JP6634267B2 - Soil pavement material - Google Patents

Soil pavement material Download PDF

Info

Publication number
JP6634267B2
JP6634267B2 JP2015212076A JP2015212076A JP6634267B2 JP 6634267 B2 JP6634267 B2 JP 6634267B2 JP 2015212076 A JP2015212076 A JP 2015212076A JP 2015212076 A JP2015212076 A JP 2015212076A JP 6634267 B2 JP6634267 B2 JP 6634267B2
Authority
JP
Japan
Prior art keywords
soil
parts
present
gypsum
calcium aluminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015212076A
Other languages
Japanese (ja)
Other versions
JP2017082092A (en
Inventor
佐々木 崇
崇 佐々木
寺島 勲
寺島  勲
渡辺 晃
晃 渡辺
盛岡 実
実 盛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2015212076A priority Critical patent/JP6634267B2/en
Publication of JP2017082092A publication Critical patent/JP2017082092A/en
Application granted granted Critical
Publication of JP6634267B2 publication Critical patent/JP6634267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Road Paving Structures (AREA)

Description

本発明は、土壌舗装材料に関する。   The present invention relates to a soil pavement material.

土壌舗装は天然の土壌が持つ弾力性や保水性を残し、衝撃の吸収や路面温度の安定化に寄与する舗装である。特に路面温度の上昇を抑える効果が高く、ヒートアイランド現象の対策として注目されている。また周囲の自然環境に調和しやすいため、公園や遊歩道、歴史的建造物の周囲など景観を重視する用途でも採用されている。    Soil pavement is a pavement that retains the elasticity and water retention of natural soil and contributes to absorbing impact and stabilizing the road surface temperature. In particular, the effect of suppressing the rise in road surface temperature is high, and it is receiving attention as a measure against the heat island phenomenon. In addition, because it is easy to harmonize with the surrounding natural environment, it is also used in applications where landscape is important, such as around parks, promenades, and historic buildings.

従来、土壌舗装材料としては、生石灰系またはセメント系あるいはマグネシア系の固化剤を土壌に添加したものが知られている。   Conventionally, as a soil pavement material, a material obtained by adding a quicklime-based, cement-based, or magnesia-based solidifying agent to soil is known.

セメントに土質材料を一定量加え、均一に混合した後、特定の無機硬化剤を含有する添加水を配合した舗装用組成物が記載されている(特許文献1)。また、真砂土に対してセメント及び要すれば炭酸カルシウム及び珪石粉を主成分とする透水性土壌硬化混和剤を混練して舗装基礎上に敷設することが記載されている(特許文献2)。天然土、セメント及び少量の硬化剤を水練りする舗装組成物において、硬化剤として塩化マグネシウム、塩化アルミニウム、塩化カルシウム、塩化カリウム、塩化ナトリウムを含むものを用いてなる天然土舗装組成物が記載されている(特許文献3)。   A pavement composition is described in which a certain amount of a soil material is added to cement, mixed uniformly, and then added with water containing a specific inorganic hardener (Patent Document 1). Moreover, it is described that cement and, if necessary, a water-permeable soil hardening admixture containing calcium carbonate and silica stone powder as main components are kneaded and laid on a pavement foundation (Patent Document 2). In a pavement composition in which natural soil, cement and a small amount of a hardener are water-mixed, a natural soil pavement composition using magnesium chloride, aluminum chloride, calcium chloride, potassium chloride, and sodium chloride as the hardener is described. (Patent Document 3).

これらのセメント系あるいは生石灰系を用いた土壌舗装材料による舗装は、剛性が強く弾性に富んだ舗装に課題が残る。また硬化に時間を要するため、早期開放ができない課題がある。さらにpHが12以上の強アルカリとなり、周辺の植生への影響や六価クロムの溶出に課題があった。   The pavement using the cement-based or quick-lime-based soil pavement material has a problem in that the pavement has high rigidity and high elasticity. In addition, there is a problem that it cannot be opened early because curing takes time. Further, the pH becomes a strong alkali of 12 or more, and there is a problem on the influence on surrounding vegetation and elution of hexavalent chromium.

また、マグネシア系の固化剤を土壌に対して添加するものが提案されている。酸化マグネシウムと異種金属塩とを含有する土壌舗装材料(特許文献4)や、平均ペリクレース結晶子径が330〜430Åの酸化マグネシウムと、土壌とを予め混合した舗装材料(特許文献5)、さらに、マグネシア系固化剤、乳化性樹脂及び水を含有する透水性舗装材組成物混合物(特許文献6)などの土壌改良剤がある。   Further, there has been proposed one in which a magnesia-based solidifying agent is added to soil. A soil pavement material containing magnesium oxide and a different metal salt (Patent Document 4), a pavement material in which magnesium oxide having an average periclase crystallite diameter of 330 to 430 ° and soil are mixed in advance (Patent Document 5), There is a soil improving agent such as a water-permeable pavement composition mixture containing a magnesia-based solidifying agent, an emulsifying resin and water (Patent Document 6).

これらのマグネシアを含有する固化剤(硬化剤)を用いた土壌舗装材料による舗装にあっては、硬化時間が長く、低温時には固まらず、凍害を受けてしまうといった課題があった。   In the case of pavement using a soil pavement material using a solidifying agent (hardening agent) containing magnesia, there has been a problem that the hardening time is long, the material does not solidify at low temperatures, and suffers from frost damage.

また、カルシウムアルミネート系スラグを用いた土系固化材が提案されている(特許文献7)。カルシウムアルミネート系スラグを用いた場合、不純物が多く、ガラス化率が低いことから、CaO/Alモル比を高くし反応活性を上げているが、セメント系や生石灰系やマグネシアを含有する固化剤と同様、硬化時間が長く、低温時には固まらず、凍害を受けてしまうといった課題があった。 Further, an earth-based solidifying material using calcium aluminate-based slag has been proposed (Patent Document 7). When a calcium aluminate slag is used, the reaction activity is increased by increasing the CaO / Al 2 O 3 molar ratio because of a large amount of impurities and a low vitrification ratio. However, it contains cement, quick lime, and magnesia. As with the solidifying agent, there is a problem that the curing time is long, the solidification does not take place at low temperatures, and frost damage occurs.

