JP4599233B2 - Substructure of water retention pavement - Google Patents

Substructure of water retention pavement Download PDF

Info

Publication number
JP4599233B2
JP4599233B2 JP2005169402A JP2005169402A JP4599233B2 JP 4599233 B2 JP4599233 B2 JP 4599233B2 JP 2005169402 A JP2005169402 A JP 2005169402A JP 2005169402 A JP2005169402 A JP 2005169402A JP 4599233 B2 JP4599233 B2 JP 4599233B2
Authority
JP
Japan
Prior art keywords
water
pavement
layer
sand
retaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005169402A
Other languages
Japanese (ja)
Other versions
JP2006342585A (en
Inventor
毅 藤野
克則 大西
義正 近藤
英雄 居上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Maguma Co Ltd
Saitama University NUC
Original Assignee
Sekisui Chemical Co Ltd
Maguma Co Ltd
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd, Maguma Co Ltd, Saitama University NUC filed Critical Sekisui Chemical Co Ltd
Priority to JP2005169402A priority Critical patent/JP4599233B2/en
Publication of JP2006342585A publication Critical patent/JP2006342585A/en
Application granted granted Critical
Publication of JP4599233B2 publication Critical patent/JP4599233B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/001Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing unburned clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/10Lime cements or magnesium oxide cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00284Materials permeable to liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Road Paving Structures (AREA)

Description

本発明は、保水性舗装の下部構造に関し、さらに詳しくは、保水性舗装、特に保水性舗道のヒートアイランド現象を緩和する効果を天候に左右されずに常時発揮させるため、保水性舗道の表面を形成する保水性舗装層内部に向けて給水する機能を有する、保水性舗装の下部構造に関する。   The present invention relates to a substructure of a water-retaining pavement, and more specifically, to form the surface of a water-retaining pavement in order to always exhibit the effect of alleviating the heat island phenomenon of the water-retaining pavement, particularly the water-retaining pavement, regardless of the weather. The present invention relates to a lower structure of water retention pavement having a function of supplying water toward the inside of the water retention pavement layer.

近年、ヒートアイランド現象が問題となっている。その主な原因としては、アスファルト舗装及びコンクリート構造物等により自然地盤からの水の蒸発が阻害されることや、それらの蓄熱と照り返しによる輻射熱の増加、ビル等の空調による排熱の増加、並びに車輌の排出ガス熱の影響などが挙げられる。ここで、アスファルト等による道路舗装は、その色調が黒であるため太陽光を吸収しやすく表面温度が上昇し、特に、道路舗装比率の高い都市部でのヒートアイランド現象の発生要因の一つとなっている。   In recent years, the heat island phenomenon has become a problem. The main causes are that the evaporation of water from the natural ground is hindered by asphalt pavement and concrete structures, etc., the increase in radiant heat due to their heat storage and reflection, the increase in exhaust heat due to air conditioning of buildings etc., and The effect of exhaust gas heat from vehicles. Here, road pavement made of asphalt, etc., has a black color tone, so it easily absorbs sunlight and rises in surface temperature, and is one of the causes of the heat island phenomenon, especially in urban areas where the road pavement ratio is high. Yes.

このヒートアイランド現象の緩和に向けた道路舗装分野での取組みとしては、公的な機関での検証により、保水性舗装により舗装路面温度を下げることが有効であることが実証され、このため保水性舗装がなされた舗道が採用されるようになっている。ここで、保水性舗装とは、舗装体内に水分を吸水し保水する機能を持った舗装である。例えば、保水性舗道のヒートアイランド緩和作用は、雨水などを舗装内部に保水しておき、晴天時にこの雨水を蒸発させて気化熱を奪うことにより舗装路面温度を低下させることにより行なわれる。   As efforts in the field of road pavement to alleviate this heat island phenomenon, it has been proved that it is effective to lower the pavement surface temperature by water retentive pavement through verification by a public institution. The pavement that has been made is adopted. Here, the water-retaining pavement is a pavement having a function of absorbing and retaining water in the pavement. For example, the heat island mitigating action of a water retentive pavement is carried out by keeping rainwater or the like inside the pavement and evaporating the rainwater during clear weather to take away the heat of vaporization and thereby reducing the pavement surface temperature.

しかしながら、保水性舗装は、一般にその保水能力に限界があり、一方雨水による水分の供給は天候に左右されるので、例えば、真夏時にあっては2、3日雨が降らなければすぐに蒸発し保水状態はゼロとなる。このために、舗装路面に路面温度を下げる機能を常に持たせるようにするには、散水車によって水を定期的に供給しなくてはならず、その維持と管理のため多大なコストが必要とされていた。   However, water-retaining pavements generally have limited water retention capacity, while the water supply by rainwater depends on the weather. For example, in midsummer, if it does not rain for a few days, it evaporates immediately. The water retention status is zero. For this reason, in order to always have the function of lowering the road surface temperature on the paved road surface, water must be periodically supplied by a watering vehicle, and a large cost is required for its maintenance and management. It had been.

この解決策として、例えば、地下に埋設された雨水を溜める雨水貯留施設から吸水して表面の保水性舗装層内へ供給する吸水型の保水性舗装構造(例えば、特許文献1参照。)、道路の表層を構成する保水性混合物層と、該保水性混合物層下に設けて保水性混合物層に水分を供給する給水路盤と、該給水路盤下に設けた水分を含浸可能な給水材と、該給水材に供給する水分を貯留するための貯水部と、からなり、貯水部から給水材に供給した水分を給水路盤を通じて保水性混合物層に供給させて路面を冷却する給水型保水性舗装(例えば、特許文献2参照。)、内部に連続空隙を有する開粒度混合物層と、この連続空隙に充填された保水性及び吸湿性を有する充填材とからなり、吸湿材により外気中の水分を吸湿させるとともに、その水分を保水剤で保水するようにした保水性舗装構造(例えば、特許文献3参照。)等が提案されている。   As a solution to this, for example, a water-absorbing pavement structure that absorbs water from a rainwater storage facility that stores rainwater buried underground and supplies the water into the surface water-retaining pavement layer (see, for example, Patent Document 1), roads. A water retention mixture layer constituting the surface layer, a water supply channel board provided under the water retention mixture layer for supplying moisture to the water retention mixture layer, a water supply material capable of impregnating moisture provided under the water supply channel board, A water storage unit for storing water to be supplied to the water supply material, and a water supply type water retention pavement for cooling the road surface by supplying the water supplied from the water storage unit to the water supply material to the water retention mixture layer through the water supply channel (for example, , See Patent Document 2), and comprises an open particle size mixture layer having continuous voids inside and a filler having water retention and hygroscopicity filled in the continuous voids, and moisture in the outside air is absorbed by the hygroscopic material. Along with its moisture Retentive pavement structure so as to water retention with water agent (for example, see. Patent Document 3) have been proposed.

しかしながら、これらの提案において、保水性舗装の下部に雨水貯留施設等を設置して給水を行う手段を講じるものでは、設備費用及びメンテナンス等のコストがかかり、また、保水性舗装内部に保水剤と吸湿剤からなる充填材を有するものでは、その吸湿性に限界があるとともに高コストであるので、いずれの提案も経済的に得策でない。
以上の状況から、保水性舗装、特に、保水性舗道の保水性舗装層内部に向けて、低コストで給水することができる手段が求められている。
However, in these proposals, if rainwater storage facilities are installed at the lower part of the water-retaining pavement and measures are taken to supply water, equipment costs and maintenance costs are incurred. In the case of a filler having a hygroscopic agent, the hygroscopicity is limited and the cost is high, so neither proposal is economically advantageous.
From the above situation, there is a demand for means capable of supplying water at a low cost toward the water-retaining pavement, in particular, the inside of the water-retaining pavement layer of the water-retaining pavement.

特開2004−293098号公報(第1頁、第2頁)JP 2004-293098 A (first page, second page) 特開2005−2575号公報(第1頁、第2頁)Japanese Patent Laying-Open No. 2005-2575 (first page, second page) 特開2005−68900号公報(第1頁、第2頁)Japanese Patent Laying-Open No. 2005-68900 (first page, second page)

本発明の目的は、上記の従来技術の問題点に鑑み、保水性舗装、特に保水性舗道のヒートアイランド現象を緩和する効果を天候に左右されずに常時発揮させるため、保水性舗道の表面を形成する保水性舗装層内部に向けて給水する機能を有する、保水性舗装の下部構造を提供することにある。   In view of the above-mentioned problems of the prior art, the object of the present invention is to form the surface of the water-retaining pavement, in order to always exert the effect of alleviating the heat island phenomenon of the water-retaining pavement, especially the water-retaining pavement, regardless of the weather. An object of the present invention is to provide a lower structure of a water-retaining pavement having a function of supplying water toward the inside of the water-retaining pavement layer.

本発明者らは、上記目的を達成するために、保水性舗装の路盤構造について、鋭意研究を重ねた結果、保水性舗装の下部構造として、土砂を特定の条件で処理した毛細管作用による透水性を有する下部構造体を用いたところ、保水性舗道の表面を形成する保水性舗装層内部への給水機能を有する下部構造が得られることを見出し、本発明を完成した。   In order to achieve the above-mentioned object, the present inventors conducted extensive research on the roadbed structure of the water-retaining pavement. As a result, the present inventors have found that a substructure having a function of supplying water into the water-retaining pavement layer forming the surface of the water-retaining pavement can be obtained.

すなわち、本発明の第1の発明によれば、保水性舗装層(A)と基礎地盤(C)の間に、土砂に固化剤として半水石膏を添加しそれを混合撹拌・転圧することにより得られ、砂層と砕石層の2層から構成される、下記の式(1)を満足する透水係数(k)を有する下部構造体(B)を設置して、(A)/(B)/(C)の層構成にすることにより、基礎地盤中の水を吸い上げ、保水性舗装層への給水機能を持たせたことを特徴とする保水性舗装の下部構造が提供される。
5×10−3>k>10−6 (1)
(ここで、kの単位は、cm/secである。)
That is, according to the first invention of the present invention, by adding hemihydrate gypsum as a solidifying agent to earth and sand between the water-retaining pavement layer (A) and the foundation ground (C), and mixing and stirring and rolling the mixture. the resulting, Ru is composed of two layers of sand and crushed stone layer, by installing the lower structure (B) having a coefficient of permeability (k) satisfying the equation (1) below, (a) / (B) / With the layer configuration of (C), the lower structure of the water-retaining pavement is provided, which sucks up water in the foundation ground and has a function of supplying water to the water-retaining pavement layer.
5 × 10 −3 >k> 10 −6 (1)
(Here, the unit of k is cm / sec.)

また、本発明の第2の発明によれば、第1の発明において、前記土砂は、砂、砕石又は現地発生土から選ばれる少なくとも1種であることを特徴とする保水性舗装の下部構造が提供される。   According to a second aspect of the present invention, there is provided the lower structure of the water-retaining pavement according to the first aspect, wherein the earth and sand is at least one selected from sand, crushed stone, and locally generated soil. Provided.

本発明の保水性舗装の下部構造によれば、第1の発明においては、保水性舗装のため給水用の別途設備を設置することが不要であり、かつエネルギー効率の高い手段で保水性舗装層内部に向けて地中の水を給水することができ、これによって保水性舗装、特に保水性舗道のヒートアイランド現象を緩和する効果を天候に左右されずに常時発揮させることができるので、環境上及び経済上の価値は極めて大きい。また、下部構造体の透水係数を測定し、それを所定値に調整することによって、好ましい透水性に管理することができるので、使用する土砂に対する固化材の種類と配合量の最適化、試験体による事前測定による配合割合の決定等のため、有用な手段が得られる。また、適切な透水性とともにクッション機能と地耐力を保持する機能を保証することができるので、保水性舗道等の広範囲な用途に用いられる。 According to the lower structure of the water-retaining pavement of the present invention, in the first invention, it is not necessary to install a separate water supply facility for the water-retaining pavement, and the water-retaining pavement layer is highly energy efficient. The water in the ground can be supplied to the inside, and this makes it possible to always demonstrate the effect of mitigating the heat island phenomenon of water retention pavement, especially water retention pavement, regardless of the weather. The economic value is extremely high. In addition, by measuring the water permeability coefficient of the substructure and adjusting it to a predetermined value, it is possible to manage the water permeability to be favorable, so the type and amount of the solidifying material for the earth and sand to be used are optimized. Useful means can be obtained, for example, for determination of the blending ratio by pre-measurement. Moreover, since it can guarantee the cushion function and the function of retaining the earth strength with appropriate water permeability, it can be used for a wide range of applications such as a water-retaining pavement.

