JP4517357B2 - Water supply type water retaining pavement structure and its construction method - Google Patents

Water supply type water retaining pavement structure and its construction method Download PDF

Info

Publication number
JP4517357B2
JP4517357B2 JP2005027510A JP2005027510A JP4517357B2 JP 4517357 B2 JP4517357 B2 JP 4517357B2 JP 2005027510 A JP2005027510 A JP 2005027510A JP 2005027510 A JP2005027510 A JP 2005027510A JP 4517357 B2 JP4517357 B2 JP 4517357B2
Authority
JP
Japan
Prior art keywords
coal ash
water
crushed stone
layer
solidified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005027510A
Other languages
Japanese (ja)
Other versions
JP2006214147A (en
Inventor
和俊 松尾
守男 高橋
崇 眞保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2005027510A priority Critical patent/JP4517357B2/en
Publication of JP2006214147A publication Critical patent/JP2006214147A/en
Application granted granted Critical
Publication of JP4517357B2 publication Critical patent/JP4517357B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、雨水を舗装内に保水しておき、晴天時に保水した雨水を蒸発させて気化熱を奪うことにより路面を冷却し、ヒートアイランド現象を緩和する給水型保水性舗装構造に関する。   The present invention relates to a water supply type water-retaining pavement structure in which rainwater is retained in a pavement, the road surface is cooled by evaporating the rainwater retained in fine weather to remove vaporization heat, and the heat island phenomenon is alleviated.

近年、都市部や建築物が密集している地域では、アスファルト舗装またはコンクリート建築物からの放熱、照り返しによる輻射熱、ビル等の空調による排熱などによる熱によって気温が上昇するヒートアイランド現象が問題視されている。   In recent years, heat island phenomenon where temperature rises due to heat from asphalt pavement or concrete buildings, radiation heat from reflection, exhaust heat from air conditioning of buildings, etc. has been seen as a problem in urban areas and densely populated areas. ing.

このヒートアイランド現象の緩和策として、近年、保水性を有する舗装によって雨水を舗装内に保水しておき、晴天時に水分が蒸発する際の気化熱によって路面の熱を奪い温度上昇を抑制する提案が種々成されている。   As measures to mitigate this heat island phenomenon, various proposals have been made in recent years to keep rainwater in the pavement by water-retaining pavement, and to take away the heat of the road surface by the heat of vaporization when moisture evaporates in fine weather and suppress the temperature rise. It is made.

例えば、下記特許文献1では、路盤上又は基層上に位置する道路舗装体の表層部において、15〜30%の空隙を有する舗装体の空隙に水、セメント、繊維及び界面活性剤からなるセメントミルクを充填した道路舗装体が提案されている。   For example, in Patent Document 1 below, cement milk made of water, cement, fibers, and a surfactant in a pavement void having 15-30% voids in a surface layer portion of a road pavement located on a roadbed or a base layer A road pavement filled with is proposed.

また、下記特許文献2では、多孔質硬化体(開粒度アスファルト混合物)を形成した後、多孔質硬化体の連続空隙内にセメント、粘土系微粉末、水等を含むスラリー状の充填材を充填した舗装体が提案されている。この場合、前記粘土系微粉末としては、例えばモンモリナイト等の粘土鉱物、高炉スラグ微粉末、フライアッシュ、珪石粉、石灰石粉末、シリカフュームから選択される1種以上の無機粉末が使用される。   Also, in Patent Document 2 below, after forming a porous cured body (open particle size asphalt mixture), a slurry-like filler containing cement, clay-based fine powder, water, etc. is filled into the continuous voids of the porous cured body. A pavement has been proposed. In this case, as the clay-based fine powder, for example, one or more inorganic powders selected from clay minerals such as montmorillonite, blast furnace slag fine powder, fly ash, silica stone powder, limestone powder, and silica fume are used.

更に、下記特許文献3では、道路の表層を構成する保水性混合物層と、保水性混合物層の下に設けて保水性混合物層に水分を供給する給水路盤と、給水路盤下に設けた水分を含浸可能な給水材と、給水材に供給する水分を貯留するための貯水部とからなり、貯水部からの給水材に供給した水分を前記給水路盤を通じて前記保水性混合物層に供給させて路面を冷却する給水型保水性舗装が提案されている。   Furthermore, in the following Patent Document 3, the water retention mixture layer constituting the surface layer of the road, the water supply roadbed provided below the water retention mixture layer to supply moisture to the water retention mixture layer, and the water provided under the water supply roadbed It comprises a water supply material that can be impregnated and a water storage part for storing water to be supplied to the water supply material, and the water supplied to the water supply material from the water storage part is supplied to the water retention mixture layer through the water supply channel board, thereby A water supply type water retaining pavement for cooling has been proposed.

また、下記特許文献4では、路盤上に敷設された上下に仕切る遮水シートと、遮水シート上に積層された砕石貯水層と、砕石貯水層内にその縦断面で波打つように敷設された不織布からなる吸水シートと、吸水シート上に積層された水平な吸水シート、砂層、並びに吸水機能を有する透水性舗装構造が提案されている。   Moreover, in the following patent document 4, it was laid so that it might wave in the longitudinal section in the crushed stone reservoir layer laminated | stacked on the water-impervious sheet | seat, the crushed stone reservoir layer laminated | stacked on the impervious sheet, and laid on the roadbed A water-absorbing sheet made of a nonwoven fabric, a horizontal water-absorbing sheet laminated on the water-absorbing sheet, a sand layer, and a water-permeable pavement structure having a water-absorbing function have been proposed.

下記特許文献5では、有孔表層と水分貯留層を有する舗装体であって、前記有孔表層は降雨時における水分を下層の水分貯留層へ浸透若しくは給水装置からの水を水分貯留層に貯留させるとともに、晴天時においては下層の水分貯留層より供給される水分を水蒸気として舗装体表面より大気中に放出する連続空隙を有する構造から成る舗装体が提案されている。この場合、前記有孔表層としては、アスファルト混合物、セメントコンクリート、セメントモルタル、石油樹脂混合物若しくはこれら材料を用いた多孔質成形ブロックを用い、前記水分貯留層としては、空隙を有する材料であって、アスファルト混合物、セメントモルタル、石油樹脂混合物、セメント若しくは石灰により安定処理を施した砂利、砕石、砂、人工骨材などを用いるようにしている。
特開2003−184014号公報 特開2003−201705号公報 特開2005−2575号公報 特開2000−45206号公報 特開平8−209613号公報
In the following Patent Document 5, a pavement having a perforated surface layer and a water reservoir layer, the perforated surface layer penetrating moisture into the lower moisture reservoir layer or storing water from a water supply device in the moisture reservoir layer during rainfall. In addition, there has been proposed a pavement having a structure having a continuous gap that releases moisture supplied from a lower moisture storage layer as water vapor to the atmosphere from the pavement surface during fine weather. In this case, as the perforated surface layer, asphalt mixture, cement concrete, cement mortar, petroleum resin mixture or a porous molding block using these materials, the moisture storage layer is a material having voids, Asphalt mixture, cement mortar, petroleum resin mixture, gravel, crushed stone, sand, artificial aggregate, etc. that have been stabilized with cement or lime are used.
JP 2003-184014 A JP 2003-201705 A JP 2005-2575 A JP 2000-45206 A JP-A-8-209613

しかしながら、上記特許文献1及び特許文献2記載の舗装体は、舗装体のみで保水性を確保するものであるため、雨水等の保水量が小さく、冷却持続時間が短期間であるため、晴天が長く続く場合はヒートアイランド現象の緩和策として十分ではない。   However, since the paving bodies described in Patent Document 1 and Patent Document 2 ensure water retention only by the paving bodies, the amount of water retention such as rainwater is small and the cooling duration is short, so that clear weather If it lasts for a long time, it is not sufficient as a mitigation measure for the heat island phenomenon.

一方、上記特許文献3〜5記載の舗装構造は、水分の貯留部分、すなわち特許文献3では水分を含浸可能な給水材、特許文献4では吸水シート、特許文献5では水分貯留層を、表層の保水性舗装体とは別に備えた舗装構造であり、保水量は確保されることにより、冷却持続時間が長く確保される点で優れている。しかしながら、給水材、給水シートといった給水用資材を敷設したり、前記給水材へ給水を行うために給水槽(タンク)や給水管といった付帯設備を設置しなければならない舗装構造は、迅速な施工性が要求され、夜間の時間帯で多くの舗装面積を仕上げなければならない舗装体の構造としては不向きであり、かつ耐久性が懸念されるとともに、低コスト化が図れない、さらに将来的にもメンテナンスを必要とするなどの問題があった。   On the other hand, the pavement structures described in Patent Documents 3 to 5 have a moisture storage portion, that is, a water supply material that can be impregnated with water in Patent Document 3, a water absorbing sheet in Patent Document 4, a moisture storage layer in Patent Document 5, and a surface layer. It is a pavement structure provided separately from the water retentive pavement, and is excellent in that a long cooling duration is ensured by securing a water retention amount. However, the pavement structure where water supply materials such as water supply materials and water supply sheets are laid, and auxiliary facilities such as water tanks and water pipes must be installed in order to supply water to the water supply materials, is quick workability. Is not suitable as a pavement structure that requires a lot of pavement area to be finished at night time, and there is concern about durability, cost reduction cannot be achieved, and maintenance in the future There was a problem such as needing.

この点で、上記特許文献5記載の有孔表層と水分貯留層とからなる二層構造の舗装体は構造が単純で施工性に優れ、さらにフリーメンテナンスであるなどの利点を有する。しかしながら、前記有孔表層は連続空隙を有し、水分貯留層からの水蒸気を大気中に放出し得るあいだは良いが、経時的に前記連続空隙に埃、ゴミ、土粒子などが徐々に充填され目詰まりを起こす段になると、水蒸気の通り道が塞がれ、冷却効果がほとんど期待できない状態となってしまうとともに、水分貯留層を構成する材料の貯水性が十分ではなく、長期的に晴天が続いた場合の冷却効果が十分に期待できないなどの問題があった。   In this respect, the pavement having a two-layer structure composed of the perforated surface layer and the water reservoir described in Patent Document 5 has advantages such as a simple structure, excellent workability, and free maintenance. However, the perforated surface layer has continuous voids, and while the water vapor from the water reservoir layer can be released into the atmosphere, the continuous voids are gradually filled with dust, dust, soil particles, etc. over time. If it becomes a stage that causes clogging, the passage of water vapor is blocked, and the cooling effect can hardly be expected, and the water storage of the material constituting the water reservoir is not sufficient, and clear weather continues for a long time. There was a problem that the cooling effect could not be fully expected.

一方で、石炭による火力発電の副産物として石炭灰が多く排出されるが、この石炭灰の利用方法として従来は、セメントの粘土代替としての利用が大部分であったが、近年のセメント消費量の低下に伴い、石炭灰発生量の増大に対応できなくなっており、新たな有効利用の途が強く望まれている。   On the other hand, a lot of coal ash is emitted as a by-product of thermal power generation using coal. Conventionally, the use of this coal ash has been mostly used as a substitute for cement clay. Along with the decline, it is no longer possible to cope with the increase in the amount of coal ash generated, and there is a strong demand for new effective use.

そこで本発明の主たる課題は、給水シートや給水パイプといった給水用資材及び設備等を用いることなく十分な貯水機能を有し、晴天が続いた場合でも冷却機能を持続することができ、かつ施工性に優れるとともに、経年的な機能低下が無く長期に亘りヒートアイランド現象の緩和効果を維持し得る給水型保水性舗装構造及びその施工方法を提供することにある。   Therefore, the main problem of the present invention is that it has a sufficient water storage function without using water supply materials and equipment such as a water supply sheet and a water supply pipe, can maintain a cooling function even in the case of fine weather, and has workability. Another object of the present invention is to provide a water supply type water-retaining pavement structure capable of maintaining the effect of mitigating the heat island phenomenon over a long period of time and a method for constructing the same.

前記課題を解決するために請求項1に係る本発明として、開粒度アスファルトコンクリートの間隙部に石炭灰を主体とするスラリーを充填させた表層を成すアスファルト保水層と、このアスファルト保水層の下側に位置するとともに、石炭灰固化砕石を主体とし所定の密度に締め固められた石炭灰固化砕石貯水層とからなり、
前記石炭灰を主体とするスラリーは、石炭灰、石膏、石灰またはセメント、および水とを混合するとともに、混和剤を添加したスラリーであって、自己充填により前記石炭灰固化砕石層との界面まで浸透し、前記石炭灰固化砕石層との間に毛細管現象の連続性が確保されており、
前記石炭灰固化砕石は、石炭灰に石灰及び石膏を添加材として加え、水で混練した後成形し、次いで混練物の養生を行った後、養生固化体を破砕して得た砕石状固化体が用いられていることを特徴とする給水型保水性舗装構造が提供される。
In order to solve the above-mentioned problem, as the present invention according to claim 1, an asphalt water retention layer comprising a surface layer in which a gap mainly composed of coal ash is filled in a gap portion of an open-graded asphalt concrete, and a lower side of the asphalt water retention layer And a coal ash solidified crushed water reservoir mainly composed of coal ash solidified crushed stone and compacted to a predetermined density,
Slurry consisting mainly of the coal ash, coal ash, gypsum, lime or cement, and with mixing the water, a slurry prepared by adding a mixed wettable powder, an interface between the coal ash solidified crushed stone layer by self-priming And continuity of capillary action is ensured between the coal ash solidified crushed stone layer,
The coal ash solidified crushed stone is obtained by adding lime and gypsum to coal ash as additives, kneading with water, shaping, then curing the kneaded material, and then crushing the cured solidified material. A water supply type water-retaining pavement structure is provided.

上記請求項1記載の本発明は、開粒度アスファルトコンクリートの間隙部に石炭灰を主体とするスラリーを充填させた保水機能を有するアスファルト保水層と、このアスファルト保水層の下側に位置する石炭灰固化砕石を主体とするとともに、所定の密度に締め固められた石炭灰固化砕石貯水層とからなる二層構造の保水性舗装である。   The present invention according to claim 1 is an asphalt water retention layer having a water retention function in which a slurry mainly composed of coal ash is filled in a gap portion of an open-graded asphalt concrete, and a coal ash located below the asphalt water retention layer It is a water-retaining pavement with a two-layer structure consisting mainly of solidified crushed stone and a coal ash solidified crushed stone reservoir that has been compacted to a predetermined density.

前記アスファルト保水層は、開粒度アスファルトコンクリートが交通荷重を負担し、間隙に充填される石炭灰混合スラリーは、組成中にエトリンガイト系の間隙質相が形成されていることにより吸水性や保水性に優れるとともに、前記アスファルト保水層と石炭灰固化砕石貯水層との構造間に毛細管現象の連続性を確保する。そして、雨天時には雨水の吸水・保水及び浸透を促し、晴天時には石炭灰固化砕石貯水層からの吸水及び保水を可能とするものである。具体的には、前記石炭灰を主体とするスラリーは、石炭灰、石膏、石灰またはセメント、および水とを混合するとともに、混和剤を添加したスラリーであって、この石炭灰を主体とするスラリーは、開粒度アスファルトコンクリートの間隙に自己充填、すなわち重力による自然浸透作用によって充填するのが望ましい。 In the asphalt water retention layer, the open-graded asphalt concrete bears the traffic load, and the coal ash mixed slurry filled in the gap has water absorption and water retention due to the formation of an ettringite-based interstitial phase in the composition. While being excellent, the continuity of the capillary phenomenon is ensured between the structures of the asphalt water retention layer and the coal ash solidified crushed water reservoir. In rainy weather, it promotes water absorption / retention and penetration of rainwater, and in fine weather, it enables water absorption and retention from the coal ash solidified crushed stone reservoir. Specifically, a slurry consisting mainly of the coal ash, coal ash, gypsum, lime or cement, and with mixing the water, a slurry prepared by adding a mixed wettable powder, mainly comprising this coal ash The slurry is desirably filled into the gaps of the open-graded asphalt concrete by self-filling, that is, by natural osmosis due to gravity.

前記石炭灰固化砕石貯水層は、締固められた石炭灰固化砕石が路盤材として機能する他、石炭灰固化体内部にエトリンガイト系の間隙質相が形成されていることにより吸水性や保水性に優れ、給水シートや給水パイプといった給水用資材及び設備等が無くても、十分な貯水能力を有する貯水層として機能することができる。また、前記石炭灰固化砕石(M40等の粒度分布構成程度)を所定の密度まで締固めることにより、石炭灰固化砕石の微細な空隙の効果によって毛細管現象が促進され、晴天が続いた場合でも、貯水された水分が前記アスファルト保水層に連続的に給水され、路面の冷却効果が持続されるようになる。具体的に前記石炭灰固化砕石としては、石炭灰に石灰及び石膏を添加材として加え、水で混練した後成形し、次いで混練物の養生を行った後、養生固化体を破砕して得た砕石状固化体を用いるものである。この石炭灰固化砕石は、路盤材料として十分な強度特性を持ち、かつ石膏の添加によりエトリンガイトなどの間隙質相が成形されることにより、高い貯水機能を有するとともに、毛細管現象の促進機能を付加することができる。   In the coal ash solidified crushed water reservoir, the compacted coal ash solidified crushed stone functions as a roadbed material, and also has an ettringite-based interstitial phase formed inside the coal ash solidified body to make it water absorbing and water retaining. Even if there is no water supply material and equipment such as a water supply sheet or a water supply pipe, it can function as a water storage layer having sufficient water storage capacity. Further, by compacting the coal ash solidified crushed stone (about the particle size distribution composition such as M40) to a predetermined density, the capillary phenomenon is promoted by the effect of fine voids of the coal ash solidified crushed stone, The stored water is continuously supplied to the asphalt water retention layer, and the cooling effect of the road surface is maintained. Specifically, the coal ash solidified crushed stone was obtained by adding lime and gypsum to coal ash as additives, kneading with water, shaping, then curing the kneaded material, and then crushing the cured solidified body. A crushed stone solidified body is used. This coal ash solidified crushed stone has sufficient strength characteristics as a roadbed material, and has a high water storage function and a function of promoting capillary action by forming a porous phase such as ettringite by adding gypsum. be able to.

