JP5366369B2 - Soil-based solidified material and pavement method for soil-based solidified material - Google Patents

Soil-based solidified material and pavement method for soil-based solidified material Download PDF

Info

Publication number
JP5366369B2
JP5366369B2 JP2007079314A JP2007079314A JP5366369B2 JP 5366369 B2 JP5366369 B2 JP 5366369B2 JP 2007079314 A JP2007079314 A JP 2007079314A JP 2007079314 A JP2007079314 A JP 2007079314A JP 5366369 B2 JP5366369 B2 JP 5366369B2
Authority
JP
Japan
Prior art keywords
soil
slag
solidified material
calcium aluminate
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007079314A
Other languages
Japanese (ja)
Other versions
JP2008239693A (en
Inventor
省吾 松村
隆二 中尾
衛 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2007079314A priority Critical patent/JP5366369B2/en
Publication of JP2008239693A publication Critical patent/JP2008239693A/en
Application granted granted Critical
Publication of JP5366369B2 publication Critical patent/JP5366369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00215Mortar or concrete mixtures defined by their oxide composition

Description

本発明は土系の固化材及びその舗装方法に関する。   The present invention relates to a soil-based solidified material and a paving method thereof.

道路や歩道では通行に伴い轍や凹みが生じて快適な運転や安全な歩行ができなくなるばかりでなく、雨天時には轍や凹み部に水溜りができるため、道路にアスファルト舗装をするようになってきた。しかしアスファルト舗装は透水性が悪く水溜りが生じ、また夏季には舗装面が熱をためやすく、ヒートアイランド現象を引き起こす欠点があった。そこで、アスファルトの透水性を改善した透水性アスファルト舗装、保水性を有した保水性アスファルト舗装が広まりつつあるが、自然環境が好まれる居住区内や公園などの道路では歩道のアスファルトは人工的な景観になり、路面が硬く反発が強いため足に負担がかかっている。そこで、近年真砂土舗装などより自然に近く、人に優しい舗装が取り入れられつつある。   On roads and sidewalks, not only can ridges and dents occur due to traffic, making it impossible to drive comfortably and walk safely, but also it is possible to puddle on ridges and dents when it rains, so asphalt paving on the roads It was. However, asphalt pavement has poor water permeability and water pools. In addition, the pavement surface easily accumulates heat in summer, which causes a heat island phenomenon. Therefore, water-permeable asphalt pavement with improved water permeability of asphalt and water-retentive asphalt pavement with water retention are spreading. It becomes a landscape, and the road surface is hard and the repulsion is strong. Therefore, in recent years, pavement that is closer to nature and more friendly to people is being adopted, such as Masagochi pavement.

真砂土舗装などの土系舗装では自然の土を利用して固化材と混合して土の強度をもたせるものである。その固化材として、従来はセメントを主原料としたセメント系固化材と石灰を主原料とした石灰系が主流であったが、近年スラグを使用した固化材も見られる。   In soil-based pavements such as mango soil pavement, natural soil is used and mixed with a solidifying material to give the soil strength. Conventionally, cement-based solidified materials using cement as a main raw material and lime-based materials using lime as a main raw material have been mainstream as the solidifying materials, but recently solidified materials using slag are also seen.

特許文献1では土と固化材を混合して舗装場所に敷き均した後、転圧及び養生する土系舗装において、土系固化材が多孔質材料を含まず、消石灰とスラグを含むことを開示している。消石灰及びスラグを含む混合土は、常温下で固化が進行し、従来のアスファルト等からなるものほど高くなく、自然の土だけからなるものほど低くない強度及び硬度を有して固化するものである。実施例1によれば、消石灰を100質量部、粘土を50質量部、高炉スラグを50質量部混合して土系舗装固化材とし、舗装現場で舗装施工した結果、充分な強度を有し、透水性を確保している。   Patent Document 1 discloses that soil-based solidified material does not include a porous material, but includes slaked lime and slag in a soil-based pavement in which soil and solidified material are mixed and spread on a pavement and leveled, and then rolled and cured. doing. The mixed soil containing slaked lime and slag solidifies at room temperature, solidifies with strength and hardness not as low as those made of conventional asphalt and not as low as those made of natural soil only. . According to Example 1, 100 parts by mass of slaked lime, 50 parts by mass of clay, and 50 parts by mass of blast furnace slag were mixed into an earth-based pavement solidifying material. Ensures water permeability.

特開2004−52536号公報JP 2004-52536 A

真砂土舗装などの土系舗装では自然の土を利用して固化材と混合して土の強度を増加すると共に、透水性を確保している。この固化材はセメント系或いはスラグに消石灰などの刺激剤を混合したものを用いていた。   In soil-based pavements such as mango sand pavement, natural soil is used and mixed with a solidifying material to increase the strength of the soil and ensure water permeability. As this solidifying material, cement or slag mixed with a stimulant such as slaked lime was used.

本発明は、強度の低い土や透水性の悪い土に混合して強度と透水性を有する土に改良できる土系固化材を安価に提供することができ、またこの土系固化材を用いて道路や歩道、運動場や競技場などの表層部を舗装する方法を提供することを目的とする。   INDUSTRIAL APPLICABILITY The present invention can inexpensively provide a soil-based solidifying material that can be mixed with low-strength soil or soil with poor water permeability to improve the strength and water-permeable soil, and using this soil-based solidifying material, The purpose is to provide a method for paving the surface layer of roads, sidewalks, playgrounds and stadiums.

本発明はカルシウムアルミネート系スラグそのものを固化材として用いることができるので、少ない混合量でより安価に土系の固化材を提供することができ、また土系固化材を用いて道路や歩道、運動場や競技場などの表層部を舗装する方法を提供するものである。   Since the present invention can use calcium aluminate-based slag itself as a solidifying material, it is possible to provide a soil-based solidifying material at a low cost with a small amount of mixture, and roads and sidewalks using a soil-based solidifying material, It provides a method for paving the surface layer of athletic fields and stadiums.