また、第2の発明によれば、土砂及び固化材として適切なものを選択して、保水性舗装の用途に応じて、より効果を発揮することができる。 Moreover, according to 2nd invention, a suitable thing can be selected as earth and sand and a solidification material, and according to the use of a water retention pavement, an effect can be exhibited more.

以下、本発明の保水性舗装の下部構造について詳細に説明する。
本発明の保水性舗装の下部構造は、保水性舗装層(A)と基礎地盤(C)の間に、土砂に固化材として半水石膏を添加しそれを混合撹拌・転圧することにより得られ、砂層と砕石層の2層から構成される、下記の式(1)を満足する透水係数(k)を有する下部構造体(B)を設置して、(A)/(B)/(C)の層構成にすることにより、基礎地盤中の水を吸い上げ保水性舗装層への給水機能を持たせたことを特徴とする。
5×10 −3 >k>10 −6 (1)
(ここで、kの単位は、cm/secである。)

Hereinafter, the lower structure of the water-retaining pavement of the present invention will be described in detail.
The substructure of the water-retaining pavement of the present invention is obtained by adding hemihydrate gypsum as a solidifying material to the earth and sand, mixing and stirring and rolling between the water-retaining pavement layer (A) and the foundation ground (C). , Ru is composed of two layers of sand and crushed stone layer, by installing the lower structure (B) having a coefficient of permeability (k) satisfying the equation (1) below, (a) / (B) / (C ), The water in the foundation ground is sucked up and the water supply function to the water-retaining pavement layer is given.
5 × 10 −3 >k> 10 −6 (1)
(Here, the unit of k is cm / sec.)

本発明において、保水性舗装の下部構造体として、土砂に固化材を添加しそれを混合撹拌・転圧することにより毛細管作用による透水性を付与した土砂を用いることが重要である。すなわち、この下部構造体を保水性舗装層と基礎地盤の間に設置することにより、保水性舗道の表面を形成する保水性舗装層内部に向けて毛細管作用により地中の水を給水する機能を有する下部構造が得られる。したがって、保水性舗装によるヒートアイランド現象を緩和する効果を天候に左右されずに常時発揮させることができる。また、同時に、下部構造体の施工性を向上させるとともに、下部構造に地耐力を保持する機能を付与することができる。   In the present invention, it is important to use soil and sand imparted with water permeability by capillary action by adding a solidifying material to the soil and mixing and agitating and rolling it as the lower structure of the water-retaining pavement. In other words, by installing this substructure between the water-retaining pavement layer and the foundation ground, it has the function of supplying underground water to the inside of the water-retaining pavement layer that forms the surface of the water-retaining pavement by capillary action. The substructure having is obtained. Therefore, the effect of relieving the heat island phenomenon caused by the water-retaining pavement can always be exhibited regardless of the weather. At the same time, it is possible to improve the workability of the lower structure and to impart a function of maintaining the earth strength to the lower structure.

まず、本発明の概要を、図を用いて説明する。図1は、本発明の毛細管作用を有する下部構造体を含む下部構造を用いた保水性舗道における給水の概念図を表す。
図1において、保水性舗装材、保水性ブロック材等の保水性舗装層1と、自然状態の土壌を整地した基礎地盤2との間に、下部構造体3が設置される。ここで、下部構造体3を通じて、基礎地盤2から保水性舗装層1への給水が行われる。すなわち、保水性舗装層1内部にある保水部4の水が蒸発されたとき、基礎地盤2中に自然状態で形成されている貯水部5から、毛細管作用による給水経路6を経由して、保水部4に水が吸い上げられる。なお、貯水部5の水は、地中に滲みこんだ雨水又は地下水脈により補充される。
First, the outline of the present invention will be described with reference to the drawings. FIG. 1 shows a conceptual diagram of water supply in a water retention pavement using a lower structure including a lower structure having a capillary action according to the present invention.
In FIG. 1, a lower structure 3 is installed between a water-retaining pavement layer 1 such as a water-retaining pavement material and a water-retained block material, and a foundation ground 2 in which natural soil is leveled. Here, water is supplied from the foundation ground 2 to the water-retaining pavement layer 1 through the lower structure 3. That is, when the water in the water retention part 4 in the water retention pavement layer 1 is evaporated, the water retention part 5 is formed from the water storage part 5 formed in the foundation ground 2 in a natural state via the water supply path 6 by capillary action. Water is sucked up by the part 4. In addition, the water of the water storage part 5 is replenished by the rain water or the underground water vein which oozed into the ground.

ところで、従来の保水性舗道の下部構造では、歩道、広場、車道等、舗装される路面の用途により、種々の路盤構造がとられる。例えば、保水性舗装層と基礎地盤との間に、サンドクッション(砂)層、透水性瀝青安定処理層、クラッシャーラン(砕石)層、フィルター層等が適宜設けられる。ここで、砂層は主に舗道を平滑に仕上げること、また砕石層は強度を分散することを目的としている。通常、これらの層に使用する砂又は砕石としては、粒度が粗いものが用いられる。このため、従来の砂層及び砕石層は、保水性舗装層から下部へ通水する用途には適しているが、下部の基礎地盤から水を吸い上げる機能を有していない。したがって、それらの下部の基礎地盤中に水があっても、これらの層を設けると、保水性舗装層内部へ向けての水の供給が絶たれ、地中の水を有効に活用することができなかった。   By the way, in the lower structure of the conventional water retention pavement, various roadbed structures are taken according to the use of the road surface to be paved, such as a sidewalk, a plaza, and a roadway. For example, a sand cushion (sand) layer, a water-permeable bitumen stabilization treatment layer, a crusher run (crushed stone) layer, a filter layer, and the like are appropriately provided between the water-retaining pavement layer and the foundation ground. Here, the purpose of the sand layer is to finish the pavement smoothly, and the purpose of the crushed stone layer is to disperse the strength. Usually, the sand or crushed stone used in these layers has a coarse particle size. For this reason, the conventional sand layer and crushed stone layer are suitable for the purpose of passing water from the water-retaining pavement layer to the lower part, but do not have a function of sucking water from the lower foundation ground. Therefore, even if there is water in the foundation ground below them, if these layers are provided, the water supply to the inside of the water-retaining pavement layer will be cut off, and the water in the ground can be used effectively. could not.

これに対して、本発明の保水性舗装の下部構造を用いた舗道では、固化材を添加して毛細管作用による透水性を持たせるように調製された下部構造体によって、下部の基礎地盤から効率良く水を吸い上げて、地中の水を有効に活用することができる。   On the other hand, in the pavement using the lower structure of the water-retaining pavement of the present invention, the lower structure prepared so as to have a water permeability by capillary action by adding a solidifying material is effective from the lower foundation ground. It can absorb water well and make effective use of underground water.

本発明の下部構造としては、保水性舗装層と接する毛細管作用による透水性を有する下部構造体と、自然状態の土壌を整地した基礎地盤とからなるものである。
上記下部構造体としては、現地発生土、砂、砕石、又はこれらの混合物の単層構造の他、歩道、広場、車道等の路面の用途に対して適切なクッション機能と地耐力を保持する機能を保証するために、所定の地耐力、厚さ等を有する複数の層から構成される路盤構造をとることができる。例えば、毛細管作用による透水性を持たせた砂層、砕石層及びそれらの混合層、ならびに、それらを組合せたものが適宜用いられる。特に、現地発生土の特性、調達しやすい土砂、及び舗装路面の用途等により、現地発生土又は調達された砂、砕石等による砂層と砕石層の2層構造が選ばれる。
The lower structure of the present invention is composed of a lower structure having water permeability by capillary action in contact with the water-retaining pavement layer and a foundation ground prepared by leveling soil in a natural state.
As the above-mentioned substructure, in addition to the single-layer structure of locally generated soil, sand, crushed stone, or a mixture thereof, the function of maintaining a cushion function and earth resistance appropriate for road surfaces such as sidewalks, plazas, and roadways Therefore, a roadbed structure composed of a plurality of layers having a predetermined earth bearing strength, thickness, etc. can be taken. For example, a sand layer, a crushed stone layer, a mixed layer thereof, and a combination thereof, which have water permeability by capillary action, and a combination thereof are appropriately used. In particular, a two-layer structure of a sand layer and a crushed stone layer made of locally generated soil or procured sand, crushed stone, and the like is selected depending on the characteristics of the locally generated soil, easily available earth, and the use of a paved road surface.

さらに、必要に応じて、保水性舗装層と前記下部構造体との層間、下部構造体を構成する各層の層間、又は前記下部構造体と基礎地盤との間に、所望の透水性を有する透水性シート、又は所望の吸水性を有する不織布等の吸水性シートを設けることができる。   Further, if necessary, water permeability having a desired water permeability between the water-retaining pavement layer and the lower structure, between the layers constituting the lower structure, or between the lower structure and the foundation ground. A water-absorbing sheet such as a non-woven fabric having a desired water-absorbing property or a desired water-absorbing property can be provided.

上記砂層、砕石層及びそれらの混合層としては、固化材を添加しそれを混合攪拌・転圧することにより、土砂内部の空隙径を調整したものが用いられる。これによって、砂層、砕石層及びそれらの混合層内部に毛細管作用を付与することにより所望の透水性を保持し、地中の水を下部の基礎地盤の土壌から上部の保水性舗装層へ供給する機能を維持することができる。   As the sand layer, the crushed stone layer, and the mixed layer thereof, those in which the void diameter inside the earth and sand is adjusted by adding a solidifying material, mixing, stirring and rolling it are used. As a result, the desired water permeability is maintained by providing a capillary action inside the sand layer, the crushed stone layer, and their mixed layer, and the underground water is supplied from the soil of the lower foundation ground to the upper water-retaining pavement layer. The function can be maintained.

上記下部構造体の調製方法としては、土砂に固化材を添加しそれを混合攪拌・転圧することにより、毛細管作用による透水性が保持されるように行なう。すなわち、上記毛細管作用による透水性としては、固化材の種類と配合量、混合方法等を変えて土砂の空隙径を調整して、所望の透水性を下部構造体に持たせることによって達成される。しかも、上記方法で調製された調合物は施工性が良好であるので、上記調合物を整地された基礎地盤上に敷設することにより下部構造体が形成される。   The lower structure is prepared by adding a solidification material to the earth and sand, mixing and agitating and rolling it so that water permeability due to capillary action is maintained. That is, the water permeability by the capillary action is achieved by changing the kind and blending amount of the solidifying material, the mixing method, etc., and adjusting the pore diameter of the earth and sand to give the lower structure the desired water permeability. . And since the preparation prepared by the said method has favorable workability | operativity, a lower structure is formed by laying | laying the said preparation on the foundation ground leveled.

上記混合撹拌としては、特に限定されるものではなく、例えば、スタビライザー等の混合装置を用いて、土砂中に固化材が分散され所望の透水性を有するように行なう。また、上記転圧としては、振動ローラ等の締固め機械を用いて、土砂中に分散された固化材が土砂に密着され所望の透水性を有するように行なう。   The mixing and stirring is not particularly limited, and for example, using a mixing device such as a stabilizer, the solidification material is dispersed in the earth and sand and has a desired water permeability. Further, the rolling pressure is performed using a compacting machine such as a vibrating roller so that the solidified material dispersed in the earth and sand is in close contact with the earth and sand and has a desired water permeability.

上記土砂としては、特に限定されるものではなく、調達が容易な砂、砕石又は現地発生土から選ばれる少なくとも1種が挙げられる。一般に、現地発生土としては、実質上不透水である粘性土、透水性が低いシルト、砂―シルト―粘土の混合土等、透水性の高い粗砂、礫等が含まれる。これらの中で、例えば、前述した舗装路面の用途に応じて、現地発生土を主資材として用い、これに地耐力を勘案して砂、砕石等を調合して用いるのが経済上好ましい。   The earth and sand are not particularly limited, and examples thereof include at least one selected from sand, crushed stone, and locally generated earth that can be easily procured. In general, the locally generated soil includes cohesive soil that is substantially impermeable, silt with low permeability, sand-silt-clay mixed soil, such as coarse sand with high permeability, gravel, and the like. Among these, for example, it is economically preferable to use locally generated soil as a main material according to the use of the above-described paved road surface, and to mix and use sand, crushed stone, etc. in consideration of ground strength.

