JP2005002575A - Water supply type water retentive paving - Google Patents

Water supply type water retentive paving Download PDF

Info

Publication number
JP2005002575A
JP2005002575A JP2003164227A JP2003164227A JP2005002575A JP 2005002575 A JP2005002575 A JP 2005002575A JP 2003164227 A JP2003164227 A JP 2003164227A JP 2003164227 A JP2003164227 A JP 2003164227A JP 2005002575 A JP2005002575 A JP 2005002575A
Authority
JP
Japan
Prior art keywords
water
water supply
mixture layer
roadbed
retaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003164227A
Other languages
Japanese (ja)
Inventor
Osamu Endo
遠藤修
Kyoko Tanabe
田辺恭子
Satoshi Nakamura
中村聡
Atsushi Fukuda
福田淳
Toshiaki Matsuda
松田敏昭
Yoshitaka Suzuki
鈴木祥高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiki Tokyu Kogyo Co Ltd
Tokyu Construction Co Ltd
Original Assignee
Seiki Tokyu Kogyo Co Ltd
Tokyu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiki Tokyu Kogyo Co Ltd, Tokyu Construction Co Ltd filed Critical Seiki Tokyu Kogyo Co Ltd
Priority to JP2003164227A priority Critical patent/JP2005002575A/en
Publication of JP2005002575A publication Critical patent/JP2005002575A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Road Paving Structures (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water supply type water retentive paving capable of increasing water retentive efficiency and water supply effect. <P>SOLUTION: The water supply type water retentive paving comprises a water retentive mixture layer 2 forming the surface layer of a road, a water supply base 3 provided downward of the water retentive mixture layer 2 to supply water to the water retentive mixture layer 2, a water supply material 4 capable of impregnating moisture 91 provided on the downward side of the water supply base 3 and a water storage section 7 for storing the moisture 91 supplied to the water supply material 4, and the water supply type water retentive paving 1 cooling the road surface 7 by supplying the moisture 91 supplied to the water supply material 4 from the water storage section 7 to the water retentive mixture layer 2 through the water supply base 3 is formed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、舗装体内に水分を吸水・保水する機能を備えた給水型保水性舗装に関するものである。
【0002】
【従来の技術】
近時、ヒートアイランド現象が問題となっているが、その主な原因としてはアスファルト舗装やコンクリート構造物の蓄熱、照り返しによる輻射熱の増加、ビル等の空調による排熱の増加や車輌の排出するガス熱の影響などが挙げられる。ヒートアイランド現象の緩和に向けたアスファルト舗装分野の取り組みにおいては、舗装路面温度を下げる技術の開発が進められており、その一つとして保水性舗装の開発・性能実験及び実施工が現在おこなわれている。ここで、保水性舗装とは舗装体内に水分を吸水・保水する機能を持った舗装のことで、例えば雨水などを舗装内に保水しておき、晴天時にかかる雨水を蒸発させて気化熱を奪うことにより舗装路面温度を低下させることが可能な舗装である。
【0003】
特許文献1に開示する従来技術においては、保水性舗装道路の構造に関する発明が開示されている。すなわち、路盤e上に遮水シートd(または透水性シート)および不織布などの吸水シートcを敷設し、吸水シートc上に砂層bを設け、砂層b上に吸水機能を有する透水性舗装aを敷設した構造の道路である。舗装道路の端部にはこれに沿って側溝fが設けられ、側溝f内に吸水シートcの垂下端を浸漬させている(以下、かかる構造の道路を「従来技術道路」とする)(図5参照)。
かかる構造の道路によれば、路面が乾燥状態にあるときには側溝f内に溜まった雨水の一部を吸水シートcで吸水し、吸水した水分は砂層bの毛管作用を利用して透水性舗装aに供給して路面を湿潤状態に保つと同時に路面から水分を順次蒸発させて路面を冷却することができる。
【0004】
一方、特許文献1においては、舗装直下に砕石貯水層を形成し、かかる貯水層内の全面にわたって縦断方向に波打つように吸水シートを敷設した構造の道路に関する発明を開示している(以下、かかる構造の道路を「特許文献道路」とする)(図示せず)。
【0005】
【特許文献1】
特開2000−45206
【0006】
【発明が解決しようとする課題】
前記した従来の保水性舗装道路にあっては、次のような問題点がある。
<イ>従来技術道路においては、吸水シートcが交通荷重等によって破断しないために所要の砂層b厚を確保する必要があるが、砂層b厚が厚くなった場合には砂層bの有する毛管作用性能の限界から吸水シートcの含有水分を透水性舗装aに供給困難となる。
<ロ>従来技術道路においては、砂層bの毛管作用性能確保の観点から砂層b厚を厚くすることができないため砂層b下に設けた吸水シートcと透水性舗装aとの距離が短くなる。かかる場合に、透水性舗装aの路面温度が高温となる夏場などでは路面温度の影響が吸水シートcにも及び、吸水シートcからの水分蒸発が過剰になされるため、側溝f内の水分減少が激しくなるといった問題が生じ得る。
<ハ>特許文献道路においては、砕石貯水層内に吸水シートを波状に敷設しているが、かかる敷設施工は困難であり、また施工時のシートの破損や品質確保が困難であるといった問題が生じ易い。
【0007】
【発明の目的】
本発明は上記したような従来の問題を解決するためになされたもので、給水材(給水シート)の破損を防止しながら給水材(給水シート)から保水性混合物層への水分の供給を確実におこなうことのできる給水型保水性舗装を提供することを目的とする。さらに、給水材の設置施工が簡易であって、施工時の給水材の破損が生じ難く、品質を確保できる給水型保水性舗装を提供することを目的とする。
本発明は、これらの目的の少なくとも一つを達成するものである。
【0008】
【課題を解決するための手段】
上記のような目的を達成するために、本発明の給水型保水性舗装は、道路の表層を構成する保水性混合物層と、前記保水性混合物層下に設けて保水性混合物層に水分を供給する給水路盤と、前記給水路盤下に設けた水分を含浸可能な給水材と、前記給水材に供給する水分を貯留するための貯水部と、からなり、前記貯水部から前記給水材に供給した水分を前記給水路盤を通じて前記保水性混合物層に供給させることを特徴とする給水型保水性舗装である。
【0009】
また、前記する給水型保水性舗装は、前記貯水部に貯留させた水分に前記給水材の一端を浸漬させた給水材を、前記貯水部から伸びる前記給水材の延伸方向と直角方向に間隔を置いて複数設けたことを特徴とする給水型保水性舗装とすることができる。
【0010】
また、前記する給水型保水性舗装において、前記給水路盤は、水分供給機能を有する材料を構成成分としたことを特徴とする給水型保水性舗装とすることができる。
【0011】
また、前記する給水型保水性舗装は、マサ土と、石灰系固化剤と、水分供給性能を備えたセラミック系細骨材と、塩化カルシウムからなる硬化促進剤と、からなる給水路盤を備えたことを特徴とする給水型保水性舗装とすることができる。
【0012】
さらに、前記する給水型保水性舗装において、前記保水性混合物層は、少なくとも保水性能を備えた無機鉱物粉末を配合してなることを特徴とする給水型保水性舗装とすることができる。
【0013】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施の形態について説明する。
【0014】
<イ>給水型保水性舗装
本発明の給水型保水性舗装1は、道路の表層を構成する保水性混合物層2と、保水性混合物層2下に設けて保水性混合物層2に水分91を供給する給水路盤3と、給水路盤3下に設けた水分91を含浸可能な給水材4と、給水材4に供給する水分91を貯留するための貯水部7とから構成される(図1参照)。なお、給水材4は下層路盤5上に設置され、かかる下層路盤5は路床6上に設置される。
【0015】
従来の保水性舗装道路に比べて本発明の給水型保水性舗装1は、保水性混合物層2の保水性能を高め、かつ水分91の供給性能を備えた給水路盤3を道路の構成要素としている点が大きく相違する。また、給水型保水性舗装1の構造要素の一つである貯水部7は、路面8端部(もしくは道路8端部近傍)において路面8の延伸方向に沿って備えた構成とするのがよい。
また、給水路盤3は所定の路盤厚を確保することで、その下部に設置する給水材4が路面8上の交通荷重等によって破断や損壊の被害を受け難い道路構造を成形することができる。
一方、給水路盤が従来のように砂層にて構成されていた場合であって給水路盤を所定の路盤厚として保水性舗装道路を造成した場合には、毛管作用性能の限界から生じる水分の上方への供給不能といった問題が生じ得る。本発明における給水路盤3は後述するように水分供給性能を備えたセラミック系細骨材をその構成成分としていることからかかる問題を解消することができる。
【0016】
<ロ>保水性混合物層
保水性混合物層2は本発明の給水型保水性舗装1の表層を構成する舗装である。保水性混合物層2は保水性能を備えた無機鉱物粉末とセメントミルクを配合させて製造するのがよい。
本発明に使用する無機鉱物粉末の化学成分構成は、SiOの重量百分率を37%、CaOを12%、MgOを22%、強熱液量29%として製造できる。また、粒度分布は、ふるい目88μm以上の重量百分率を10%、ふるい目40〜88μmを17%、ふるい目40μm以下を73%として製造できる。さらに、無機鉱物粉末の単体初期保水率は270%以上として製造できる。
上記する無機鉱物粉末としては、例えばセピオライトを使用することができる。セピオライトはスペイン産の天然鉱物であり、水分を吸収して空気中に発散させる効果を備えた無機鉱物粉末である。
上記する配合にて製造した保水性混合物層2を使用することにより、保水性能が向上することから保水性混合物層2に供給された水分91を過度に蒸発させるといった問題が解消できる。
【0017】
<ハ>給水路盤
給水路盤3は、保水性混合物層2と後述する給水材4との間に設けて給水材4の保有する水分91を保水性混合物層2に供給するための路盤であり、通常の道路の構造における上層路盤の役割を担う路盤である。また、給水路盤3は所定の路盤厚を確保することによって、その下部に配置される給水材4を路面8上の交通荷重等による破損から保護する役割および給水材4の水分91吸収の効率性を確保する役割も有する。給水材4は、材料内部に多数の空隙を備えており、かかる空隙内を水分91が供給されるものである。交通荷重等によって給水材4が押圧されると上記する空隙も破壊され給水材4の吸水性能が低下するおそれがある。したがって、所要の強度(硬さ)および厚さを備えた給水路盤3とすることによって荷重分散効果を図って給水材4に伝達される荷重を小さなものとし、給水材4の吸水性能を確保することが可能となる。
給水路盤3は路盤材料として、マサ土と石灰系固化剤、添加剤、硬化促進剤として使用する塩化カルシウム、水を配合して製造することができる。
ここで、石灰系固化剤を配合することにより給水路盤3の強度を確保することができる。かかる固化剤は、給水路盤3の一軸圧縮強度が0.98N/mm(10日養生)に相当する添加量とするのがよい。
また、水分91の供給機能を有する材料であるセラミック系細骨材を使用するのが好ましい。セラミック系細骨材を配合することにより、水分91の供給性能(毛管作用性能)を向上させることができる。なお、セラミック系細骨材は1000℃以上の高温で焼成しながら粒度分類をおこない、粒子径0.5mm〜10mmのセラミック系細骨材を使用するのが好ましい。また、セラミック系細骨材のマサ土及び固化剤の合計質量に対する配合比率は質量比1〜15%程度とするのがよい。
硬化促進剤として使用する塩化カルシウムは乾燥したマサ土と固化剤とセラミック系細骨材の合計質量に対して質量比0.3%程度の配合比率とするのがよい。
水は水道水を使用でき、給水路盤3の最適含水比となる量を配合するのが好ましい。
【0018】
<ニ>給水材
給水材4は、貯水部7に貯えた水分91(雨水、水道水など)を含浸させ、その上方に設けられた給水路盤3を通して保水性混合物層2に水分91を供給させるために下層路盤5上に設けられる給水型保水性舗装1の構成要素である。
給水材4はその一端を後述する貯水部7に浸漬させて設置する。
ところで、給水材4はその毛管作用効果を利用して水分91を貯水部7から吸収し、給水材4の一面に水分91を含浸させることができる。したがって、毛管作用性能を備えた材料であれば給水材4として使用することができる。
給水材4としては、例えば短繊維ポリエステルシート(不織布)を始めとするシート材料や吸水性能を備えた材料を使用することができる。不織布としては、公知の底面給水不織布や「A−200」(旭化成(株))、「コルドン」(旭化成(株))などを使用できる。
【0019】
給水材4として不織布を使用する場合は不織布の備えた吸水性能によって貯水部7の設置箇所を複数設けるのが好ましい。使用する不織布の仕様によっても異なるが、不織布の備えた水分吸収性能は貯水部7(貯水部7内の水中含浸部)から2〜2.5m程度の範囲となり得るため、道路幅が広くなる場合には、道路幅方向に2〜2.5m間隔で貯水部7を設けることができる(図示せず)。
【0020】
給水材4は下層路盤5上に一面に敷設(設置)することもできるし(図2参照)、貯水部7から伸びる給水材4の延伸方向と直角方向に間隔を置いて複数設けることもできる(図3参照)。すなわち、貯水部7は路面8端部(もしくは道路8端部近傍)において路面8の延伸方向に沿って設置するため、路面8の延伸方向と直角方向に複数の給水材4を間隔を置いて設置するものである。したがって、かかる場合には例えば一定の幅を備えたシート状の給水材4を所定の間隔を置いて敷設できる。
ところで、給水路盤3内を水分91が上方へ供給される際には、一般に水分91は直上のみならず側方へも広がりをもって上方へ供給される。したがって、上記する所定間隔は、給水路盤3の路盤厚および給水路盤3内を水分91が側方に広がりながら上方へ供給される際の側方への広がりの程度によって決定するのがよい。すなわち、図3に示すように給水路盤3の路盤厚と給水路盤3内を上方へ供給される水分91の側方への広がりを勘案して保水性混合物層2底部に水分91が均等に供給されるように給水材4の幅が決定される。
【0021】
<ホ>貯水部
貯水部7は路面8端部(もしくは道路8端部近傍)において路面8の延伸方向に沿って設置して保水性混合物層2に供給する水分91を貯留するための設備である。例えば、路面8上に降った雨水9は路面8端部に設けた雨水側溝81に集積され、雨水側溝81と貯水部7を連絡する通水管82を通して貯水部7に雨水9は導かれる(図1参照)。また、貯水部7への雨水9などの流入経路は上記する通水管82を通した経路以外にも多様である。
貯水部7はU字溝やボックスカルバート(工場製作したコンクリート製品あるいは現場施工)を設置したり、側溝を掘削して側溝内に砕石を設けて構成させることができる。さらに、地下空隙形成用の段積みブロック71などを使用して貯水部7を構築することもできる。
ここで、上記する段積みブロック71は複数の支柱とかかる支柱の頭部を連結させる面を構成したフレームにて一つのユニットを形成した工場製作製品であり、例えばポリプロピレン材料にて製作できる。かかるブロック71を所定の高さを形成するように鉛直方向に段積みするとともに、路面8の延伸方向に路面8端部に設置して貯水部7を構成した実施例を図4に示す。ここで、段積みブロック71表面を遮水シート72にて包囲することにより、ブロック71内に貯えた水分91が外部へ放出するのを防止することができる。
貯水部7を構成するその他の実施例としては、円筒形のパイプで筒の側部に切り欠きを複数設けたパイプ(例えばポリプロピレン材料にて製作した製品)を側溝内に段積みし、パイプを路面8の延伸方向に連結して貯水部7を形成することもできる(図示せず)。
なお、貯水部7は上記する実施例に拘束されるものではなく、多様に選定できる。
【0022】
また、上記するように、給水材4に不織布を使用する場合には、不織布の吸水性能に応じて道路幅方向に複数の貯水部7(したがって、路面8直下には複数の貯水部7が路面8の延伸方向に伸びた構造となる)を備えた給水型保水性舗装1の構造とする場合がある。かかる場合には貯水部7同士は路面8端部に設けた貯水部7から雨水9(又は水道水など)を導く導水管などにて連結させた構造とすることができる(図示せず)。
なお、路面8下に貯水部7を設けた場合でも、上記する段積みブロック71などを使用することにより貯水部7が交通荷重などに十分耐えうる構造とすることができる。
【0023】
【実施例】
上記する道路構成材料を使用した実施例を以下に示す。すなわち、保水性混合物層2厚を5cm、給水路盤3厚を15cmとして施工することができる。また、給水路盤3の一軸圧縮強度を2.9MPaとなるように石灰系固化剤を配合するとともにセラミック粒子を5〜10%(マサ土と固化剤の合計質量に対する比率)配合する。
上記する配合にて給水路盤3を造成することで、保水性混合物層2天端から給水材4までの距離を20cm確保でき、かつ給水路盤3は所定の硬さ(強度)を備えていることから路面8から給水材4に伝達される荷重を格段に少なくすることができる。
また、保水性混合物層2は上記する成分構成を備えた無機鉱物粉末を使用することで、従来の舗装に比べて3〜4倍程度の保水効果の向上を図ることが可能となり、貯水部7からの給水量を格段に減少させることができる。
さらに、給水材4の敷設に先立ち、下層路盤5上面に遮水施工を施す場合と施さない場合がある。すなわち、下層路盤5をセメントあるいは石灰系の安定処理路盤として施工した場合は、下層路盤5は不透水性能を確保できるため給水材4からの水分91が下方に浸透していく可能性は低く、よって下層路盤5上面を遮水施工する必要はない。一方、下層路盤5を砕石や砂利、砂等の単粒砕石を使用して造成した場合は、給水材4の水分91の下方への浸透を防止するために下層路盤5上面を遮水施工する必要がある。遮水施工方法としては、例えば、下層路盤5上面に遮水シートを敷設する方法や乳剤を散布後に砂を敷きならす方法(シールコート)、シールコートを複数層施工する方法(アーマーコート)などがある。
【0024】
【発明の効果】
本発明の給水型保水性舗装は以上説明したようになるから次のような効果を得ることができる。
<イ>所定厚さの給水路盤によって給水材を保護するため、交通荷重等の影響による給水材の破断を防止することができる。
<ロ>給水路盤は水分供給性能を有するため、給水路盤厚によって水分を保水性舗装に供給できないという問題が生じ難い。
<ハ>給水路盤によって保水性混合物層と水分を含浸した給水材との間に一定の間隔を確保できるため、保水性混合物層の温度の影響によって給水材の保有水分を過度に蒸発させるといった問題が生じ難い。
<ニ>保水性混合物層の保水効果によって、貯水部からの給水量を各段に減少できる。
<ホ>給水路盤内において水分が側方への広がりをもちながら上方へ供給される効果を利用することで給水材を路面下の全面に設置しない実施例においては給水材量の低減を図ることができる。
【図面の簡単な説明】
【図1】本発明の給水型保水性舗装の構造を示した断面図。
【図2】図1のA−A矢視図であり、給水材が貯水部の延伸方向に連続して設置されている実施例を示した断面図。
【図3】図1のA−A矢視図であり、複数の給水材が貯水部の延伸方向に間隔を置いて設置されている実施例を示した断面図。
【図4】貯水部の実施例である地下空隙形成用の段積みブロックを示した斜視図。
【図5】従来の保水性舗装道路の構造を示した断面図。
【符号の説明】
1・・・給水型保水性舗装
2・・・保水性混合物層
3・・・給水路盤
4・・・給水材
7・・・貯水部
8・・・路面
91・・水分
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water supply type water retaining pavement having a function of absorbing and retaining moisture in a pavement.
[0002]
[Prior art]
Recently, the heat island phenomenon has become a problem, but the main causes are heat storage of asphalt pavement and concrete structures, increase of radiant heat due to reflection, increase of exhaust heat due to air conditioning of buildings, etc. and gas heat exhausted by vehicles The influence of. In efforts in the asphalt pavement field to mitigate the heat island phenomenon, the development of technology to lower the pavement surface temperature is underway, and as one of them, development, performance experiments and implementation work of water-retaining pavement are currently underway . Here, a water-retaining pavement is a pavement that has the function of absorbing and retaining moisture in the pavement.For example, rainwater is retained in the pavement, and the rainwater that evaporates in fine weather is evaporated to remove vaporization heat. This is a pavement capable of lowering the pavement surface temperature.
[0003]
In the prior art disclosed in Patent Document 1, an invention relating to the structure of a water-retaining pavement is disclosed. That is, a water-impervious sheet d (or water-permeable sheet) and a water-absorbing sheet c such as a nonwoven fabric are laid on the roadbed e, a sand layer b is provided on the water-absorbing sheet c, and a water-permeable pavement a having a water-absorbing function is provided on the sand layer b. It is a road with a laid structure. A side groove f is provided along the end of the paved road, and the bottom end of the water absorbent sheet c is immersed in the side groove f (hereinafter, the road having such a structure is referred to as a “prior art road”) (FIG. 5).
According to the road having such a structure, when the road surface is in a dry state, a part of rainwater accumulated in the side groove f is absorbed by the water absorbent sheet c, and the absorbed water is permeable to the pavement a by utilizing the capillary action of the sand layer b. To keep the road surface wet, and at the same time, the water can be sequentially evaporated from the road surface to cool the road surface.
[0004]
On the other hand, Patent Document 1 discloses an invention relating to a road having a structure in which a crushed stone reservoir is formed directly under pavement, and a water absorbent sheet is laid in a longitudinal direction over the entire surface of the reservoir (hereinafter referred to as such). The road of the structure is called “patent literature road”) (not shown).
[0005]
[Patent Document 1]
JP 2000-45206 A
[0006]
[Problems to be solved by the invention]
The conventional water-retaining pavement described above has the following problems.
<A> In the prior art road, it is necessary to secure the required sand layer b thickness so that the water absorbent sheet c does not break due to traffic load or the like, but when the sand layer b thickness becomes thick, the capillary action of the sand layer b It becomes difficult to supply the water content of the water-absorbent sheet c to the water-permeable pavement a from the limit of performance.
<B> In the prior art road, since the thickness of the sand layer b cannot be increased from the viewpoint of securing the capillary action performance of the sand layer b, the distance between the water absorbent sheet c provided under the sand layer b and the water-permeable pavement a is shortened. In such a case, in summer when the road surface temperature of the water-permeable pavement a is high, the road surface temperature affects the water absorbent sheet c, and the water evaporation from the water absorbent sheet c is excessive. Can cause problems such as violence.
<C> In patent literature roads, a water-absorbing sheet is laid in a wavy shape in the crushed stone reservoir, but such laying construction is difficult, and the problem is that it is difficult to damage the sheet and to ensure quality during construction. It is likely to occur.
[0007]
OBJECT OF THE INVENTION
The present invention has been made to solve the above-described conventional problems, and ensures the supply of moisture from the water supply material (water supply sheet) to the water retention mixture layer while preventing damage to the water supply material (water supply sheet). It aims at providing the water supply type water-retaining pavement which can be carried out. Furthermore, it aims at providing the water supply type water-retaining pavement which the installation construction of a water supply material is easy, the water supply material at the time of construction is hard to be damaged, and quality can be ensured.
The present invention achieves at least one of these objects.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the water supply type water retaining pavement of the present invention is provided with a water retaining mixture layer constituting a surface layer of a road and a water retaining mixture layer provided below the water retaining mixture layer. A water supply base plate, a water supply material that can be impregnated with water provided under the water supply base plate, and a water storage unit for storing water to be supplied to the water supply material, supplied from the water storage unit to the water supply material It is a water supply type water retention pavement characterized by supplying water to the water retention mixture layer through the water supply roadbed.
[0009]
Further, the water supply type water-retaining pave described above is configured such that a water supply material in which one end of the water supply material is immersed in the water stored in the water storage portion is spaced in a direction perpendicular to the extending direction of the water supply material extending from the water storage portion. It can be set as the water supply type water-retaining pavement characterized by being provided in plurality.
[0010]
Moreover, in the water supply type water retentive pavement described above, the water supply roadbed can be a water supply type water retentive pavement characterized in that a material having a water supply function is used as a constituent component.
[0011]
Further, the water supply type water-retaining pavement described above includes a water supply roadbed composed of masa soil, a lime-based solidifying agent, a ceramic fine aggregate having a water supply performance, and a hardening accelerator made of calcium chloride. It can be set as the water supply type water-retaining pavement characterized by this.
[0012]
Furthermore, in the water supply type water retentive pavement described above, the water retentive mixture layer can be a water supply type water retentive pavement characterized by blending at least an inorganic mineral powder having water retention performance.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014]
<I> Water-supply type water-retaining pavement The water-supply-type water-retaining pavement 1 of the present invention is provided under the water-retaining mixture layer 2 and the water-retaining mixture layer 2 constituting the surface layer of the road, and moisture 91 is added to the water-retaining mixture layer 2. It is comprised from the water supply channel board 3 to supply, the water supply material 4 which can be impregnated with the water | moisture content 91 provided under the water supply channel board 3, and the water storage part 7 for storing the water | moisture content 91 supplied to the water supply material 4 (refer FIG. 1). ). The water supply material 4 is installed on the lower roadbed 5, and the lower layer roadbed 5 is installed on the roadbed 6.
[0015]
Compared with a conventional water-retaining pavement, the water-supplying water-retaining pavement 1 of the present invention uses a water supply roadbed 3 with improved water retention performance of the water retention mixture layer 2 and water supply performance as a component of the road. The point is greatly different. Moreover, it is good for the water storage part 7 which is one of the structural elements of the water supply type water-retaining pavement 1 to be provided along the extending direction of the road surface 8 in the road surface 8 edge part (or road 8 edge part vicinity). .
Further, by ensuring a predetermined roadbed thickness, the water supply roadbed 3 can form a road structure in which the water supply material 4 installed in the lower part thereof is not easily damaged or broken by traffic load on the road surface 8.
On the other hand, when the water supply roadbed is composed of a sand layer as in the conventional case, and the water-retaining pavement road is constructed with the water supply roadbed set to a predetermined roadbed thickness, the moisture generated from the limit of capillary action performance is increased. Problems such as inability to supply can occur. The water supply roadbed 3 according to the present invention can eliminate such a problem because it uses a ceramic fine aggregate having moisture supply performance as a constituent component as described later.
[0016]
<B> Water retention mixture layer The water retention mixture layer 2 is a pavement constituting the surface layer of the water supply type water retention pavement 1 of the present invention. The water retention mixture layer 2 is preferably manufactured by blending an inorganic mineral powder having a water retention performance and cement milk.
The chemical component composition of the inorganic mineral powder used in the present invention can be produced by setting the weight percentage of SiO 2 to 37%, CaO to 12%, MgO to 22%, and the ignition liquid amount to 29%. In addition, the particle size distribution can be produced by setting the weight percentage of the sieves of 88 μm or more to 10%, the sieves 40 to 88 μm to 17%, and the sieves of 40 μm or less to 73%. Furthermore, the simple substance initial water retention of the inorganic mineral powder can be manufactured as 270% or more.
For example, sepiolite can be used as the inorganic mineral powder. Sepiolite is a natural mineral from Spain, and is an inorganic mineral powder that has the effect of absorbing moisture and releasing it into the air.
By using the water-retaining mixture layer 2 produced by the above formulation, the water retention performance is improved, so that the problem of excessive evaporation of the water 91 supplied to the water-retaining mixture layer 2 can be solved.
[0017]
<C> Water supply roadbed The water supply roadbed 3 is a roadbed for supplying the water retention mixture layer 2 with water 91 held between the water retention mixture layer 2 and a water supply material 4 described later, It is a roadbed that plays the role of upper layer roadbed in the structure of ordinary roads. In addition, the water supply roadbed 3 secures a predetermined roadbed thickness, thereby protecting the water supply material 4 disposed in the lower part thereof from damage caused by traffic load on the road surface 8 and the efficiency of the water supply material 4 to absorb moisture 91. It also has a role to secure. The water supply material 4 has a large number of voids inside the material, and moisture 91 is supplied into the voids. When the water supply material 4 is pressed by a traffic load or the like, the above-described gap may be destroyed and the water absorption performance of the water supply material 4 may be reduced. Therefore, the load distribution base 3 having the required strength (hardness) and thickness is used to achieve a load distribution effect and to reduce the load transmitted to the water supply material 4, thereby ensuring the water absorption performance of the water supply material 4. It becomes possible.
The water supply roadbed 3 can be manufactured by blending masa soil, a lime-based solidifying agent, an additive, calcium chloride used as a hardening accelerator, and water as a roadbed material.
Here, the intensity | strength of the water supply channel board 3 is securable by mix | blending a lime type solidifying agent. The solidifying agent is preferably added in an amount corresponding to a uniaxial compressive strength of the water supply roadbed 3 of 0.98 N / mm 2 (10-day curing).
Further, it is preferable to use a ceramic fine aggregate which is a material having a function of supplying moisture 91. By blending the ceramic fine aggregate, the supply performance (capillary action performance) of moisture 91 can be improved. The ceramic fine aggregate is preferably classified by particle size classification while firing at a high temperature of 1000 ° C. or higher, and a ceramic fine aggregate having a particle diameter of 0.5 mm to 10 mm is preferably used. Moreover, it is good for the mixture ratio with respect to the total mass of the mass of ceramic type | system | group fine aggregate and solidification agent to be about 1-15% of mass ratio.
Calcium chloride used as a hardening accelerator should have a blending ratio of about 0.3% by mass with respect to the total mass of dried masa soil, solidifying agent, and ceramic fine aggregate.
As the water, tap water can be used, and it is preferable to blend an amount that provides an optimum water content ratio of the water supply channel board 3.
[0018]
<D> Water Supply Material The water supply material 4 impregnates the water 91 (rain water, tap water, etc.) stored in the water storage section 7 and supplies the water retention mixture layer 2 with the water 91 through the water supply channel board 3 provided thereabove. Therefore, it is a component of the water supply type water retaining pavement 1 provided on the lower roadbed 5.
One end of the water supply material 4 is installed in a water storage section 7 to be described later.
By the way, the water supply material 4 can absorb the water | moisture content 91 from the water storage part 7 using the capillary action effect, and can impregnate the water | moisture content 91 on one surface of the water supply material 4. FIG. Therefore, any material having capillary action performance can be used as the water supply material 4.
As the water supply material 4, for example, a sheet material including a short fiber polyester sheet (nonwoven fabric) or a material having water absorption performance can be used. As a nonwoven fabric, a well-known bottom surface water supply nonwoven fabric, "A-200" (Asahi Kasei Co., Ltd.), "Coldon" (Asahi Kasei Co., Ltd.), etc. can be used.
[0019]
When using a non-woven fabric as the water supply material 4, it is preferable to provide a plurality of installation locations of the water storage section 7 in accordance with the water absorption performance of the non-woven fabric. Depending on the specifications of the non-woven fabric used, the water absorption performance of the non-woven fabric can be in the range of about 2 to 2.5 m from the water storage section 7 (water-impregnated section in the water storage section 7). In the road width direction, the water reservoirs 7 can be provided at intervals of 2 to 2.5 m (not shown).
[0020]
The water supply material 4 can be laid (installed) on one surface on the lower roadbed 5 (see FIG. 2), or a plurality of water supply materials 4 can be provided at intervals in the direction perpendicular to the extending direction of the water supply material 4 extending from the water storage section 7. (See FIG. 3). That is, since the water storage part 7 is installed along the extending direction of the road surface 8 at the end of the road surface 8 (or in the vicinity of the end of the road 8), the plurality of water supply materials 4 are spaced apart in the direction perpendicular to the extending direction of the road surface 8. It is to be installed. Therefore, in such a case, for example, the sheet-like water supply material 4 having a certain width can be laid at a predetermined interval.
By the way, when the moisture 91 is supplied upward in the water supply channel board 3, the moisture 91 is generally supplied upward with a spread not only directly above but also to the side. Therefore, the predetermined interval described above is preferably determined by the thickness of the water supply subbase 3 and the degree of lateral extension when the moisture 91 is supplied upward while spreading laterally in the water supply subbase 3. That is, as shown in FIG. 3, the water 91 is evenly supplied to the bottom of the water-retaining mixture layer 2 in consideration of the roadbed thickness of the water supply base 3 and the lateral spread of the water 91 supplied upward in the water supply base 3. Thus, the width of the water supply material 4 is determined.
[0021]
<E> Water storage part The water storage part 7 is a facility for storing water 91 to be installed along the extending direction of the road surface 8 at the end of the road surface 8 (or in the vicinity of the end of the road 8) and supplied to the water-retaining mixture layer 2. is there. For example, rainwater 9 that has fallen on the road surface 8 is accumulated in a rainwater side groove 81 provided at the end of the road surface 8, and the rainwater 9 is guided to the water storage section 7 through a water pipe 82 that connects the rainwater side groove 81 and the water storage section 7 (FIG. 1). In addition, there are various inflow paths for the rainwater 9 and the like to the water storage section 7 other than the path through the water pipe 82 described above.
The water storage section 7 can be configured by installing U-shaped grooves and box culverts (concrete products manufactured at the factory or on-site construction), or by excavating the side grooves and providing crushed stones in the side grooves. Furthermore, the water storage part 7 can also be constructed using a stacked block 71 for forming an underground space.
Here, the above-described stacked block 71 is a factory-manufactured product in which one unit is formed by a frame that forms a surface connecting a plurality of columns and the heads of the columns, and can be manufactured from, for example, a polypropylene material. FIG. 4 shows an embodiment in which the blocks 71 are stacked in the vertical direction so as to form a predetermined height, and the water storage unit 7 is configured by being installed at the end of the road surface 8 in the extending direction of the road surface 8. Here, by surrounding the surface of the stacked block 71 with the water shielding sheet 72, it is possible to prevent the moisture 91 stored in the block 71 from being released to the outside.
As another embodiment constituting the water storage section 7, a pipe having a plurality of notches formed on a side of a cylinder (for example, a product made of polypropylene material) is stacked in a side groove, and the pipe is The water storage part 7 can also be formed by being connected in the extending direction of the road surface 8 (not shown).
In addition, the water storage part 7 is not restrained by the above-mentioned Example, but can be selected variously.
[0022]
Further, as described above, when a non-woven fabric is used for the water supply material 4, a plurality of water storage portions 7 in the road width direction according to the water absorption performance of the non-woven fabric (therefore, a plurality of water storage portions 7 are directly below the road surface 8. 8 may be a structure of the water supply type water-retaining pavement 1 having a structure extending in the extending direction of 8). In such a case, the water storage units 7 can be connected to each other by a water conduit or the like that guides rainwater 9 (or tap water) from the water storage unit 7 provided at the end of the road surface 8 (not shown).
Even when the water reservoir 7 is provided below the road surface 8, the water reservoir 7 can sufficiently withstand a traffic load or the like by using the above-described stacked block 71 or the like.
[0023]
【Example】
An example using the above-described road constituting material is shown below. That is, the water retention mixture layer 2 thickness can be set to 5 cm, and the water supply channel board 3 thickness can be set to 15 cm. Further, the lime-based solidifying agent is blended so that the uniaxial compressive strength of the water supply roadbed 3 is 2.9 MPa, and the ceramic particles are blended in an amount of 5 to 10% (ratio to the total mass of masa soil and solidifying agent).
By creating the water supply roadbed 3 with the above composition, the distance from the top of the water retention mixture layer 2 to the water supply material 4 can be secured 20 cm, and the water supply roadbed 3 has a predetermined hardness (strength). Therefore, the load transmitted from the road surface 8 to the water supply material 4 can be remarkably reduced.
Moreover, it becomes possible to aim at the improvement of the water retention effect about 3 to 4 times compared with the conventional pavement by using the inorganic mineral powder provided with the above-mentioned component structure for the water retention mixture layer 2, and the water storage section 7. The amount of water supply from can be significantly reduced.
Furthermore, prior to the laying of the water supply material 4, there may be a case where a water shielding construction is applied to the upper surface of the lower layer roadbed 5 and a case where it is not applied. That is, when the lower layer roadbed 5 is constructed as a cement or lime-based stable treatment roadbed, the lower layer roadbed 5 can ensure water impermeability, so the possibility that moisture 91 from the water supply material 4 penetrates downward is low. Therefore, it is not necessary to water-proof the upper surface of the lower roadbed 5. On the other hand, when the lower roadbed 5 is formed using crushed stone, gravel, sand, or other single-grained crushed stone, the upper surface of the lower roadbed 5 is impermeable to prevent the water supply material 4 from penetrating moisture 91 downward. There is a need. Examples of the water-impervious construction method include a method of laying a water-impervious sheet on the upper surface of the lower roadbed 5, a method of spreading sand after spraying the emulsion (seal coat), a method of constructing multiple layers of seal coat (armor coat), etc. is there.
[0024]
【The invention's effect】
Since the water supply type water-retaining pavement of the present invention is as described above, the following effects can be obtained.
<I> Since the water supply material is protected by the water supply roadbed having a predetermined thickness, it is possible to prevent the water supply material from being broken due to the influence of traffic load or the like.
<B> Since the water supply roadbed has water supply performance, it is difficult to cause a problem that water cannot be supplied to the water-retaining pavement due to the thickness of the water supply roadbed.
<C> A problem that the water content of the water supply material is excessively evaporated by the influence of the temperature of the water retention mixture layer because a certain interval can be ensured between the water retention mixture layer and the water supply material impregnated with water by the water supply roadbed Is unlikely to occur.
<D> By the water retention effect of the water retention mixture layer, the amount of water supplied from the water reservoir can be reduced to each stage.
<E> In the embodiment in which the water supply material is not installed on the entire surface under the road surface by utilizing the effect that water is supplied upward while spreading laterally in the water supply roadbed, the amount of the water supply material is reduced. Can do.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the structure of a water supply type water retaining pavement of the present invention.
2 is a cross-sectional view taken along the line AA of FIG. 1 and showing an embodiment in which water supply materials are continuously installed in the extending direction of the water storage section.
3 is a cross-sectional view taken along the line AA of FIG. 1 and showing an embodiment in which a plurality of water supply materials are installed at intervals in the extending direction of the water storage section.
FIG. 4 is a perspective view showing a stacked block for forming an underground space, which is an embodiment of a water storage unit.
FIG. 5 is a cross-sectional view showing the structure of a conventional water-retaining pavement.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Water supply type water retention pavement 2 ... Water retention mixture layer 3 ... Water supply roadbed 4 ... Water supply material 7 ... Water storage part 8 ... Road surface 91 ... Moisture

Claims (5)

道路の表層を構成する保水性混合物層と、
前記保水性混合物層下に設けて保水性混合物層に水分を供給する給水路盤と、
前記給水路盤下に設けた水分を含浸可能な給水材と、
前記給水材に供給する水分を貯留するための貯水部と、からなり、
前記貯水部から前記給水材に供給した水分を前記給水路盤を通じて前記保水性混合物層に供給させることを特徴とする、
給水型保水性舗装。
A water-retaining mixture layer constituting the surface layer of the road,
A water supply roadbed that is provided under the water retention mixture layer and supplies moisture to the water retention mixture layer,
A water supply material that can be impregnated with moisture provided under the water supply channel board;
A water storage part for storing water to be supplied to the water supply material,
The water supplied to the water supply material from the water storage section is supplied to the water retention mixture layer through the water supply channel board,
Water supply type water retention pavement.
前記貯水部に貯留させた水分に前記給水材の一端を浸漬させた給水材を、前記貯水部から伸びる前記給水材の延伸方向と直角方向に間隔を置いて複数設けたことを特徴とする、
請求項1記載の給水型保水性舗装。
A plurality of water supply materials in which one end of the water supply material is immersed in the water stored in the water storage portion is provided at intervals in a direction perpendicular to the extending direction of the water supply material extending from the water storage portion,
The water supply type water-retaining pavement according to claim 1.
前記給水路盤は、水分供給機能を有する材料を構成成分としたことを特徴とする、
請求項1又は2記載の給水型保水性舗装。
The water supply roadbed is characterized by having a material having a moisture supply function as a constituent component,
The water supply type water-retaining pavement according to claim 1 or 2.
マサ土と、
石灰系固化剤と、
水分供給性能を備えたセラミック系細骨材と、
塩化カルシウムからなる硬化促進剤と、からなる給水路盤を備えたことを特徴とする、
請求項1又は2記載の給水型保水性舗装。
Masa soil and
A lime-based solidifying agent;
Ceramic fine aggregate with water supply performance,
It is characterized by comprising a water supply roadbed made of a hardening accelerator made of calcium chloride,
The water supply type water-retaining pavement according to claim 1 or 2.
前記保水性混合物層は、少なくとも保水性能を備えた無機鉱物粉末を配合してなることを特徴とする、
請求項1乃至4のいずれかに記載の給水型保水性舗装。
The water retention mixture layer is formed by blending inorganic mineral powder having at least water retention performance,
The water supply type water-retaining pavement according to any one of claims 1 to 4.
JP2003164227A 2003-06-09 2003-06-09 Water supply type water retentive paving Pending JP2005002575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003164227A JP2005002575A (en) 2003-06-09 2003-06-09 Water supply type water retentive paving

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003164227A JP2005002575A (en) 2003-06-09 2003-06-09 Water supply type water retentive paving

Publications (1)

Publication Number Publication Date
JP2005002575A true JP2005002575A (en) 2005-01-06

Family

ID=34091079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003164227A Pending JP2005002575A (en) 2003-06-09 2003-06-09 Water supply type water retentive paving

Country Status (1)

Country Link
JP (1) JP2005002575A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214147A (en) * 2005-02-03 2006-08-17 Tokyo Electric Power Co Inc:The Water supply type retentive pavement structure and its construction method
JP2006342585A (en) * 2005-06-09 2006-12-21 Saitama Univ Lower structure of water retentive pavement
JP2007039873A (en) * 2005-06-30 2007-02-15 Mutsuto Kawahara Heat environment improving method and improving structure of space
CN105803888A (en) * 2016-04-18 2016-07-27 江苏中路工程技术研究院有限公司 Sponge type road paving structure
CN105887616A (en) * 2016-04-13 2016-08-24 南开大学 Method for reinforcing water absorption by paving biochar under sponge city pavement
CN110629625A (en) * 2019-09-02 2019-12-31 皖建生态环境建设有限公司 Sponge city square laying structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214147A (en) * 2005-02-03 2006-08-17 Tokyo Electric Power Co Inc:The Water supply type retentive pavement structure and its construction method
JP4517357B2 (en) * 2005-02-03 2010-08-04 東京電力株式会社 Water supply type water retaining pavement structure and its construction method
JP2006342585A (en) * 2005-06-09 2006-12-21 Saitama Univ Lower structure of water retentive pavement
JP4599233B2 (en) * 2005-06-09 2010-12-15 国立大学法人埼玉大学 Substructure of water retention pavement
JP2007039873A (en) * 2005-06-30 2007-02-15 Mutsuto Kawahara Heat environment improving method and improving structure of space
CN105887616A (en) * 2016-04-13 2016-08-24 南开大学 Method for reinforcing water absorption by paving biochar under sponge city pavement
CN105887616B (en) * 2016-04-13 2018-06-26 南开大学 A kind of method that sponge urban ground strengthens water suction by underlay charcoal
CN105803888A (en) * 2016-04-18 2016-07-27 江苏中路工程技术研究院有限公司 Sponge type road paving structure
CN105803888B (en) * 2016-04-18 2018-04-20 江苏中路工程技术研究院有限公司 A kind of sponge-type road pavement structure
CN110629625A (en) * 2019-09-02 2019-12-31 皖建生态环境建设有限公司 Sponge city square laying structure

Similar Documents

Publication Publication Date Title
US3446122A (en) Elastic surfaces for sportsgrounds,playgrounds and footpaths
US20110229262A1 (en) Pavement body, method for constructing pavement body, and mold form for concrete
JP4605107B2 (en) Water retention pavement structure
JP2005002575A (en) Water supply type water retentive paving
KR101726392B1 (en) Construction method of rain water management and recycle system of playground and rain water management and recycle system of playground
JP2003119712A (en) Pavement
JP3496475B2 (en) Wet pavement system
JP4147154B2 (en) Water-retaining pavement and its construction method
JP2004003158A (en) Water-retentive pavement
JP3839016B2 (en) Block-laying open-air floor structure
KR101185626B1 (en) Environmentally-friendly construction method for mountain reservoir using solidified material
KR102335430B1 (en) Climate change adaptive paving block with water conservation, thermal blocking property and water permeability and prepartion method thereof
RU2046871C1 (en) Road structure
JP3852290B2 (en) Road pavement structure and road pavement method
JP2003147716A (en) Pavement provided with water permeability, water draining capability and water retentivity and its construction method
JP4699081B2 (en) Water retentive pavement and its pavement method
JP4052563B2 (en) Pumped pavement
JP4517357B2 (en) Water supply type water retaining pavement structure and its construction method
JP3135175U (en) Water-permeable / water-retentive solidified body
JP4599233B2 (en) Substructure of water retention pavement
JP2004183296A (en) Construction method for pumping and water-retentive pavement
JP2007063861A (en) Water retentive pavement construction method
JP3821809B2 (en) Water retention / permeable concrete pavement method and water retention / permeable concrete block
JP2003160906A (en) Pavement with both permeable/drainable and water retentive functions, and method for its work execution
JP6601989B1 (en) Water-retaining pavement structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060518

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080130

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080205

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603