即ち、本発明の要旨とするところは以下の通りである。
(1)土に水硬性を有するカルシウムアルミネート系スラグを混合した土系固化材であって、水硬性を有するカルシウムアルミネート系スラグが、質量%でAl23:25〜45%、(CaO+CaF2)/Al23:1.1〜2.0、CaF2:2〜6%含有することを特徴とする土系固化材。
(2)前記土系固化材をJIS A 1216(土の1軸圧縮試験方法)に従い、水を10%添加混合して成形した試験体において、材齢7日における1軸圧縮強さが5N/mm2以上であることを特徴とする上記(1)に記載の土系固化材。
(3)上記(1)又は(2)に記載の土系固化材を準備し、前記土系固化材に水を加えて敷き均し、又前記土系固化材を敷き均した後に水を加えて締め固め、若しくは前記土系固化材に水を加えて敷き均した後に水を加えて締め固めることを特徴とした土系舗装方法。
That is, the gist of the present invention is as follows.
(1) A soil-based solidified material in which calcium aluminate slag having hydraulic properties is mixed with soil, and the calcium aluminate slag having hydraulic properties is Al 2 O 3 : 25 to 45% by mass ( CaO + CaF 2 ) / Al 2 O 3 : 1.1 to 2.0, CaF 2 : 2 to 6%.
(2) In a test body in which the soil-based solidified material was molded according to JIS A 1216 (soil uniaxial compression test method) with 10% water added and mixed, the uniaxial compressive strength at a material age of 7 days was 5 N / The earth-based solidified material as described in (1) above, which is mm 2 or more.
(3) above (1) providing a soil type hardening material according to or (2), leveling paved by adding water to the soil type hardening material, also the water after leveling spread the soil type hardening material Additionally compaction, or soil-based pavement method wherein compaction isosamples adding water after leveling paved by adding water to the soil type hardening material.

本発明において水硬性を有するとは、水との化学反応で水和物を形成し、凝結し硬化する性質をいう。また本発明においてカルシウムアルミネート系スラグとは、鋼の製造工程において副産される鉄鋼スラグであり、溶鋼の脱酸剤としてアルミニウムを使用した時に生成するアルミナ高含有スラグであって、スラグの主成分が12CaO・7Al23、11CaO・7Al23・CaF2、3CaO・Al23、CaO・Al23などのカルシウムアルミネートであるという特徴を有するスラグである。 In the present invention, having hydraulic property means a property of forming a hydrate by a chemical reaction with water, condensing and curing. Further, in the present invention, calcium aluminate-based slag is steel slag produced as a by-product in the steel manufacturing process, and is a high-alumina slag produced when aluminum is used as a deoxidizer for molten steel. The slag is characterized in that the component is calcium aluminate such as 12CaO · 7Al 2 O 3 , 11CaO · 7Al 2 O 3 · CaF 2 , 3CaO · Al 2 O 3 , CaO · Al 2 O 3 .

本発明は、強度の低い土や透水性の悪い土に混合して強度と透水性を有する土に改良できる土系固化材を安価に提供することができ、またこの土系固化材を用いて道路や歩道、運動場や競技場などの表層部を舗装する方法を提供するものである。   INDUSTRIAL APPLICABILITY The present invention can inexpensively provide a soil-based solidifying material that can be mixed with low-strength soil or soil with poor water permeability to improve the strength and water-permeable soil, and using this soil-based solidifying material, It provides a method for paving the surface layers of roads, sidewalks, playgrounds, and stadiums.

本発明の土系固化材は、水硬性を有するカルシウムアルミネート系スラグを用いる。カルシウムアルミネート系スラグを用いる理由は、鉄鋼スラグにおいて特に強い水硬性を有する成分範囲がカルシウムアルミネート系スラグに存在するからである。一般の鉄鋼スラグの多くがカルシウムシリケート系スラグであり、これらはスラグの成分における酸化カルシウムと二酸化珪素の含有比率である塩基度が高い場合には水硬性があるものの強度(1軸圧縮強さ)が低く、石膏などを混合するか、また、スラグをセメントと同程度まで微粉(例えば比表面積で2,500cm2/g程度)にすることにより強度を向上させる必要があった。一方、カルシウムアルミネート系スラグは鉄の製造工程において副産される鉄鋼スラグを特定の成分範囲に選別することでスラグをそのまま使用することができ経済的である。該スラグは、水硬性を有するので土に混合して水を加えると硬化し、強度を発する。予め土と該スラグを土の特性に合わせて適量の割合で混合したものを土系固化材として提供でき、水を加えるだけで舗装することができる。 The soil-based solidified material of the present invention uses calcium aluminate-based slag having hydraulic properties. The reason for using calcium aluminate slag is that a component range having particularly strong hydraulic properties in steel slag exists in calcium aluminate slag. Most of the general steel slag is calcium silicate slag, and these have strength (uniaxial compressive strength) when the basicity, which is the content ratio of calcium oxide and silicon dioxide in the slag component, is high. It was necessary to improve the strength by mixing gypsum or the like, or by making the slag as fine as the cement (for example, a specific surface area of about 2,500 cm 2 / g). On the other hand, calcium aluminate-based slag is economical because slag can be used as it is by selecting steel slag produced as a by-product in the iron production process into a specific component range. Since the slag has hydraulic properties, it is hardened and emits strength when mixed with soil and added with water. A mixture obtained by mixing soil and the slag in an appropriate amount in accordance with the characteristics of the soil can be provided as a soil-based solidifying material, and can be paved by simply adding water.

ここで土とは、日本で多く採れる花崗岩などが風化してできた真砂土と呼ばれるものなどで、天然に採取される土である。これらは歩道、公園、グランド、敷地内の庭や駐車場に多く使われている。また、これら採取された土に砂や砕石、スラグ骨材を混合したもの、瓦、ガラス、木材チップ、ゴムなど破砕して粒度調整した材料を混合して色調、質感、景観などの特性を活かした混合した土を含む。   Here, the soil is what is called true sand soil, which is made by weathering granite that is often harvested in Japan, and is naturally collected soil. These are often used for sidewalks, parks, grounds, on-site gardens and parking lots. In addition, these collected soils are mixed with sand, crushed stone, slag aggregate, tiles, glass, wood chips, rubber, etc. Contains mixed soil.