特開平6−10305号公報JP-A-6-10305 特許第2533452号Patent No. 2533452 特開平9−87621号公報JP-A-9-87621 特開2005−154735号公報JP 2005-154735 A 特開2014−51849号公報JP 2014-51849 A 特許第4310782号Japanese Patent No. 4310782 特許第5561921号Patent No. 5561921

従来の土壌舗装材料では、セメント系固化剤(硬化剤)を用いた場合には、剛性が強く弾性に富んだ舗装に課題があり、マグネシア系の固化剤やカルシウムアルミネート系スラグを用いた場合には、硬化時間が長く、低温時には固まらず、凍害をうけてしまう課題があった。
本発明は、上記の課題を解決し、速硬性で凍害への抵抗性に優れ、かつ、衝撃吸収性も良好な土壌舗装材料を提供する。
In conventional soil pavement materials, when a cement-based solidifying agent (hardening agent) is used, there is a problem in pavement with high rigidity and high elasticity. When using a magnesia-based solidifying agent or calcium aluminate-based slag, Has a problem that the curing time is long, the material does not solidify at low temperature, and suffers from frost damage.
The present invention solves the above problems, and provides a soil pavement material that is fast-hardening, has excellent resistance to frost damage, and has good shock absorption.

即ち、本発明は、(1)ガラス化率が70%以上、CaO/Alモル比が1.0〜2.7、不純物が15%以下、ブレーン比表面積が3000cm/g以上であるカルシウムアルミネートと土壌を含有してなる土壌舗装材料、(2)さらに、石膏を含有してなる(1)の土壌舗装材料、(3)さらに、カルシウムシリケート、セメント混和用ポリマー、アスファルト乳剤から選ばれた1種又は2種以上を含有してなる(1)又は(2)の土壌舗装材料、である。 That is, the present invention provides (1) the vitrification ratio of 70%, CaO / Al 2 O 3 molar ratio of 1.0 to 2.7, impurities 15% or less, with a Blaine specific surface area of 3000 cm 2 / g or more A soil pavement material containing a certain calcium aluminate and soil, (2) a soil pavement material of (1) further containing gypsum, (3) a calcium silicate, a polymer for cement admixture, and an asphalt emulsion The soil pavement material according to (1) or (2), comprising one or more selected ones.

本発明に依れば、速硬性で凍害への抵抗性に優れ、かつ、衝撃吸収性も良好な土壌舗装材料とすることが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to set it as the soil pavement material which is quick-hardening, is excellent in resistance to frost damage, and has good shock absorption.

以下、本発明を詳細に説明する。
なお、本発明で使用する部や%は質量基準である。
Hereinafter, the present invention will be described in detail.
The parts and percentages used in the present invention are based on mass.

本発明に使用するカルシウムアルミネートは、カルシア原料とアルミナ原料などを混合して、キルンで焼成し、あるいは、電気炉で溶融し冷却して得られるCaOとAlとを主成分とする水和活性を有する物質の総称であり、硬化時間が早く、初期強度発現性が高い材料である。
本発明のカルシウムアルミネートとしては、例えば、アルミナセメントよりも短時間で硬化し、その後の初期強度発現性が高い点から、カルシア原料とアルミナ原料の混合物を溶融後に急冷した非晶質カルシウムアルミネートが使用できる
本発明のカルシウムアルミネートのCaOとAlとのモル比(CaO/Alモル比)は、1.0〜2.7が好ましく、2.0〜2.5がより好ましい。1.0未満では硬化に時間を要し、2.7を超えると硬化が早過ぎる場合がある。
The calcium aluminate used in the present invention is mainly composed of CaO and Al 2 O 3 obtained by mixing a calcia raw material and an alumina raw material and baking in a kiln or melting and cooling in an electric furnace. It is a general term for substances having hydration activity, and is a material that has a fast curing time and high initial strength.
Examples of the calcium aluminate of the present invention include, for example, an amorphous calcium aluminate which is hardened in a shorter time than alumina cement and then rapidly quenched after melting a mixture of a calcia raw material and an alumina raw material from the viewpoint of high initial strength development. The calcium aluminate of the present invention in which the molar ratio of CaO to Al 2 O 3 (CaO / Al 2 O 3 molar ratio) is preferably 1.0 to 2.7, and 2.0 to 2.5. More preferred. If it is less than 1.0, it takes time to cure, and if it exceeds 2.7, the curing may be too early.

本発明のカルシウムアルミネートの成分であるCaOやAl以外の成分(不純物)は、15%以下であることが初期強度発現性の観点から好ましく、10%以下であることがさらに好ましい。15%を超えると硬化時間が長く、低温時には固まらない課題がある。
本発明のカルシウムアルミネートに含まれる不純物の代表例として酸化ケイ素があり、その他、アルカリ金属酸化物、アルカリ土類金属酸化物、酸化チタン、酸化鉄、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、アルカリ金属硫酸塩、及びアルカリ土類金属硫酸塩等があり、これらがCaOやAlの一部を置換したものがあるが、特に限定されるものでない。
本発明のカルシウムアルミネートのガラス化率は、反応活性の面で70%以上が好ましく、90%以上がより好ましい。70%以下であると初期強度発現性が低下する場合がある。
Components (impurities) other than CaO and Al 2 O 3 which are the components of the calcium aluminate of the present invention are preferably 15% or less from the viewpoint of initial strength development, and more preferably 10% or less. If it exceeds 15%, there is a problem that the curing time is long and it does not solidify at low temperatures.
Representative examples of the impurities contained in the calcium aluminate of the present invention include silicon oxide, and other metals such as alkali metal oxides, alkaline earth metal oxides, titanium oxide, iron oxide, alkali metal halides, and alkaline earth metal halides. , Alkali metal sulfates, alkaline earth metal sulfates, etc., which are obtained by partially replacing CaO or Al 2 O 3 , but are not particularly limited.
The vitrification rate of the calcium aluminate of the present invention is preferably 70% or more, more preferably 90% or more, in terms of reaction activity. If it is 70% or less, the initial strength expression may decrease.

カルシウムアルミネートのガラス化率の測定は、加熱前のサンプルについて粉末X線回折法により結晶鉱物のメインピーク面積Sを予め測定し、その後1000℃で2時間加熱後、1〜10℃/分の冷却速度で徐冷し、粉末X線回折法による加熱後の結晶鉱物のメインピーク面積Sを求め、S及びSの値を用い、次の式を用いてガラス化率χを算出する。
ガラス化率χ(%)=100×(1−S/S
The measurement of the vitrification rate of calcium aluminate is performed by previously measuring the main peak area S of the crystalline mineral by a powder X-ray diffraction method for the sample before heating, and then heating at 1000 ° C. for 2 hours and then 1 to 10 ° C./min. Slowly cooling at a cooling rate, the main peak area S 0 of the heated crystalline mineral is determined by powder X-ray diffraction method, and the vitrification rate 算出 is calculated using the values of S 0 and S by the following equation.
Vitrification rate χ (%) = 100 × (1-S / S 0 )

本発明のカルシウムアルミネートの粒度は、初期強度発現性の面で、ブレーン比表面積値3000cm/g以上が好ましく、5000cm/g以上がより好ましい。3000cm/g未満であると初期強度発現性が低下する場合がある。 The particle size of the calcium aluminate of the present invention, in terms of initial strength development is preferably more than Blaine specific surface area 3000cm 2 / g, 5000cm 2 / g or more is more preferable. If it is less than 3000 cm 2 / g, the initial strength development may be reduced.

本発明の石膏としては、半水石膏と無水石膏が挙げられ、強度発現性の面では無水石膏が好ましく、弗酸副生無水石膏や天然無水石膏が使用できる。石膏を水に浸漬させたときのpHは、pH8以下の弱アルカリから酸性のものが好ましい。pHが高い場合、石膏成分の溶解度が高くなり、初期の強度発現性を阻害する場合がある。ここでいうpHとは、石膏/イオン交換水=1g/100gの20℃における希釈スラリーのpHをイオン交換電極等を用いて測定したものである。 Examples of the gypsum of the present invention include hemihydrate gypsum and anhydrous gypsum. In terms of strength, anhydrous gypsum is preferable, and anhydrous gypsum by-product hydrofluoric acid and natural anhydrous gypsum can be used. The pH when gypsum is immersed in water is preferably a weak alkali having a pH of 8 or less to an acidic one. When the pH is high, the solubility of the gypsum component becomes high, which may hinder the initial strength development. The pH referred to here is a value obtained by measuring the pH of a diluted slurry of gypsum / ion-exchanged water = 1 g / 100 g at 20 ° C. using an ion-exchange electrode or the like.

本発明の石膏の粒度は、ブレーン比表面積値で3000cm/g以上が好ましく、5000cm/g以上が初期強度発現性と、適正な作業時間が得られる観点から好ましい。
本発明に使用する石膏の使用量は、カルシウムアルミネート100部に対して、50〜150部が好ましい。50部未満では、作業時間が取れなくなり、強度発現性が低下する場合がある。150部を超えると作業時間は十分に取れるが、初期強度が得られない場合がある。
The particle size of the gypsum of the present invention is preferably 3000 cm 2 / g or more in Blaine specific surface area value, from the viewpoint of the 5000 cm 2 / g or higher initial strength development, the proper work time is obtained.
The amount of gypsum used in the present invention is preferably 50 to 150 parts based on 100 parts of calcium aluminate. If the amount is less than 50 parts, the working time cannot be obtained, and the strength developability may decrease. If it exceeds 150 parts, the working time can be sufficiently taken, but the initial strength may not be obtained.

本発明では、強度を増進させる目的でカルシウムシリケートを使用できる。
カルシウムシリケートは、3CaO・SiOや2CaO・SiOがあり、特に限定されるものではないが、γ−2CaO・SiOが大気中の二酸化炭素を吸収して強度を増加させるため、最も好ましい。
γ−2CaO・SiOは、2CaO・SiOで表される化合物の中で、低温相として知られるものであり、高温相であるα−2CaO・SiOやβ−2CaO・SiOとは異なるものである。これらの化合物はいずれも2CaO・SiOで同じ化学組成を有するが、結晶構造は異なっている。セメントクリンカ中に存在する2CaO・SiOはβ−2CaO・SiOである。β−2CaO・SiOは水硬性を有するが、本発明におけるγ−2CaO・SiOは水硬性を持たないが、大気中の二酸化炭素を吸収して硬化する特性があることを見出した。
γ−2CaO・SiOの粒度は、特に制限されないが、ブレーン比表面積値で3000cm/g以上が好ましく、4,000〜8,000cm/gがより好ましい。ブレーン比表面積値が3,000cm/g未満では、大気中の二酸化炭素を吸収して強度が充分に得られない場合がある。8,000cm/gを超えても更なる効果の増進が期待できない。
In the present invention, calcium silicate can be used for the purpose of increasing the strength.
Calcium silicate includes 3CaO · SiO 2 and 2CaO · SiO 2 , and is not particularly limited. However, γ-2CaO · SiO 2 absorbs carbon dioxide in the atmosphere to increase the strength, and is most preferable.
γ-2CaO · SiO 2 is different among the compounds represented by 2CaO · SiO 2, is what is known as low-temperature phase, the α-2CaO · SiO 2 and β-2CaO · SiO 2 is a high temperature phase Things. Each of these compounds has the same chemical composition of 2CaO · SiO 2 but different crystal structures. 2CaO.SiO 2 present in the cement clinker is β-2CaO.SiO 2 . It has been found that β-2CaO.SiO 2 has hydraulic properties, whereas γ-2CaO.SiO 2 in the present invention does not have hydraulic properties, but has a property of absorbing carbon dioxide in the atmosphere and hardening.
The particle size of the γ-2CaO · SiO 2 is not particularly limited but is preferably 3000 cm 2 / g or more in Blaine specific surface area value, 4,000~8,000cm 2 / g is more preferable. If the Blaine specific surface area is less than 3,000 cm 2 / g, sufficient strength may not be obtained due to absorption of carbon dioxide in the atmosphere. Even if it exceeds 8,000 cm 2 / g, further enhancement of the effect cannot be expected.

本発明では、粘弾性を付与させ、振動等の衝撃を工場させる目的でセメント混和用ポリマーを使用できる。
本発明のセメント混和用ポリマーは、例えば、JIS A 6203で規定されているセメント混和用のポリマーであり、水の中にポリマーの微粒子が分散しているポリマーディルパージョンや、ゴムラテックスおよび樹脂エマルジョンに安定剤などを加えたものを乾燥して得られる再乳化形粉末樹脂などを称するものである。
例えば、アクリロニトリル・ブタジエンゴム、スチレン・ブタジエンゴム、クロロプレンゴム、及び天然ゴムなどのゴムラテックス、エチレン・酢酸ビニル共重合体、ポリアクリル酸エステル、酢酸ビニルビニルバーサテート系共重合体、及びスチレン・アクリル酸エステル共重合体やアクリロニトリル・アクリル酸エステルに代表されるアクリル酸エステル系共重合体、エポキシ樹脂、不飽和ポリエステル樹脂に代表される液状ポリマーなどが挙げられ、これらの1種又は2種以上の混合物を使用できる。これらは液状のものでも粉状のものでも使用でき、特に限定されるものではない。
In the present invention, a polymer for cement admixture can be used for the purpose of imparting viscoelasticity and producing a shock such as vibration.
The polymer for cement admixture of the present invention is, for example, a polymer for cement admixture specified in JIS A 6203, and is used for polymer dip dispersion in which polymer fine particles are dispersed in water, rubber latex and resin emulsion. It refers to a re-emulsifiable powder resin obtained by drying a material to which a stabilizer or the like has been added.
For example, acrylonitrile butadiene rubber, styrene butadiene rubber, chloroprene rubber, rubber latex such as natural rubber, ethylene vinyl acetate copolymer, polyacrylate, vinyl acetate vinyl versatate copolymer, and styrene acrylic Acid ester copolymers and acrylate-based copolymers represented by acrylonitrile / acrylate, epoxy resins, liquid polymers represented by unsaturated polyester resins, and the like, and one or more of these may be used. Mixtures can be used. These can be used in liquid or powder form, and are not particularly limited.

さらに、本発明では、粘弾性を付与させ、振動等の衝撃を工場させる目的でアスファルト乳剤を使用できる。
本発明のアスファルト乳剤は、天然に得られる又は石油の蒸留残渣として得られる瀝青物を主成分とするアスファルトの微粒子を、水中に分散させて得られるコロイド液体のことであり、瀝青物、例えば、針入度40/60〜200/500程度のストレートアスファルトを主材とし、これに界面活性剤と多価金属塩とを加え、さらに、必要に応じて乳化助剤、分散剤、及び保護コロイド等を適宜使用して水中に乳化させたものである。
また、瀝青物に、ゴムや合成高分子重合体等を添加・混合して、改質した瀝青物を乳化したものを使用することも可能である。
アスファルト乳剤中の瀝青物含有量は、40〜70%が好ましく、55〜65%がより好ましい。40%未満では土壌舗装材料に粘弾性を与える効果が得られない場合があり、70%を超えると強度の発現が低下する場合がある。これらは液状のものでも塊状のものでも使用でき、特に限定されるものではない。
Further, in the present invention, an asphalt emulsion can be used for the purpose of imparting viscoelasticity and causing a shock such as vibration.
The asphalt emulsion of the present invention is a colloid liquid obtained by dispersing asphalt fine particles mainly composed of bitumen obtained naturally or obtained as a distillation residue of petroleum in water, bitumen, for example, The main material is a straight asphalt having a penetration of about 40/60 to 200/500, to which a surfactant and a polyvalent metal salt are added, and further, if necessary, an emulsifier, a dispersant, and a protective colloid. Is appropriately emulsified in water.
Further, it is also possible to use a modified bituminous substance obtained by adding and mixing a rubber, a synthetic high molecular polymer or the like to the bituminous substance and emulsifying the modified bituminous substance.
The bitumen content in the asphalt emulsion is preferably from 40 to 70%, more preferably from 55 to 65%. If it is less than 40%, the effect of imparting viscoelasticity to the soil pavement material may not be obtained, and if it exceeds 70%, the expression of strength may be reduced. These can be used in liquid form or in bulk form, and are not particularly limited.

本発明で使用するカルシウムアルミネート、あるいは、カルシウムアルミネートと石膏に、強度増進や粘弾性を向上させる目的でカルシウムシリケート、セメント混和用ポリマー、アスファルト乳剤の1種又は2種以上を含有することができる。
カルシウムシリケート、セメント混和用ポリマーやアスファルト乳剤の配合割合は、カルシウムアルミネート、あるいは、カルシウムアルミネートと石膏の合計100部に10〜70部が好ましく、20〜50部がより好ましい。カルシウムシリケート、セメント混和用ポリマーやアスファルト乳剤が少ないと長期強度が低くなる傾向であり、70部を超えると初期の強度発現性が落ちる傾向になるが、これらの配合割合は、特に限定されるものではない。
セメント混和用ポリマーまたはアスファルト乳剤の混合方法は、硬化前のカルシウムアルミネートと水を練混ぜる際に事前に混合することも可能であり、硬化後のものに液状のものを散布することも可能であり、特に限定されるものではない。
The calcium aluminate used in the present invention, or calcium aluminate and gypsum, may contain one or more of calcium silicate, a polymer for cement admixture, and asphalt emulsion for the purpose of enhancing strength and improving viscoelasticity. it can.
The mixing ratio of the calcium silicate, the polymer for cement admixture, and the asphalt emulsion is preferably 10 to 70 parts, more preferably 20 to 50 parts, per 100 parts of calcium aluminate or calcium aluminate and gypsum. Calcium silicate, cement admixture polymer and asphalt emulsion tend to have low long-term strength when the content is small, and when the content exceeds 70 parts, the initial strength developability tends to decrease, but the mixing ratio of these is particularly limited. is not.
The method of mixing the cement admixture polymer or the asphalt emulsion can be pre-mixed when kneading the calcium aluminate and water before curing, and it is also possible to spray a liquid one on the cured one. There is no particular limitation.

本発明の土壌舗装材料100部に対する土壌の割合は、特に限定されるものではないが、通常、100〜1000部が好ましく、200〜600部がより好ましい。土壌が100部より低いと強度発現性は高いが経済的に好ましくない。1000部より高いと強度が低く、凹んでしまう可能性がある。   Although the ratio of the soil to 100 parts of the soil pavement material of the present invention is not particularly limited, it is usually preferably 100 to 1000 parts, more preferably 200 to 600 parts. If the soil content is lower than 100 parts, the strength development is high, but it is economically undesirable. If it is higher than 1000 parts, the strength is low, and there is a possibility of being dented.

本発明で使用する土壌とは、砂利、砂、礫、粘土のいずれか1種又は2種以上を含むものであり、特に限定されるものではない。山砂、川砂、海砂等のサンド質土壌やシルト質土壌、クレイ質土壌、工事から発生する残土、軽量骨材や再生骨材などいずれも使用できる。一般には、天然土である真砂土や乾燥砂は品質が安定しておりより好ましい。 The soil used in the present invention includes any one or more of gravel, sand, gravel, and clay, and is not particularly limited. Sandy soil such as mountain sand, river sand and sea sand, silty soil, clay soil, residual soil generated from construction, lightweight aggregate and recycled aggregate can be used. Generally, natural sands such as masago and dry sands are more preferable because of their stable quality.

本発明では、水の配合量は、土壌舗装材料100部に対して15〜100部が好ましい。15部未満では混合が困難となる場合があり、100部を超えると強度が得られない場合がある。   In the present invention, the mixing amount of water is preferably 15 to 100 parts with respect to 100 parts of the soil pavement material. If it is less than 15 parts, mixing may be difficult, and if it exceeds 100 parts, strength may not be obtained.

本発明では、凝結調整剤を使用することが可能である。凝結調整剤はセメントの凝結を促進、遅延するものであれば特に限定されるものではない。具体的には、水酸化アルカリ、アルカリ金属塩化物塩、アルカリ金属炭酸塩、オキシカルボン酸又はその塩、リン酸又はその塩、デキストリン、ショ糖、ポリアクリル酸又はその塩、さらにナフタレン系、メラミン系、アミノスルホン酸系、ポリカルボン酸系、ポリエーテル系に代表される減水剤などを1種又は2種以上、本発明の目的を実質的に阻害しない範囲で使用することが可能である。   In the present invention, it is possible to use a setting regulator. The setting modifier is not particularly limited as long as it promotes or delays setting of the cement. Specifically, alkali hydroxide, alkali metal chloride, alkali metal carbonate, oxycarboxylic acid or its salt, phosphoric acid or its salt, dextrin, sucrose, polyacrylic acid or its salt, further naphthalene, melamine It is possible to use one or more water reducing agents, such as water-based, aminosulfonic acid-based, polycarboxylic acid-based, and polyether-based water reducing agents, as long as the object of the present invention is not substantially inhibited.

本発明では、酸化マグネシウムなどの低pHの固化材、ウッドチップ、もみ殻などの嵩をあげる増量材、各種ポルトランドセメント、水酸化カルシウム、塩化カルシウム、石灰石微粉末、フライアッシュ、カオリン、シラス、珪藻土及びシリカフュームなどの混和材料、消泡剤、増粘剤、防錆剤、防凍剤、ポリマー、ベントナイトなどの粘土鉱物、ハイドロタルサイトなどのアニオン交換体、並びに、ビニロン繊維、ポリプロピレン繊維、ガラス繊維などの長さ10mm以下の短繊維、着色剤などを1種又は2種以上、本発明の目的を実質的に阻害しない範囲で使用することが可能である。   In the present invention, low-pH solidifying materials such as magnesium oxide, wood chips, bulking fillers such as rice hulls, various portland cements, calcium hydroxide, calcium chloride, limestone fine powder, fly ash, kaolin, shirasu, diatomaceous earth And admixture materials such as silica fume, defoamers, thickeners, rust inhibitors, antifreeze agents, polymers, clay minerals such as bentonite, anion exchangers such as hydrotalcite, and vinylon fibers, polypropylene fibers, glass fibers, etc. One or more short fibers having a length of 10 mm or less, a colorant, and the like can be used in a range that does not substantially inhibit the object of the present invention.

次に、本発明における舗装方法について説明する。
本発明に係る土壌舗装材料を施工するには、各土壌舗装材料が均一に混合されれば、特に施工方法が限定されるものではない。このような本件発明に係る土壌舗装方法による舗装は、例えば道路の路側、中央分離帯、植樹帯、庭園、公園、各種施設周り等に好適に適用される。
Next, the pavement method according to the present invention will be described.
In constructing the soil pavement material according to the present invention, the construction method is not particularly limited as long as the soil pavement materials are uniformly mixed. Such pavement by the soil pavement method according to the present invention is suitably applied to, for example, the road side of a road, a median strip, a tree planting zone, a garden, a park, around various facilities, and the like.

以下、本発明の実験例に基づいて説明する。 Hereinafter, description will be made based on experimental examples of the present invention.

「実験例1」
石膏100部に対して、表1に示すカルシウムアルミネート100部を調製し、硬化時間、圧縮強度、初期凍害性の測定を行った。
表1に示すカルシウムアルミネートと石膏の合計100部に対して、土壌を600部とし、カルシウムアルミネートと石膏と骨材の合計100部に対して凝結調整剤としてクエン酸ナトリウムを0.5部、水を20部加えて土壌舗装材料を調製した。結果を表1に併記した。
"Experimental example 1"
100 parts of calcium aluminate shown in Table 1 were prepared with respect to 100 parts of gypsum, and the curing time, compressive strength, and initial frost damage were measured.
To the total of 100 parts of calcium aluminate and gypsum shown in Table 1, the soil was 600 parts, and the total of 100 parts of calcium aluminate, gypsum and aggregate was 0.5 part of sodium citrate as a setting modifier. And 20 parts of water were added to prepare a soil pavement material. The results are shown in Table 1.

<使用材料>
石膏:天然無水石膏、ブレーン比表面積値5000cm/g
土壌:新潟県産川砂乾燥品、1.2mm篩下
水:水道水
アルミナセメント:アルミナセメント1号、デンカ社製、CaO/Alモル比1.0、結晶質
凝結調整剤:無水クエン酸ナトリウム、磐田化学工業社製
<Material used>
Gypsum: natural anhydrous gypsum, Blaine specific surface area value 5000 cm 2 / g
Soil: dried sand from Niigata Prefecture, 1.2 mm sieve Sewage: tap water Alumina cement: Alumina cement No. 1, manufactured by Denka, CaO / Al 2 O 3 molar ratio 1.0, crystalline coagulation regulator: citric anhydride Sodium, manufactured by Iwata Chemical Industry Co., Ltd.

<測定方法>
硬化時間:練混ぜた土壌固化材を指で押してもへこまない時間を測定した。
圧縮強度:一軸圧縮強度は、20℃・相対湿度60%の環境で安定処理混合物の一軸圧縮試験方法( 舗装試験法便覧 日本道路協会)に準拠し、供試体寸法を直径1 0 0 m m 、高さ1 2 7 m m の円柱状とし、供試体の作成は3 層2 5 回とした。材齢6時間と28日強度を測定し、養生方法は、20℃・相対湿度60%の環境下で気乾養生とした。
初期凍害抵抗性:20℃・相対湿度60%の環境下で圧縮強度と同様な方法で練混ぜ、供試体を作製後、直ちに、−10℃環境下で材齢7日まで養生した。その後、材齢28日まで20℃・相対湿度60%の環境下で気乾養生とした後、強度を測定した。常時、20℃環境下で練混ぜ・養生していた28日強度との値を比較し、強度低減割合を算出した。
<Measurement method>
Hardening time: The time during which the kneaded soil hardening material was not dented even when pressed with a finger was measured.
Compressive strength: The uniaxial compressive strength is based on the uniaxial compressive test method of the stabilized mixture in an environment of 20 ° C. and a relative humidity of 60% (Pavement Test Method Handbook, Japan Road Association), and the specimen size is 100 mm in diameter. The sample was a column with a height of 127 mm, and the specimen was prepared 25 times in three layers. The aging was measured for 6 hours and 28 days, and the curing method was air-dry curing under an environment of 20 ° C. and a relative humidity of 60%.
Initial frost damage resistance: Kneaded in the same manner as the compressive strength in an environment of 20 ° C. and a relative humidity of 60%, and immediately after being prepared, the specimen was cured in an environment of −10 ° C. until the age of 7 days. Thereafter, the sample was air-dried under an environment of 20 ° C. and a relative humidity of 60% until the age of 28 days, and the strength was measured. The strength reduction ratio was calculated by comparing the strength with the 28-day strength which was constantly kneaded and cured in a 20 ° C. environment.

Figure 0006634267
Figure 0006634267

表1より、本発明の土壌舗装材料が優れた硬化特性、強度発現、凍害抵抗性を示すことが分かる。また、カルシウムアルミネートの種類により硬化に時間を要し、初期凍害抵抗性に劣ることが分かる。 Table 1 shows that the soil pavement material of the present invention exhibits excellent hardening characteristics, strength development, and frost damage resistance. Further, it can be seen that curing takes time depending on the type of calcium aluminate, and is inferior in initial freeze damage resistance.

「実験例2」
実験例1の実験No.1-4のカルシウムアルミネートを使用し、表2に示す割合でカルシウムアルミネートと石膏の割合を変えたこと以外は実験例1と同様に行った。結果を表2に併記した。
また、比較として、普通セメントを用いたモルタル、マグネシア系固化材を調製した。モルタルの配合は、水セメント比50%、(社)セメント協会製標準砂と普通ポルトランドセメントの割合(質量比)を3/1としたJISR 5201に記載のモルタルを調製した。マグネシア系固化材は、中国産マグネシウムを焼成した市販の酸化マグネシウム100部に対して、土壌を600部、水を20部加えて土壌舗装材料を調製した。
圧縮強度、初期凍害抵抗性は実験例1と同じ測定方法で行い、曲げひずみ、GB反発係数も測定した。
"Experimental example 2"
Experiment 1 was carried out in the same manner as in Experiment 1, except that the calcium aluminate of Experiment Nos. 1-4 was used and the proportions of calcium aluminate and gypsum were changed in the proportions shown in Table 2. The results are shown in Table 2.
For comparison, a mortar and a magnesia-based solidified material using ordinary cement were prepared. The mortar was prepared as described in JISR 5201 with a water cement ratio of 50% and a ratio (mass ratio) of standard sand and ordinary Portland cement manufactured by Japan Cement Association of 3/1. As the magnesia-based solidification material, soil pavement material was prepared by adding 600 parts of soil and 20 parts of water to 100 parts of commercially available magnesium oxide obtained by firing Chinese magnesium.
Compressive strength and initial frost damage resistance were measured in the same manner as in Experimental Example 1, and bending strain and GB restitution coefficient were also measured.

<使用材料>
カルシウムアルミネート:CaO/Alモル比2.2、不純物含有量2%、ガラス化率97%、ブレーン比表面積値5000cm/g
石膏:天然無水石膏、ブレーン比表面積値5000cm/g
凝結調整剤:無水クエン酸ナトリウム、磐田化学工業社製
土壌:新潟県産川砂乾燥品、1.2mm篩下
水:水道水
普通セメント:普通ポルトランドセメント、市販品
砂:(社)セメント協会製標準砂
マグネシア系固化材:中国産マグネシウムを焼成した酸化マグネシウム、市販品
<Material used>
Calcium aluminate: CaO / Al 2 O 3 molar ratio 2.2, impurity content 2%, vitrification rate 97%, Blaine specific surface area value 5000 cm 2 / g
Gypsum: natural anhydrous gypsum, Blaine specific surface area value 5000 cm 2 / g
Setting regulator: anhydrous sodium citrate, soil manufactured by Iwata Chemical Industry Co., Ltd. Soil: dried river sand from Niigata prefecture, 1.2 mm sieve sewage: tap water ordinary cement: ordinary portland cement, commercial sand: standard sand manufactured by Japan Cement Association Magnesia solidifying material: Magnesium oxide obtained by firing Chinese magnesium, commercially available

<測定方法>
曲げひずみ:JIS A 1106に基づき、曲げ試験を実施した際の破壊時のひずみを測定し、柔軟性の尺度とした。
GB反発係数:20℃・相対湿度60%の環境で土壌に各土壌固化剤を基礎面上に均一に敷設した後、6時間と28日後にハンド振動機で締め固めて形成した測定路面に、ゴルフボールを1mの高さから自然落下させ、跳ね返り高さを測定し、弾力性の尺度とした。
<Measurement method>
Flexural strain: Based on JIS A 1106, the strain at the time of breaking when a bending test was performed was measured and used as a measure of flexibility.
GB coefficient of restitution: After laying each soil solidifying agent uniformly on the soil in an environment of 20 ° C. and a relative humidity of 60%, on a measurement road surface formed by compacting with a hand vibrator after 6 hours and 28 days, The golf ball was allowed to fall naturally from a height of 1 m, and the rebound height was measured and used as a measure of elasticity.

Figure 0006634267
Figure 0006634267

表2より、本発明の土壌舗装材料が優れた物性を示すことが分かる。比較のモルタルは、短時間強度が低く、材齢28日では強度が高いものの、弾力性を示すGB反発係数が高く剛性が高いため、曲げひずみが低いことが分かる。また、短時間強度が低いため、初期凍害を受けていることがわかる。マグネシア系固化材は強度が低く、曲げひずみも低く、初期凍害を受けていることが分かる。 Table 2 shows that the soil pavement material of the present invention exhibits excellent physical properties. The comparative mortar has a low short-term strength and a high strength at a material age of 28 days, but has a high GB resilience coefficient indicating elasticity and high rigidity, and thus has a low bending strain. In addition, since the short-time strength is low, it can be seen that it has been subjected to initial frost damage. It can be seen that the magnesia-based solidified material has low strength, low bending strain, and suffered initial frost damage.

「実験例3」
実験例1の実験No.1-4のカルシウムアルミネートと石膏を当量ずつ混合したものに、表3に示す割合でカルシウムシリケートを混合した合計100部に対し、土壌を600部、水を20部加えて土壌舗装材料を調製した。
長期強度を測定するため、材齢6時間と180日で測定し、土壌の種類を変えたこと以外は実験例2と同様に行った。
"Experimental example 3"
600 parts of soil and 20 parts of water were added to a total of 100 parts in which calcium aluminate and gypsum of Experiment Nos. 1-4 of Experiment Example 1 were mixed in equivalent amounts, and calcium silicate was mixed at a ratio shown in Table 3. In addition, a soil pavement material was prepared.
In order to measure the long-term strength, it was measured at the age of 6 hours and 180 days, and was carried out in the same manner as in Experimental Example 2 except that the type of soil was changed.

<使用材料>
カルシウムシリケート イ:3CaO・SiO試薬の炭酸カルシウム3モル及び二酸化ケイ素1モルを混合粉砕した後、電気炉で焼成し合成した。ブレーン比表面積値1800cm/g。
カルシウムシリケート ロ:β−2CaO・SiO試薬の炭酸カルシウム2モル及び二酸化ケイ素1モルを混合粉砕した後、電気炉で焼成し合成した。ブレーン比表面積値1800cm/g。
カルシウムシリケート ハ:γ−2CaO・SiO試薬の炭酸カルシウム2モル及び二酸化ケイ素1モルを混合粉砕した後、電気炉で焼成し合成した。ブレーン比表面積値1800cm/g。
土壌:愛知県産真砂土、5mm篩下
<Material used>
Calcium silicate i: 3 mol of 3CaO.SiO 2 reagent calcium carbonate and 1 mol of silicon dioxide were mixed and pulverized, followed by firing in an electric furnace to synthesize. Blaine specific surface area value of 1800 cm 2 / g.
Calcium silicate: After mixing and pulverizing 2 mol of calcium carbonate and 1 mol of silicon dioxide as a β-2CaO · SiO 2 reagent, the mixture was baked in an electric furnace to synthesize. Blaine specific surface area value of 1800 cm 2 / g.
Calcium silicate C: 2 mol of calcium carbonate and 1 mol of silicon dioxide as a γ-2CaO · SiO 2 reagent were mixed and pulverized, followed by firing in an electric furnace to synthesize. Blaine specific surface area value of 1800 cm 2 / g.
Soil: Masato soil from Aichi prefecture, 5mm sieve

Figure 0006634267
Figure 0006634267

表3より、本発明の土壌舗装材料が優れた物性を示すことが分かる。カルシウムシリケートを混入することで180日の強度が増進し、衝撃吸収性(GB反発係数や曲げひずみ)にも大きな影響がないことが分かる。 Table 3 shows that the soil pavement material of the present invention shows excellent physical properties. It can be seen that the mixing of calcium silicate increases the strength of 180 days and does not significantly affect the shock absorption (GB restitution coefficient or bending strain).

「実験例4」
実験例1の実験No.1-4のカルシウムアルミネートと石膏を当量ずつ混合したものに、表4に示す割合でセメント混和用ポリマー、アスファルト乳剤を混合した合計100部に対し、土壌を600部、水を20部加えて土壌舗装材料を調製したこと以外は実験例3と同様に行った。
"Experimental example 4"
600 parts of soil were added to a total of 100 parts of a mixture of calcium aluminate and gypsum of Experiment Nos. 1-4 of Experimental Example 1 mixed with equivalent amounts of a cement admixture and an asphalt emulsion at the ratios shown in Table 4. , And 20 parts of water were added to prepare a soil pavement material.

<使用材料>
セメント混和用ポリマーイ:EVA系エマルジョン、固形分濃度20%
セメント混和用ポリマーロ:クロロプレン系ラテックス、固形分濃度20%
セメント混和用ポリマーハ:アクリル系エマルジョン、固形分濃度20%
アスファルト乳剤:主成分アスファルト、瀝青物含有量60%、東亜道路工業社製
土壌:愛知県産真砂土、5mm篩下
<Material used>
Polymer for cement admixture: EVA emulsion, solid concentration 20%
Polymer for cement admixture: chloroprene latex, solid content concentration 20%
Polymer for cement admixture: acrylic emulsion, solid content concentration 20%
Asphalt emulsion: Main component asphalt, bitumen content 60%, Toa Road Industry Co., Ltd. Soil: Masato soil from Aichi Prefecture, 5mm sieve

Figure 0006634267
Figure 0006634267

表4より、本発明の土壌舗装材料は、セメント混和用ポリマー、アスファルト乳剤を混合することで、弾力性を示すGB反発係数が低く、曲げひずみが大きくなり衝撃吸収性に優れることが分かる。 From Table 4, it can be seen that the soil pavement material of the present invention has a low GB resilience coefficient indicating elasticity, a large bending strain, and excellent shock absorption by mixing a polymer for cement admixture and an asphalt emulsion.

本発明の土壌舗装材料により、速硬性であることから早期開放でき、寒冷地や低温環境下でも安定した舗装ができ、さらに衝撃吸収性に優れた土壌舗装材料を提供することが可能となるため主に土木、建築分野で好適に使用される。   Since the soil pavement material of the present invention can be quickly opened because of its quick-hardening property, stable pavement can be performed even in a cold region or a low-temperature environment, and it is possible to provide a soil pavement material excellent in shock absorption. It is mainly used in civil engineering and construction fields.

Claims (2)

ガラス化率が70%以上、CaO/Al23モル比が2.0〜2.7、不純物が15%以下、ブレーン比表面積が3000cm2/g以上であるカルシウムアルミネート、γ−2CaO・SiO 2 、石膏と土壌を含有し、カルシウムアルミネートと石膏とγ−2CaO・SiO 2 の合計100質量部のうち、γ−2CaO・SiO 2 が10〜70質量部である、土壌舗装材料。 Calcium aluminate having a vitrification ratio of 70% or more, a CaO / Al 2 O 3 molar ratio of 2.0 to 2.7, an impurity of 15% or less, and a Blaine specific surface area of 3000 cm 2 / g or more , γ-2CaO. A soil pavement material containing SiO 2 , gypsum and soil , wherein γ-2CaO · SiO 2 is 10 to 70 parts by mass in a total of 100 parts by mass of calcium aluminate, gypsum and γ-2CaO · SiO 2 . さらに、セメント混和用ポリマー、アスファルト乳剤から選ばれた1種又は2種以上を含有してなる請求項1に記載の土壌舗装材料。 Furthermore, soil paving material according to claim 1 which comprises one or more selected cement admixture for the polymer, the bitumen emulsion.
JP2015212076A 2015-10-28 2015-10-28 Soil pavement material Active JP6634267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015212076A JP6634267B2 (en) 2015-10-28 2015-10-28 Soil pavement material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015212076A JP6634267B2 (en) 2015-10-28 2015-10-28 Soil pavement material

Publications (2)

Publication Number Publication Date
JP2017082092A JP2017082092A (en) 2017-05-18
JP6634267B2 true JP6634267B2 (en) 2020-01-22

Family

ID=58710788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015212076A Active JP6634267B2 (en) 2015-10-28 2015-10-28 Soil pavement material

Country Status (1)

Country Link
JP (1) JP6634267B2 (en)

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3122532B2 (en) * 1992-06-22 2001-01-09 電気化学工業株式会社 Road composition
JPH08109050A (en) * 1994-10-05 1996-04-30 Toyota Central Res & Dev Lab Inc Cement
JP3560665B2 (en) * 1994-12-14 2004-09-02 住友大阪セメント株式会社 Solidification material composition for ground improvement
JP2000271924A (en) * 1999-03-25 2000-10-03 Toyota Motor Corp Manufacture of inorganic formed plate
JP4299434B2 (en) * 2000-04-03 2009-07-22 電気化学工業株式会社 Soil consolidation composition for vegetation
JP2005082440A (en) * 2003-09-08 2005-03-31 Denki Kagaku Kogyo Kk Quick hardening cement admixture, cement composition, and mortar composition
JP2005162949A (en) * 2003-12-04 2005-06-23 Taiheiyo Material Kk Grouting material
JP4554462B2 (en) * 2005-07-29 2010-09-29 電気化学工業株式会社 Elastic composition and repair method using the same
JP5052861B2 (en) * 2005-11-29 2012-10-17 電気化学工業株式会社 Elastic composition and repair method using the same
JP4781285B2 (en) * 2007-01-24 2011-09-28 新日本製鐵株式会社 Blast furnace slag cement
JP5366369B2 (en) * 2007-03-26 2013-12-11 新日鐵住金ステンレス株式会社 Soil-based solidified material and pavement method for soil-based solidified material
JP5169007B2 (en) * 2007-04-26 2013-03-27 三菱マテリアル株式会社 Injection material for pavement and pavement method using the same
JP5561921B2 (en) * 2008-09-11 2014-07-30 新日鐵住金ステンレス株式会社 Earth solidified material
JP5121683B2 (en) * 2008-12-10 2013-01-16 電気化学工業株式会社 Ground improvement method
JP5833425B2 (en) * 2011-12-19 2015-12-16 太平洋マテリアル株式会社 Earthwork materials
JP2013127030A (en) * 2011-12-19 2013-06-27 Taiheiyo Materials Corp Civil engineering material
JP6032830B2 (en) * 2011-12-28 2016-11-30 太平洋マテリアル株式会社 Cement-based injection material
JP6295028B2 (en) * 2013-04-05 2018-03-14 デンカ株式会社 Decontamination method and ground consolidation method
JP6116976B2 (en) * 2013-04-08 2017-04-19 デンカ株式会社 Ground consolidation method
JP6474059B2 (en) * 2013-10-08 2019-02-27 デンカ株式会社 Ground solidification method
WO2015182170A1 (en) * 2014-05-30 2015-12-03 太平洋マテリアル株式会社 Admixture for rapid setting
JP6300368B2 (en) * 2014-08-19 2018-03-28 太平洋マテリアル株式会社 Quick setting material for spraying material
JP6465432B2 (en) * 2014-12-26 2019-02-06 太平洋マテリアル株式会社 High strength shotcrete

Also Published As

Publication number Publication date
JP2017082092A (en) 2017-05-18

Similar Documents

Publication Publication Date Title
KR101665945B1 (en) Mortar composition of ultra rapid hardening type for repairing and reinforcing with enhanced freezing and thawing durability, salt damage resistance and crack resistance, and method of repairing and reinforcing deteriorated part of road, runway and L-type side gutter using the same
JP6649774B2 (en) Weed control material and method of using it
KR101456676B1 (en) Early strength polymer modified cement concrete composite and repairing method of concrete structure using the composite
JP6924632B2 (en) Road repair material
KR101363896B1 (en) Accelerate dry concrete mix composition
KR101232072B1 (en) Color polymer cement concrete composite, concrete pavement method and and repairing method of concrete structure using the composite
JP7267802B2 (en) Polymer cement grout mortar for filling repair
JP3122532B2 (en) Road composition
JP6508789B2 (en) Method using polymer cement mortar and polymer cement mortar
JP6887272B2 (en) Fast-curing polymer cement composition and fast-curing polymer cement mortar
JP6133596B2 (en) Expanded material and expanded concrete
JP6914102B2 (en) Road repair material
JP6634267B2 (en) Soil pavement material
JP6948263B2 (en) Weed control material and how to use it
JP6203546B2 (en) Polymer cement mortar and method using polymer cement mortar
JP6876408B2 (en) Weed control material and how to use it
JP2017160663A (en) Soil pavement material and soil pavement method with it
JP6893425B2 (en) Soil pavement material
JP4247989B2 (en) Soil pavement admixture and soil pavement using the same
JP6979768B2 (en) Soil pavement material
JP6914071B2 (en) Weed control material and how to use it
JP6577785B2 (en) Hardened concrete for salt damage prevention and manufacturing method thereof
JP6985548B1 (en) Repair mortar material, repair mortar composition and cured product
JP7442372B2 (en) Rapid hardening mortar composition
JP6654470B2 (en) Weed control material and method of using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190620

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R150 Certificate of patent or registration of utility model

Ref document number: 6634267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250