上記固化材としては、特に限定されるものではなく、上記土砂の透水性を改質する作用がある石膏、セメント、石灰又は粘土鉱物から選ばれる少なくとも1種が用いられる。ここで、石膏系固化材としては、凝結硬化する性質を有する半水石膏、例えば市販の焼石膏が好ましい。また、セメント系固化材としては、超速硬性セメント、普通ポルトランドセメント、超早強セメント、早強セメント、高炉セメント等の市販のセメントから、施工条件等を考慮し適宜選択して用いる。また、石灰系固化材としては、生石灰、消石灰、炭酸カルシウム等の粉末が挙げられる。また、粘土鉱物としては、カオリナイト、ベントナイト等の粉末が挙げられる。   The solidifying material is not particularly limited, and at least one selected from gypsum, cement, lime, or clay mineral having an action of improving the water permeability of the earth and sand is used. Here, as the gypsum-based solidifying material, hemihydrate gypsum having a property of setting and hardening, for example, commercially available calcined gypsum is preferable. The cement-based solidifying material is appropriately selected from commercially available cements such as super fast hard cement, ordinary Portland cement, ultra-high strength cement, early strength cement, and blast furnace cement. Examples of the lime-based solidifying material include powders such as quick lime, slaked lime, and calcium carbonate. Examples of the clay mineral include powders such as kaolinite and bentonite.

上記固化材の選定では、使用する土砂が本来有している透水性の度合いに応じて適切な透水性が付与されるように行うことが望ましい。例えば、土砂が実質上不透水である粘性土の場合には、石灰、半水石膏等の凝結硬化性の固化材を用いて土砂を団粒化させ透水性を上昇させるように改質する。また、透水性の高い礫の場合には、上記固化材を用いて透水性を低下させるように改質する。また、透水性が中位の砂の場合には、上記固化材のいずれかを用いてより適切な透水性に上昇させる。   In the selection of the solidifying material, it is desirable to perform the appropriate water permeability depending on the degree of water permeability inherent in the earth and sand to be used. For example, in the case of clay soil that is substantially impermeable to water, the soil is aggregated by using a coagulating and hardening solidifying material such as lime and hemihydrate gypsum so that the water permeability is improved. Moreover, in the case of gravel with high water permeability, it modifies so that water permeability may be reduced using the said solidification material. Further, in the case of sand having a medium water permeability, the water is raised to a more appropriate water permeability using any of the above solidifying materials.

上記固化材の配合量としては、特に限定されるものではなく、使用する土砂の種類により下部構造体において所望の透水性が得られるように、また、得られる下部構造体の施工性と地耐力を勘案して決定されるが、通常、土砂に対して、3〜20重量%が用いられる。   The blending amount of the solidifying material is not particularly limited, so that the desired water permeability can be obtained in the lower structure depending on the type of earth and sand used, and the workability and the earth strength of the obtained lower structure. However, usually 3 to 20% by weight is used with respect to earth and sand.

本発明に用いる下部構造体の透水係数(k)としては、特に限定されるものではないが、下記の式(1)を満足するように、固化材の種類、配合量等を調整することが、所望の透水性を得るため好ましい。さらに、下記の式(2)を満足するように調整することが、より好ましい。   The water permeability coefficient (k) of the lower structure used in the present invention is not particularly limited, but it is possible to adjust the type, blending amount, etc. of the solidifying material so as to satisfy the following formula (1). In order to obtain a desired water permeability, it is preferable. Furthermore, it is more preferable to adjust so as to satisfy the following formula (2).

5×10−3>k>10−6 (1)
10−3>k>10−5 (2)
(ここで、kの単位は、cm/secである。)
5 × 10 −3 >k> 10 −6 (1)
10 −3 >k> 10 −5 (2)
(Here, the unit of k is cm / sec.)

すなわち、透水係数(k)が10−6未満では、透水性が非常に低い状態であるので、吸着が卓越し毛細管作用による給水機能が発揮されにくい。一方、透水係数(k)が5×10−3を超えると、透水性が高い状態であり、通水性が勝るので、毛細管作用による給水機能が発揮されにくい。 That is, when the water permeability coefficient (k) is less than 10 −6 , the water permeability is very low, so that the adsorption is excellent and the water supply function by capillary action is hardly exhibited. On the other hand, when the water permeability coefficient (k) exceeds 5 × 10 −3 , the water permeability is high and the water permeability is superior, so that the water supply function by capillary action is hardly exhibited.

また、調製された下部構造体の透水係数を測定することにより、使用する土砂に対する固化材の種類、配合量の最適化を図ることができる。特に、固化材の選定においては、試験体による事前の測定により、配合割合を決めることができるので、設計及び施工に際して有用な手段となる。   Moreover, the kind of solidification material with respect to the earth and sand to be used, and the compounding quantity can be optimized by measuring the water permeability coefficient of the prepared lower structure. In particular, in selecting a solidifying material, the blending ratio can be determined by prior measurement with a test specimen, which is a useful means for design and construction.

本発明に用いる保水性舗装層としては、特に限定されるものではなく、通常使用されている保水性舗装材、又は保水性インター、保水性平板等の保水性ブロック材を用いて施工されるものである。特に、内部に保水部につながる連続空隙を有し、下部からの透水性を阻害しないものを用いる。
上記保水性舗装材としては、透水性アスファルト混合物、セメントコンクリート、セメントモルタル、石油樹脂混合物等のポーラス材料の空隙に保水性のある充填材が添加された複合材料が挙げられる。また、上記保水性ブロック材としては、前記複合材料、及びセラミックス焼結体からなる多孔質成形ブロックが挙げられる。例えば、アスファルト舗装等の粗骨材、細骨材等の間に形成される空隙に、保水材、吸湿材等が充填されているものが用いられる。ここで、骨材としては、例えば、砕石、砂利、スラグ、砂及び再生骨材等が適宜用いられ、また、充填材及び硬化材として、消石灰、セメント、フライアッシュ、石灰石等の岩石を粉砕した石粉等が使用可能である。
The water-retaining pavement layer used in the present invention is not particularly limited, and is constructed using a commonly used water-retaining pavement material, or a water-retaining block material such as a water retentive inter, a water retentive flat plate. It is. In particular, those having continuous voids connected to the water retaining portion inside and not impeding water permeability from the lower portion are used.
Examples of the water-retaining pavement material include composite materials in which a water-retaining filler is added to voids in porous materials such as water-permeable asphalt mixture, cement concrete, cement mortar, and petroleum resin mixture. Examples of the water-retaining block material include a porous molded block made of the composite material and a ceramic sintered body. For example, a space formed between a coarse aggregate such as asphalt pavement, a fine aggregate or the like is filled with a water retention material, a moisture absorption material or the like. Here, as the aggregate, for example, crushed stone, gravel, slag, sand, recycled aggregate and the like are used as appropriate, and rocks such as slaked lime, cement, fly ash, limestone and the like are pulverized as a filler and a hardener. Stone powder etc. can be used.

上記保水材としては、特に限定されるものではなく、吸水時に体積変化及び膨張が起きない性質と十分な吸上げ能力とを備えているものが用いられるが、石炭灰クリンカー、陶器瓦、レンガ破砕物等が好ましい。また、上記吸湿材としては、特に限定されるものではなく、塩化カルシウム、シリカゲル、活性アルミナ、ゼオライト等が用いられる。これらは、通常、アスファルト舗装等が硬化された後で、空隙の中にミルク状にして流し込まれる。   The water-retaining material is not particularly limited, and those having properties that prevent volume change and expansion during water absorption and sufficient suction capacity are used, but coal ash clinker, ceramic tile, brick crushing A thing etc. are preferable. The hygroscopic material is not particularly limited, and calcium chloride, silica gel, activated alumina, zeolite and the like are used. These are usually poured into the voids in the form of milk after the asphalt pavement or the like is cured.

以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例及び比較例で用いた透水係数の評価方法は、以下の通りである。
(1)透水係数の測定:定水位透水試験で行った。
Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention, but the present invention is not limited to these examples. In addition, the evaluation method of the hydraulic conductivity used by the Example and the comparative example is as follows.
(1) Measurement of water permeability coefficient: Conducted by a constant water level permeability test.

(実施例1)
土砂として、透水係数(k)が2×10−1cm/secである砂を用いて、それに固化材を配合して下部構造体材料を得て、それを保水性舗装材の下部構造に用いた場合の毛細管作用による給水機能を調べた。
上記砂の100重量部に対して、固化材として半水石膏3重量部を混合攪拌・締固めて下部構造材を作成し、3日空気中、4日水中で養生した後にその透水係数を測定した。その結果下部構造体材の透水係数(k)は2×10−3cm/secとなり、所望の透水性が得られた。
次に通常の基礎地盤上に、上記下部構造体材料を5cmの厚さで敷設し、さらにその上に5cmの保水性舗道材を敷設した。その後、給水機能を調べるため、保水性舗装層の表面を夏場の晴天日に相当する900W/mで4時間加熱し、保水性舗道材内の水分を蒸発させたのちに含まれる水分量を再測定した。その結果、前記水分量の前後の変化は見られず、毛細管作用による給水機能を有することが確認された。
Example 1
Using sand with a permeability coefficient (k) of 2 × 10 -1 cm / sec as earth and sand, solidifying material is mixed with it to obtain a lower structure material, which is used for the lower structure of water-retaining pavement The water supply function by capillary action was investigated.
Mix and stir and compact 3 parts by weight of hemihydrate gypsum as a solidifying material for 100 parts by weight of the above sand to create a lower structural material, and after curing in air for 4 days, measure its water permeability. did. As a result, the water permeability coefficient (k) of the lower structural member was 2 × 10 −3 cm / sec, and the desired water permeability was obtained.
Next, the lower structure material was laid with a thickness of 5 cm on a normal foundation ground, and a 5 cm water-retaining pavement material was further laid thereon. After that, in order to investigate the water supply function, the surface of the water-retaining pavement layer was heated at 900 W / m 2 corresponding to a sunny day in summer for 4 hours to evaporate the water in the water-retaining pavement, and the amount of water contained Remeasured. As a result, it was confirmed that there was no change in the amount of water before and after, and that it had a water supply function by capillary action.

(実施例2)
固化材として、半水石膏と高炉セメントを80:20の重量割合で配合して得た混合物4重量部を用いたこと以外は、実施例1と同様に行ない、下部構造体材料を得て、透水係数を測定した。その結果、下部構造体材料の透水係数(k)は7×10−4cm/secとなり、所望の透水性が得られた。
次に、通常の基礎地盤上に、上記下部構造体材料を5cmの厚さで敷設し、さらにその上に保水性舗道材を5cmの厚さで敷設した。その後、給水機能を調べるため、保水性舗装層の表面を夏場の晴天日に相当する900W/mで4時間加熱し、保水性舗道材内の水分を蒸発させたのちに含まれる水分量を再測定した。その結果、前記水分量の前後の変化は見られず、毛細管作用による給水機能を有することが確認された。
(Example 2)
As the solidifying material, except that 4 parts by weight of a mixture obtained by blending hemihydrate gypsum and blast furnace cement at a weight ratio of 80:20 was used, the same operation as in Example 1 was performed to obtain a lower structure material, The hydraulic conductivity was measured. As a result, the water permeability coefficient (k) of the lower structure material was 7 × 10 −4 cm / sec, and a desired water permeability was obtained.
Next, the lower structure material was laid with a thickness of 5 cm on a normal foundation ground, and a water-retaining pavement material was laid with a thickness of 5 cm thereon. After that, in order to investigate the water supply function, the surface of the water-retaining pavement layer was heated at 900 W / m 2 corresponding to a sunny day in summer for 4 hours to evaporate the water in the water-retaining pavement, and the amount of water contained Remeasured. As a result, it was confirmed that there was no change in the amount of water before and after, and that it had a water supply function by capillary action.