本発明は、予め土とカルシウムアルミネート系スラグを土の特性に合わせて適量に混合した土系固化材を使用し、或いは現地で土にカルシウムアルミネート系スラグを混合して土系固化材となし、水を加えて敷き均し適度に転圧して敷き固めて舗装することができる。土系固化材と水を混合する際にコンクリート用のミキサーがあれば容易に水と均一に混合できるが、混合機が無い場合、人力で混合するには負担が大きいため、土系固化材を敷き均した後、表面から均一に散水して水を加えた後、敷き固めて舗装することもできる。   The present invention uses a soil-based solidified material in which soil and calcium aluminate-based slag are mixed in an appropriate amount in accordance with the characteristics of the soil in advance, or by mixing calcium aluminate-based slag in the soil with a soil-based solidified material. None, can be paved by adding water, leveling, rolling and solidifying properly. When mixing a soil-based solidifying material and water, if there is a concrete mixer, it can be easily mixed with water uniformly. However, if there is no mixer, it is difficult to mix manually. After leveling, the water can be uniformly sprinkled from the surface, water can be added, and then the floor can be solidified and paved.

舗装するに当り、車両などの重量物が載る場合には、表層の舗装の下に砕石などの下層路盤材を敷き詰めるとよい。下層路盤の敷き詰める厚さ、及び表層の舗装敷き詰める厚さは用途に応じて決定する。例えば歩道などでは、下層の路盤厚さは50〜100mmを敷き固めた後、表層部に土系固化材を50mm程度敷き固めて舗装するとよい。   When paving a heavy object such as a vehicle, it is better to lay down a subgrade material such as crushed stone under the surface pavement. The thickness of the lower roadbed and the thickness of the surface pavement are determined according to the application. For example, in a sidewalk, the roadbed thickness of the lower layer may be 50 to 100 mm and then paved with about 50 mm of earth-based solidified material on the surface layer.

土とカルシウムアルミネート系スラグの混合割合は、使用用途と土の特性を勘案して決定することができる。歩道など足に負担のかからない路面の強度でよい場合、或いは駐車場などで路面強度が必要な場合などその用途に応じて適切な強度があるため、強度に応じた配合を決定することが望ましい。また、土の産地により品質が異なるので、現に使用する土の特性により同じ割合のカルシウムアルミネート系スラグを混合しても強度が異なる。従って、予め配合試験を行い適切な強度に適合する土とカルシウムアルミネート系スラグの配合及び添加水分量を求めておくことが必要である。   The mixing ratio of soil and calcium aluminate slag can be determined in consideration of the intended use and the characteristics of the soil. When the strength of the road surface that does not burden the foot such as a sidewalk is sufficient, or when the road surface strength is required in a parking lot or the like, there is an appropriate strength depending on the application, so it is desirable to determine the composition according to the strength. In addition, since the quality varies depending on the production area of the soil, the strength varies even if calcium aluminate-based slag of the same proportion is mixed depending on the characteristics of the soil used. Therefore, it is necessary to perform a blending test in advance to determine the blending of soil and calcium aluminate-based slag that is suitable for strength and the amount of added water.

鋼の製造工程における溶鋼の溶製において、溶鋼の脱酸剤にアルミニウムを使用して脱酸した場合には、スラグ中にAl23が生成される。そのAl23を含めたスラグの組成は、例えばステンレス鋼の溶製において、質量%で CaO:45%、SiO2:4%、Al23:30%、その他MgOを含むカルシウムアルミネート系スラグが形成される。これらのスラグ組成は、溶製方法などの操業条件により大きく変化する。また、条件によっては、フッ化カルシウム(CaF2)を多量に含有するホタル石を使用する場合もある。本発明においては、このようにして生成したカルシウムアルミネート系スラグを用いることができる。 In the melting of molten steel in the steel manufacturing process, when aluminum is used as a deoxidizer for molten steel, Al 2 O 3 is generated in the slag. The composition of the slag including Al 2 O 3 is, for example, calcium aluminate containing CaO: 45%, SiO 2 : 4%, Al 2 O 3 : 30%, and other MgO in melting of stainless steel. System slag is formed. These slag compositions vary greatly depending on operating conditions such as the melting method. Depending on conditions, fluorite containing a large amount of calcium fluoride (CaF 2 ) may be used. In the present invention, the calcium aluminate slag thus produced can be used.

本発明の水硬性を有するカルシウムアルミネート系スラグは、第1の成分組成として、質量%で Al23:20〜40%、CaO:30〜60%、SiO2:3〜15%含有するものとすると好ましい。このようなカルシウムアルミネート系スラグはアルミニウムを使用して脱酸した溶製工程で発生するスラグを用いることができる。 The calcium aluminate-based slag having hydraulic properties of the present invention contains, as a first component composition, Al 2 O 3 : 20 to 40%, CaO: 30 to 60%, SiO 2 : 3 to 15% by mass%. It is preferable if it is. Such calcium aluminate-based slag can be slag generated in a melting step deoxidized using aluminum.

本発明者は、上記組成を有するカルシウムアルミネート系スラグが強い水硬性を持ち、かつ従来の普通ポルトランドセメントに比較して同等以上の水硬性を持つ成分系が存在することを見出した。この組成範囲では、鉄鋼スラグの鉱物組成として、12CaO・7Al23(以下「C127」ともいう。)が主体的に発生し、3CaO・SiO2(以下「C3S」ともいう。)が生成する。これらが水と混合された場合、水和反応が促進され、早い反応速度でかつ強い水硬が生じる。 The present inventor has found that a calcium aluminate-based slag having the above composition has strong hydraulic properties, and there is a component system having hydraulic properties equal to or higher than those of conventional ordinary Portland cement. In this composition range, 12CaO · 7Al 2 O 3 (hereinafter also referred to as “C 12 A 7 ”) is mainly generated as the mineral composition of the steel slag, and 3CaO · SiO 2 (hereinafter also referred to as “C 3 S”). .) Is generated. When these are mixed with water, the hydration reaction is promoted, resulting in fast reaction rate and strong hydraulic strength.

本発明の第1の成分組成において、Al23成分については、Al23が20%未満ではC127を生成するためのAl23が不足し、40%超ではC3Sの生成量が不足する。そこで、Al23の範囲を20〜40%とした。CaO成分については、CaOが30%未満ではC127を生成するためのCaOが不足し、60%超ではC127の生成量が不足する。そこでCaOの範囲を30〜60%とした。SiO2成分については、SiO2が3%未満ではC3Sを生成するためのSiO2が不足し、15%超ではC127の生成量が不足する。そこで、SiO2の範囲を3〜15%とした。 In the first composition of the present invention, for Al 2 O 3 component, Al 2 O 3 is insufficient Al 2 O 3 for producing a C 12 A 7 is less than 20%, C 3 is 40 percent The amount of S produced is insufficient. Therefore, the range of Al 2 O 3 is set to 20 to 40%. As for the CaO component, when CaO is less than 30%, CaO for producing C 12 A 7 is insufficient, and when it exceeds 60%, the amount of C 12 A 7 produced is insufficient. Therefore, the range of CaO is set to 30 to 60%. The SiO 2 component, SiO 2 is insufficient SiO 2 to generate the C 3 S is less than 3%, insufficient production of C 12 A 7 is 15 percent. Therefore, the SiO 2 range is set to 3 to 15%.

これらのスラグ組成においてCaO/Al23が1〜2、及びCaO/SiO2が10以下の領域で特に強い水硬性を示す。CaO/Al23が1より小さい領域ではCaO/SiO2に関わらずC3Sが全く発生せず、CaO/Al23が2より大きい領域ではCaO/SiO2に関わらずC127が生成しない。CaO/SiO2が10以上の領域ではC3Sが全く発生しない。CaO/Al23が1〜2、及びCaO/SiO2が10以下の領域でC127とC3Sが最も多く生成する。スラグ中にC3Sが生成すると、スラグの冷却中に鉱物の変態に起因してスラグが崩壊して75μm程度の微細粉まで粉化する。この粉化スラグが普通ポルトランドセメントと同等以上の水硬性を有しているため、スラグの粉砕工程を必要とせず、必要に応じて篩い分けして粒度を揃えて、水硬性を有するカルシウムアルミネート系スラグとして提供できる。また、スラグは水冷などの処理を行わないので、水分は全く含まない。 In these slag compositions, CaO / Al 2 O 3 is 1-2, and CaO / SiO 2 is 10 or less. In the region where CaO / Al 2 O 3 is smaller than 1, C 3 S is not generated at all regardless of CaO / SiO 2, and in the region where CaO / Al 2 O 3 is larger than 2 , C 12 A regardless of CaO / SiO 2. 7 does not generate. In the region where CaO / SiO 2 is 10 or more, C 3 S is not generated at all. C 12 A 7 and C 3 S are most produced in a region where CaO / Al 2 O 3 is 1 to 2 and CaO / SiO 2 is 10 or less. When C 3 S is generated in the slag, the slag collapses due to the transformation of the mineral during the cooling of the slag and is pulverized to a fine powder of about 75 μm. This powdered slag has a hydraulic property equivalent to or better than ordinary Portland cement, so it does not require a slag grinding step, and if necessary, sifts and aligns the particle size to provide a hydraulic calcium aluminate. Can be provided as system slag. Moreover, since slag does not perform processes, such as water cooling, it does not contain a water | moisture content at all.

溶製方法などの操業条件によりスラグ組成中のMgOその他の成分が含まれるが、Al23が20%以上含まれる本発明範囲内ではMgOその他の成分によるカルシウムアルミネート系スラグの鉱物組成に大きな変化が無く、スラグの性質に与える影響は小さい。 MgO and other components in the slag composition are included depending on the operating conditions such as the melting method, but within the scope of the present invention where 20% or more of Al 2 O 3 is included, the mineral composition of the calcium aluminate slag by MgO and other components There is no big change and the effect on the properties of slag is small.

本発明の水硬性を有するカルシウムアルミネート系スラグは、第2の成分組成として、質量%で Al23:25〜45%、(CaO+CaF2)/Al23:1.1〜2.0、CaF2:2〜6%含有するものとすると好ましい。このようなカルシウムアルミネート系スラグはアルミニウムを使用して脱酸した溶製工程で発生するスラグを用いることができる。 The calcium aluminate-based slag having hydraulic properties of the present invention has, as a second component composition, Al 2 O 3 : 25 to 45%, (CaO + CaF 2 ) / Al 2 O 3 : 1.1 to 2. % by mass. 0, CaF 2 : It is preferable to contain 2 to 6%. Such calcium aluminate-based slag can be slag generated in a melting step deoxidized using aluminum.

鋼の溶製において造滓剤にホタル石を使用し、アルミニウム脱酸を行った際に発生するカルシウムアルミネート系スラグについて、スラグの水硬性の評価を行ったところ、上記のスラグ成分範囲において強い水硬性を持ち、かつ従来の普通ポルトランドセメントに比較して同等以上の水硬性を持つ成分系が存在することを見出した。また、水硬性を発揮するスラグについてその鉱物組成を調査したところ、上記組成範囲のスラグについては11CaO・7Al23・CaF2(以下「C117・CaF2」ともいう。)とCaOを含有していることが明らかになった。これらが水と混練された場合、水和反応が促進され、早い反応速度でかつ強い水硬が生じる。 Calcium aluminate slag generated when fluorite is used as a smelting agent in the melting of steel and aluminum deoxidation is performed, and the slag hydraulic properties are evaluated. It has been found that there is a component system that has hydraulic properties and has hydraulic properties equivalent to or higher than those of conventional ordinary Portland cement. Also, When checking its mineral composition for the slag to exert hydraulic, for slag of the above composition range (hereinafter also referred to as "C 11 A 7 · CaF 2".) 11CaO · 7Al 2 O 3 · CaF 2 and CaO It became clear that it contains. When these are kneaded with water, the hydration reaction is promoted, resulting in a fast reaction rate and strong hydraulic strength.

本発明の第2の成分組成において、Al23成分については、Al23が25%未満ではC117・CaF2を生成するためのAl23が不足し、45%超ではCaOの生成量が不足する。そこで、Al23の範囲を25〜45%とした。 In the second composition of the present invention, for Al 2 O 3 component, Al 2 O 3 is insufficient Al 2 O 3 for producing a C 11 A 7 · CaF 2 is less than 25%, than 45% Then, the amount of CaO produced is insufficient. Therefore, the range of Al 2 O 3 is set to 25 to 45%.

CaO+CaF2成分とAl23成分との比(CaO+CaF2)/Al23については、1.1未満では必要とするCaOが不足し、2.0を超えるとCaOが増え相対的にC117・CaF2が少なく、水硬性作用を充分発揮できなくなる。そこで、(CaO+CaF2)/Al23を1.1〜2.0とした。 As for the ratio of CaO + CaF 2 component to Al 2 O 3 component (CaO + CaF 2 ) / Al 2 O 3 , the required CaO is insufficient when the ratio is less than 1.1, and the CaO increases when the ratio exceeds 2.0. 11 a 7 · CaF 2 is small, can not be sufficiently demonstrate the hydraulic action. Therefore, (CaO + CaF 2 ) / Al 2 O 3 was set to 1.1 to 2.0.

CaF2が2%未満では、C117・CaF2が少なく、C127と混在するようになり水硬性が発揮できなくなる。一方、CaF2が6%を越えると、過剰のCaF2が含有されることになり好ましくない。そこで、CaF2の組成範囲を2〜6%とした。 When CaF 2 is less than 2%, C 11 A 7 · CaF 2 is small and mixed with C 12 A 7, and hydraulic properties cannot be exhibited. On the other hand, if CaF 2 exceeds 6%, excess CaF 2 is contained, which is not preferable. Therefore, the composition range of CaF 2 is set to 2 to 6%.

カルシウムアルミネート系スラグには、成分としてCaO、Al23、CaF2のほかSiO2、MgOなどが含有されるが、本発明の第2のCaF2を含有する成分組成においては、Al23、CaO、CaF2成分の総量が75%以上で水硬性を充分に発揮することができる。 The calcium aluminate-based slag contains CaO, Al 2 O 3 , CaF 2 as well as SiO 2 , MgO, etc. as components, but in the component composition containing the second CaF 2 of the present invention, Al 2 When the total amount of O 3 , CaO, and CaF 2 components is 75% or more, hydraulic properties can be sufficiently exhibited.

以下、本発明を実施例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to a following example.

本発明の第1、第2の成分組成を有するカルシウムアルミネート系スラグについて、成分組成と水硬性との関係について評価した。   About the calcium aluminate-type slag which has the 1st, 2nd component composition of this invention, the relationship between a component composition and hydraulic property was evaluated.

水硬性の評価方法は、水硬性組成物に水を25%加えて混練し、JIS A 1108(コンクリートの圧縮強度試験方法)に従って1軸圧縮強度を測定した。水硬性組成物の本来の強度を把握するため、骨材などを配合しないで評価した。1軸圧縮強度が10N/mm2以上あれば固化材としての機能を有すると判断した。 As a hydraulic evaluation method, 25% of water was added to the hydraulic composition and kneaded, and uniaxial compressive strength was measured according to JIS A 1108 (concrete compressive strength test method). In order to grasp the original strength of the hydraulic composition, it was evaluated without adding any aggregates. If the uniaxial compressive strength was 10 N / mm 2 or more, it was judged to have a function as a solidifying material.

本発明の第1の成分組成を有するスラグを表1に、第2の成分組成を有するスラグを表2に示す。   Table 1 shows slag having the first component composition of the present invention, and Table 2 shows slag having the second component composition.

表1の本発明例1〜6のスラグの鉱物組成を確認した結果、いずれもC127が主体で、C3Sの存在が確認できた。一方、比較例1ではC3Sの存在が確認できないほど少なく、比較例2ではCaO−SiO2系スラグが主体であり、C127の存在が少ない。比較例3ではC127の存在が確認できない。 As a result of confirming the mineral composition of the slags of Invention Examples 1 to 6 in Table 1, all were mainly C 12 A 7 and the presence of C 3 S could be confirmed. On the other hand, in Comparative Example 1, the presence of C 3 S is so small that the presence of C 3 S cannot be confirmed. In Comparative Example 2, CaO—SiO 2 -based slag is mainly used, and the presence of C 12 A 7 is small. In Comparative Example 3, the presence of C 12 A 7 cannot be confirmed.

表1の本発明例1〜6は、成分範囲が本発明の範囲に入っているので、1軸圧縮強度は良好な値であった。特に、本発明例4〜6はCaO/Al23が1〜2、及びCaO/SiO2が10以下の好適範囲を満たしており、良好な1軸圧縮強度を実現することができた。一方、比較例1〜3はいずれも1軸圧縮強度が低く不適であった。 In Invention Examples 1 to 6 in Table 1, since the component range is within the range of the present invention, the uniaxial compressive strength was a good value. In particular, Examples 4 to 6 of the present invention satisfied preferable ranges of CaO / Al 2 O 3 of 1 to 2 and CaO / SiO 2 of 10 or less, and were able to realize good uniaxial compressive strength. On the other hand, Comparative Examples 1 to 3 were all unsuitable because of their low uniaxial compression strength.

表2の本発明例1〜4のスラグの鉱物組成を確認した結果、いずれもC117CaF2が主体で、CaOの存在が確認できた。一方、比較例1ではC117CaF2が少なく、比較例2ではCaOが多く、C117CaF2が少ない。比較例3ではCaOの存在が確認できない。 As a result of confirming the mineral composition of the slags of Invention Examples 1 to 4 in Table 2, all were mainly C 11 A 7 CaF 2 and the presence of CaO could be confirmed. On the other hand, in Comparative Example 1 C 11 A 7 CaF 2 is small, Comparative Example 2, CaO many, C 11 A 7 CaF 2 is small. In Comparative Example 3, the presence of CaO cannot be confirmed.

表2の本発明例1〜4は、成分範囲が本発明の範囲に入っているので、1軸圧縮強度は良好な値であった。一方、比較例1〜3はいずれも1軸圧縮強度が低く不適であった。   In Invention Examples 1 to 4 in Table 2, the component range was within the range of the present invention, so the uniaxial compressive strength was a good value. On the other hand, Comparative Examples 1 to 3 were all unsuitable because of their low uniaxial compressive strength.

表1及び表2に示す本発明の水硬性を有するカルシウムアルミネート系スラグ及び比較例に固化材No.を付与して、これらの固化材を用いた土系固化材及び土系固化材を用いた舗装の実施例を表3に示す。   The calcium aluminate-based slag having hydraulic properties of the present invention shown in Tables 1 and 2 and the comparative examples are solidified material No. Table 3 shows examples of soil-based solidified materials using these solidified materials and pavement using the soil-based solidified materials.

Figure 0005366369
Figure 0005366369

Figure 0005366369
Figure 0005366369

Figure 0005366369
Figure 0005366369

参考例1)
真砂土を13mmで篩い分けして粒度調整した後、110℃で乾燥し水分を除去した調整真砂土100質量%と表1の参考例6(固化材No.F)を2mmで篩い分けしたカルシウムアルミネート系スラグを50質量%とを均一に混合した土系固化材を製造した。この土系固化材をJIS A 1216(土の1軸圧縮試験方法)に従い、水を10%添加混合した試験体を成形し、材齢7日における1軸圧縮強さを測定した。1軸圧縮強さは14.3N/mm2と土系舗装に必要な5N/mm2以上を充分確保できた。表3の実施例比較1は、上記に記載の参考例1と同じ種類の土と表1に示す比較例1(固化体No.G)とを用いて上記記載と同じ条件で調整・配合した材料の1軸圧縮強さを比較した結果、2.3N/mm2と低く、本発明の参考例1の優位を明確に評価できる。
( Reference Example 1)
After adjusting the particle size by sieving the pure sandy soil at 13 mm, calcium was obtained by sieving the adjusted pure sandy soil 100% by weight after drying at 110 ° C. to remove moisture and Reference Example 6 (solidified material No. F) in Table 1 with 2 mm. An earth-based solidified material in which 50% by mass of aluminate-based slag was uniformly mixed was produced. A test body in which 10% of water was added and mixed with this soil-based solidified material according to JIS A 1216 (method for uniaxial compression test of soil) was molded, and the uniaxial compressive strength at the age of 7 days was measured. Uniaxial compressive strength was able to sufficiently secure a 5N / mm 2 or more necessary 14.3N / mm 2 and soil-based pavement. Example Example 1 in Table 3 was prepared and mixed under the same conditions as described above using the same kind of soil as Reference Example 1 described above and Comparative Example 1 (solidified No. G) shown in Table 1. As a result of comparing the uniaxial compressive strength of the materials, it is as low as 2.3 N / mm 2, and the superiority of Reference Example 1 of the present invention can be clearly evaluated.

本土系固化材は土とカルシウムアルミネート系スラグを適切に配合した材料を袋詰めにしておくと、施工場所での混合が不要であり、水を加えるだけで施工できるため、例えば家回りの敷地などの比較的小さな施工場所で舗装する材料の提供に適する。   Mainland-based solidification materials can be constructed simply by adding water to a site that contains a mixture of soil and calcium aluminate-based slag. It is suitable for providing materials to be paved at a relatively small construction site.

参考例2)
公園内の歩道がアスファルト舗装してあったが、自然景観を活かしかつ人に優しい歩道とするため、土系舗装に改造工事を行った。アスファルトを除去した後、下層路盤としてJIS A 5001(道路用砕石)のC−30の砕石を100mm敷き固めた上に、土とカルシウムアルミネート系スラグの混合した土系固化材を50mm敷き固めた土系舗装を行った。土は真砂土を使用し、カルシウムアルミネート系スラグは表1の参考例4(固化体No.D)と同じ成分のスラグを用い、真砂土100質量%に対し、カルシウムアルミネート系スラグを20質量%の割合で配合した。施工現場にてミキサー車に水を5〜10%加えて均一に混合した後、舗装部に敷き均し、ロードローラーにて50mm厚みに転圧した。施工後、天候による乾燥状況を見ながら必要に応じて散水し、表面に防水シートを被せ5日間養生した。翌日には歩行が可能な程度に固化していたが、より強度が安定するまで養生した。この土系舗装の7日後の1軸圧縮強さ(JIS A 1216)は6.8N/mm2、透水係数(JIS A 1218)は10−4〜10−5であり、歩道に充分な強度が得られ、ほどよく水はけの良い舗装が得られた。同時に自然に調和した景観の良い舗装に仕上がった。
( Reference Example 2)
The sidewalk in the park was asphalt paved, but in order to make use of the natural landscape and to make it a friendly sidewalk, we remodeled it into an earth-based pavement. After removing asphalt, JIS A 5001 (road crushed stone) C-30 crushed stone was laid and solidified for 100 mm, and soil-based solidified material mixed with soil and calcium aluminate slag was laid and solidified for 50 mm. Earth-based paving was performed. The soil uses pure sand, and the calcium aluminate slag uses slag of the same component as Reference Example 4 (solidified No. D) in Table 1, and 20% of calcium aluminate slag is 100% by mass of pure sand. It mix | blended in the ratio of the mass%. After 5 to 10% of water was added to the mixer truck at the construction site and mixed uniformly, the mixture was spread on the pavement and rolled to a thickness of 50 mm with a road roller. After construction, water was sprayed as needed while observing the dryness of the weather, and the surface was covered with a waterproof sheet and cured for 5 days. The next day it was solid enough to walk, but was cured until it was more stable. The uniaxial compressive strength (JIS A 1216) after 7 days of this earth-based pavement is 6.8 N / mm 2 , and the hydraulic conductivity (JIS A 1218) is 10-4 to 10-5. The resulting pavement was well drained. At the same time, it was finished in a pavement with a beautiful landscape in harmony with nature.

実施例比較2では、比較として表2に示す比較例2(固化材No.O)を用いて、上記記載の実施例2と全く同じ条件・方法で調査した1軸圧縮強さは1.5N/mm2と必要な強度が得られず、本発明の優位性が確認できた。 In Example Comparison 2, using Comparative Example 2 (solidified material No. O) shown in Table 2 as a comparison, the uniaxial compressive strength investigated under exactly the same conditions and method as Example 2 described above was 1.5 N / Mm 2 and the required strength could not be obtained, confirming the superiority of the present invention.

(実施例3)
自然道に粘土質の土を用いて、土を100質量%と固化材を20質量%を配合して舗装を行った。実施例3の固化材は表2に示す本発明例1(固化材No.J)を用い、実施例比較は表2の比較例3(固化材No.P)を用いて比較した。実施例比較の1軸圧縮強さは1.9N/mm2と低く、路面に容易に凹みなどが生じるため不適である。本発明では7.8N/mm2と足に負担の無い適度な強度が得られた。
(Example 3)
Using clay soil on the natural road, pavement was performed by blending 100% by mass of soil and 20% by mass of solidifying material. As the solidified material of Example 3, Example 1 (solidified material No. J) of the present invention shown in Table 2 was used, and comparison of the examples was performed using Comparative Example 3 (solidified material No. P) of Table 2. The uniaxial compressive strength of the comparative example is as low as 1.9 N / mm 2 , which is not suitable because a dent or the like is easily generated on the road surface. In the present invention, an appropriate strength of 7.8 N / mm 2 with no burden on the foot was obtained.

(実施例4)
駐車場に土と水硬性を有するカルシウムアルミネート系スラグを混合した土系固化材を用いて舗装を行った。駐車場の施工場所を200mm掘り下げて、下層路盤にC−40の砕石を150mm敷き固めた後、表層部に土系固化材を50mm敷き詰めた。土系固化材は真砂土100質量%に対し、表2の本発明3と同じ成分(固化材No.L)のカルシウムアルミネート系スラグを40質量%配合したものを用いた。この土系固化材に瓦を破砕して5〜13mmに粒度調製したリサイクル骨材を20質量%と顔料と水を加えて混練した。施工場所に混練した土系固化材を敷き均した後、振動ローラーで敷き固めた。施工後、表面に防水シートを被せ5日間養生した。この土系舗装の7日後の1軸圧縮強さは11〜13N/mm2、透水係数は10−4〜10−5であり、駐車場として充分な強度が得られ、程よい水はけの良い舗装が得られた。同時に、リサイクル骨材と顔料により変化の富んだ仕上がりとなった。
Example 4
The parking lot was paved with a soil-based solidified material mixed with soil and hydraulic calcium aluminate-based slag. The construction site of the parking lot was dug down 200 mm, and C-40 crushed stone was laid down 150 mm on the lower roadbed, and then 50 mm of earth-based solidified material was laid down on the surface layer. As the soil-based solidified material, 40% by mass of calcium aluminate-based slag having the same composition (solidified material No. L) as that of the present invention 3 in Table 2 was used with respect to 100% by mass of sand sand. Recycled aggregate prepared by crushing roof tiles and adjusting the particle size to 5 to 13 mm was kneaded with 20% by mass, pigment and water. The soil-based solidified material kneaded at the construction site was leveled and then ground with a vibration roller. After the construction, the surface was covered with a waterproof sheet and cured for 5 days. The uniaxial compressive strength after 7 days of this soil-based pavement is 11 to 13 N / mm 2 , and the water permeability is 10 −4 to 10 −5. Sufficient strength is obtained as a parking lot, and the pavement has good drainage. Obtained. At the same time, the recycled aggregates and pigments resulted in a varied finish.

参考例5)
グランドに土と水硬性を有するカルシウムアルミネート系スラグを混合した土系固化材を用いて舗装を行った。グランドを200mm掘り下げて、下層の地盤層に40mm以下の砕石を100mm敷き固めた後、表層部に土系固化材を50mm敷き詰めた。土系固化材は真砂土100質量%に対し、表1の参考例3(固化材No.C)と同じ成分のカルシウムアルミネート系スラグを30質量%と珪砂を10質量%を配合したものを用い、水を加えて混練した。施工場所に混練した土系固化材を敷き均した後、ロードローラーで敷き固めた。施工後、表面に防水シートを被せ5日間養生した。この土系舗装の7日後の1軸圧縮強さは8.6N/mm2、透水係数は10−3〜10−4であり、砂を10%配合することにより、強度が増加し、水はけの良いグランド舗装が得られた。
( Reference Example 5)
Pavement was performed using a soil-based solidified material in which ground and hydraulic calcium aluminate-based slag were mixed in the ground. The ground was dug 200 mm, and after crushing crushed stones of 40 mm or less to the lower ground layer by 100 mm, 50 mm of earth-based solidified material was spread on the surface layer. The soil-based solidified material is a mixture of 30% by mass of calcium aluminate-based slag and 10% by mass of silica sand, which are the same components as in Reference Example 3 (solidified material No. C) in Table 1 with respect to 100% by mass of sandy sand. Used and kneaded with water. After laying and leveling the soil-based solidified material kneaded at the construction site, it was spread with a road roller. After the construction, the surface was covered with a waterproof sheet and cured for 5 days. The uniaxial compressive strength after 7 days of this earth-based pavement is 8.6 N / mm 2 , and the water permeability is 10-3 to 10-4. By adding 10% of sand, the strength increases and drainage Good ground pavement was obtained.

(実施例6)
敷地内に土と水硬性を有するカルシウムアルミネート系スラグを混合した土系固化材を用いて舗装を行った。土系固化材は真砂土100質量%に対し、表2の本発明4(固化材No.M)と同じ成分のカルシウムアルミネート系スラグを20質量%と13mm以下の砕石を20質量%を配合したものを用い、水を加えて混練した。施工場所に混練した土系固化材を100mm敷き均した後、ロードローラーで敷き固めた。施工後、表面に防水シートを被せ5日間養生した。この土系舗装の7日後の1軸圧縮強さは9.8N/mm2と充分な強度が得られた。
(Example 6)
Pavement was carried out using soil-based solidified material mixed with soil and hydraulic calcium aluminate-based slag. The soil-based solidified material contains 20% by mass of calcium aluminate-based slag having the same composition as that of the present invention 4 (solidified material No. M) in Table 2 and 100% by mass of sand sand, and 20% by mass of crushed stone of 13 mm or less. Then, water was added and kneaded. The soil-based solidified material kneaded at the construction site was leveled 100 mm, and then ground with a road roller. After the construction, the surface was covered with a waterproof sheet and cured for 5 days. The uniaxial compressive strength after 7 days of this earth-based pavement was 9.8 N / mm 2 and a sufficient strength was obtained.

Claims (3)

土に水硬性を有するカルシウムアルミネート系スラグを混合した土系固化材であって、水硬性を有するカルシウムアルミネート系スラグが、質量%でAl23:25〜45%、(CaO+CaF2)/Al23:1.1〜2.0、CaF2:2〜6%含有することを特徴とする土系固化材。 A soil-based solidified material in which calcium aluminate slag having hydraulic properties is mixed with soil, and calcium aluminate-based slag having hydraulic properties is Al 2 O 3 : 25 to 45% by mass%, (CaO + CaF 2 ) / Al 2 O 3 : 1.1 to 2.0, CaF 2 : 2 to 6%. 前記土系固化材をJIS A 1216(土の1軸圧縮試験方法)に従い、水を10%添加混合して成形した試験体において、材齢7日における1軸圧縮強さが5N/mm2以上であることを特徴とする請求項1に記載の土系固化材。 In a test body in which the soil-based solidified material was molded by adding and mixing 10% of water in accordance with JIS A 1216 (soil uniaxial compression test method), the uniaxial compressive strength at the age of 7 days was 5 N / mm 2 or more. The earth-based solidifying material according to claim 1, wherein: 請求項1又は2に記載の土系固化材を準備し、前記土系固化材に水を加えて敷き均し、又前記土系固化材を敷き均した後に水を加えて締め固め、若しくは前記土系固化材に水を加えて敷き均した後に水を加えて締め固めることを特徴とした土系舗装方法。 Prepare the soil type hardening material according to claim 1 or 2, leveling spread by adding water to the soil type hardening material, or compacted by adding water after leveling spread the soil type hardening material, or soil type pavement method wherein compaction isosamples adding water after leveling paved by adding water to the soil type hardening material.
JP2007079314A 2007-03-26 2007-03-26 Soil-based solidified material and pavement method for soil-based solidified material Active JP5366369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007079314A JP5366369B2 (en) 2007-03-26 2007-03-26 Soil-based solidified material and pavement method for soil-based solidified material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007079314A JP5366369B2 (en) 2007-03-26 2007-03-26 Soil-based solidified material and pavement method for soil-based solidified material

Publications (2)

Publication Number Publication Date
JP2008239693A JP2008239693A (en) 2008-10-09
JP5366369B2 true JP5366369B2 (en) 2013-12-11

Family

ID=39911426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007079314A Active JP5366369B2 (en) 2007-03-26 2007-03-26 Soil-based solidified material and pavement method for soil-based solidified material

Country Status (1)

Country Link
JP (1) JP5366369B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6276027B2 (en) * 2013-12-27 2018-02-07 太平洋マテリアル株式会社 Fast-curing buried material
JP6503812B2 (en) * 2015-03-18 2019-04-24 宇部興産株式会社 Neutral solidifying material and solidifying method
JP2017082486A (en) * 2015-10-28 2017-05-18 デンカ株式会社 Soil pavement material and soil pavement method
JP6634267B2 (en) * 2015-10-28 2020-01-22 デンカ株式会社 Soil pavement material
JP6893425B2 (en) * 2017-03-02 2021-06-23 デンカ株式会社 Soil pavement material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796462B2 (en) * 1990-12-25 1995-10-18 住友金属工業株式会社 Manufacturing method of ultra-rapid hardened cement raw material by modifying steel slag
JP2636612B2 (en) * 1991-12-16 1997-07-30 住友金属工業株式会社 Production method of ultra-fast hardening cement raw material modified from steel slag
JPH10218654A (en) * 1997-02-06 1998-08-18 Chichibu Onoda Cement Corp Filler for cavity
JP3909956B2 (en) * 1997-06-19 2007-04-25 河合石灰工業株式会社 Permeable soil improvement material
JP2004052536A (en) * 2002-05-27 2004-02-19 Inax Corp Solidification material for soil-based paving
JP4757472B2 (en) * 2004-09-24 2011-08-24 新日鐵住金ステンレス株式会社 Hydraulic composition such as cement made of calcium aluminate steel slag
JP2006169030A (en) * 2004-12-15 2006-06-29 Nippon Steel & Sumikin Stainless Steel Corp Building material using steel making slag and fly ash, and method for manufacturing the same
JP2006282486A (en) * 2005-04-05 2006-10-19 Denki Kagaku Kogyo Kk Alumina cement, alumina cement composition, and monolithic refractory

Also Published As

Publication number Publication date
JP2008239693A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
KR100924133B1 (en) Pavement composition for soil road, preparation thereof, and method for paving soli road using it
JP5561921B2 (en) Earth solidified material
JP5366369B2 (en) Soil-based solidified material and pavement method for soil-based solidified material
KR100621963B1 (en) Soil paving composition using water-quenched blast furnace slag and method for paving ground using the same
JP2748312B2 (en) Road surface pavement method and road surface pavement composition
KR100954341B1 (en) Composite for soil pavement and construction method of soil pavement using the composite
JPH07300358A (en) Hydraulic grout material for paving and grout
JP4387995B2 (en) Tile paving material
JP4456984B2 (en) Water-retaining concrete member
JP3446409B2 (en) Method for producing water-permeable ceramic block
JP3050793B2 (en) Pavement material and pavement block using the same
JP6617043B2 (en) Construction method of drainage pavement
JP2909929B2 (en) How to build a block pavement
JP5440832B2 (en) Earth-based paving material
JP2544970B2 (en) Curable soil composition and soil hardening method
JP2011122351A (en) Pavement material
JP5308967B2 (en) Pavement structure and pavement construction method
JP3135175U (en) Water-permeable / water-retentive solidified body
JPH0610305A (en) Method and composition for pavement
JP2005256387A (en) Natural pavement, paving material and paving method for natural pavement
JP3826899B2 (en) High gap roadbed material and semi-rigid roadbed method
JP3102430U (en) Permeable concrete
KR20030003965A (en) Manufacturing methods of permeable pavement and block using the water-quenched blast furnace slag, pavement method using the same
JP5639627B2 (en) Earth-based pavement construction method and soil-based pavement
JP2000063167A (en) Blocked material produced by using soil as raw material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130910

R150 Certificate of patent or registration of utility model

Ref document number: 5366369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250