以上の構造を成す保水性舗装構造は、従来の排水性舗装と同様の施工方法によって施工することができ、石炭灰混合スラリーも自己充填方式又は振動ローラ等を用いた機械充填方式によって間隙中に充填できるため施工性に優れる。また、開粒度アスファルトコンクリートの間隙部が前記石炭灰混合スラリーによって充填された構造であるため、目詰まり等による機能低下を起こすことがなく、長期に亘りヒートアイランド現象の緩和効果を維持し得るようになる。   The water-retaining pavement structure having the above structure can be constructed by the same construction method as the conventional drainage pavement, and the coal ash mixed slurry is also placed in the gap by the self-filling method or the mechanical filling method using a vibrating roller etc. Excellent workability because it can be filled. In addition, since the gap portion of the open-graded asphalt concrete has a structure filled with the coal ash mixed slurry, it does not cause functional deterioration due to clogging, etc., and can maintain the mitigation effect of the heat island phenomenon over a long period of time. Become.

請求項2に係る本発明として、開粒度アスファルトコンクリートの間隙部に石炭灰を主体とするスラリーを充填させた表層を成すアスファルト保水層と、このアスファルト保水層の下側に位置するとともに、石炭灰固化砕石を主体とし所定の密度に締め固められた石炭灰固化砕石貯水層とからなり、As the present invention according to claim 2, an asphalt water retention layer forming a surface layer in which a slurry mainly composed of coal ash is filled in a gap portion of an open-graded asphalt concrete, and located below the asphalt water retention layer, the coal ash It consists of a coal ash solidified crushed stone reservoir that is mainly composed of solidified crushed stone and compacted to a predetermined density,
前記石炭灰を主体とするスラリーは、石炭灰、石膏、石灰またはセメント、および水とを混合したスラリーであって、自己充填により前記石炭灰固化砕石層との界面まで浸透し、前記石炭灰固化砕石層との間に毛細管現象の連続性が確保されており、The slurry mainly composed of coal ash is a slurry in which coal ash, gypsum, lime or cement, and water are mixed, and penetrates to the interface with the coal ash solidified crushed stone layer by self-filling, and the coal ash solidified. Capillary continuity is ensured between the crushed stone layer,
前記石炭灰固化砕石は、石炭灰に石灰及び石膏を添加材として加え、水で混練した後成形し、次いで混練物の養生を行った後、養生固化体を破砕して得た砕石状固化体が用いられていることを特徴とする給水型保水性舗装構造が提供される。The coal ash solidified crushed stone is obtained by adding lime and gypsum to coal ash as additives, kneading with water, shaping, then curing the kneaded material, and then crushing the cured solidified material. A water supply type water-retaining pavement structure is provided.

上記請求項2記載の発明は、石炭灰を主体とするスラリーについて、混和剤を添加することなく作製したものである。The invention according to claim 2 is prepared without adding an admixture to a slurry mainly composed of coal ash.

請求項に係る本発明として、前記石炭灰固化砕石中に繊維材料を混合してある請求項1、2いずれかに記載の給水型保水性舗装構造が提供される。 As a third aspect of the present invention, there is provided a water supply type water-retaining pavement structure according to any one of the first and second aspects , wherein a fiber material is mixed in the coal ash solidified crushed stone.

上記請求項記載の本発明は、石炭灰固化砕石の締固め時に、繊維材料を混合するものである。前記繊維材料の混入により毛細管現象の効果を促進することが可能となる。 According to the third aspect of the present invention, the fiber material is mixed when the coal ash solidified crushed stone is compacted. It becomes possible to promote the effect of capillary action by mixing the fiber material.

請求項に係る本発明として、既設路盤の上部に石炭灰固化砕石を所定厚で締固めた後、この石炭灰固化砕石層の上面に開粒度アスファルトコンクリートを所定厚で敷設し、次いで石炭灰を主体とするスラリーを前記開粒度アスファルトコンクリートの上面から供給し、自己充填により前記石炭灰固化砕石層との界面まで浸透させることを特徴とする請求項1〜3いずれかに記載の給水型保水性舗装構造のための施工方法が提供される。 In the present invention according to claim 4 , after the coal ash solidified crushed stone is compacted at a predetermined thickness on the upper part of the existing roadbed, an open-graded asphalt concrete is laid on the upper surface of the coal ash solidified crushed stone layer at a predetermined thickness, and then the coal ash The water supply type water retention according to any one of claims 1 to 3 , wherein a slurry mainly comprising: is supplied from an upper surface of the open-graded asphalt concrete and is allowed to permeate to an interface with the coal ash solidified crushed stone layer by self-filling. A construction method for a pavement structure is provided.

以上詳説のとおり本発明によれば、給水シートや給水パイプといった給水用資材を用いることなく十分な貯水機能を有するようになり、晴天が続いた場合でも冷却機能を持続的に維持することができる。また、施工性に優れ、かつ経年的な機能低下が無く長期に亘りヒートアイランド現象の緩和効果を維持することができる。   As described above in detail, according to the present invention, a sufficient water storage function can be provided without using water supply materials such as a water supply sheet and a water supply pipe, and the cooling function can be continuously maintained even when the weather continues. . Moreover, it is excellent in workability and does not deteriorate over time, and can maintain the effect of mitigating the heat island phenomenon over a long period of time.

以下、本発明の実施の形態について図面を参照しながら詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

〔給水型保水性舗装構造〕
本発明に係る給水型保水性舗装構造は、図1に示されるように、開粒度アスファルトコンクリート3(以下、単に開粒度アスコンという。)の間隙部に石炭灰を主体とするスラリー4(以下、石炭灰混合スラリーという。)を充填させた表層を成すアスファルト保水層1と、このアスファルト保水層1の下側に位置する石炭灰固化砕石5を主体とし所定の密度に締め固められた石炭灰固化砕石貯水層2とからなる二層構造の保水性舗装である。この給水型保水性舗装は、通常のアスファルト舗装又はコンクリート舗装を本発明の保水性舗装に改良する場合には、既設の表層舗装のみを撤去した後、既設路盤上に敷設するのが望ましい。
[Water supply type water retaining pavement structure]
As shown in FIG. 1, the water supply type water-retaining pavement structure according to the present invention is a slurry 4 (hereinafter, referred to as “coal ash”) mainly composed of coal ash in the gap portion of the open-graded asphalt concrete 3 (hereinafter simply referred to as “open-graded ascon”). Coal ash solidification, which is mainly composed of asphalt water retention layer 1 forming a surface layer filled with coal ash mixed slurry) and coal ash solidification crushed stone 5 located below this asphalt water retention layer 1 and compacted to a predetermined density It is a water-retaining pavement having a two-layer structure composed of a crushed stone reservoir 2. In the case of improving the normal asphalt pavement or the concrete pavement to the water retentive pavement of the present invention, it is desirable that this water supply type water retentive pavement is laid on the existing roadbed after removing only the existing surface pavement.

前記アスファルト保水層1の開粒度アスコン3は、粗骨材、細骨材、フィラー、アスファルトからなる加熱混合物で合成粒度における2.5mmふるい通過分が15%〜30%の範囲のものをいい、一般的に排水性舗装として用いられている舗装表層材料であり、交通荷重に対する耐荷性能を与える。   The open particle size ascon 3 of the asphalt water retention layer 1 is a heated mixture composed of coarse aggregate, fine aggregate, filler, and asphalt and has a 2.5 mm sieve passage in a synthetic particle size in the range of 15% to 30%. It is a pavement surface layer material that is generally used as drainage pavement, and provides load resistance against traffic loads.

前記開粒度アスコン3の間隙中に充填された石炭灰混合スラリー4は、石炭灰としてフライアッシュを用い、これに石膏、石灰またはセメント、水を混合し、必要に応じて硬化を遅らせるための混和剤を添加したものである。組成中にエトリンガイト系の間隙質相が形成されていることにより、例えば、後述の実験例に示されるように、前記石炭灰混合スラリーの固化体は、供試体の1/3を水に浸した場合、その毛管現象により約2時間で飽和度が90%に達していることから分かるように、非常に高い吸水性と保水性を有するものである。なお、前記石炭灰混合スラリー4の配合において、セメントを多量(例えば、質量比でフライアッシュの半分)使用する場合は、強度は高くなるものの吸水性及び保水性が低下する。 また、前記石炭灰混合スラリー4は、前記アスファルト保水層1と石炭灰固化砕石貯水層2との構造間に、毛細管現象の連続性を確保するものであり、石炭灰固化砕石貯水層2まで浸透できる流動性を有し、前記開粒度アスコン3の間隙に自己充填(自然浸透による充填)される。   The coal ash mixed slurry 4 filled in the gaps of the open particle size ascon 3 uses fly ash as coal ash, and this is mixed with gypsum, lime or cement, water, and mixed to delay hardening as necessary. The agent is added. Due to the formation of an ettringite-based interstitial phase in the composition, for example, as shown in an experimental example described later, the solidified body of the coal ash mixed slurry was obtained by immersing 1/3 of the specimen in water. In this case, as shown by the fact that the saturation reaches 90% in about 2 hours due to the capillary phenomenon, it has very high water absorption and water retention. In addition, in the blending of the coal ash mixed slurry 4, when a large amount of cement is used (for example, half of fly ash by mass ratio), the water absorption and water retention are reduced although the strength is increased. The coal ash mixed slurry 4 ensures continuity of the capillary phenomenon between the asphalt water retaining layer 1 and the coal ash solidified crushed water reservoir 2, and penetrates to the coal ash solidified crushed water reservoir 2. It has fluidity and can be self-filled (filled by natural penetration) into the gaps of the open-graded ascon 3.

前記開粒度アスコン3の間隙に前記石炭灰混合スラリー4を自己充填するためには、Pロートフロー値(スラリーがPロートから流下し切るまでに要する時間)が10秒以下(水の場合で8.2秒)となるように調整したものが好適に用いられる。なお、Pロートフロー値を10秒以下に調整するためには、水と粉体(フライアッシュ(FA)、石膏(G)、生石灰(QL)・消石灰(SL)またはセメント(C)を混合したものを指す。)の重量百分率(水粉体比)を概ね70〜80%程度で調整することで可能とされる。   In order to self-fill the coal ash mixed slurry 4 in the gap between the open-graded ascones 3, the P funnel flow value (the time required for the slurry to flow down from the P funnel) is 10 seconds or less (8 for water). .2 seconds) is preferably used. In order to adjust the P funnel flow value to 10 seconds or less, water and powder (fly ash (FA), gypsum (G), quicklime (QL) / slaked lime (SL) or cement (C) were mixed. It is made possible by adjusting the weight percentage (water powder ratio) of about 70 to 80%.

一方、前記石炭灰固化砕石貯水層2を構成する石炭灰固化砕石5は、石炭灰に石灰及び石膏を添加材として加え、水で混練した後成形し、次いで混練物の養生を行った後、養生固化体を破砕して得た砕石状固化体である。なお、材料となる石炭灰は、石炭灰特性の変動などで品質がかなり変動するため、特許第3455184号公報に示されるように、上記変動に対応しながら安定品質の固化体を得るために、混練機のフルード数、混練物温度、成形体の嵩比重、養生における固化体の圧縮強度及び粒状固化体の粗粒率の制御・管理を行って製造されたものを好適に使用することができる。   On the other hand, the coal ash solidified crushed stone 5 constituting the coal ash solidified crushed water reservoir 2 is formed by adding lime and gypsum to the coal ash as additives, kneading with water, and then curing the kneaded product. It is a crushed stone-like solid body obtained by crushing a cured solid body. In addition, since the quality of the coal ash used as the material varies considerably due to fluctuations in the characteristics of the coal ash, as shown in Japanese Patent No. 3455184, in order to obtain a solidified body of stable quality while responding to the above-described fluctuations, A product produced by controlling and managing the fluid number of the kneader, the temperature of the kneaded product, the bulk specific gravity of the molded product, the compressive strength of the solidified body during curing, and the coarse particle ratio of the granular solidified body can be suitably used. .

前記石炭灰固化砕石貯水層2は、石炭灰固化砕石5をM40等(舗装材の粒度規定値)の粒度分布で調整し、所定の密度で締固めて、路盤材としての耐荷性能を確保する。   The coal ash solidified crushed water reservoir 2 adjusts the coal ash solidified crushed stone 5 with a particle size distribution of M40 or the like (pavement particle size regulation value) and compacts it with a predetermined density to ensure load resistance performance as a roadbed material. .

前記石炭灰固化砕石貯水層2は、石炭灰固化砕石5とその間隙中の自由水で構成される。石炭灰固化砕石貯水層2が湿潤状態にある場合には、石炭灰固化砕石5は表面水と内部水で保水された状態にある。石炭灰固化砕石貯水層2の自由水・表面水・内部水は、隣接する粒子配列で形成された毛細管中をアスファルト保水層1へ上昇する。石炭灰固化砕石貯水層2に蓄えられた水量の大半が、二層構造内の毛細管現象と路面での蒸発散によって、路面の温度冷却のために消費される。   The coal ash solidified crushed water reservoir 2 is composed of coal ash solidified crushed stone 5 and free water in the gaps. When the coal ash solidified crushed water reservoir 2 is in a wet state, the coal ash solidified crushed stone 5 is in a state of being retained by surface water and internal water. Free water, surface water, and internal water of the coal ash solidified crushed stone reservoir 2 rise to the asphalt water retention layer 1 through the capillaries formed by adjacent particle arrays. Most of the water stored in the coal ash solidified crushed water reservoir 2 is consumed for temperature cooling of the road surface by capillarity in the two-layer structure and evapotranspiration on the road surface.

〔保水性舗装の施工〕
前述した保水性舗装は、既設路盤の上部に石炭灰固化砕石5を、冷却効果の持続性を確保するために、その層厚を5〜10cmとなるように締め固め石炭灰固化砕石貯水層2を形成した後、この石炭灰固化砕石貯水層2の上面に開粒度アスコン3を好ましくは層厚5cm以上となるように敷設する。その後、石炭灰混合スラリー4を開粒度アスコン3の間隙に自己充填し、石炭灰固化砕石貯水層2との界面まで浸透させ、二層構造の連続性を持たせる。前記石炭灰混合スラリーには石膏を使用しているので、3時間以内に空気と触れる表層部は粘土状になるため、路面上に存在する粘土状の余剰スラリー固化体を清掃する。この工法によれば、前記石炭灰混合スラリー4の充填から約3時間で交通開放が可能で迅速に施工が可能である。
[Construction of water retentive pavement]
In the water-retaining pavement described above, the coal ash solidified crushed stone 5 is compacted to a thickness of 5 to 10 cm in order to ensure the sustainability of the cooling effect, and the coal ash solidified crushed stone reservoir 2 After that, an open-graded ascon 3 is laid on the upper surface of the coal ash solidified crushed water reservoir 2 so that the layer thickness is preferably 5 cm or more. After that, the coal ash mixed slurry 4 is self-filled into the gaps of the open-graded ascon 3 and penetrates to the interface with the coal ash solidified crushed stone reservoir 2 to have a two-layer continuity. Since gypsum is used for the coal ash mixed slurry, the surface layer portion that comes into contact with air within 3 hours becomes clay-like, so that the clay-like surplus solidified solid body present on the road surface is cleaned. According to this construction method, traffic can be opened in about 3 hours from the filling of the coal ash mixed slurry 4 and the construction can be performed quickly.

〔本給水型保水性舗装の冷却メカニズム〕
雨水時は、図2(A)に示されるように、雨水はアスファルト保水層1に保水されながら下層へ浸透するとともに、石炭灰固化砕石貯水層2に貯水され、余剰水が既設路盤へと浸透する。真夏の高温時には、図2(B)に示されるように、アスファルト保水層1の表面から水分が気化熱として奪われ、表面温度の上昇が抑制される。水分は二層構造体における毛細管現象により石炭灰固化砕石貯水層2からアスファルト保水層1へ連続的に給水され、路面温度の冷却効果が持続する。なお、路面冷却効果は、夏場の路面温度を少なくとも連続4日間40℃以下で維持できるように、前記石炭灰混合スラリー4の配合、アスファルト保水層1の層厚を設定するとともに、前記石炭灰固化砕石5の配合、その層厚を設定するのが望ましい。
[Cooling mechanism of this water supply type water retaining pavement]
During rainwater, as shown in Fig. 2 (A), rainwater penetrates into the lower layer while being retained in the asphalt reservoir 1, and is stored in the coal ash solidified crushed reservoir 2 and surplus water penetrates into the existing roadbed To do. When the temperature is high in midsummer, as shown in FIG. 2 (B), moisture is taken away from the surface of the asphalt water retaining layer 1 as heat of vaporization, and an increase in the surface temperature is suppressed. The water is continuously supplied from the coal ash solidified crushed water reservoir 2 to the asphalt water retention layer 1 by the capillary phenomenon in the two-layer structure, and the cooling effect of the road surface temperature is maintained. As for the road surface cooling effect, the coal ash mixed slurry 4 is set and the layer thickness of the asphalt water retention layer 1 is set so that the summer road surface temperature can be maintained at 40 ° C. or lower for at least four consecutive days. It is desirable to set the composition of the crushed stone 5 and its layer thickness.

《石炭灰混合スラリーの特性に関して》
石炭灰混合スラリー4の吸水・保水特性を確認するために、下表1に示される配合を変えた7つの供試体CASE1〜CASE7を作製し、Pロートフロー値と水粉体比との相関性、吸水性能試験、保水性能試験を実施した。なお、石炭灰としてはフライアッシュを用いた。
<Characteristics of coal ash mixed slurry>
In order to confirm the water absorption and water retention characteristics of coal ash mixed slurry 4, seven specimens CASE1 to CASE7 with different formulations shown in Table 1 below were prepared, and the correlation between P funnel flow value and water powder ratio Water absorption performance test and water retention performance test were conducted. In addition, fly ash was used as coal ash.

Figure 0004517357
Figure 0004517357

1.Pロートフロー値と水粉体比との相関性
表中、CASE-1〜CASE-6の6つの各供試体について、Pロートフロー値と水粉体比との関係を図3に示す。同図より、Pロートフロー値を10秒以下に調整するためには、水と粉体(フライアッシュ(FA)、石膏(G)、生石灰(QL)、消石灰(SL)又はセメント(C)を混合したものを指す。)の重量百分率(水粉体比)を概ね70〜80%程度で調整すれば良いことが分かる。
1. FIG. 3 shows the relationship between the P funnel flow value and the water powder ratio for each of the six specimens CASE-1 to CASE-6 in the table. From the figure, in order to adjust the P funnel flow value to 10 seconds or less, water and powder (fly ash (FA), gypsum (G), quicklime (QL), slaked lime (SL) or cement (C) It is understood that the weight percentage (water powder ratio) of the mixture may be adjusted to about 70 to 80%.

2.石炭灰混合スラリーの吸水性
石炭灰混合スラリー4の吸水性及び保水性を検証するために各種の実験を行った。
2. Water Absorption of Coal Ash Mixing Slurry Various experiments were conducted to verify the water absorption and water retention of the coal ash mixing slurry 4.

[実験(その1)]
実験(その1)は、上記CASE-1の供試体(φ5cm×10cm)について、供試体の1/3を水に浸し、供試体の吸水による変色状態から毛細管現象による吸水状態を観察した。その結果を図4に示す。同図から毛細管現象により約2時間で飽和度が90%に達しており、非常に高い吸水性能を示すことが確認された。
[Experiment (Part 1)]
In the experiment (No. 1), about CASE-1 specimen (φ5 cm × 10 cm), 1/3 of the specimen was immersed in water, and the water absorption state due to capillary action was observed from the discoloration state due to water absorption of the specimen. The result is shown in FIG. From the figure, it was confirmed that the saturation reached 90% in about 2 hours due to the capillary phenomenon, and showed very high water absorption performance.

[実験(その2)]
供試体の内、石炭灰の他、石膏、生石灰を配合したCASE-1と、石炭灰とセメントのみを配合したCASE-7について、上記実験(その1)の試験を行い、毛管現象の差異を調べた。その結果、図5に示されるように、両者間では毛細管現象の効果に大きな差が出ることが確認された。すなわち、毛細管現象の速度は、石膏(G)、生石灰(QL)・消石灰(SL)またはセメント(C)の配合により調整することができることが確認された。
[Experiment (Part 2)]
Among the specimens, the above experiment (part 1) was tested for CASE-1 containing gypsum and quicklime in addition to coal ash, and CASE-7 containing only coal ash and cement. Examined. As a result, as shown in FIG. 5, it was confirmed that there was a great difference in the effect of capillary action between the two. That is, it was confirmed that the rate of capillary action can be adjusted by blending gypsum (G), quicklime (QL) / slaked lime (SL), or cement (C).

[実験(その3)]
また、上表1に示した配合による供試体の内、CASE-2,5,6,7の配合条件を選定し、下表2に示される供試体を作製した。
[Experiment (Part 3)]
In addition, among the specimens having the composition shown in Table 1 above, the mixing conditions of CASE-2, 5, 6, and 7 were selected, and specimens shown in Table 2 below were prepared.

Figure 0004517357
Figure 0004517357

上記4つの供試体について、毛細管現象の確認試験を行った。試験は、ガーゼを敷いた供試体の設置台の水位が5mmで定常状態となるように設定し、各配合による供試体の毛細管現象の速さを測定した。なお、供試体の初期条件は乾燥状態とし、水分の到達状況に関しては、供試体が変色することを目視で確認した。その結果、図6に示されるように、CASE-2、CASE-5、CASE-6の供試体に関しては、毛細管現象による水分が1時間以内で一般的なアスファルト舗装厚の5cmまで上昇した。CASE-5とCASE-6は5cmの水分上昇に約20分必要とし、CASE-2は2倍の40分必要とした。CASE-7は更に2倍の80分かかった。   The above four specimens were subjected to a capillary phenomenon confirmation test. The test was set so that the water level of the test stand on which the gauze was spread was 5 mm, and a steady state was obtained, and the speed of the capillary action of the test sample by each formulation was measured. Note that the initial conditions of the specimens were in a dry state, and it was visually confirmed that the specimens were discolored with respect to the state of moisture arrival. As a result, as shown in FIG. 6, with respect to the specimens of CASE-2, CASE-5, and CASE-6, the moisture due to the capillary phenomenon increased to 5 cm as a general asphalt pavement thickness within 1 hour. CASE-5 and CASE-6 required about 20 minutes to increase the water content of 5 cm, and CASE-2 required twice 40 minutes. CASE-7 took twice more 80 minutes.

2.石炭灰混合スラリー4の保水性能に関して 2. Water retention performance of coal ash mixed slurry 4

[実験(その4)]
実験(その4)では、上表2に示した各供試体について最大吸水率を調べた。
最大吸水率は、φ5cm×10cmの円柱供試体の乾燥重量に対する表乾重量と乾燥重量の差の百分率とした。ここに、表乾重量は供試体を24時間以上水浸した後の表乾状態の重量、乾燥重量は表乾状態にした供試体を40℃の乾燥炉で24時間以上乾燥したときの重量とした。
[Experiment (Part 4)]
In the experiment (No. 4), the maximum water absorption rate was examined for each specimen shown in Table 2 above.
The maximum water absorption was the percentage of the difference between the surface dry weight and the dry weight with respect to the dry weight of the cylindrical specimen of φ5 cm × 10 cm. Here, the surface dry weight was the weight in the surface dry state after the specimen was immersed in water for 24 hours or more, and the dry weight was the weight when the surface-dried specimen was dried in a drying furnace at 40 ° C. for 24 hours or more. .

試験の結果、各供試体の最大吸水率は図7に示すとおりとなった。同図より、CASE-2は、最大吸水率46%となった。
CASE-2で使用する消石灰の代わりにセメントを配合したCASE-5は、最大吸水率が30%まで低下した。また、フライアッシュとセメントのみを配合したCASE-6とCASE-7を見てみると、セメント量の少ないCASE-6の最大吸水率は38%、セメントとフライアッシュの比が1:2のCASE-7の最大吸水率は30%となった。また、CASE-6とCASE-7は、供試体が所定高さの10cmで固化せず、ブリーディングの影響が問題となった。
As a result of the test, the maximum water absorption rate of each specimen was as shown in FIG. From the figure, CASE-2 has a maximum water absorption of 46%.
CASE-5, which contains cement instead of slaked lime used in CASE-2, has a maximum water absorption rate of 30%. In addition, looking at CASE-6 and CASE-7, which contain only fly ash and cement, CASE-6 with a small amount of cement has a maximum water absorption of 38% and a ratio of cement to fly ash of 1: 2. The maximum water absorption of -7 was 30%. In CASE-6 and CASE-7, the specimen did not solidify at a predetermined height of 10 cm, and the influence of bleeding became a problem.

以上から、石炭灰混合スラリー4の配合に、セメントを加えると最大吸水率及び吸水量が低下することがわかる。   From the above, it can be seen that when cement is added to the coal ash mixed slurry 4, the maximum water absorption rate and water absorption rate are reduced.

[実験(その5)]
実験(その5)では、内径φ10cmの鋼製容器内に打設した開粒度アスコンに、表2に示した配合の内、CASE-2,5,6の配合の石炭灰混合スラリーを自己充填したアスファルト保水層の最大保水量を調べた。
[Experiment (Part 5)]
In the experiment (No. 5), the coal ash mixed slurry of CASE-2,5,6 blended among the blends shown in Table 2 was self-filled into an open grained ascon placed in a steel container with an inner diameter of φ10 cm. The maximum water content of the asphalt water reservoir was investigated.

最大保水量は、供試体面積に対する表乾重量と乾燥重量の差の比として定義されるもので、表乾重量は供試体を24時間以上水浸した後の表乾状態の重量、乾燥重量は表乾状態にした供試体を40℃の乾燥炉で24時間以上乾燥したときの重量とした。   The maximum water retention amount is defined as the ratio of the difference between the surface dry weight and the dry weight with respect to the area of the specimen. The surface dry weight is the weight in the surface dry state after the specimen is immersed in water for 24 hours or more. The weight of the specimen that had been dried was dried for 24 hours or more in a 40 ° C. drying oven.

試験の結果、アスファルト保水層の最大保水量(CASE-2、CASE-5、CASE-6)は、図8に示すように、それぞれ7.1、6.5、7.3kg/m2となり、いずれのケースも6kg/m2以上であり、例えば東京都の性能要件発注における性能の規格値5kg/m2を十分に満足する結果となった。 As a result of the test, the maximum water retention amount (CASE-2, CASE-5, CASE-6) of the asphalt reservoir is 7.1, 6.5, 7.3 kg / m 2 , respectively, as shown in FIG. Both cases were 6 kg / m 2 or more, and for example, the results fully satisfied the performance standard value of 5 kg / m 2 in ordering performance requirements in Tokyo.

以上の試験結果より、本発明に係る石炭灰混合スラリーは、開粒度アスコンの間隙に充填された状態で、高い吸水性と保水性とを有することが確認された。   From the above test results, it was confirmed that the coal ash mixed slurry according to the present invention has high water absorption and water retention in a state where the coal ash mixed slurry is filled in the gaps of the open particle size ascon.

《石炭灰固化砕石の特性に関して》 <Characteristics of coal ash solidified crushed stone>

1.石炭灰固化砕石の保水性能
本発明に係る石炭灰固化砕石と一般砕石とについて、締固め時と保水時の含水比と湿潤密度を調べた。試験は、1日水に浸した後、余剰水を排水するために1日放置した後、含水比(%)と湿潤密度(g/cm)とを調べた。その結果を下表3に示す。
1. Water retention performance of coal ash solidified crushed stone About the coal ash solidified crushed stone and the general crushed stone according to the present invention, the water content ratio and wet density during compaction and water retention were investigated. In the test, after being immersed in water for one day, the water content ratio (%) and the wet density (g / cm 3 ) were examined after being left for one day to drain excess water. The results are shown in Table 3 below.

Figure 0004517357
Figure 0004517357

表3より、石炭灰固化砕石の湿潤密度の保水時と、締固め時の差(保水性能: 0.155g/cm3)は、一般砕石混合材の保水性能(0.067g/cm3)の2.3倍となった。すなわち、石炭灰固化砕石貯水層は一般砕石層に比べてより多く表面水を保持できることが判明した。 From Table 3, the difference between wet density and water compaction of coal ash solidified crushed stone (water retention performance: 0.155 g / cm 3 ) is 2.3 times that of general crushed stone mixture (0.067 g / cm 3 ). It became. That is, it was found that the coal ash solidified crushed water reservoir can retain more surface water than the general crushed stone reservoir.

2.石炭灰固化砕石の吸水性能
石炭灰固化砕石は、石炭灰に生石灰と石膏を添加し、水で混練・成形した後、蒸気養生で固化し、固化体を破砕し粒度調整したものである。石炭灰固化砕石(径26.5〜37.5mm)の単体の含水比は、図9に示されるように、気中(自然状態)で13%だったのものが、一日の水浸で35%まで増加する。このように石炭灰固化砕石は高い吸水性能を持つ材料であることがわかる。ここでは、吸水性能を砕石内部に水を溜め込むことと定義する。
2. Water absorption performance of coal ash solidified crushed stone Coal ash solidified crushed stone is obtained by adding quick lime and gypsum to coal ash, kneading and forming with water, solidifying by steam curing, crushing the solidified body, and adjusting the particle size. As shown in Fig. 9, the water content of coal ash solidified crushed stone (diameter 26.5-37.5mm) was 13% in the air (natural state) but increased to 35% in one day of water immersion. To do. Thus, it can be seen that coal ash solidified crushed stone is a material having high water absorption performance. Here, the water absorption performance is defined as storing water inside the crushed stone.

3.石炭灰固化砕石の水分損失
a) 周辺温度及び湿度の影響
恒温恒湿の状態下における石炭灰固化砕石中の水分損失を図10及び図11に示す。湿度を一定とした場合は、図10に示されるように、石炭灰固化砕石中の水分損失は温度の影響を受けないことがわかる。次に、温度を一定とした場合には、図11に示されるように、湿度が低くなると水分損失が多くなる結果となった。すなわち、石炭灰固化砕石中の水分は、周辺環境の保湿状態が低下すると砕石内部に蓄えられた水分が外部へ移動するものと考えられる。
3. Water loss of coal ash solidified crushed stone
a) Influence of ambient temperature and humidity The water loss in coal ash solidified crushed stone under constant temperature and humidity conditions is shown in FIGS. When the humidity is constant, as shown in FIG. 10, it can be seen that the moisture loss in the coal ash solidified crushed stone is not affected by the temperature. Next, when the temperature was constant, as shown in FIG. 11, the moisture loss increased as the humidity decreased. That is, the moisture in the coal ash solidified crushed stone is considered to move to the outside when the moisturized state of the surrounding environment decreases.

b) 周辺環境の乾湿の影響
図13に石炭灰固化砕石中の水分損失と周辺環境(周囲砕石の含水比)の乾湿条件の関係を示す。実験は、図12に示されるように、周辺環境とする砕石層の含水比を0, 2, 7%の3水準設定し、石炭灰固化砕石を飽和状態(含水比35%程度)にして砕石層に埋め込み、7日後の含水比の変化を測定した。石炭灰固化砕石は周辺環境の含水比が0%(乾燥条件)であると、水分損失があることがわかる。すなわち、周辺環境が湿潤から乾燥へと変化する過程で、石炭灰固化砕石中の水分が外部へ移動するものと考えられる。
b) Influence of wet and dry conditions in the surrounding environment Figure 13 shows the relationship between moisture loss in coal ash solidified crushed stone and dry and wet conditions in the surrounding environment (water content of surrounding crushed stone). As shown in Fig. 12, the water content of the crushed stone layer in the surrounding environment is set to three levels of 0, 2, and 7%, and the coal ash solidified crushed stone is saturated (water content is about 35%). It was embedded in the layer and the change in water content after 7 days was measured. It can be seen that the coal ash solidified crushed stone has water loss when the water content of the surrounding environment is 0% (dry conditions). That is, it is considered that the moisture in the coal ash solidified crushed stone moves to the outside during the process of changing the surrounding environment from wet to dry.

《保水性舗装構造体としての冷却効果》
次に、本発明に係る保水性舗装構造の性能を確認するため、図14に示される本発明の保水性舗装構造を模擬した実験装置と、比較のために図15に示される従来の密粒度舗装を模擬した実験装置とを作製し比較試験を実施した。
《Cooling effect as water-retaining pavement structure》
Next, in order to confirm the performance of the water-retaining pavement structure according to the present invention, an experimental apparatus simulating the water-retaining pavement structure of the present invention shown in FIG. 14 and the conventional dense particle size shown in FIG. 15 for comparison. An experimental device simulating pavement was produced and a comparative test was conducted.

前記保水性舗装構造を模擬した実験装置は、同図14に示されるように、石炭灰固化砕石を締め固めた後、その上面に周囲を山砂で囲まれた状態でアスファルト保水層(5cm厚)を形成した構造とした。また、舗装下面−1cmの温度を計測するために、表層に石炭灰混合スラリーの層を1cm厚で形成し、温度センサを表層、表層−1cm、アスファルト保水層と石炭灰固化砕石との境界位置の3箇所に夫々設置した。一方、密粒度舗装を模擬した実験装置は、同図15に示されるように、一般砕石を締め固めた後、その上面に4cm厚で密粒度アスコンを敷設した構造とした。温度センサは、表層と、密粒度アスコンと一般砕石との境界位置の2箇所に設置した。なお、保水性舗装及び密粒度舗装の供試体の直径はともに15cmである。また、保水材舗装に使用した石炭灰混合スラリーの配合は、上表1のCASE-2に相当する配合とした。   As shown in FIG. 14, the experimental apparatus simulating the water-retaining pavement structure compacted coal ash solidified crushed stone, and then asphalt water retention layer (5 cm thick) with its upper surface surrounded by mountain sand. ). Moreover, in order to measure the temperature of the pavement bottom surface-1 cm, a layer of coal ash mixed slurry is formed on the surface layer with a thickness of 1 cm, and the temperature sensor is the surface layer, surface layer-1 cm, boundary position between asphalt water retention layer and coal ash solidified crushed stone Were installed at three locations. On the other hand, as shown in FIG. 15, the experimental apparatus simulating dense grain paving has a structure in which, after compacting general crushed stones, a fine grained ascon with a thickness of 4 cm is laid on the upper surface. The temperature sensor was installed in two places, the surface layer, and the boundary position between dense grained ascon and general crushed stone. The diameters of the water-retaining pavement and dense-grain pavement specimens are both 15 cm. In addition, the coal ash mixed slurry used for the water-retaining material pavement was a composition corresponding to CASE-2 in Table 1 above.

そして、保水性舗装構造の舗装供試体への吸水は、供試体底面に形成した開口部から63時間かけて行った。その後、ライトによる照射実験を6サイクル実施した。ライト照射は、舗装表面の気中最大温度が52〜57℃になるように設定した。   And the water absorption to the pavement specimen of a water retention pavement structure was performed over 63 hours from the opening part formed in the specimen bottom face. Thereafter, light irradiation experiments were performed for 6 cycles. Light irradiation was set so that the maximum temperature in the air on the pavement surface was 52 to 57 ° C.

前記試験結果の内、本発明に係る保水性舗装構造の試験結果を図16に、密粒度舗装構造の試験結果を図17に示す。保水性舗装及び密粒度舗装上の気中最大温度が52〜57℃であるとき、保水性舗装の石炭灰固化砕石層上部の最大温度は33〜36℃、密粒度舗装の砕石層上部の最大温度は48〜55℃であった。両者の温度差は15〜19℃あり、保水性舗装の温度抑制効果を裏付ける結果となった。また、保水性舗装構造のケースにおいて、表面温度(埋設した温度センサによる)は、最大値が45〜47℃であり、気中温度に対し7〜10℃低く保たれていた。   Among the test results, FIG. 16 shows the test result of the water-retaining pavement structure according to the present invention, and FIG. 17 shows the test result of the dense grain pavement structure. When the maximum atmospheric temperature on water-retaining pavement and dense-graded pavement is 52-57 ° C, the maximum temperature above the coal ash solidified crushed stone layer on the water-retentive pavement is 33-36 ° C, the maximum above the crushed stone layer on the dense-graded pavement The temperature was 48-55 ° C. The temperature difference between the two was 15-19 ° C., confirming the temperature control effect of the water-retaining pavement. Further, in the case of the water-retaining pavement structure, the maximum surface temperature (according to the embedded temperature sensor) was 45 to 47 ° C., which was kept 7 to 10 ° C. lower than the air temperature.

本発明に係る給水型保水性舗装構造の模式図である。It is a schematic diagram of the water supply type water retention pavement structure which concerns on this invention. 本給水型保水性舗装の冷却メカニズムを説明するための図で、(A)は雨天時、(B)は晴天時を示す図である。It is a figure for demonstrating the cooling mechanism of this water supply type water-retaining pavement, (A) is a figure at the time of rainy weather, (B) is a figure which shows at the time of fine weather. 各供試体のPロートフロー値と水粉体比との関係を示す図である。It is a figure which shows the relationship between the P funnel flow value and water powder ratio of each specimen. 石炭灰混合スラリーの毛細管現象による吸水性能を示す図である。It is a figure which shows the water absorption performance by the capillary phenomenon of coal ash mixing slurry. 配合による毛細管現象の違いを検証した実験結果を示す図(その1)である。It is a figure (the 1) which shows the experimental result which verified the difference in the capillary phenomenon by mixing | blending. 配合による毛細管現象の違いを検証した実験結果を示す図(その2)である。It is a figure (the 2) which shows the experimental result which verified the difference in the capillary phenomenon by mixing | blending. 配合による石炭灰混合スラリーの吸水率の違いを検証した実験結果を示す図である。It is a figure which shows the experimental result which verified the difference in the water absorption of the coal ash mixing slurry by mixing | blending. 配合による石炭灰混合スラリーの最大吸水量の違いを検証した実験結果を示す図である。It is a figure which shows the experimental result which verified the difference in the maximum water absorption of the coal ash mixing slurry by mixing | blending. 石炭灰固化砕石の吸水性能を検証した実験結果を示す図である。It is a figure which shows the experimental result which verified the water absorption performance of coal ash solidification crushed stone. 周辺温度を変えた場合の石炭灰固化砕石の水分損失の経過を示す図である。It is a figure which shows progress of the moisture loss of coal ash solidification crushed stone when ambient temperature is changed. 周辺湿度を変えた場合の石炭灰固化砕石の水分損失の経過を示す図である。It is a figure which shows progress of the water loss of coal ash solidification crushed stone when peripheral humidity is changed. 周辺環境(砕石の含水比)を変えた場合の水分損失実験の概略図である。It is the schematic of the water loss experiment at the time of changing surrounding environment (water content ratio of crushed stone). 周辺環境(砕石の含水比)を変えた場合の水分損失実験の結果を示す図である。It is a figure which shows the result of the water | moisture-content loss experiment at the time of changing surrounding environment (the water content ratio of a crushed stone). 本発明に係る給水型保水性舗装構造を模擬した実験装置の概略図である。It is the schematic of the experimental apparatus which simulated the water supply type water retention pavement structure which concerns on this invention. 従来の密粒度舗装を模擬した実験装置の概略図である。It is the schematic of the experimental apparatus which simulated the conventional dense grained pavement. 本発明の給水型保水性舗装構造の場合の経時的温度変化図である。It is a time-dependent temperature change figure in the case of the water supply type water retention pavement structure of this invention. 従来の密粒度舗装構造の場合の経時的温度変化図である。It is a time-dependent temperature change figure in the case of the conventional dense grained pavement structure.

1…給水型保水層(アスファルト保水層)、2…給水型貯水層(石炭灰固化砕石貯水層)、3…開粒度アスファルトコンクリート、4…石炭灰混合スラリー、5…石炭灰固化砕石   DESCRIPTION OF SYMBOLS 1 ... Water supply type water retention layer (asphalt water retention layer), 2 ... Water supply type water storage layer (coal ash solidification crushed water storage layer), 3 ... Open grained asphalt concrete, 4 ... Coal ash mixed slurry, 5 ... Coal ash solidification crushed stone

Claims (4)

開粒度アスファルトコンクリートの間隙部に石炭灰を主体とするスラリーを充填させた表層を成すアスファルト保水層と、このアスファルト保水層の下側に位置するとともに、石炭灰固化砕石を主体とし所定の密度に締め固められた石炭灰固化砕石貯水層とからなり、
前記石炭灰を主体とするスラリーは、石炭灰、石膏、石灰またはセメント、および水とを混合するとともに、混和剤を添加したスラリーであって、自己充填により前記石炭灰固化砕石層との界面まで浸透し、前記石炭灰固化砕石層との間に毛細管現象の連続性が確保されており、
前記石炭灰固化砕石は、石炭灰に石灰及び石膏を添加材として加え、水で混練した後成形し、次いで混練物の養生を行った後、養生固化体を破砕して得た砕石状固化体が用いられていることを特徴とする給水型保水性舗装構造。
An asphalt water retention layer that forms a surface layer in which a slurry mainly composed of coal ash is filled in the gaps of open-graded asphalt concrete, and is located below this asphalt water retention layer, and is mainly composed of coal ash solidified crushed stones to a predetermined density Consisting of a compacted coal ash solidified crushed water reservoir,
Slurry consisting mainly of the coal ash, coal ash, gypsum, lime or cement, and with mixing the water, a slurry prepared by adding a mixed wettable powder, an interface between the coal ash solidified crushed stone layer by self-priming And continuity of capillary action is ensured between the coal ash solidified crushed stone layer,
The coal ash solidified crushed stone is obtained by adding lime and gypsum to coal ash as additives, kneading with water, shaping, then curing the kneaded material, and then crushing the cured solidified material. A water supply type water-retaining pavement structure characterized in that is used.
開粒度アスファルトコンクリートの間隙部に石炭灰を主体とするスラリーを充填させた表層を成すアスファルト保水層と、このアスファルト保水層の下側に位置するとともに、石炭灰固化砕石を主体とし所定の密度に締め固められた石炭灰固化砕石貯水層とからなり、Asphalt water retention layer that forms a surface layer filled with slurry mainly composed of coal ash in the gap of open grained asphalt concrete, and located below this asphalt water retention layer, and mainly composed of coal ash solidified crushed stone to a predetermined density Consisting of a compacted coal ash solidified crushed water reservoir,
前記石炭灰を主体とするスラリーは、石炭灰、石膏、石灰またはセメント、および水とを混合したスラリーであって、自己充填により前記石炭灰固化砕石層との界面まで浸透し、前記石炭灰固化砕石層との間に毛細管現象の連続性が確保されており、The slurry mainly composed of coal ash is a slurry in which coal ash, gypsum, lime or cement, and water are mixed, and penetrates to the interface with the coal ash solidified crushed stone layer by self-filling, and the coal ash solidified. Capillary continuity is ensured between the crushed stone layer,
前記石炭灰固化砕石は、石炭灰に石灰及び石膏を添加材として加え、水で混練した後成形し、次いで混練物の養生を行った後、養生固化体を破砕して得た砕石状固化体が用いられていることを特徴とする給水型保水性舗装構造。The coal ash solidified crushed stone is obtained by adding lime and gypsum to coal ash as additives, kneading with water, shaping, then curing the kneaded material, and then crushing the cured solidified material. A water supply type water-retaining pavement structure characterized in that is used.
前記石炭灰固化砕石中に繊維材料を混合してある請求項1、2いずれかに記載の給水型保水性舗装構造。 The water supply type water-retaining pavement structure according to claim 1 , wherein a fiber material is mixed in the coal ash solidified crushed stone. 既設路盤の上部に石炭灰固化砕石を所定厚で締固めた後、この石炭灰固化砕石層の上面に開粒度アスファルトコンクリートを所定厚で敷設し、次いで石炭灰を主体とするスラリーを前記開粒度アスファルトコンクリートの上面から供給し、前記石炭灰固化砕石層との界面まで浸透させることを特徴とする請求項1〜3いずれかに記載の給水型保水性舗装構造のための施工方法。 After the coal ash solidified crushed stone is compacted to the upper part of the existing roadbed with a predetermined thickness, an open-graded asphalt concrete is laid on the upper surface of the coal ash solidified crushed stone layer with a predetermined thickness, and then the slurry mainly composed of coal ash The construction method for a water supply type water-retaining pavement structure according to any one of claims 1 to 3 , wherein the asphalt concrete is supplied from the upper surface and penetrates to an interface with the coal ash solidified crushed stone layer.
JP2005027510A 2005-02-03 2005-02-03 Water supply type water retaining pavement structure and its construction method Expired - Fee Related JP4517357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005027510A JP4517357B2 (en) 2005-02-03 2005-02-03 Water supply type water retaining pavement structure and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005027510A JP4517357B2 (en) 2005-02-03 2005-02-03 Water supply type water retaining pavement structure and its construction method

Publications (2)

Publication Number Publication Date
JP2006214147A JP2006214147A (en) 2006-08-17
JP4517357B2 true JP4517357B2 (en) 2010-08-04

Family

ID=36977596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005027510A Expired - Fee Related JP4517357B2 (en) 2005-02-03 2005-02-03 Water supply type water retaining pavement structure and its construction method

Country Status (1)

Country Link
JP (1) JP4517357B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248656A (en) * 2007-03-30 2008-10-16 Fukui Prefecture Multifunctional water retaining material and multifunctional water retaining pavement body using this material
CN106223152B (en) * 2016-08-29 2018-07-10 山东省交通科学研究院 A kind of particulate formula high-performance Recycled Asphalt Pavement for being easy to construction
CN106351101B (en) * 2016-08-29 2019-01-15 山东省交通科学研究院 A kind of Heavy Traffic pavement of road paving structure based on particulate formula high-performance bituminous concrete
JP7120950B2 (en) * 2019-03-14 2022-08-17 Ube三菱セメント株式会社 Method for producing fly ash mixed material

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045206A (en) * 1998-07-29 2000-02-15 Ohbayashi Corp Wet pavement structure and its construction method
JP2002255619A (en) * 2001-02-27 2002-09-11 Taiheiyo Cement Corp Material for filling cavity
JP2003147716A (en) * 2001-11-13 2003-05-21 Kawasaki Steel Corp Pavement provided with water permeability, water draining capability and water retentivity and its construction method
JP2003160906A (en) * 2001-11-26 2003-06-06 Kawasaki Steel Corp Pavement with both permeable/drainable and water retentive functions, and method for its work execution
JP2003184014A (en) * 2001-12-20 2003-07-03 Nippon Hodo Co Ltd Road paving body
JP2003201705A (en) * 2001-11-01 2003-07-18 Onoda Chemico Co Ltd Paving body and its building method
JP3455184B2 (en) * 2001-01-09 2003-10-14 川崎重工業株式会社 Method for producing granular solidified material from coal ash
JP2004155636A (en) * 2002-11-08 2004-06-03 Kyoko Kensetsu Kk Construction or building material using slag or fly ash as main material
JP2004203693A (en) * 2002-12-26 2004-07-22 Taiheiyo Cement Corp Water retentive hardening agent and water retentive hardened body including the same
JP2004224680A (en) * 2003-01-23 2004-08-12 Nt Nitto Sangyo Kk Method of producing water retentive civil engineering construction material capable of utilizing vaporization cooling of water and fixing of carbon dioxide
JP2004256585A (en) * 2003-02-24 2004-09-16 Takenaka Doboku Co Ltd Slurry for ground improving work, improved ground formed by using the slurry, and dispersant for slurry for ground improving work
JP2005002575A (en) * 2003-06-09 2005-01-06 Tokyu Construction Co Ltd Water supply type water retentive paving

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209613A (en) * 1995-02-03 1996-08-13 Taisei Rotetsuku Kk Pavement body having a function of suppressing rise of road surface temperature

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045206A (en) * 1998-07-29 2000-02-15 Ohbayashi Corp Wet pavement structure and its construction method
JP3455184B2 (en) * 2001-01-09 2003-10-14 川崎重工業株式会社 Method for producing granular solidified material from coal ash
JP2002255619A (en) * 2001-02-27 2002-09-11 Taiheiyo Cement Corp Material for filling cavity
JP2003201705A (en) * 2001-11-01 2003-07-18 Onoda Chemico Co Ltd Paving body and its building method
JP2003147716A (en) * 2001-11-13 2003-05-21 Kawasaki Steel Corp Pavement provided with water permeability, water draining capability and water retentivity and its construction method
JP2003160906A (en) * 2001-11-26 2003-06-06 Kawasaki Steel Corp Pavement with both permeable/drainable and water retentive functions, and method for its work execution
JP2003184014A (en) * 2001-12-20 2003-07-03 Nippon Hodo Co Ltd Road paving body
JP2004155636A (en) * 2002-11-08 2004-06-03 Kyoko Kensetsu Kk Construction or building material using slag or fly ash as main material
JP2004203693A (en) * 2002-12-26 2004-07-22 Taiheiyo Cement Corp Water retentive hardening agent and water retentive hardened body including the same
JP2004224680A (en) * 2003-01-23 2004-08-12 Nt Nitto Sangyo Kk Method of producing water retentive civil engineering construction material capable of utilizing vaporization cooling of water and fixing of carbon dioxide
JP2004256585A (en) * 2003-02-24 2004-09-16 Takenaka Doboku Co Ltd Slurry for ground improving work, improved ground formed by using the slurry, and dispersant for slurry for ground improving work
JP2005002575A (en) * 2003-06-09 2005-01-06 Tokyu Construction Co Ltd Water supply type water retentive paving

Also Published As

Publication number Publication date
JP2006214147A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
JP4517357B2 (en) Water supply type water retaining pavement structure and its construction method
JP2008002225A (en) Water absorbing/retaining carbide-coated aggregate and water absorbing/retaining paving material using the same
JP4147154B2 (en) Water-retaining pavement and its construction method
JP4255802B2 (en) Pavement
JP2003201705A (en) Paving body and its building method
JP4246940B2 (en) Paving method
JP4599233B2 (en) Substructure of water retention pavement
KR102252941B1 (en) Sidewalk and driveway block package having heat insulation function, water holding and permeable capacity, Sidewalk and driveway block system using the same, and Construction method using the same
JP5308967B2 (en) Pavement structure and pavement construction method
JP4140228B2 (en) Hydraulic material for water retentive solidified body and water retentive solidified body
JP2007046337A (en) Filling material for pavement body and water retaining pavement body
KR100883141B1 (en) Water absorbing type retentive concrete composite materials and it&#39;s manufacturing method
JP4572079B2 (en) Water-retaining material composition for pavement and construction method of water-retaining pavement
JP2005068900A (en) Water retentive pavement structure, its construction method and its water retentive function maintaining method
JP2002128560A (en) Water-absorbing molded form and its manufacturing method
JP2008303620A (en) Water retentive concrete block and method of producing the same
JP2003147716A (en) Pavement provided with water permeability, water draining capability and water retentivity and its construction method
JP4479330B2 (en) Hydraulic material for water retentive solidified body and water retentive solidified body
WO2007023570A1 (en) Water retaining material composition for paving and method for applying water retaining paving
JP4692830B2 (en) Filled water retention material for water retentive pavement
JP2008008041A (en) Building or civil-engineering constructed object
JP2008215039A (en) Water-retention/permeation pavement block and its manufacturing method
JP2000226835A (en) Water permeable soil block
JP4867501B2 (en) Water retention block and method for producing the same
WO2006022417A1 (en) Cement composition and pavement structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees