JP4519234B2 - 物品表面の清浄化方法およびそのための清浄化装置 - Google Patents

物品表面の清浄化方法およびそのための清浄化装置 Download PDF

Info

Publication number
JP4519234B2
JP4519234B2 JP2000011001A JP2000011001A JP4519234B2 JP 4519234 B2 JP4519234 B2 JP 4519234B2 JP 2000011001 A JP2000011001 A JP 2000011001A JP 2000011001 A JP2000011001 A JP 2000011001A JP 4519234 B2 JP4519234 B2 JP 4519234B2
Authority
JP
Japan
Prior art keywords
ozone
cleaning
aqueous
solution
article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000011001A
Other languages
English (en)
Other versions
JP2001203182A (ja
JP2001203182A5 (ja
Inventor
久志 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2000011001A priority Critical patent/JP4519234B2/ja
Publication of JP2001203182A publication Critical patent/JP2001203182A/ja
Publication of JP2001203182A5 publication Critical patent/JP2001203182A5/ja
Application granted granted Critical
Publication of JP4519234B2 publication Critical patent/JP4519234B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Description

【0001】
【産業上の利用分野】
本発明は物品表面、特に板状の物品、例えば半導体シリコンウェーハ、液晶用ガラス基板等の表面に付着した有機汚染物や微粒子等を除く表面清浄化方法およびそのための装置に関するものである。
【0002】
【従来の技術】
半導体用シリコンウェーハはこれを使用するデバイス特に超LSIが高度化するにつれてウェーハ上の汚染物を除去する洗浄法も常にその能力の向上が要望されてきた。他の電子デバイス用の基板例えば液晶用ガラス基板もその高度化とともに洗浄能力の向上が必要となっているが、これらはシリコンウェーハの為に開発された洗浄液を応用することで十分間に合っている。電子部品或いは精密機器部品等で板状のもの或いはその材料でも、より精密な脱脂洗浄等が要求されている。これらの為の装置や方法の開発も半導体分野からの波及とみられる場合が多い。
【0003】
従ってシリコンウェーハの洗浄技術向上が重要である。この分野では多くの開発がなされてきたが、微粒子除去に関しては湿式洗浄を超える方式がまだない。シリコンウェーハが洗浄液に接した時ウェーハ面は負に帯電するが、液中の微粒子のゼータ電位は液がアルカリ性の場合負になるものが多い。アンモニア水と過酸化水素と水よりなるAPM洗浄液は(標準的組成は1容:1容:5容で通常は70〜80℃の処理)はエッチング作用と発泡作用がありさらにこの静電気による反撥効果が加わるので、微粒子除去の目的には従来から広く使われている。組成比や洗浄槽の機構等で改良が行われてはいるが、APMによる浸漬洗浄は長い間ウェーハ洗浄の主流であって現在も変わっていない。同様のメカニズムによるコリン−過酸化水素による浸漬洗浄が使われる場合もある。
【0004】
湿式処理による有機物の除去は、硫酸と過酸化水素の混合液で120〜140℃の処理を行うSPM洗浄が最も強力で従来から現在に至るまで広く使われている。半導体製造工程における有機物の除去で、最も機会が多くかつ重要なのは目的を終えたフォトレジストの除去である。通常このレジストは酸素プラズマでアッシングして除去しているが、この場合レジストを完全に剥離してしまうと、金属不純物を含む灰分の微粒子が剥離後の面に固着してその完全な除去が難しくなる。そこで、フォトレジスト膜を僅か残してアッシングを止め、その後にこのSPM処理をバッチ方式で10〜15分実施して残存有機物を除くことが一般に常法となっている。
【0005】
SPM処理は経済的理由から同一の処理液を多数回使用するので、次第に過酸化水素が分解して生じた水で希釈されていく。超LSI用のフォトレジストとしては一般にノボラック型のポジレジストが使われ、この場合はシリコン酸化膜面との密着性をよくする為のヘキサメチルジシラザン(HMDS)の薄層がレジスト−酸化膜界面に設けられているが、SPM液が薄まるとHMDSは急速に除去し難くなる。HMDS膜が残存すると後の工程で異常を生じることがある。HMDS膜を完全に除くにはAPM処理を10分以上行うことが有効である。APMは過酸化水素の酸化力が加わったアルカリ性処理である為有機物を除く作用も優れている。従って一般に、SPM処理にこのようなAPM処理を後続させることが多い。
【0006】
【発明が解決しようとする課題】
SPMは硫酸の濃度が高くかつ高温の処理である為、廃液処理並びに排気処理ともに費用がかかりしかも環境汚染の点で問題がある。また操作自体の安全性の点でも特別の考慮が必要である。そこで20ppm以上のオゾンを含む水でフォトレジストを除去する方法が登場してきた。処理温度も40℃以下でよく、環境汚染に関しても対策が比較的容易なのでSPMの諸問題点は解決されている。それはオゾンが有機物に対して強い酸化作用を示すからである。しかし発明者が行った実験によれば、オゾン水溶液ではHMDS膜はほとんど除去出来ないことが分かった。
【0007】
一方、シリコンウェーハ大口径化の動向は、従来のバッチ方式の浸漬洗浄に換えてウェーハをスピンさせながら洗浄液を供給する枚葉方式の実用化を求めている。この場合は生産性上の要求から、枚葉洗浄の時間が望ましくは1分長くとも2分で仕上げることが必要である。従って従来の浸漬洗浄の場合より洗浄作用が遥かに加速する方法が必要である。本発明はシリコンウェーハ上の有機物特にシリコン表面では最も除去の難しいHMDS膜を1分以内に除去出来る枚葉処理を提供しようとしている。
【0008】
最近の学会などでの発表によれば、スピン洗浄に供給する洗浄液用のノズルをMHz帯の超音波を照射するノズルとすると、洗浄液の組成によっては例えばオゾン水溶液や電解イオン水等の場合、ウェーハ面に大量のOHラジカルが発生して有機物や微粒子の除去が著しく向上する。しかし強いMHz超音波洗浄は、デバイス製造工程にあるウェーハ上では微細パターンにダメージを与える危険性を伴う。
【0009】
本発明は、精密で繊細な機能をもつ板状の部品や材料を初めとする、物品の表面に対してダメージを与える恐れのある特別な物理的作用、即ちMHz超音波照射や高圧ジェット噴射等を使用することなく、特に除去の難しい有機物の付着に対して優れた洗浄効果が得られる物品の清浄化法と清浄化装置を提供することを目的としている。
【0010】
【課題を解決する為の手段】
本発明は上記目的を達成するために、表面が付着物で汚染された物品の表面に塩基水溶液とオゾン水溶液を同時に供給し、塩基水溶液とオゾン水溶液による新鮮な混合液層を継続して前記物品の表面に接触させることによりオゾンを該表面で分解させ、この分解により生成したラジカルと塩基の作用で前記付着物を除去する物品表面の清浄化方法を提供するものである。前記表面が継続して新鮮な塩基水溶液とオゾン水溶液に接触するようにするには、物品を回転させてもよいし、及び/又は各水溶液の供給方法を変えてもよい。
【0011】
本発明は、この清浄化方法の一形態として、物品が板状であり、その表面に沿って、塩基水溶液の薄い層を移動させ、同時にオゾン水溶液を該液層に噴射し、オゾンを該表面で分解させ、この分解により生成したラジカルの寄与により該表面の付着物を除去する方法を提供するものである。
【0012】
さらにこの目的をより効果的に達成するために、本発明の清浄化方法は上記の処理を実施する際、塩基水溶液中に過酸化水素を添加して行うことが好ましい。
【0013】
また、本発明は枚葉処理に適している為、板状物品の表面に沿う塩基水溶液の移動を該板状体の回転と該水溶液のノズルによる供給で行い、上記オゾン水溶液を該表面に噴射してオゾンを分解させる板状の物品表面の清浄化方法を提供するものである。
【0014】
尚、本発明の清浄化方法を実施出来る装置として、表面が付着物で汚染された板状物品の表面に、該表面全体を移動する加熱した塩基水溶液の薄い液層を形成するために塩基水溶液を供給する塩基水溶液供給用第1ノズルと、その塩基水溶液の液層にオゾン水溶液を供給して、塩基水溶液とオゾン水溶液による新鮮な混合液が継続して物品の表面に接触するようにする1個または複数個のオゾン水溶液供給用第2ノズルとを有し、物品の表面におけるオゾン分解で生成したラジカルと加熱塩基水溶液の作用で付着物を除去する板状物品表面の清浄化装置を提供するものである。
【0015】
【発明の実施の形態】
以下の説明は代表的な例として、物品が板状である場合、特に板状の材料部品について行うが、これに限定されるものではない。
【0016】
アルカリ性洗浄液はその鹸化作用により有機物の種類によってはかなりの除去能力がある。本発明はオゾンの分解に伴うラジカルの発生によりその能力を飛躍させようとするものである。上述したように、シリコンウェ−ハの洗浄では塩基−過酸化水素洗浄が有機物除去と微粒子除去効果を兼ねた最も強力なものであった。本発明はこれについても、オゾンの分解に伴うラジカルの発生を利用して桁違いに洗浄効果を強化しようとするものである。従って、最適の実施の形態はラジカルの発生条件を最適にしたものとして提示される。
【0017】
塩基の水溶液がオゾンの水溶液と混合した場合、塩基水溶液のOH- イオン濃度が高い程また液温が高い程急速にオゾン水を分解する。例えば、pHが13の場合、室温でも数秒で実質的にオゾンが消失する。このオゾンの分解の反応のメカニズムは、古くからラジカル反応と考えられてきた。J.Weiss (Trans.Faraday Soc.Vol.31,668(1935))によれば次のようにまずHO2 ラジカルが出来て、連鎖反応でO3 が分解する。この連鎖には発生するOHラジカルも関与する。
【0018】
3 +OH- →O2 - + ・HO2 … 連鎖開始反応
3 + ・HO2 →2O2 + ・OH
3 + ・OH→O2 + ・HO2 … 反応連鎖
2 ・HO2 →O3 +H2
・HO2 + ・OH→O2 +H2 O … 連鎖停止反応
反応は発熱反応であり、基板表面で起こりやすい。それは反応系が放出する高いエネルギーを基板が吸収するからである。従ってオゾン水溶液のオゾン分子が基板面に近いところでOH- イオンと会合するようにオゾン水を噴射すればラジカルが発生してオゾンが分解しやすく、その為には特に高圧の噴射を行う必要はない。HO2 ラジカルやOHラジカルは有機物を分解する作用が極めて強いので、加熱した塩基水溶液の効果と相俟って塩基単独では分解し難い有機物も容易に除去が可能となるのである。
【0019】
連鎖開始反応式から、塩基の濃度が高い程ラジカルの発生量も増えることが分かる。しかし単に塩基の濃度を高くするとシリコン面に対して有害なエッチング作用を生じる。過酸化水素を添加しておけばこの作用が抑制され、半導体分野で塩基−過酸化水素洗浄が使われる理由の一つでもある。しかし、本発明で過酸化水素を添加した塩基水溶液を使用することは有機物除去に関してさらに積極的な効果を期待するものである。
【0020】
過酸化水素がオゾンの分解を加速する触媒として作用することも古くから知られている。上記連鎖反応による塩基のオゾン分解に関し、H22 の共存はOH並びにHO2 ラジカルの発生を増加させ、この分解を加速する。考えられる連鎖反応メカニズムは、
・OH+H22 →H2 O+ ・HO2
・HO2 +H22 →O2 +H2 O+ ・OH
である。これら増加したラジカルにより基板面上の有機付着物の分解はさらに加速され、効果的に除去される。
【0021】
このようなラジカルによる強力な有機物除去作用は微粒子除去に効果があり、よく知られたゼータ電位に基く微粒子除去作用に加算される。クリーンルームに暴露された基板面上の微粒子は通常DOP等の有機汚染膜の液架橋で基板面に固着している。短時間の枚葉スピン洗浄では、塩基−過酸化水素処理の僅かなエッチング作用がこの固着微粒子をリフトオフすることは難しい。しかし本発明のラジカル作用によれば、液架橋有機膜は除去出来、該固着微粒子を離脱させ得る。
【0022】
ラジカル発生量がOHイオン濃度に関係するとなると本発明の対象としては弱塩基のアンモニアより強塩基を使う方が単純には望ましい。しかし、APM自体では後述のものより有機汚染除去能力が遥かに強いので、目的に応じて利用し、組成はAPMに準じてよい。NaOHやKOHのような金属元素を含む無機強塩基は半導体分野では嫌われるが、被洗浄体が金属の場合は有用である。使用濃度は以下の有機のものに準じる。
【0023】
半導体分野の為の金属元素を含まない強塩基としては有機強塩基の水酸化テトラメチルアンモニウム(TMAH)と水酸化トリメチルヒドロキシエチルアンモニウム(コリン)が好ましい。後者には、それが有するヒドロキシエチル基が、式−(CH2CH2O)mH〔ただし、mは2又は3〕で置換された強塩基類も含まれていることが好ましい。これらは0.1〜0.01モル程度の希薄水溶液で十分に洗浄効果を上げることが出来る。洗浄対象によっては10ppm程度の非常に希薄な液でも有効である。半導体分野では過酸化水素と共に使用することが望ましくその濃度は重量%で有機強塩基の50倍から等濃度程度が有効である。20倍から5倍程度が好ましい。これらは殆ど無臭で環境を汚染することが少ないし、廃棄上薬品での分解を必要とする組成分のモル濃度が僅かなので廃棄処理が容易である。従って本発明を実施する上で最も適する。
【0024】
噴射するオゾン水溶液のオゾン濃度は出来るだけ高いことが望ましい。オゾンの飽和濃度は導入するガス中のオゾン濃度に比例する。放電方式の高純度オゾン発生装置は通常200mg/l程度のオゾン濃度なので、これを室温の水に飽和させた場合30ppm前後となる。本発明の場合、10ppm程度のオゾン水溶液でも一応の効果が認められる。本発明では基板面へオゾン水の噴射に際して、表面における状態や機能にダメージを与える恐れのあるMHz超音波照射や高圧ジェット噴射を必要としない。しかしこれらの物理作用はラジカル発生には極めて有効なので、このようなダメージ発生の恐れのない場合は、本発明においてこれらの物理作用との併用が好ましい場合もある。
【0025】
HMDS膜除去のような強力な洗浄効果を要する場合は上記のような理由から過酸化水素を添加することが望ましい。これは従来から利用されてきた塩基−過酸化水素洗浄の有機物並びに微粒子除去効果が基板表面でラジカルを強く発生させることで強化されるからである。加温は一般にラジカル発生を加速する。従って本発明の処理では塩基水溶液の温度は40〜80℃であることが効果の点で好ましく、さらに50〜70℃が望ましい。温度が高いと液が発泡して好ましいノズルへの供給が出来ない。そこで第1ノズルを2連にし、1個では加熱した塩基水溶液を1個では加熱した過酸化水素水溶液を射出し、板表面で添加が行われてもよい。
【0026】
有機強塩基を使用する場合、TMAHあるいはコリンの0.05〜0.2重量%,H22 の0.5〜5重量%の水溶液を使うと、処理液自体はAPMに比し有機物を除去する能力が弱く、単なる70℃の浸漬処理に適用してもHMDS膜をほとんど除去出来ない。しかし同じ組成の液で本発明を実施すると、1分以内にHMDS膜の除去が可能となる。この処理液はOH- イオン濃度が高くラジカルによる洗浄加速が強力に行われる為である。
【0027】
電子デバイス用基板面において塩基水溶液の薄い液層を移動させるには2つの方式が実用的である。1つは基板面に対して垂直な回転軸によって基板を回転し、基板面に対し斜方向から該液をノズルによって放出する機構を利用するものである。回転軸が基板の中心になる場合はスピン洗浄と同様の機構である。回転は700〜1500rpmでよい。回転軸のまわりに複数個の基板を配置することも可能である。前者の場合ノズルの向きは基板中央であり、後者の場合はノズルは基板毎に設け、放出は回転軸側から行う。他の一つは角形の基板に対して効果的なもので、基板面を垂直に配置し、上方から該液を流下させる。
【0028】
本発明において非常に重要なのは、発生するHO2 ラジカルやOHラジカルの寿命が極めて短く(ミリ秒以下)、オゾン水溶液を基板面に噴射した場合、基板面上での該液の流れにおいて面上の到達位置に近い面積しかラジカルの作用が及ばないことである。例えば1000rpmのスピン洗浄装置で斜方向のノズルから0.1重量%の希コリン水を放出してHMDSを塗布したシリコン面に液膜を作り、試みにウェーハの中心部に10ppmのオゾン水溶液を垂直に300ml/分で導入すると、HMDSが除かれる領域はウェーハ中央の半径約3cmの円内だけである。従って実用に際しては第2ノズルの先端に複数の孔をあけ、噴射オゾン水溶液の群によりウェーハ全面でラジカル反応が進むよう孔の位置と大きさ・形状を調整する必要がある。ウェーハ全面でラジカル反応を進行させる為には、複数個のオゾン水溶液供給用第2ノズルを設けるとラジカル反応領域を全面化しやすくなる。
【0029】
装置内の液の流れる部分の材料としては、フッ素樹脂(PTFEとPFA等)並び石英ガラスが必要である。しかしオゾンはアルカリ性液で直ちに分解するので、装置の筐体や排水器具等については通常のプラスチックで十分である。
以下に実施例で本発明を説明するが、本発明はこれらの実施例で何等限定されるものではない。
【0030】
【実施例】
各実施例で実験に使用したオゾン水溶液は、小型の放電方式のオゾン発生装置に1%のチッ素を含む酸素を1l/分程度流してオゾン濃度約200mg/lとしたものを、加圧空気による圧送が可能な石英ガラス容器中の10〜15℃の純水にバブリングさせて作成した。オゾン濃度が10〜30ppmに達した段階でバブリングを停止し、所定の流速で第2ノズルに圧送した。
【0031】
洗浄後の残存有機物の定量的評価は、洗浄・乾燥を終えた直後のウェ−ハから2cm×2cmのチップを切り出し、Anal.Chem.Vol71.p3551(1999)に示されている12C(d,n)13Nの核反応を利用した荷電粒子放射化分析法で表面残存炭素量を求めて行った。米国半導体工業会が1997年に発表したロードマップでは2009年にDRAM256Gビットで有機炭素量は1.8×1013原子/cm2とされている。そこで分析結果がこの値以下であれば十分に有機汚染除去がなされたことにした。
【0032】
全ての実施例は活性炭等のケミカルフィルターを装備した環境からの有機汚染防止が確実になされたクラス10のクリーンルーム内で実施された。この環境は、熱酸化直後のシリコンチップを24時間暴露してもその間の汚染有機炭素量が上記荷電粒子放射化分析法で2×1013原子/cm2以下の規格で管理されている。
【0033】
[実施例1]
従来から使われていた4000rpmまで回転が可能な枚葉スピンリンサードライヤーを改造し、ウェーハに液を供給するノズルを追加したのが図1に垂直断面図を概念的に示した本発明の為の試験装置である。回転軸1で回転するPTFE製円板2上に4箇所のPTFE製支持柱3で被洗浄体のシリコンウェーハ4が保持されている。
【0034】
斜方向からほぼウェーハ中央に向けて塩基の水溶液を射出出来るPTFE製第1ノズル5(点線は液の射出方向を示す−以下も同じ)と、複数個の細い噴流を得る為の細孔を設けた球状部6で終端するオゾン水溶液用石英ガラス製第2ノズル7とを装備した。細孔の位置と大きさは噴射部がほぼ等間隙の同心円を描くように作成した。第1ノズルへの導入管(PFA製)8には途中に石英ガラス蛇管を用いた温水器9が挿入されている。図には示されていないが既設の超純水リンス用ノズルが別にある。図の温水器部を除いた部分は密閉出来かつ底に排水口のあるポリエチレン製容器(図示せず)に格納されている。
【0035】
洗浄に供した試料の故意汚染はHMDS塗布によった。塗布後真空引を含めて100℃で1分の処理を行ったものを使用した。塩基の水溶液はAPMを使用した。但し組成はアンモニア水:過酸化水素:水=1容:1容:12容である。APMでは加熱すると温度が高い程発泡が激しくなる。微量の特殊キレート剤が添加されている商品名HIRINPER過酸化水素を使用すると加熱しても発泡が少ないので、これを使用し加熱温度も50℃とした。ウェーハの回転を1000rpmとし、第1ノズルのAPMは300ml/分で、第2ノズルは濃度20ppmのオゾン水溶液を300ml/分で、同時に1分間の噴射を行った。
【0036】
この処理に連続してリンスノズルから15秒の超純水リンスを行い、一旦回転を停止して表面を観察したところ、全面が濡れており親水性化していてHMDSは一応除去出来ていることが分かった。この後4000rpmでスピン乾燥を行い、直ちにウェーハの中央部と周辺部で2cm×2cmの試料を切り出して残存炭素量の荷電粒子放射化分析を行った。分析結果は中央部が7×1012原子/cm2周辺部が1.0×1013原子/cm2で、この洗浄処理により十分にHMDS膜が除去出来ている。
【0037】
[比較例1]
第2ノズルのオゾン水溶液の噴射を行わない他は全く実施例1に同様に行った。即ちAPMによる1分間のスピン洗浄を行った。純水リンス後一旦回転を停止したところ表面はまだかなり疎水性であった。同様の荷電粒子放射化分析では残存炭素量が1014〜1015原子/cm2で、HMDSはかなり残存しており、洗浄効果があったとはいえない。
【0038】
[実施例2]
実施例1ではAPM自体が有機物を除去する作用が強い利点はあるが、排水にアンモニア臭が強く環境汚染対策にかなりの考慮が必要である。またAPM自体NH3 が約1モルもあり、排水処理の点でも負荷が大きい。そこで有機物分解能力は劣るが、塩基が0.01モル程度で、臭もほとんど無くしかもかなりの微粒子洗浄効果のあるコリン−H22 で実施例1と同様に実験した。第1ノズルへの供給液はコリン0.1重量%、高純度H22 2重量%とした。APMに比し発泡が少ないので加熱温度も70℃とした。この他は全く実施例1と同様に行った。超純水リンス直後で全面が親水性になり、乾燥直後の荷電粒子放射化分析の結果は残存炭素量が1×1013原子/cm2以下で、HMDS膜は十分に除去出来ている。
【0039】
[比較例2]
第2ノズルのオゾン水溶液の噴射を行わない他はまったく実施例2と同様に実施した。洗浄・乾燥直後の荷電粒子放射化分析結果は1×1015原子/cm2以上になり、HMDS膜はほとんど除去出来ていない。
【0040】
[実施例3]
実施例1の第2ノズルは球状端のノズル孔の加工に関して微妙な調整が必要で、特性の揃ったものを作るのが難しい。そこでこの実施例では複数の単純な筒状ノズルでオゾン水溶液を噴射させる方式とした。実施例1の装置で第2ノズル7の代わりに内径が第1ノズルの約1/2の3本の第2ノズルを設ける。図2にその配置を俯瞰図で示す。
ウェーハ4の上方に塩基水溶液用ノズル5の位置を外して、3個の第2ノズル10、11、12が、それぞれの方向が約120°の角度となるように、また中心部及び中心からウェーハ半径のほぼ1/3の距離の位置並びにほぼ2/3の距離の位置のウェーハ面上に向けて斜方向から射出するように配置されている。オゾン水溶液をそれぞれの第2ノズルから100ml/分で噴出させる他は実施例2とまったく同様に実施した。洗浄・乾燥直後の荷電粒子放射化分析の結果は残存炭素が1×1013原子/cm2以下で、前実施例と同様にHMDSが除去出来ることが分かった。
【0041】
[実施例4]
実施例3における塩基水溶液のコリンをTMAHに換えてその他は全く実施例3と同様に実施した。即ち、塩基水溶液はTMAH0.1重量%、H22 2重量%の組成が使われた。洗浄・乾燥直後の荷電粒子放射化分析の結果は残存炭素が1×1013原子/cm2以下で、前実施例と同様にHMDSが除去出来ることが分かった。
【0042】
[実施例5]
本発明の微粒子除去能力を調べる為に、放射性同位元素をトレーサとして洗浄による放射能強度の減少で評価するRIトレーサ法を用いた。即ち半減期6時間の 99mTcで標識した炭素微粒子を医学診断用のテクネガス装置を利用して作り(Appl.Radiat.Isot.Vol46,p157(1995))、HMDS塗布したシリコンウェーハ表面にこの微粒子を付着させ、有機物で液架橋して除去を難しくした故意汚染試料を作った。
炭素微粒子のサイズは大部分が0.05〜0.2μmである。微粒子の故意汚染がほぼウェーハ全面に均一になされたかどうかは、イメージングプレートでこのウェーハを露光してラジオルミノグラフィ解析を行うことにより、画像の濃淡で判断出来る。この場合ほぼ均一に黒化しており、微粒子が発する放射線強度は平均で6300PSL/mm2 (ラジオルミノグラフィ単位)であった。
この試料に対し、実施例3とまったく同様にコリン−過酸化水素/オゾン水処理を行った。洗浄・乾燥後にウェーハをイメージングプレートで露光し、解析を行ったところ、画像はまったくバックグランドだけとなった。即ち放射能は平均で2PSL/mm2 であった。従って本発明により有機物膜に液架橋機構で固着された微粒子すら十分に除けることが分かる。
【0043】
[実施例6]
液晶用ガラス板に付着した有機物に対する洗浄効果を評価する為に、故意汚染した石英ガラス板を洗浄対象としてシュミレーションすることとした。手法は前実施例と同じ放射性トレーサ法である。石英ガラス板は20cm×20cm×4mmの板を準備し、クリーンルーム雰囲気からの有機汚染量が最も多いとされているDOPを故意汚染の対象とした。まず14Cで標識したDOPを合成し、石英ガラス板の片面の15箇所にランダムに塗布した。実施例5と同様に故意汚染の状態をイメージングプレートの露光とその解析によって画像化しておき、最も濃い領域が14C濃度で2×1016原子/cm2であることを確認した。この後、図3に装置の概念を垂直断面図で示したような洗浄試験装置で洗浄を行った。石英ガラス板13はPTFE製ガイド枠14にセットして被洗浄体板とした。これを、下方から上方へ15cm/分の速さで、回転する2つのロール状のフッ素樹脂繊維ブラシ15の間を通して移動させた。被洗浄体板の表裏両側に設けられた複数個のノズル16から、80℃の0.1重量%TMAH水溶液をロールと板の接触面に滴下すると被洗浄体板面に沿って液が流下する。供給液量は片面あたり300ml/分とした。被洗浄体板の表裏に紙面に垂直な向きに上下2段に設けられた石英ガラス管17、18には、2cm毎に細孔(ノズル孔)があって管内に供給する30ppmのオゾン水がこの細孔から被洗浄体板の表裏面に噴射される。該ガラス管は長さ方向に2cm振幅の往復運動する機構を付属させており、この動作で板面の流下液は板全面に拡がると共にオゾンが分解し洗浄が行われる。板全面の洗浄が終わった後、TMAH液の供給を止め、両ロール15を離し、石英管17、18からの液供給を超純水に切り換え、被洗浄体板を下降させてリンスを行う。下降後高圧高純度チッ素を吹付けて乾燥した後、イメージングプレートで露光を行った。その解析によれば洗浄前に最も濃度の高かった領域の14C濃度は8×1012原子/cm2まで減少していた。従ってDOPは塩基に対し過酸化水素の添加がなくても十分除去出来た。
【0044】
[実施例7]
アルミニウム面は環境中の有機物を極めて吸着しやすいので、有機物汚染を受けやすい板状の試料を有機物分析の為分析室に移送するような場合は有機物を十分に除いたアルミニウム板で囲めば移動環境からの試料の有機汚染を阻止出来る。そこでアルミニウム板の洗浄を実施例6の装置を用いて行った。洗浄前の試料の表面は有機汚染しているので水滴接触角が32°であった。TMAH10ppmとH22 200ppmを含む希薄塩基水溶液と10ppmオゾン水の組み合わせの他は実施例6とまったく同様に処理した。洗浄後の水滴接触角は4°以下となった。有機汚染は実質的に除去出来ている。
【0045】
【発明の効果】
本発明は半導体分野の塩基−過酸化水素洗浄をはじめとして金属表面処理等に使われるアルカリ洗浄等すべてにおいて、オゾン分解で生じるラジカルにより特に有機物除去と微粒子除去の能力を格段に強化出来る。塩基とオゾンの会合により特にH22 は触媒としてラジカルが発生するが、この反応は特に固体表面で起こりやすいことから汚染のある表面で起こる。しかもラジカルの寿命が極めて短い。そこでこの会合を板状の部品材料表面で効率よく行わせる為に枚葉処理と液噴射組み合わせた本発明が、枚葉処理の本質的課題であったスループットの向上を可能ならしめた。即ち強力な洗浄に要する洗浄時間が、表面における状態や機能にダメージを与える恐れのある物理的作用を利用しないでも、1分程度で済むことになったのである。通常のフォトリソグラフィ工程で使われ、使用後の完全な除去を必要とするHMDS膜は、従来からの微粒子除去に有効な湿式洗浄では短時間では十分な除去が出来なかったが、これすら可能とした。
【0046】
本発明の実施に際して使用するオゾンはアルカリ性液中では短時間に完全に消失するので、本装置を格納する容器や排水排気のためのユーティリティに関し特別の対策を要しない利点がある。本発明の実施に関し、最終的に環境に対して影響するのは塩基だけである。この場合コリンを使用するとこの塩基は本来重要な生理物質であって容易に生分解する。従って通常の浄化槽で完全に処理出来る利点がある。
【0047】
塩基として有機強塩基を使う限り、クリーンルーム雰囲気を汚染する有害ガスの発生はほとんどなく、本発明の装置は簡単な気密と排気設備が満足されればクリーンルーム一般環境に設置出来る。即ちドラフト設備を必ずしも必要としない。従ってインラインで洗浄を行える利点がある。
【0048】
【図面の簡単な説明】
【図1】本発明を枚葉スピン洗浄方式でオゾン水溶液を1個のノズルの噴射により行う場合の装置の概念を示す縦断面図
【図2】枚葉スピン洗浄方式でオゾン水溶液を複数のノズルの噴射により行う場合の該ノズルの配置を示すふ瞰図
【図3】本発明を被洗浄基板の面を鉛直に移動させて実施する場合の装置の概念を示す縦断面図
【符号の説明】
1.装置の回転軸
2.ウェーハ支持の為の円板
3.ウェーハ支持柱
4.被洗浄ウェーハ
5.塩基水溶液用の第1ノズル
6.オゾン水溶液用ノズルの球状
7.オゾン水溶液用の第2ノズル
8.塩基水溶液導入管
9.温水器
10.11.12.オゾン水溶液用の複数の第2ノズル
13.被洗浄ガラス板
14.被洗浄板のセット枠
15.円筒状PVAスポンジ回転体
16.塩基水溶液用第1ノズル
17.18.オゾン水溶液噴射用細孔の列をもつ被洗浄板に平行するノズル管

Claims (5)

  1. 表面が付着物で汚染された物品の表面に過酸化水素を添加した塩基水溶液とオゾン水溶液を同時に供給し、その際に前記表面が継続して新鮮な塩基水溶液とオゾン水溶液に接触するようにすることによりオゾンを該表面で分解させ、連鎖反応で生じるHO ラジカル、OHラジカルと塩基の作用により前記付着物を除去する物品表面の清浄化方法。
  2. 前記物品板状として、その表面に沿って塩基水溶液の薄い層を移動させ、同時にオゾン水溶液を該液層に供給してオゾンを該液層で分解し、発生したラジカルによる発熱を板面の吸収効果で制御して連鎖反応を進行させる、請求項1の物品表面の清浄化方法。
  3. 板状の物品の表面に沿う塩基水溶液の移動が該板状物品の回転と該水溶液のノズルによる供給でなされる請求項2の清浄化方法。
  4. 塩基水溶液に含まれる塩基が水酸化テトラメチルアンモニウムおよび水酸化トリメチルヒドロキシエチルアンモニウムから選ばれる請求項1〜3のいずれか1項の清浄化方法。
  5. 板状物品の表面がその面に対し垂直な回転軸によって回転する機構と、該表面全体に過酸化水素を添加した塩基水溶液の薄い層の流れを生ぜしめる塩基水溶液供給用第1ノズルと、該表面上にオゾン水溶液を供給する1または複数の第2ノズルとを有し、該表面の全面でオゾンを分解させるようにし、さらに第1ノズルの供給液の為の加熱機構が付属された板状物品表面の清浄化装置。
JP2000011001A 2000-01-19 2000-01-19 物品表面の清浄化方法およびそのための清浄化装置 Expired - Fee Related JP4519234B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000011001A JP4519234B2 (ja) 2000-01-19 2000-01-19 物品表面の清浄化方法およびそのための清浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000011001A JP4519234B2 (ja) 2000-01-19 2000-01-19 物品表面の清浄化方法およびそのための清浄化装置

Publications (3)

Publication Number Publication Date
JP2001203182A JP2001203182A (ja) 2001-07-27
JP2001203182A5 JP2001203182A5 (ja) 2008-07-10
JP4519234B2 true JP4519234B2 (ja) 2010-08-04

Family

ID=18538933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000011001A Expired - Fee Related JP4519234B2 (ja) 2000-01-19 2000-01-19 物品表面の清浄化方法およびそのための清浄化装置

Country Status (1)

Country Link
JP (1) JP4519234B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9561982B2 (en) 2013-04-30 2017-02-07 Corning Incorporated Method of cleaning glass substrates

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225936A (ja) * 2009-03-24 2010-10-07 Dainippon Screen Mfg Co Ltd 基板処理方法および基板処理装置
JP6600470B2 (ja) * 2014-04-01 2019-10-30 株式会社荏原製作所 洗浄装置及び洗浄方法
JP6296899B2 (ja) 2014-05-26 2018-03-20 三菱電機株式会社 レジスト除去装置及びレジスト除去方法
JP6713370B2 (ja) * 2016-08-01 2020-06-24 株式会社Screenホールディングス 基板処理装置および基板処理方法
CN108220944B (zh) * 2018-01-23 2024-03-15 西安凯龙航空技术有限公司 一种发黑处理设备及其处理方法
JP2020155721A (ja) 2019-03-22 2020-09-24 株式会社Screenホールディングス 基板処理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173841A (ja) * 1984-02-20 1985-09-07 Oki Electric Ind Co Ltd 基板の洗浄装置
JPH06287784A (ja) * 1993-03-31 1994-10-11 Ushio Inc 表面洗浄方法もしくは表面改質方法
JPH09278600A (ja) * 1996-04-08 1997-10-28 Nippon Steel Corp 半導体基板の洗浄方法
JPH10128254A (ja) * 1996-10-29 1998-05-19 Japan Organo Co Ltd 電子部品部材類の洗浄方法及び洗浄装置
JPH11121419A (ja) * 1997-10-16 1999-04-30 Nec Corp 半導体基板の処理薬液及び半導体基板の薬液処理方法
JPH11260707A (ja) * 1998-03-09 1999-09-24 Tokyo Electron Ltd 現像処理方法及び現像処理装置
JP2000015196A (ja) * 1998-06-30 2000-01-18 Nec Corp 基板の洗浄方法および基板洗浄装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173841A (ja) * 1984-02-20 1985-09-07 Oki Electric Ind Co Ltd 基板の洗浄装置
JPH06287784A (ja) * 1993-03-31 1994-10-11 Ushio Inc 表面洗浄方法もしくは表面改質方法
JPH09278600A (ja) * 1996-04-08 1997-10-28 Nippon Steel Corp 半導体基板の洗浄方法
JPH10128254A (ja) * 1996-10-29 1998-05-19 Japan Organo Co Ltd 電子部品部材類の洗浄方法及び洗浄装置
JPH11121419A (ja) * 1997-10-16 1999-04-30 Nec Corp 半導体基板の処理薬液及び半導体基板の薬液処理方法
JPH11260707A (ja) * 1998-03-09 1999-09-24 Tokyo Electron Ltd 現像処理方法及び現像処理装置
JP2000015196A (ja) * 1998-06-30 2000-01-18 Nec Corp 基板の洗浄方法および基板洗浄装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9561982B2 (en) 2013-04-30 2017-02-07 Corning Incorporated Method of cleaning glass substrates

Also Published As

Publication number Publication date
JP2001203182A (ja) 2001-07-27

Similar Documents

Publication Publication Date Title
KR100707126B1 (ko) 표면 부착 오염 물질의 제거방법 및 이에 사용되는 장치
US6743301B2 (en) Substrate treatment process and apparatus
JP3914842B2 (ja) 有機被膜の除去方法および除去装置
KR100891062B1 (ko) 기판처리방법 및 기판처리장치
JP3869566B2 (ja) フォトレジスト膜除去方法および装置
KR100453415B1 (ko) 세정액및세정방법
WO2000030164A1 (fr) Procede d'elimination d'un film de photoresine
JPH05152203A (ja) 基板処理方法および処理装置
JPH1027771A (ja) 洗浄方法及び洗浄装置
JPWO2015075922A1 (ja) 紫外線透過性基板の洗浄装置及び洗浄方法
JP4088810B2 (ja) 基板洗浄装置及び基板洗浄方法
JP2004500701A (ja) 半導体ウエハ等のワークピースを処理するための方法及び装置
JP4519234B2 (ja) 物品表面の清浄化方法およびそのための清浄化装置
JP2001077069A (ja) 基板処理方法及び基板処理装置
JPH04179225A (ja) 洗浄方法
JP3125753B2 (ja) 基板の洗浄方法および基板洗浄装置
JP2001340817A (ja) 表面付着汚染物質の除去方法及び除去装置
JP2891578B2 (ja) 基板処理方法
JP3445765B2 (ja) 半導体素子形成用基板表面処理方法
JP2004296463A (ja) 洗浄方法および洗浄装置
JP4399843B2 (ja) 電子工業用基板表面からのフォトレジストの除去方法及び除去装置
JP4683314B2 (ja) 半導体用シリコン基板の洗浄方法
JP2001300455A (ja) 被洗浄体の洗浄方法及び装置
JP2006120681A (ja) 被処理体の洗浄処理装置と洗浄処理方法
JP3118201B2 (ja) 有機質汚れの高度洗浄方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060914

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20070117

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees