ローラ22により、更に送られ、第2の加熱手段25bにより、会合に必要な所定温度に昇温して画像が安定化される。
第2の加熱手段25bにより、画像の安定化処理が終わった画像表示媒体1は、搬送ローラ23により、搬送され、排出口24より排出され、排紙トレイ27上に排出される。
例えば、このような構成で装置を作製することで、例えばこのような構成で装置を作製することで、カラー画像又はモノクロ画像の形成および消去が可能となる。
上記した構成例では消去用の第一加熱手段25aと画像安定化用の第二加熱手段25bをそれぞれ別に設けたが、一つの加熱手段のみを用いて消去工程および安定化工程のそれぞれに必要な温度に加熱して使い分けても良い。その場合、画像表示媒体1は搬送されながら加熱手段による消去工程および紫外光照射手段24による画像形成工程を経た後に、再び加熱手段に搬送されて安定化工程が行なわれるように装置を構成することが必要となるが、様々な構成が考えられる。
次に、この発明の第8の実施形態につき説明する。この実施形態は、図13に示すように、上述の表示層が形成された光ディスクレーベル記録面100aに対し、表示層に紫外光を照射する紫外光照射手段111と、発色状態における各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を照射する可視光照射手段126と、画像安定化に必要な所定温度に表示層を昇温する加熱手段125b、および形成された画像の消去に必要な所定温度に表示層を昇温する加熱手段125aを備えた装置を構築することである。
装置の構成例としては、図10及び図11に示したものと同様に構成される。図10及び図11の構成と異なるところは、画像安定化に必要な所定温度に表示層を昇温する加熱手段125b、および形成された画像の消去に必要な所定温度に表示層を昇温する加熱手段125aを有することである。
装置の構成例としては図12に示したのと同様の構成で、同一の加熱手段を消去工程および安定化工程に必要なそれぞれの温度に加熱することで使い分けるようにしてもよい。この場合、例えばまず必要に応じて表示層を画像の消去に必要な所定温度に昇温して光ディスク100の回転を制御して画像を消去する。次に、紫外光照射手段111により、表示層中に含まれる全てのフォトクロミック化合物を発色させ、次に可視光照射手段126により、形成したい画像に対応させて発色した各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を部分的に照射してフォトクロミック化合物を選択的に消色することにより、所望の画像を形成する。次に、加熱手段により会合に必要な所定温度に昇温して画像を安定化させることでモノクロ画像または多色画像の形成が可能となる。
加熱手段については、図13に示すように消去工程用および安定化工程用の専用の加熱手段を1つずつ設ける構成としてもよい。
この発明の第9の実施形態は、図14に示すように、上述の画像表示媒体に対し、形成された画像の消去に必要な所定温度に表示層を昇温する加熱手段25を備えた装置を構成するものである。
図14を用いて装置の構成例および動作を説明する。
画像表示媒体1が挿入口21から搬送ローラ22によって装置内に搬送されると、加熱手段25により表示層を画像の消去に必要な所定温度に昇温して画像が消去されて、排出口29から装置外に排出される。また別の構成例として、図15に示すように消去工程がなされた複数の画像表示媒体1が装置内に保管され、必要に応じて装置外に取り出されるような構成としてもよい。
本発明の第10の実施形態は、図16に示すように、上述の表示層が形成された光ディスクレーベル記録面110aに対し、形成された画像の消去に必要な所定温度に表示層を昇温する加熱手段110を備えた装置を構成するものである。
図16を用いて装置の構成例および動作を説明する。既存の光ディスクドライブのように、光ディスク100を固定しさらに回転の制御が可能な装置をベースに用い、加熱手段110を設ける。画像を消去したいディスク100を装置にセットして、加熱手段110により表示層を画像の消去に必要な所定温度に昇温してディスクの回転を制御して画像を消去する。
またはディスクの回転機構をもたない、図14および図15と同様の構成の装置を用いて消去することもできる。
以下、この発明を実施例に基づいて具体的に説明する。
(実施例1)
フォトクロミック化合物として、3−((6−シアノ−3’,3’−ジメチル−1’−(2−(ペンタデカノイルオキシ)エチル)スピロ[クロメン−2,2’−インドリン]−8−イル)メトキシ)−3−オキソプロピルペンタデカネート(以下、「PC1」と記す。)を用い、長鎖アルキル化合物としてn−ドコサンを用い、バインダーとしてポリメタクリル酸メチルを用いた。20重量部のPC1に対し、n−ドコサンを20重量部添加し、ポリメタクリル酸メチルを80重量部添加した。溶媒としてトルエンを用い、塗布液を調製して石英基板上にキャスト膜を作製した。
光照射前の吸収スペクトルを測定したところ、300〜400nmの範囲に吸収帯が認められ、無色であった。
こ れに高圧水銀ランプから取り出した366nmの紫外光を照射したところ青紫に発色し、吸収スペクトルの極大吸収波長は590nmであった。これをヒートローラーにより40℃に加熱処理したところ、色相が変化し、吸収スペクトルの極大吸収波長は621nmであった。
これを再びヒートローラーにより一時的に100℃に加熱処理したところ、無色に戻り、可視域に吸収は見られなかった。
上記と同様の処方によるキャスト膜を白色PET(ポリエチレンテレフタレート)基板(厚さ188μm)上に形成し、さらに保護層としてPVA膜(膜厚2μm)を形成し、画像表示媒体を作製した。このようにして形成した表示層は無色であり、基板の色が白であるため、作製した画像表示媒体は観察者には白と認識された。
次に、この画像表示媒体の表示層に366nmの紫外光を再び照射して発色反応を飽和させた後、ヒートローラーにより40℃に加熱処理した後、中心波長620nm、半値幅10nmの可視光を照度1mW/cm2 で24時間照射したが、表示層に変化は無く消色しなかった。その後、70℃にした恒温槽に24時間保管したが、表示層に変化はなく消色しなかった。ヒートローラーにより一時的に今度は100℃に加熱処理すると、表示層は無色に戻った。
(実施例2)
実施例1で作製した画像表示媒体を図7で表した装置を使用し、画像を形成した。画像表示媒体1を挿入口21から搬送ローラー22によって装置20内に搬送させ、ヒートローラー(第一加熱手段)25aにより100℃に加熱処理し、画像を消去する。次に、表示層に紫外光LED(紫外光照射手段)24を照射すると、表示層は青紫に発色した。次に、ヒートローラー(第二加熱手段)25bにより40℃に加熱処理され、排出口29からシアンに発色した画像表示媒体が排出された。この画像表示媒体に蛍光灯を照度700lx で24時間照射したが、表示層に変化は無く消色しなかった。その後、70℃にした恒温槽に24時間保管したが、表示層に変化はなく消色しなかった。ヒートローラー25aにより一時的に今度は100℃に加熱処理すると、表示層は無色に戻った。
(実施例3)
フォトクロミック化合物として、(5’−ブロモ−3’,3’−ジメチル−6−ニトロ−1’−(2−ペンタデカンアミドエチル)スピロ[クロメン−2,2’−インドリン]−8−イル)メチル 3−ペンタデカンアミドプロパネート(以下、「PC2」と記す。)用い、長鎖アルキル化合物としてはn−エイコサンを用い、バインダーとしてポリメタクリル酸メチルを用いた。20重量部のPC2に対し、n−エイコサンを20重量部添加し、ポリメタクリル酸メチルを80重量部添加した。溶媒としてトルエンを用い、塗布液を調製して石英基板上にキャスト膜を作製した。
光照射前の吸収スペクトルを測定したところ、300〜400nmの範囲に吸収帯が認められ、無色であった。
これに高圧水銀ランプから取り出した366nmの紫外光を照射したところ青紫に発色し、吸収スペクトルの極大吸収波長は629nmであった。これをヒートローラーにより40℃に加熱処理したところ、色相が変化し、吸収スペクトルの極大吸収波長は640nmであった。
これを再びヒートローラーにより一時的に100℃に加熱処理したところ、無色に戻り、可視域に吸収は見られなかった。
次に、上と同様の処方によるキャスト膜を白色PET(ポリエチレンテレフタレート)基板(厚さ188μm)上に形成し、さらに保護層としてPVA膜(膜厚2μm)を形成し、画像表示媒体を作製した。このようにして形成した表示層は無色であり、基板の色が白であるため、作製した画像表示媒体は観察者には白と認識された。
次に、この画像表示媒体の表示層に366nmの紫外光を再び照射して発色反応を飽和させた後、ヒートローラーにより40℃に加熱処理した後、中心波長640nm、半値幅10nmの可視光を照度1mW/cm2 で24時間照射したが、表示層に変化は無く消色しなかった。その後、70℃にした恒温槽に24時間保管したが、表示層に変化はなく消色しなかった。ヒートローラーにより一時的に今度は100℃に加熱処理すると、表示層は無色に戻った。
(実施例4)
実施例3と同様の処方によるキャスト膜を光ディスク100上に形成し、さらに保護層としてPVA膜(膜厚2μm)を形成し、画像表示媒体を作製した。このようにして形成した表示層は無色であり、基板の色が白であるため、作製した画像表示媒体は観察者には白と認識された。
次に、この光ディスク100を図8で表した装置を使用し、画像を形成した。液晶シャッターを具備した紫外光LED(紫外光照射手段)111を任意に照射したところ紫外光が照射された個所が青紫に発色した。セラミックヒータ(加熱手段)125bにより40℃に加熱処理すると、青紫に発色していた個所がシアンを呈した。この光ディスク100に蛍光灯を照度700lxで24時間照射したが、表示層に変化は無く消色しなかった。その後、70℃にした恒温槽に24時間保管したが、表示層に変化はなく消色しなかった。セラミックヒータ125aにより一時的に今度は100℃に加熱処理すると、表示層は無色に戻った。
(実施例5)
フォトクロミック化合物として、3-((5'-クロロ-6-シアノ-3',3'-ジメチル-1'-(2-(ペンタデカノイルオキシ)エチル)スピロ[クロメン-2,2'-インドリン]-8-イル)メトキシ)-3-オキソプロピルペンタデカノネート(以下、「PC3」と記す。)を用い、長鎖アルキル化合物としてはn−エイコサンを用い、バインダーとしてポリスチレンを用いた。20重量部のPC3に対し、n−エイコサンを20重量部添加し、ポリスチレンを80重量部添加した。溶媒としてトルエンを用い塗布液を調製して石英基板上にキャスト膜を作製した。
光照射前の吸収スペクトルを測定したところ、300nm〜400nm弱の範囲に吸収帯が認められ、無色であった。
これに高圧水銀ランプから取り出した366nmの紫外光を照射したところ、緑に発色し、吸収スペクトルの極大吸収波長は571nmであった。
これをヒートローラーによりに40℃に加熱処理したところ、色相がマゼンタに変化し、吸収スペクトルの極大吸収波長は532nmであった。これを再びヒートローラーにより一時的に100℃に加熱処理したところ、無色に戻り、可視域に吸収は見られなかった。
20重量部のPC3に対し、n−エイコサンを20重量部添加し、ポリスチレンを80重量部添加した。溶媒としてトルエンを用い塗布液を調製して、白色PET(ポリエチレンテレフタレート)基板(厚さ188μm)上にキャスト膜を形成し、その上に、20重量部のPC2に対し、n−エイコサンを20重量部添加し、そしてポリスチレンを80重量部添加し、溶媒としてトルエンを用いた塗布液によるキャスト膜を形成して画像表示媒体を作製した。このようにして形成した表示層は無色であり、基板の色が白であるため、作製した画像表示媒体は観察者には白と認識された。
この画像表示媒体の表示層に366nmの紫外光を照射するとPC2、PC3、共に発色し、青色を呈した。また、これに白色光を照射したところ、再び表示層は無色透明になったため、画像表示媒体は白色と認識された。
この画像表示媒体に、再び366nmの紫外光を照射して発色させた後、その一部に中心波長630nm、半値幅10nmの可視光を照射したところ、PC2が選択的に消色され、照射部は赤紫を呈した。また、別の一部に中心波長570nm、半値幅10nmの可視光を照射したところ、PC3が選択的に消色され、照射部は青紫を呈した。また、これに白色光を照射したところ、再び表示層は無色透明になったため、画像表示媒体は白色と認識された。
この画像表示媒体に、再び366nmの紫外光を照射して発色させた後、その一部に中心波長630nm、半値幅10nmの可視光を照射したところ、PC2が選択的に消色され、照射部は赤紫を呈した。また、別の一部に中心波長570nm、半値幅10nmの可視光を照射したところ、PC3が選択的に消色され、照射部は青紫を呈した。その後ヒートローラーにより40℃に加熱処理すると赤紫を呈していた個所はマゼンタになり、青紫に呈していた個所はシアンを呈した。この画像表示媒体を70℃にした恒温槽に24時間保管したが、表示層に変化はなく消色しなかった。
(実施例6)
実施例5で使用した画像表示媒体を図12で表した装置を使用し、画像を形成した。画像表示媒体1を挿入口21から搬送ローラー22によって装置20内に搬送させ、ヒートローラー(第一加熱手段)25aにより100℃に加熱処理し、画像を消去する。
次に、表示層に紫外光LED(紫外光照射手段)24を照射すると、表示層は青色に発色した。
次に液晶シャッターを具備した中心波長630nm、半値幅10nmのLEDと570nm、半値幅10nmのLED(可視光照射手段)26により任意の画像を形成した。続いて、ヒートローラー(第二加熱手段)25bにより40℃に加熱処理され、排出口29からに任意の画像を表示した画像表示媒体が1排出された。この画像表示媒体に蛍光灯を照度700lxで24時間照射したが、表示層に変化は無く消色しなかった。この画像表示媒体を70℃にした恒温槽に24時間保管したが、表示層に変化はなく消色しなかった。
(実施例7)
フォトクロミック化合物として、(6-シアノ-5'-(ジメチルアミノ)-3',3'-ジメチル-1'-(2-ペンタデカンアミドエチル)スピロ[クロメン-2,2'-インドリン]-8-イル)メチル 3-ペンタデカンアミドプロパネート(以下、「PC4」と記す。)を用い、長鎖アルキル化合物としてはn−ドコサンを用い、バインダーとしてポリスチレンを用いた。20重量部のPC4に対し、n−ドコサンを20重量部添加し、ポリスチレンを80重量部添加した。溶媒としてトルエンを用い塗布液を調製して石英基板上にキャスト膜を作製した。
光照射前の吸収スペクトルを測定したところ、300nm〜400nm弱の範囲に吸収帯が認められ、無色であった。
これに高圧水銀ランプから取り出した366nmの紫外光を照射したところ、赤に発色し、吸収スペクトルの極大吸収波長は502nmであった。
こ れをヒートローラーによりに40℃に加熱処理したところ、色相がイエローに変化し、吸収スペクトルの極大吸収波長は470nmであった。これを再びヒートローラーにより一時的に100℃に加熱処理したところ、無色に戻り、可視域に吸収は見られなかった。
20重量部のPC4に対し、n−ドコサンを20重量部添加し、ポリスチレンを80重量部添加した。溶媒としてトルエンを用い塗布液を調製して、白色PET(ポリエチレンテレフタレート)基板(厚さ188μm)上にキャスト膜を形成し、PVAによる中間層を介して、その上に、20重量部のPC3に対し、n−ドコサンを20重量部添加し、ポリスチレンを80重量部添加した。溶媒としてトルエンを用いた塗布液によるキャスト膜を形成し、さらに、PVAによる中間層を介して、その上に、20重量部のPC2に対し、n−ドコサンを20重量部添加し、ポリスチレンを80重量部添加し、溶媒としてトルエンを用いた塗布液によるキャスト膜を形成し、さらに保護層としてPVA膜を形成して画像表示媒体を作製した。このようにして形成した表示層は無色であり、基板の色が白であるため、作製した画像表示媒体は観察者には白と認識された。
この画像表示媒体の表示層に、366nmの紫外光を照射するとPC2、PC3、PC4すべてが発色し、黒色を呈した。また、これに白色光を照射したところ、再び表示層は無色透明になったため、画像表示媒体は白色と認識された。
この画像表示媒体に、再び366nmの紫外光を照射して発色させた後、その一部に中心波長500nm、半値幅10nmの可視光を照射したところ、PC4が選択的に消色され、照射部は青色を呈した。また、別の一部に中心波長570nm、半値幅10nmの可視光を照射したところ、PC3が選択的に消色され、照射部は青紫色を呈した。また、別の一部に中心波長630nm、半値幅10nmの可視光を照射したところ、PC2が選択的に消色され、照射部は赤紫色を呈した。また、これに白色光を照射したところ、再び表示層は無色透明になったため、画像表示媒体は白色と認識された。
この画像表示媒体に、再び366nmの紫外光を照射して発色させた後、その一部に中心波長500nm、半値幅10nmの可視光を照射したところ、PC4が選択的に消色され、照射部は青色を呈した。また、別の一部に中心波長570nm、半値幅10nmの可視光を照射したところ、PC3が選択的に消色され、照射部は青紫色を呈した。また、別の一部に中心波長630nm、半値幅10nmの可視光を照射したところ、PC2が選択的に消色され、照射部は赤紫色を呈した。その後ヒートローラーにより40℃に加熱処理すると青色を呈していた個所は赤になり、青紫色に呈していた個所は緑色になり、赤紫色を呈していた個所はシアンを呈した。この画像表示媒体に白色光(10万ルクス)を24時間照射しても、画像表示媒体に変化は無かった。また、この画像表示媒体を70℃にした恒温槽に24時間保管したが、表示層に変化はなく消色しなかった。
(実施例8)
実施例7と同様の手順で光ディスク100上にも表示層を作製した。この光ディスク100を図13で表した装置を使用し、画像を形成した。まず、表示層に紫外光LED(紫外光照射手段)111を照射すると、表示層は黒に発色した。液晶シャッターを具備した中心波長630nm、半値幅10nmのLEDと570nm、半値幅10nmのLEDと中心波長500nm、半値幅10nmのLED(可視光照射手段)126により任意の画像を形成した。セラミックヒータ(加熱手段)125bにより、40℃に加熱処理し、画像を定着させた。
この光ディスク100に蛍光灯を照度700lx で24時間照射したが、表示層に変化は無く消色しなかった。その後、70℃にした恒温槽に24時間保管したが、表示層に変化はなく消色しなかった。セラミックヒータ125aにより一時的に今度は100℃に加熱処理すると、表示層は無色に戻った。
(比較例1)
フォトクロミック化合物として、1,3’−(以下、「PC5」と記す。)を用い、長鎖アルキル化合物としてn−ドコサンを用い、バインダーとしてポリメタクリル酸メチルを用いた。20重両部のPC5に対し、n−ドコサンを20重量部添加し、ポリメタクリル酸メチルを80重量部添加した。溶媒としてトルエンを用い、塗布液を調製して石英基板上にキャスト膜を作製した。
光照射前の吸収スペクトルを測定したところ、300〜400nmの範囲に吸収帯が認められ、無色であった。
これに高圧水銀ランプから取り出した366nmの紫外光を照射したところ青紫に発色し、吸収スペクトルの極大吸収波長は590nmであった。これをヒートローラーにより40℃に加熱処理したところ、色相が変化し、吸収スペクトルの極大吸収波長は618nmであった。
これを再びヒートローラーにより一時的に100℃に加熱処理したところ、無色に戻り、可視域に吸収は見られなかった。
次に、上と同様の処方によるキャスト膜を白色PET(ポリエチレンテレフタレート)基板(厚さ188μm)上に形成し、さらに保護層としてPVA膜(膜厚2μm)を形成し、画像表示媒体を作製した。このようにして形成した表示層は無色であり、基板の色が白であるため、作製した画像表示媒体は観察者には白と認識された。
次に、この画像表示媒体の表示層に366nmの紫外光を再び照射して発色反応を飽和させた後、ヒートローラーにより40℃に加熱処理した後、中心波長620nm、半値幅10nmの可視光を照度1mW/cm2 で24時間照射したが、表示層に変化は無く消色しなかった。その後、70℃にした恒温槽に24時間保管したところ、表示層は無色に戻った。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。