(実施例3)
土砂として、透水係数(k)が5cm/secである礫を用いて、それに固化材を配合して下部構造体材料を得て、それを保水性舗装材の下部構造に用いた場合の毛細管作用による給水機能を調べた。
上記砂礫の100重量部に対して、固化材として半水石膏と粉状粘土を50:50の重量割合で配合して得た混合物10重量部を添加し、それを混合撹拌・締固めて下部構造体材料を得て、透水係数を測定した。その結果、下部構造体材料の透水係数(k)は3×10−4cm/secとなり、所望の透水性が得られた。
次に、通常の基礎地盤上に、上記下部構造体材料を15cmの厚さで敷設し、さらにその上に保水性舗道材を5cmの厚さで敷設した。その後、給水機能を調べるため、保水性舗装層の表面を夏場の晴天日に相当する900W/mで4時間加熱し、保水性舗道材内の水分を蒸発させたのちに含まれる水分量を再測定した。その結果、前記水分量の前後の変化は見られず、毛細管作用による給水機能を有することが確認された。
(Example 3)
Capillary action when using gravel with a water permeability coefficient (k) of 5 cm / sec as earth and sand to obtain a substructure material by blending it with a solidifying material and using it for the substructure of a water-retaining pavement The water supply function was investigated.
To 100 parts by weight of the above gravel, 10 parts by weight of a mixture obtained by blending hemihydrate gypsum and powdered clay as a solidifying material in a weight ratio of 50:50 is added, and the lower part is mixed and stirred and compacted. A structural material was obtained and the hydraulic conductivity was measured. As a result, the water permeability coefficient (k) of the lower structure material was 3 × 10 −4 cm / sec, and a desired water permeability was obtained.
Next, the lower structure material was laid on a normal foundation ground with a thickness of 15 cm, and a water-retaining pavement material was further laid thereon with a thickness of 5 cm. After that, in order to investigate the water supply function, the surface of the water-retaining pavement layer was heated at 900 W / m 2 corresponding to a sunny day in summer for 4 hours to evaporate the water in the water-retaining pavement, and the amount of water contained Remeasured. As a result, it was confirmed that there was no change in the amount of water before and after, and that it had a water supply function by capillary action.

(実施例4)
土砂として、透水係数(k)が2×10−6cm/secである粘性土を用いて、それに固化材を配合して下部構造体材料を得て、それを保水性舗装材の下部構造に用いた場合の毛細管作用による給水機能を調べた。
上記粘性土の100重量部に対して、固化材として半水石膏と石灰を50:50の重量割合で配合して得た混合物10重量部を添加し、それを混合撹拌して下部構造体材料を得て、透水係数を測定した。その結果、下部構造体材料の透水係数(k)は5×10−5cm/secとなり、所望の透水性が得られた。
次に、通常の基礎地盤上に、上記下部構造体材料を15cmの厚さで敷設し、さらにその上に保水性舗道材を5cmの厚さで敷設した。その後、給水機能を調べるため、保水性舗装層の表面を夏場の晴天日に相当する900W/mで4時間加熱し、保水性舗道材内の水分を蒸発させたのちに含まれる水分量を再測定した。その結果、前記水分量の80%が回復し、毛細管作用による給水機能を有することが確認された。
Example 4
Using clay soil with a permeability coefficient (k) of 2 × 10 −6 cm / sec as the earth and sand, solidifying material is blended into it to obtain the substructure material, which is used as the substructure of the water-retaining pavement material The water supply function by capillary action when used was investigated.
10 parts by weight of a mixture obtained by blending hemihydrate gypsum and lime at a weight ratio of 50:50 as a solidifying material is added to 100 parts by weight of the clay, and the mixture is stirred and stirred to form a lower structure material. And the hydraulic conductivity was measured. As a result, the water permeability coefficient (k) of the lower structure material was 5 × 10 −5 cm / sec, and a desired water permeability was obtained.
Next, the lower structural body material was laid on a normal foundation ground with a thickness of 15 cm, and a water-retaining pavement material was further laid thereon with a thickness of 5 cm. After that, in order to investigate the water supply function, the surface of the water-retaining pavement layer was heated at 900 W / m 2 corresponding to a sunny day in summer for 4 hours to evaporate the water in the water-retaining pavement, and the amount of water contained Remeasured. As a result, it was confirmed that 80% of the water content was recovered and had a water supply function by capillary action.

(比較例1)
通常の基礎地盤上に、下部構造体材料として、透水係数(k)が2×10−1cm/secである砂を5cmの厚さで敷設し、さらにその上に5cmの保水性舗道材を敷設した。その後、給水機能を調べるため、保水性舗装層の表面を夏場の晴天日に相当する900W/mで4時間加熱し、保水性舗道材内の水分を蒸発させたのちに含まれる水分量を再測定した。その結果、水分量の回復は見られず、毛細管作用による給水機能が確認されなかった。
(Comparative Example 1)
On a normal foundation ground, sand having a hydraulic conductivity (k) of 2 × 10 −1 cm / sec is laid in a thickness of 5 cm as a substructure material, and a 5 cm water-retaining pavement material is further formed thereon. Laid. After that, in order to investigate the water supply function, the surface of the water-retaining pavement layer was heated at 900 W / m 2 corresponding to a sunny day in summer for 4 hours to evaporate the water in the water-retaining pavement, and the amount of water contained Remeasured. As a result, the water content was not recovered, and the water supply function by capillary action was not confirmed.

以上より明らかなように、本発明の保水性舗装の下部構造は、保水性舗道の表面を形成する保水性舗装層内部に向けて給水する機能を有する下部構造体によって、保水性舗装、特に保水性舗道のヒートアイランド現象を緩和する効果を天候に左右されずに常時発揮させることができるので、保水性舗装の下部構造として好適である。また、下部構造体の透水係数の測定により、使用する土砂に対する固化材の種類、配合量を調整し最適化を図ることができ、特に、試験体による事前測定により、配合割合を決めることができるので、設計及び施工に際して有用な手段となる。   As is clear from the above, the lower structure of the water-retaining pavement of the present invention is a water-retaining pavement, in particular, Since the effect of alleviating the heat island phenomenon of a pavement can always be exerted without being influenced by the weather, it is suitable as a substructure of a water-retaining pavement. In addition, by measuring the hydraulic conductivity of the substructure, it is possible to adjust and optimize the type and amount of solidification material for the earth and sand to be used, and in particular, the blending ratio can be determined by preliminary measurement with a test specimen Therefore, it becomes a useful means in design and construction.

本発明の毛細管作用を有する下部構造体を含む下部構造を用いた保水性舗道における給水の概念図を表す図である。It is a figure showing the conceptual diagram of the water supply in the water retention pavement using the lower structure containing the lower structure which has a capillary action of this invention.

符号の説明Explanation of symbols

1 保水性舗装層
2 基礎地盤
3 下部構造体
4 保水部
5 貯水部
6 毛細管作用による給水経路
DESCRIPTION OF SYMBOLS 1 Water retention pavement layer 2 Foundation ground 3 Substructure 4 Water retention part 5 Water storage part 6 Water supply route by capillary action

Claims (2)

保水性舗装層(A)と基礎地盤(C)の間に、土砂に固化剤として半水石膏を添加しそれを混合撹拌・転圧することにより得られ、砂層と砕石層の2層から構成される、下記の式(1)を満足する透水係数(k)を有する下部構造体(B)を設置して、(A)/(B)/(C)の層構成にすることにより、基礎地盤中の水を吸い上げ、保水性舗装層への給水機能を持たせたことを特徴とする保水性舗装の下部構造。
5×10−3>k>10−6 (1)
(ここで、kの単位は、cm/secである。)
It is obtained by adding hemihydrate gypsum as a solidifying agent to the soil between the water-retaining pavement layer (A) and the foundation ground (C), mixing and agitating and rolling it, and it consists of two layers: a sand layer and a crushed stone layer. By installing a lower structure (B) having a water permeability coefficient (k) that satisfies the following formula (1) and forming a layer structure of (A) / (B) / (C), The substructure of water-retaining pavement, which sucks up the water inside and has the function of supplying water to the water-retaining pavement layer.
5 × 10 −3 >k> 10 −6 (1)
(Here, the unit of k is cm / sec.)
前記土砂は、砂、砕石又は現地発生土から選ばれる少なくとも1種であることを特徴とする請求項1に記載の保水性舗装の下部構造。   The substructure of the water-retaining pavement according to claim 1, wherein the earth and sand is at least one selected from sand, crushed stone, and locally generated soil.
JP2005169402A 2005-06-09 2005-06-09 Substructure of water retention pavement Expired - Fee Related JP4599233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005169402A JP4599233B2 (en) 2005-06-09 2005-06-09 Substructure of water retention pavement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005169402A JP4599233B2 (en) 2005-06-09 2005-06-09 Substructure of water retention pavement

Publications (2)

Publication Number Publication Date
JP2006342585A JP2006342585A (en) 2006-12-21
JP4599233B2 true JP4599233B2 (en) 2010-12-15

Family

ID=37639746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005169402A Expired - Fee Related JP4599233B2 (en) 2005-06-09 2005-06-09 Substructure of water retention pavement

Country Status (1)

Country Link
JP (1) JP4599233B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4801656B2 (en) * 2007-12-27 2011-10-26 大成ロテック株式会社 Permeable water-retaining pavement and its construction method
JP4999205B2 (en) * 2008-12-12 2012-08-15 環境資材株式会社 Concrete or mortar
JP6854624B2 (en) * 2016-10-13 2021-04-07 増岡窯業原料株式会社 Water retention block

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209613A (en) * 1995-02-03 1996-08-13 Taisei Rotetsuku Kk Pavement body having a function of suppressing rise of road surface temperature
JPH09195212A (en) * 1996-01-22 1997-07-29 Aoki Corp Pavement and its constructing method
JP2001073307A (en) * 1999-09-09 2001-03-21 Mitsubishi Materials Corp Water permeable pavement structure
JP2003166208A (en) * 2001-11-30 2003-06-13 Maeda Road Constr Co Ltd Antifreeze pavement structure
JP2004293098A (en) * 2003-03-26 2004-10-21 Nippon Road Co Ltd:The Water absorptive water retentive pavement structure
JP2004300881A (en) * 2003-04-01 2004-10-28 Kajima Corp Wettable pavement system
JP2005002575A (en) * 2003-06-09 2005-01-06 Tokyu Construction Co Ltd Water supply type water retentive paving
JP2005068900A (en) * 2003-08-27 2005-03-17 Taisei Rotec Corp Water retentive pavement structure, its construction method and its water retentive function maintaining method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209613A (en) * 1995-02-03 1996-08-13 Taisei Rotetsuku Kk Pavement body having a function of suppressing rise of road surface temperature
JPH09195212A (en) * 1996-01-22 1997-07-29 Aoki Corp Pavement and its constructing method
JP2001073307A (en) * 1999-09-09 2001-03-21 Mitsubishi Materials Corp Water permeable pavement structure
JP2003166208A (en) * 2001-11-30 2003-06-13 Maeda Road Constr Co Ltd Antifreeze pavement structure
JP2004293098A (en) * 2003-03-26 2004-10-21 Nippon Road Co Ltd:The Water absorptive water retentive pavement structure
JP2004300881A (en) * 2003-04-01 2004-10-28 Kajima Corp Wettable pavement system
JP2005002575A (en) * 2003-06-09 2005-01-06 Tokyu Construction Co Ltd Water supply type water retentive paving
JP2005068900A (en) * 2003-08-27 2005-03-17 Taisei Rotec Corp Water retentive pavement structure, its construction method and its water retentive function maintaining method

Also Published As

Publication number Publication date
JP2006342585A (en) 2006-12-21

Similar Documents

Publication Publication Date Title
JP3156151B2 (en) Perforated pavement with road surface temperature rise suppression function filled with silt-based filler
CN102162214B (en) Construction method of pervious cement concrete
JP2008019557A (en) Pavement structure
KR101219616B1 (en) Lightweight foamed concrete composition having antiwashout property underwater
RU2492290C1 (en) Method to construct motor roads and motor road design
KR20130008149A (en) The piling method of earth for road pavement
JP4599233B2 (en) Substructure of water retention pavement
JP2008163664A (en) Water retaining pavement structure and its construction method
JP5366369B2 (en) Soil-based solidified material and pavement method for soil-based solidified material
JPH10121403A (en) Preventing construction method for frost heaving of structure
JP4255802B2 (en) Pavement
JP7191445B2 (en) interlocking block paving
JP5308967B2 (en) Pavement structure and pavement construction method
JP4140228B2 (en) Hydraulic material for water retentive solidified body and water retentive solidified body
JP4861390B2 (en) Water retention block
JP4387995B2 (en) Tile paving material
JP5491756B2 (en) Permeable pavement structure
JP2004052536A (en) Solidification material for soil-based paving
JP2006144280A (en) Water-retentive pavement structure
JP2510399B2 (en) Permeable pavement structure
EP3992362B1 (en) Method and system for cooling a porous paving layer
JP2002146707A (en) Leveling substratum for concrete block pavement, paving construction and paving construction method
CN216688873U (en) Novel high-density interlocking type asphalt pavement structure
JP6601989B1 (en) Water-retaining pavement structure
JP2003313809A (en) Water-retentive filler for water-permeable asphalt pavement and water-permeable asphalt pavement filled with it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees