JP7442372B2 - Rapid hardening mortar composition - Google Patents
Rapid hardening mortar composition Download PDFInfo
- Publication number
- JP7442372B2 JP7442372B2 JP2020064647A JP2020064647A JP7442372B2 JP 7442372 B2 JP7442372 B2 JP 7442372B2 JP 2020064647 A JP2020064647 A JP 2020064647A JP 2020064647 A JP2020064647 A JP 2020064647A JP 7442372 B2 JP7442372 B2 JP 7442372B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- fast
- mortar composition
- parts
- setting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000203 mixture Substances 0.000 title claims description 207
- 239000004570 mortar (masonry) Substances 0.000 title claims description 199
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 claims description 53
- 239000000843 powder Substances 0.000 claims description 52
- 239000000835 fiber Substances 0.000 claims description 41
- 229940037003 alum Drugs 0.000 claims description 38
- 239000004568 cement Substances 0.000 claims description 34
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 claims description 33
- 229910052925 anhydrite Inorganic materials 0.000 claims description 32
- 239000000463 material Substances 0.000 claims description 32
- 229910052806 inorganic carbonate Inorganic materials 0.000 claims description 27
- 229920005989 resin Polymers 0.000 claims description 27
- 239000011347 resin Substances 0.000 claims description 27
- 239000002253 acid Substances 0.000 claims description 25
- 239000003795 chemical substances by application Substances 0.000 claims description 21
- 230000008719 thickening Effects 0.000 claims description 21
- 229920001059 synthetic polymer Polymers 0.000 claims description 20
- 229910021487 silica fume Inorganic materials 0.000 claims description 18
- 230000008439 repair process Effects 0.000 claims description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 14
- 239000004115 Sodium Silicate Substances 0.000 claims description 13
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 13
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 13
- 235000011126 aluminium potassium sulphate Nutrition 0.000 claims description 11
- 229940050271 potassium alum Drugs 0.000 claims description 11
- GRLPQNLYRHEGIJ-UHFFFAOYSA-J potassium aluminium sulfate Chemical group [Al+3].[K+].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRLPQNLYRHEGIJ-UHFFFAOYSA-J 0.000 claims description 11
- 238000004017 vitrification Methods 0.000 claims description 11
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 10
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 8
- 235000019795 sodium metasilicate Nutrition 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 239000010453 quartz Substances 0.000 claims description 3
- ZEMWIYASLJTEHQ-UHFFFAOYSA-J aluminum;sodium;disulfate;dodecahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.O.O.[Na+].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZEMWIYASLJTEHQ-UHFFFAOYSA-J 0.000 claims 1
- 230000000694 effects Effects 0.000 description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 40
- 239000003607 modifier Substances 0.000 description 36
- 239000002245 particle Substances 0.000 description 32
- 239000000047 product Substances 0.000 description 27
- 238000002156 mixing Methods 0.000 description 19
- 238000000034 method Methods 0.000 description 18
- 239000004567 concrete Substances 0.000 description 15
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 14
- 229910001388 sodium aluminate Inorganic materials 0.000 description 14
- 239000003638 chemical reducing agent Substances 0.000 description 11
- 241000519995 Stachys sylvatica Species 0.000 description 10
- 238000011161 development Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- 239000011398 Portland cement Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 7
- 230000007774 longterm Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000011513 prestressed concrete Substances 0.000 description 7
- 239000004576 sand Substances 0.000 description 7
- 238000010998 test method Methods 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 6
- 239000011440 grout Substances 0.000 description 6
- 239000008267 milk Substances 0.000 description 6
- 210000004080 milk Anatomy 0.000 description 6
- 235000013336 milk Nutrition 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 206010047642 Vitiligo Diseases 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 239000007798 antifreeze agent Substances 0.000 description 5
- 229910052920 inorganic sulfate Inorganic materials 0.000 description 5
- 238000006386 neutralization reaction Methods 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 239000011150 reinforced concrete Substances 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 4
- 230000002528 anti-freeze Effects 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 238000009661 fatigue test Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 150000004645 aluminates Chemical class 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000010426 asphalt Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 229910052602 gypsum Inorganic materials 0.000 description 3
- 239000010440 gypsum Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- -1 Calcium aluminates Chemical class 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- 208000032843 Hemorrhage Diseases 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 208000034158 bleeding Diseases 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229920006026 co-polymeric resin Polymers 0.000 description 2
- 239000010883 coal ash Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000010881 fly ash Substances 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 229910004806 Na2 SiO3.9H2 O Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000011400 blast furnace cement Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- VXJCGWRIPCFWIB-UHFFFAOYSA-N hexadecasodium tetrasilicate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] VXJCGWRIPCFWIB-UHFFFAOYSA-N 0.000 description 1
- PMYUVOOOQDGQNW-UHFFFAOYSA-N hexasodium;trioxido(trioxidosilyloxy)silane Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[O-][Si]([O-])([O-])O[Si]([O-])([O-])[O-] PMYUVOOOQDGQNW-UHFFFAOYSA-N 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- RAFRTSDUWORDLA-UHFFFAOYSA-N phenyl 3-chloropropanoate Chemical compound ClCCC(=O)OC1=CC=CC=C1 RAFRTSDUWORDLA-UHFFFAOYSA-N 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 235000011127 sodium aluminium sulphate Nutrition 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- POWFTOSLLWLEBN-UHFFFAOYSA-N tetrasodium;silicate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-][Si]([O-])([O-])[O-] POWFTOSLLWLEBN-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- DJXRIQMCROIRCZ-XOEOCAAJSA-N vibegron Chemical compound C1([C@H]([C@@H]2N[C@H](CC=3C=CC(NC(=O)[C@H]4N5C(=O)C=CN=C5CC4)=CC=3)CC2)O)=CC=CC=C1 DJXRIQMCROIRCZ-XOEOCAAJSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Road Paving Structures (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明は、速硬性モルタル組成物、特に断面修復材および舗装用注入材として有用な速硬性モルタル組成物に関する。 The present invention relates to fast-setting mortar compositions, particularly those useful as cross-section repair materials and pavement pouring materials.
各種の原因により劣化したコンクリート構造物を補修する工法として、断面修復工法が広く知られている。断面修復工法は、コンクリートの劣化した部分をはつり等によって取り除き、取り除いた断面部分を断面修復材で修復する工法である。本工法に用いる断面修復材としては、セメントと細骨材とを含むモルタル組成物が使用される。断面修復工法の態様に合わせ、左官工法用の断面修復材、吹付け工法用の断面修復材、充填工法用の断面修復材、プレパックト工法用の断面修復材が使用される。一方、緊急を要する補修工事において使用される断面修復材としては、工事期間を短くするために、モルタル組成物を早期に硬化させるための速硬性混和材が含まれている速硬性モルタル組成物も使用されている。 A cross-sectional repair method is widely known as a method for repairing concrete structures that have deteriorated due to various causes. The cross-section repair method is a method in which a deteriorated part of concrete is removed by chiseling or the like, and the removed cross-section is repaired using a cross-section repair material. As the cross-sectional repair material used in this construction method, a mortar composition containing cement and fine aggregate is used. Depending on the aspect of the cross-section repair method, a cross-section repair material for the plastering method, a cross-section repair material for the spraying method, a cross-section repair material for the filling method, and a cross-section repair material for the prepack method are used. On the other hand, as cross-sectional repair materials used in urgent repair work, quick-setting mortar compositions containing fast-setting admixtures for early hardening of the mortar composition are also used to shorten the construction period. It is used.
また、道路、港湾施設、空港の滑走路などの舗装を構築する方法として、PC舗装やRC舗装が知られている。PC舗装は、路盤の上にPC(プレストレストコンクリート)舗装板を配置して、そのPC舗装板と路盤の間隙に裏込めグラウト材を注入する舗装である。RC舗装は、PC舗装板の代わりに、RC(鉄筋コンクリート)舗装板を用いる舗装である。さらに、重交通道路の舗装として、半たわみ性舗装が知られている。半たわみ性舗装とは、空隙率の大きな開粒度アスファルト混合物に、セメントミルクを注入する舗装である。PC舗装やRC舗装で使用される裏込めグラウト材および半たわみ性舗装で使用されるセメントミルク等の原料として用いられる舗装用注入材としても、セメントと細骨材とを含むモルタル組成物が利用されることがある。この舗装用注入材として用いられるモルタル組成物は、通常、夜間に工事を行って、翌朝には交通開放するために、セメントを早期に硬化させるための速硬性混和材が含まれている速硬性モルタル組成物である。 Additionally, PC pavement and RC pavement are known as methods for constructing pavements for roads, port facilities, airport runways, and the like. PC pavement is pavement in which PC (prestressed concrete) paving plates are placed on the roadbed and backfill grout is injected into the gap between the PC pavement plates and the roadbed. RC pavement is pavement that uses RC (reinforced concrete) paving plates instead of PC paving plates. Furthermore, semi-flexible pavement is known as a pavement for heavy traffic roads. Semi-flexible pavement is a pavement in which cement milk is injected into a high-porosity open asphalt mixture. Mortar compositions containing cement and fine aggregate are also used as pavement injection materials, which are used as raw materials for backfill grout used in PC pavement and RC pavement, and cement milk used in semi-flexible pavement. may be done. The mortar composition used as this pavement injection material is usually a fast-setting compound that contains a fast-setting admixture to harden the cement early, so that construction work can be carried out at night and the cement can be opened to traffic the next morning. It is a mortar composition.
速硬性モルタル組成物の速硬性混和材として、カルシウムアルミネートと無機硫酸塩とを組合せた混和材が知られている。しかし、このカルシウムアルミネートと無機硫酸塩とを組合せた速硬性混和材は、モルタル組成物の硬化を促進する作用が強く、この速硬性混和材を含むモルタル組成物は、水を加えてからモルタル組成物が凝結を開始するまでの時間(凝結開始時間)が短く、可使時間を十分に確保できないという問題があった。このため、カルシウムアルミネートと無機硫酸塩とを組合せた速硬性混和材では、モルタル組成物の凝結開始時間を調整するために、凝結調整剤を加えることが行なわれている。凝結調整剤としては、無機炭酸塩、オキシカルボン酸、アルミン酸ナトリウムが用いられている。 As a fast-setting admixture for fast-setting mortar compositions, an admixture containing a combination of calcium aluminate and an inorganic sulfate is known. However, this fast-setting admixture, which is a combination of calcium aluminate and inorganic sulfate, has a strong effect of accelerating the hardening of mortar compositions. There was a problem in that the time required for the composition to start setting (setting start time) was short, and a sufficient pot life could not be ensured. For this reason, in fast-setting admixtures that combine calcium aluminate and inorganic sulfate, a setting regulator is added in order to adjust the setting start time of the mortar composition. Inorganic carbonates, oxycarboxylic acids, and sodium aluminate are used as setting modifiers.
特許文献1には、カルシウムアルミネート対無機硫酸塩の重量比が1対0.5~3からなる急硬成分を15~35重量%含有してなる急硬セメントを主成分とし、内割重量で、アルミン酸ナトリウム0.2~3%、無機炭酸塩0.2~5%、およびオキシカルボン酸類0.1~2%を含有してなる超速硬セメント組成物が開示されている。 Patent Document 1 discloses that the main component is a rapid hardening cement containing 15 to 35% by weight of a rapid hardening component having a weight ratio of calcium aluminate to inorganic sulfate of 1:0.5 to 3; discloses an ultra-fast hardening cement composition containing 0.2-3% sodium aluminate, 0.2-5% inorganic carbonate, and 0.1-2% oxycarboxylic acids.
特許文献2には、速硬性混和材とセメント鉱物と骨材と再乳化粉末樹脂と繊維とを含むコンクリート断面修復材が開示されている。この特許文献2には、速硬性混和材の凝結調整剤としてアルミン酸ナトリウム、無機炭酸塩及びカルボン酸類を用い、これら凝結調整剤の粒度構成を、平均粒径45μmを越えかつ90μm以下の第1粒子10~45質量%と、平均粒径90μmを越えかつ150μm以下の第2粒子30~70質量%と、平均粒径150μmを越えかつ500μm以下の第3粒子5~30質量%とを含み、かつ前記第2粒子を前記第1粒子より多く含むとともに前記第3粒子より多く含むようにすることが開示されている。 Patent Document 2 discloses a concrete cross-section repair material containing a fast-setting admixture, a cement mineral, an aggregate, a re-emulsified powder resin, and fibers. In this Patent Document 2, sodium aluminate, inorganic carbonate, and carboxylic acids are used as setting modifiers for a fast-setting admixture, and the particle size structure of these setting modifiers is adjusted to a primary particle size of more than 45 μm and 90 μm or less in average particle size. 10 to 45% by mass of particles, 30 to 70% by mass of second particles having an average particle size of more than 90 μm and not more than 150 μm, and 5 to 30% by mass of third particles having an average particle size of more than 150 μm and not more than 500 μm, Further, it is disclosed that the second particles are contained in a larger amount than the first particles and in a larger amount than the third particles.
特許文献3には、速硬性混和材とセメント鉱物と砂と再乳化粉末樹脂とを含む舗装用注入材が開示されている。この特許文献3には、速硬性混和材の凝結調整剤としてアルミン酸ナトリウム、無機炭酸塩及びカルボン酸類を用い、これら凝結調整剤の粒度構成を、平均粒径45μmを越えかつ90μm以下の第1粒子10~45質量%と、平均粒径90μmを越えかつ150μm以下の第2粒子30~70質量%と、平均粒径150μmを越えかつ500μm以下の第3粒子5~30質量%とを含み、かつ前記第2粒子を前記第1粒子より多く含むとともに前記第3粒子より多く含むようにすることが開示されている。 Patent Document 3 discloses a pavement injection material containing a fast-setting admixture, a cement mineral, sand, and a re-emulsified powder resin. In this Patent Document 3, sodium aluminate, inorganic carbonate, and carboxylic acids are used as setting modifiers for a fast-setting admixture, and the particle size structure of these setting modifiers is set to 100%, with an average particle size of more than 45 μm and 90 μm or less. 10 to 45% by mass of particles, 30 to 70% by mass of second particles having an average particle size of more than 90 μm and not more than 150 μm, and 5 to 30% by mass of third particles having an average particle size of more than 150 μm and not more than 500 μm, Further, it is disclosed that the second particles are contained in a larger amount than the first particles and in a larger amount than the third particles.
特許文献4には、速硬性混和材を混合した超速硬モルタル組成物について、3ヶ月程度の期間保存したときの凝結時間の変動を抑え、初期強度発現性を長期間良好に維持するための技術として、カルシウムアルミネートからなるクリンカーと、凝結調整剤(無機炭酸塩、オキシカルボン酸、アルミン酸ナトリウムおよび硫酸ナトリウムのうちの1つ以上)とを混合粉砕して、カルシウムアルミネートの平均粒子径が8μm以上100μm以下の範囲内にあり、凝結調整剤の平均粒子径が5μm以下になるようにすることが開示されている。 Patent Document 4 describes a technique for suppressing fluctuations in setting time and maintaining good initial strength development over a long period of time when a super fast-hardening mortar composition mixed with a fast-hardening admixture is stored for a period of about 3 months. As a method, a clinker made of calcium aluminate and a coagulation modifier (one or more of inorganic carbonate, oxycarboxylic acid, sodium aluminate, and sodium sulfate) are mixed and ground to obtain an average particle size of calcium aluminate. It is disclosed that the average particle diameter of the setting modifier is within the range of 8 μm or more and 100 μm or less, and that the average particle diameter of the setting modifier is 5 μm or less.
速硬性混和材に添加される凝結調整剤の一つであるアルミン酸ナトリウムは、カルシウムアルミネートと無水石膏を含む速硬性混和材に添加して使用した場合において初期強度を高める作用(アルカリ刺激剤としての作用効果)と、その硬化体表面に析出する白斑の発生を抑制する作用(初期水和反応におけるカルシウム成分とアルミニウム成分の最適化)とを有する。しかしながら、アルミン酸ナトリウムは著しい潮解性を示し、保存中に吸湿して溶解し、その作用が失われることによって上記の作用を発揮できなくなる場合があった。 Sodium aluminate, which is one of the setting modifiers added to fast-setting admixtures, has the effect of increasing initial strength (alkaline stimulant) when added to fast-setting admixtures containing calcium aluminate and anhydrite. It has the function of suppressing the occurrence of white spots that precipitate on the surface of the cured product (optimization of the calcium component and aluminum component in the initial hydration reaction). However, sodium aluminate exhibits significant deliquescent properties, absorbs moisture and dissolves during storage, and loses its function, which may result in the inability to exhibit the above-mentioned function.
本発明は、前述した事情に鑑みてなされたものであって、長期間にわたって安定して、初期強度が高く、かつ白斑の発生が抑制された硬化体を得ることができる速硬性モルタル組成物を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and provides a fast-curing mortar composition that is stable over a long period of time, has high initial strength, and can obtain a cured product in which the occurrence of white spots is suppressed. The purpose is to provide.
上記の目的を達成するために、本発明の発明者は鋭意検討を行なった結果、モルタル組成物中の速硬性混和材に含まれるカルシウムアルミネートとして、Al2O3に対するCaOの含有量がモル比で1.5以上2.0以下の範囲内にあって、ガラス化率が80%以上のものを用い、かつアルミン酸ナトリウムの代わりにミョウバンを加えることによって、モルタル組成物の初期強度を高める作用と、白斑の発生を防止する作用を長期間保存しても高いレベルで維持することが可能となることを見出して、本発明を完成させた。 In order to achieve the above object, the inventors of the present invention conducted extensive studies and found that the molar content of CaO relative to Al 2 O 3 as calcium aluminate contained in the fast-setting admixture in the mortar composition Increasing the initial strength of the mortar composition by using a material with a ratio of 1.5 to 2.0 and a vitrification rate of 80% or more, and adding alum instead of sodium aluminate. The present invention was completed based on the discovery that the effect and the effect of preventing the occurrence of vitiligo can be maintained at a high level even after long-term storage.
従って、本発明の速硬性モルタル組成物は、速硬性混和材とセメントと細骨材を含む速硬性モルタル組成物であって、前記速硬性混和材100質量部に対して、前記セメントを100質量部以上2000質量部以下の範囲内の量で含有し、前記速硬性混和材が、カルシウムアルミネートと、無水石膏と、無機炭酸塩と、オキシカルボン酸と、ミョウバンとを含み、前記カルシウムアルミネートは、Al2O3に対するCaOの含有量がモル比で1.5以上2.0以下の範囲内にあって、ガラス化率が80%以上であり、前記無水石膏の含有量は、前記カルシウムアルミネートと前記無水石膏の合計量100質量部に対して35質量部以上65質量部以下の範囲内にあって、前記無機炭酸塩、前記オキシカルボン酸および前記ミョウバンの含有量は、それぞれ前記カルシウムアルミネートと前記無水石膏の合計量100質量部に対して0.1質量部以上であって、前記無機炭酸塩、前記オキシカルボン酸および前記ミョウバンの合計含有量は、前記カルシウムアルミネートと前記無水石膏の合計量100質量部に対して10質量部以下であることを特徴としている。 Therefore, the fast-setting mortar composition of the present invention is a fast-setting mortar composition containing a fast-setting admixture, cement, and fine aggregate, in which 100 parts by mass of the cement is added to 100 parts by mass of the fast-setting admixture. parts or more and 2000 parts or less by mass, the fast-curing admixture contains calcium aluminate, anhydrite, an inorganic carbonate, oxycarboxylic acid, and alum, and the calcium aluminate The content of CaO to Al 2 O 3 is within the range of 1.5 to 2.0 in molar ratio, the vitrification rate is 80% or more, and the content of the anhydrite is within the range of the calcium The content of the inorganic carbonate, the oxycarboxylic acid, and the alum is within the range of 35 parts by mass or more and 65 parts by mass or less based on 100 parts by mass of the total amount of the aluminate and the anhydride, and the content of the inorganic carbonate, the oxycarboxylic acid, and the alum is the same as that of the calcium. The total content of the inorganic carbonate, the oxycarboxylic acid, and the alum is 0.1 part by mass or more based on 100 parts by mass of the total amount of the aluminate and the anhydride, and the total content of the inorganic carbonate, the oxycarboxylic acid, and the alum is It is characterized in that the amount is 10 parts by mass or less per 100 parts by mass of the total amount of gypsum.
本発明の速硬性モルタル組成物によれば、速硬性混和材に含まれるカルシウムアルミネートとして、Al2O3に対するCaOの含有量がモル比で1.5以上2.0以下の範囲内にあって、ガラス化率が80%以上であるものを用いるので初期強度が向上し、白斑の発生を抑制することができる。また、本発明の速硬性モルタル組成物によれば、速硬性混和材として、アルミン酸ナトリウムの代わりにミョウバンを用いるので、初期強度の向上作用と白斑の発生の抑制作用とが長期間にわたって低下しにくい。 According to the fast-setting mortar composition of the present invention, the molar ratio of CaO to Al 2 O 3 as calcium aluminate contained in the fast-setting admixture is within the range of 1.5 to 2.0. In addition, since a material having a vitrification rate of 80% or more is used, the initial strength is improved and the occurrence of white spots can be suppressed. Furthermore, according to the fast-setting mortar composition of the present invention, since alum is used instead of sodium aluminate as a fast-setting admixture, the effect of improving initial strength and suppressing the occurrence of white spots decrease over a long period of time. Hateful.
ここで、本発明の速硬性モルタル組成物においては、前記速硬性混和材100質量部に対して、前記細骨材を200質量部以上1000質量部以下の範囲内の量で含有してもよい。
この場合、細骨材を上記の範囲内の量で含有するので、初期強度発現性に優れたものとなると共に、速硬性モルタル組成物の硬化に伴う硬化体の収縮(自己収縮)や、硬化後の水分の逸散に伴う収縮(乾燥収縮)が抑えられる。このため、硬化体のひび割れの発生を抑制することができ、硬化体の強度が高くなる。従って、この速硬性モルタル組成物は、断面修復材として特に有用である。
Here, in the fast-hardening mortar composition of the present invention, the fine aggregate may be contained in an amount of 200 parts by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the fast-hardening admixture. .
In this case, since the fine aggregate is contained in an amount within the above range, it has excellent initial strength development, and also reduces the shrinkage (self-shrinkage) of the cured product accompanying the hardening of the fast-setting mortar composition, and Shrinkage caused by subsequent loss of moisture (drying shrinkage) is suppressed. Therefore, the occurrence of cracks in the cured product can be suppressed, and the strength of the cured product can be increased. Therefore, this fast-setting mortar composition is particularly useful as a cross-sectional repair material.
また、本発明の速硬性モルタル組成物においては、前記細骨材を、速硬性モルタル組成物の全体量に対して10質量%以上67質量%以下の範囲内の量で含有していてもよい。
この場合、細骨材を上記の範囲内の量で含有するので、初期強度発現性に優れたものとなると共に、水を加えた特の細骨材の流動性が向上する。このため、半たわみ性舗装における開粒度アスファルト混合物の空隙のように微細な空間内に対しても、細骨材が媒体となるので、良好に充填することができる。従って、この速硬性モルタル組成物は、舗装用注入材として特に有用である。
Further, in the quick-hardening mortar composition of the present invention, the fine aggregate may be contained in an amount of 10% by mass or more and 67% by mass or less based on the total amount of the quick-hardening mortar composition. .
In this case, since the fine aggregate is contained in an amount within the above-mentioned range, the initial strength development property is excellent, and the fluidity of the fine aggregate especially when water is added is improved. Therefore, fine aggregates can be used as a medium to fill fine spaces, such as the voids of an open-grained asphalt mixture in semi-flexible pavement. Therefore, this fast-setting mortar composition is particularly useful as a pavement pouring material.
また、本発明の速硬性モルタル組成物においては、さらに、ケイ酸ナトリウムを前記カルシウムアルミネートと前記無水石膏の合計量100質量部に対して0.1質量部以上5.0質量部以下の範囲内の量で含んでいてもよい。
この場合、速硬性モルタル組成物はケイ酸ナトリウムを上記の範囲内で含むので、初期強度がより向上する。
Further, in the fast-setting mortar composition of the present invention, sodium silicate is further contained in a range of 0.1 parts by mass or more and 5.0 parts by mass or less based on 100 parts by mass of the total amount of the calcium aluminate and the anhydrite. It may be included in the amount within.
In this case, since the fast-setting mortar composition contains sodium silicate within the above range, the initial strength is further improved.
また、本発明の速硬性モルタル組成物においては、さらに、無水硫酸ナトリウムを前記カルシウムアルミネートと前記無水石膏の合計量100質量部に対して0.1質量部以上5.0質量部以下の範囲内の量で含んでいてもよい。
この場合、速硬性モルタル組成物は無水硫酸ナトリウムを上記の範囲内で含むので、初期強度の向上作用と白斑の発生の抑制作用と共に、流動性が向上する。
Further, in the fast-setting mortar composition of the present invention, anhydrous sodium sulfate is further added in a range of 0.1 parts by mass or more and 5.0 parts by mass or less based on 100 parts by mass of the total amount of the calcium aluminate and the anhydrite. It may be included in the amount within.
In this case, since the fast-hardening mortar composition contains anhydrous sodium sulfate within the above range, it not only improves the initial strength and suppresses the occurrence of white spots, but also improves fluidity.
また、本発明の速硬性モルタル組成物においては、前記ミョウバンがカリウムミョウバンであって、前記カリウムミョウバンの含有量が前記カルシウムアルミネートと前記無水石膏の合計量100質量部に対して0.2質量部以上6.0質量部以下の範囲内にあってもよい。
この場合、速硬性モルタル組成物はカリウムミョウバンを上記の範囲内で含むので、初期強度の向上作用と白斑の発生の抑制作用とがより確実に向上する。
Further, in the fast-setting mortar composition of the present invention, the alum is potassium alum, and the content of the potassium alum is 0.2 parts by mass with respect to 100 parts by mass of the total amount of the calcium aluminate and the anhydrite. The amount may be within the range of 6.0 parts by mass or more and 6.0 parts by mass or less.
In this case, since the fast-setting mortar composition contains potassium alum within the above range, the effect of improving the initial strength and the effect of suppressing the occurrence of white spots are more reliably improved.
また、本発明の速硬性モルタル組成物においては、前記ミョウバンが、無機粉末と前記ミョウバンとを質量比で20:80~80:20の範囲内の量で含む混合物として含まれていてもよい。
この場合、ミョウバンが無機粉末との混合物として含まれているので、速硬性モルタル組成物中のミョウバンが均一に分散されやすくなり、ミョウバンによる作用が得られやすくなる。
Further, in the fast-hardening mortar composition of the present invention, the alum may be included as a mixture containing the inorganic powder and the alum in an amount within the range of 20:80 to 80:20 in mass ratio.
In this case, since alum is contained as a mixture with the inorganic powder, alum in the fast-setting mortar composition is more likely to be uniformly dispersed, making it easier to obtain the effects of alum.
また、本発明の速硬性モルタル組成物においては、さらに、有機短繊維および炭素短繊維のうちの1つ以上からなる短繊維を、速硬性モルタル組成物の全体量に対して0.05質量%以上0.3質量%以下の範囲内の量で含んでいてもよい。
この場合、短繊維は補強材として作用するので、速硬性モルタル組成物を硬化させた硬化体はひび割れ抵抗性が向上して、疲労に対する耐久性が優れたものとなる。
Furthermore, in the fast-hardening mortar composition of the present invention, 0.05% by mass of short fibers made of one or more of organic short fibers and carbon short fibers is further added to the total amount of the fast-hardening mortar composition. It may be contained in an amount within a range of 0.3% by mass or less.
In this case, since the short fibers act as a reinforcing material, the cured product obtained by curing the fast-setting mortar composition has improved cracking resistance and excellent durability against fatigue.
また、本発明の速硬性モルタル組成物においては、再乳化粉末樹脂を、速硬性モルタル組成物の全体量に対して0.5質量%以上30質量%以下の範囲内の量で含んでいてもよい。
この場合、速硬性モルタル組成物は再乳化粉末樹脂を含むので、コンクリート構造物に対する付着力が向上する。
Further, in the quick-hardening mortar composition of the present invention, the re-emulsified powder resin may be contained in an amount of 0.5% by mass or more and 30% by mass or less based on the total amount of the quick-hardening mortar composition. good.
In this case, since the fast-setting mortar composition contains a re-emulsified powder resin, the adhesion to the concrete structure is improved.
また、本発明の速硬性モルタル組成物においては、さらに、シリカフュームを、速硬性モルタル組成物の全体量に対して1質量%以上15質量%以下の範囲内の量で含んでいてもよい。
この場合、シリカフュームはポゾラン作用を有するので長期強度発現性が向上する。さらに速硬性モルタル組成物を硬化させた硬化体は緻密化して、総細孔量が小さくなり、中性化の進行や塩化物イオンの拡散の進行が抑制されるので、耐久性が向上する。
Furthermore, the quick-hardening mortar composition of the present invention may further contain silica fume in an amount ranging from 1% by mass to 15% by mass based on the total amount of the fast-hardening mortar composition.
In this case, since silica fume has a pozzolanic effect, long-term strength development is improved. Furthermore, the cured product obtained by curing the fast-curing mortar composition becomes denser, the total pore volume becomes smaller, and the progress of neutralization and diffusion of chloride ions is suppressed, so that durability is improved.
また、本発明の速硬性モルタル組成物においては、さらに、合成ポリマー系増粘保水剤を、速硬性モルタル組成物の全体量に対して0.05質量%以上5.00質量%以下の範囲内で含んでいてもよい。
この場合、合成ポリマー系増粘保水剤は水と接すると微細な気泡を発生する作用があるので、合成ポリマー系増粘保水剤を含む速硬性モルタル組成物を硬化させた硬化体は、疑似的にエントレインドエアが導入されて、再乳化粉末樹脂添加による効果に加え、更に凍結融解抵抗性が向上する。
In addition, in the fast-setting mortar composition of the present invention, a synthetic polymer-based thickening water-retaining agent is further added in an amount of 0.05% by mass or more and 5.00% by mass or less based on the total amount of the fast-setting mortar composition. may be included.
In this case, the synthetic polymer thickening water retaining agent has the effect of generating fine bubbles when it comes into contact with water, so the cured product obtained by curing the fast-setting mortar composition containing the synthetic polymer thickening water retaining agent is In addition to the effect of adding re-emulsified powder resin, entrained air is introduced to further improve freeze-thaw resistance.
本発明によれば、長期間にわたって安定して、初期強度が高く、かつ白斑の発生が抑制された硬化体を得ることができる速硬性モルタル組成物を提供することが可能となる。 According to the present invention, it is possible to provide a fast-curing mortar composition that is stable over a long period of time, has high initial strength, and can yield a cured product in which the occurrence of white spots is suppressed.
以下に、本発明の実施形態について説明する。
本実施形態である速硬性モルタル組成物は、速硬性混和材とセメントと細骨材を含む。速硬性モルタル組成物は、速硬性混和材100質量部に対して、セメントを100質量部以上2000質量部以下の範囲内で含む。速硬性モルタル組成物は、さらに、短繊維、再乳化粉末樹脂、シリカフューム、合成ポリマー系増粘保水剤、凝結調整剤、防凍剤、減水剤などの各混和材を含んでいてもよい。
以下、本実施形態の速硬性モルタル組成物の各成分について説明する。
Embodiments of the present invention will be described below.
The fast-setting mortar composition of this embodiment includes a fast-setting admixture, cement, and fine aggregate. The fast-setting mortar composition contains cement in an amount of 100 parts by mass or more and 2000 parts by mass or less, based on 100 parts by mass of the fast-setting admixture. The fast-setting mortar composition may further contain admixtures such as staple fibers, re-emulsified powder resin, silica fume, synthetic polymer-based thickening water-retaining agent, setting modifier, antifreeze agent, and water-reducing agent.
Each component of the quick-hardening mortar composition of this embodiment will be explained below.
(速硬性混和材)
速硬性混和材は、カルシウムアルミネートと、無水石膏と、無機炭酸塩と、オキシカルボン酸と、ミョウバンとを含む。カルシウムアルミネートと無水石膏とは、モルタル組成物の硬化速度を速める速硬成分として作用する。無機炭酸塩とオキシカルボン酸とミョウバンとは、モルタル組成物の凝結時間や初期強度などを調整する凝結調整成分として作用する。
(Fast hardening admixture)
The fast-setting admixture includes calcium aluminate, anhydrite, inorganic carbonate, oxycarboxylic acid, and alum. Calcium aluminate and anhydrite act as fast-hardening components that speed up the hardening rate of the mortar composition. The inorganic carbonate, oxycarboxylic acid, and alum act as setting adjustment components that adjust the setting time, initial strength, etc. of the mortar composition.
カルシウムアルミネートは、一般に、12CaO・7Al2O3、11CaO・7Al2O3・CaF2及びCaO・Al2O3などの組成を有する化合物である。カルシウムアルミネートは、Al2O3に対するCaOの含有量がモル比で1.5以上2.0以下の範囲内とされている。Al2O3に対するCaOの含有量が上記の範囲を外れると、モルタル組成物の初期強度を向上させる作用や白斑の発生を防止する作用が得られにくくなるおそれがある。 Calcium aluminates are generally compounds having compositions such as 12CaO.7Al 2 O 3 , 11CaO.7Al 2 O 3 .CaF 2 and CaO.Al 2 O 3 . Calcium aluminate has a content of CaO to Al 2 O 3 in a molar ratio of 1.5 to 2.0. If the content of CaO relative to Al 2 O 3 is out of the above range, it may be difficult to obtain the effect of improving the initial strength of the mortar composition and the effect of preventing the occurrence of white spots.
また、カルシウムアルミネートは、ガラス化率が80%以上とされている。ガラス化率が低くなりすぎると、モルタル組成物の初期強度を向上させる作用が得られにくくおそれがある。ガラス化率は、80%以上99%以下の範囲内にあることが好ましく、特に90%以上99%以下の範囲内にあることが好ましい。
なお、上記カルシウムアルミネートのガラス化率(%)は、試料のカルシウムアルミネートのX線回折法により測定したX回折線パターンから、結晶質部分(ピーク)と非晶質部分ハローのフィッティングを行い、各積分強度を以下の式に当てはめてガラス化率を算出した値である。
ガラス化率(%)=100-(100×Ic/(Ic+Is))
Ic:結晶性散乱積分強度
Is:非結晶性散乱積分強度
Further, calcium aluminate is said to have a vitrification rate of 80% or more. If the vitrification rate becomes too low, it may be difficult to obtain the effect of improving the initial strength of the mortar composition. The vitrification rate is preferably in the range of 80% or more and 99% or less, particularly preferably in the range of 90% or more and 99% or less.
The vitrification rate (%) of the above calcium aluminate is determined by fitting the crystalline portion (peak) and the amorphous portion halo from the X-diffraction line pattern measured by the X-ray diffraction method of the calcium aluminate sample. , is the value calculated by applying each integrated intensity to the following formula to calculate the vitrification rate.
Vitrification rate (%) = 100-(100×Ic/(Ic+Is))
Ic: Crystalline scattering integrated intensity Is: Amorphous scattering integrated intensity
カルシウムアルミネートは、ブレーン比表面積が3000cm2/g以上5500cm2/g以下の範囲内にあることが好ましい。カルシウムアルミネートのブレーン比表面積が上記の範囲内にあることによって、速硬性モルタル組成物の硬化速度を速めることができ、初期強度を向上させる作用が向上する。 The Blaine specific surface area of the calcium aluminate is preferably in the range of 3000 cm 2 /g or more and 5500 cm 2 /g or less. When the Blaine specific surface area of the calcium aluminate is within the above range, the curing speed of the fast-setting mortar composition can be increased, and the effect of improving the initial strength is improved.
無水石膏は、ブレーン比表面積が8000cm2/g以上12000cm2/g以下の範囲内にあることが好ましい。無水石膏のブレーン比表面積が上記の範囲内にあることによって、速硬性モルタル組成物の硬化速度を速めることができ、初期強度を向上させる作用が向上する。 The Blaine specific surface area of the anhydrite is preferably in the range of 8000 cm 2 /g or more and 12000 cm 2 /g or less. When the Blaine specific surface area of the anhydrite is within the above range, the curing speed of the fast-setting mortar composition can be increased, and the effect of improving the initial strength is improved.
無水石膏の含有量は、カルシウムアルミネートと無水石膏の合計量100質量部に対して35質量部以上65質量部以下の範囲内にある。カルシウムアルミネートと無水石膏を上記の割合で含有することによって、速硬性モルタル組成物の硬化速度を速めることができ、初期強度を向上させる作用が向上する。 The content of anhydrite is within the range of 35 parts by mass or more and 65 parts by mass or less based on 100 parts by mass of the total amount of calcium aluminate and anhydrite. By containing calcium aluminate and anhydrite in the above ratio, the curing speed of the fast-setting mortar composition can be increased, and the effect of improving the initial strength is improved.
無機炭酸塩は、アルカリ金属の炭酸塩あるいは炭酸水素塩であることが好ましい。無機炭酸塩の例としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸リチウム、炭酸アンモニウムが挙げられる。これらの無機炭酸塩は、1つを単独で使用してもよいし、2つ以上を組合せて使用してもよい。 The inorganic carbonate is preferably an alkali metal carbonate or hydrogen carbonate. Examples of inorganic carbonates include sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, lithium carbonate, and ammonium carbonate. These inorganic carbonates may be used alone or in combination of two or more.
オキシカルボン酸の例としては酒石酸、クエン酸、リンゴ酸、グルコン酸、マレイン酸が挙げられる。これらのオキシカルボン酸は、1つを単独で使用してもよいし、2つ以上を組合せて使用してもよい。なお、オキシカルボン酸は塩を使用してもよい。塩としては、ナトリウム塩、カルシウム塩、アルミニウム塩などの金属塩であることが好ましい。 Examples of oxycarboxylic acids include tartaric acid, citric acid, malic acid, gluconic acid, and maleic acid. These oxycarboxylic acids may be used alone or in combination of two or more. Note that a salt of the oxycarboxylic acid may be used. The salt is preferably a metal salt such as a sodium salt, a calcium salt, or an aluminum salt.
ミョウバンはアルミニウムを含有し、従来の速硬性混和材で用いられているアルミン酸ナトリウムと同様に、アルミニウム補助剤として作用する。このため、速硬性混和材はアルミン酸ナトリウムを実質的に含有しないことが好ましい。 Alum contains aluminum and acts as an aluminum adjuvant, similar to sodium aluminate used in conventional fast-setting admixtures. For this reason, it is preferable that the fast-curing admixture does not substantially contain sodium aluminate.
ミョウバンとしては、ナトリウムミョウバン(NaAl(SO4)2・12H2O)、カリウムミョウバン(AlK(SO4)2・12H2O)を用いることが好ましく、特に、カリウムミョウバンを用いることが好ましい。ミョウバンの平均粒子径は、1μm以上100μm以下の範囲内にあることが好ましい。 As the alum, it is preferable to use sodium alum (NaAl(SO 4 ) 2 ·12H 2 O) and potassium alum (AlK(SO 4 ) 2 ·12H 2 O), and it is particularly preferable to use potassium alum. The average particle diameter of alum is preferably in the range of 1 μm or more and 100 μm or less.
無機炭酸塩、オキシカルボン酸およびミョウバンの含有量は、それぞれ速硬成分(カルシウムアルミネートと無水石膏)の合計量100質量部に対して0.1質量部以上であって、それらの合計含有量が、速硬成分の合計量100質量部に対して10質量部以下となる範囲内にあることが好ましい。無機炭酸塩、オキシカルボン酸およびミョウバンの含有量が少なくなりすぎると、これらの成分を添加する効果が得られにくくなるおそれがある。一方、無機炭酸塩、オキシカルボン酸およびミョウバンの含有量が多くなりすぎると、相対的に速硬成分の含有量が少なくなり、速硬成分の効果が得られにくくなるおそれがある。無機炭酸塩、オキシカルボン酸およびミョウバンの添加効果を確実に得るためには、無機炭酸塩、オキシカルボン酸およびミョウバンの含有量は、それぞれ速硬成分(カルシウムアルミネートと無水石膏)の合計量100質量部に対して0.2質量部以上6.0質量部以下の範囲内にあることが好ましい。 The content of inorganic carbonate, oxycarboxylic acid, and alum is 0.1 part by mass or more based on 100 parts by mass of the quick-hardening components (calcium aluminate and anhydrite), and their total content is preferably within a range of 10 parts by mass or less based on 100 parts by mass of the total amount of fast-hardening components. If the contents of inorganic carbonate, oxycarboxylic acid, and alum become too low, it may be difficult to obtain the effects of adding these components. On the other hand, if the content of the inorganic carbonate, oxycarboxylic acid, and alum becomes too large, the content of the fast-setting component will be relatively low, and there is a possibility that it will be difficult to obtain the effects of the fast-setting component. In order to ensure the effect of addition of inorganic carbonate, oxycarboxylic acid and alum, the content of inorganic carbonate, oxycarboxylic acid and alum should be 100% of the total amount of fast-hardening components (calcium aluminate and anhydrite), respectively. It is preferably within a range of 0.2 parts by mass or more and 6.0 parts by mass or less based on parts by mass.
速硬性混和材は、さらに、無水硫酸ナトリウム(無水中性芒硝)、ケイ酸ナトリウム、増量材を含んでいてもよい。 The fast-setting admixture may further contain anhydrous sodium sulfate (anhydrous sodium sulfate), sodium silicate, and a filler.
無水硫酸ナトリウムは、水に対する溶解速度が速く、水を加えた後の速硬性モルタル組成物の流動性を向上させる作用を有する。無水硫酸ナトリウムの配合量は、カルシウムアルミネートと無水石膏の合計量100質量部に対して0.1質量部以上5.0質量部以下の範囲内にあることが好ましい。 Anhydrous sodium sulfate has a high dissolution rate in water and has the effect of improving the fluidity of a fast-setting mortar composition after adding water. The amount of anhydrous sodium sulfate is preferably in the range of 0.1 parts by mass or more and 5.0 parts by mass or less based on 100 parts by mass of the total amount of calcium aluminate and anhydrite.
ケイ酸ナトリウムは、アルカリ度調整剤として作用し、速硬性モルタル組成物の初期強度を高める作用を有する。ケイ酸ナトリウムとしては、例えば、メタケイ酸ナトリウム(Na2SiO3)、オルトケイ酸ナトリウム(Na4SiO4)、二ケイ酸ナトリウム(Na2Si2O5)、四ケイ酸ナトリウム(Na2Si4O9)を用いることができる。また、ケイ酸ナトリウムは無水物であってもよいし、水和物(例えば、Na2SiO3・9H2O)であってもよい。ケイ酸ナトリウムの配合量は、カルシウムアルミネートと無水石膏の合計量100質量部に対して0.1質量部以上5.0質量部以下の範囲内にあることが好ましい。 Sodium silicate acts as an alkalinity regulator and has the effect of increasing the initial strength of the fast-setting mortar composition. Examples of sodium silicate include sodium metasilicate (Na 2 SiO 3 ), sodium orthosilicate (Na 4 SiO 4 ), sodium disilicate (Na 2 Si 2 O 5 ), and sodium tetrasilicate (Na 2 Si 4 O 9 ) can be used. Further, sodium silicate may be anhydrous or hydrated (eg, Na 2 SiO 3 .9H 2 O). The amount of sodium silicate is preferably in the range of 0.1 parts by mass or more and 5.0 parts by mass or less based on 100 parts by mass of the total amount of calcium aluminate and anhydrite.
増量材としては、水が存在しない条件では速硬性モルタル組成物の硬化反応に寄与しない無機粉末を用いることができる。無機粉末の例としては、石英微粉末、石灰石微粉末、石炭灰微粉末、高炉スラグ微粉末などが挙げられる。
無機炭酸塩、オキシカルボン酸およびミョウバンなどの凝結調整成分を予め増量材と混合した混合物として、速硬性混和材に含まれていることが好ましい。凝結調整成分を混合物とすることによって、保存中の圧密による固結を防止(ブロッキング防止)することができるため、速硬性混和材中の凝結調整成分が均一に分散されやすく、凝結調整成分による作用が得られやすくなる。混合物は、無機粉末と凝結調整成分とを質量比で20:80~80:20の範囲内で含むことが好ましい。
As the filler, an inorganic powder that does not contribute to the curing reaction of the fast-setting mortar composition in the absence of water can be used. Examples of inorganic powders include fine quartz powder, fine limestone powder, fine coal ash powder, and fine blast furnace slag powder.
It is preferable that the fast-curing admixture contains a mixture of set-controlling components such as inorganic carbonates, oxycarboxylic acids, and alum mixed with an extender in advance. By making the setting adjustment component into a mixture, it is possible to prevent caking due to compaction during storage (blocking prevention), so the setting adjustment component in the fast-setting admixture can be easily dispersed evenly, and the action of the setting adjustment component can be prevented. becomes easier to obtain. The mixture preferably contains the inorganic powder and the setting adjustment component in a mass ratio of 20:80 to 80:20.
速硬性混和材は、例えば、カルシウムアルミネートと、無水石膏と、無機炭酸塩と、オキシカルボン酸と、ミョウバンとを混合することによって製造することができる。混合装置としては、V型混合機、リボンミキサー、プロ-シェアミキサー等のセメント材料の混合装置として通常用いられている各種の混合装置を用いることができる。 The fast-setting admixture can be produced, for example, by mixing calcium aluminate, anhydrite, inorganic carbonate, oxycarboxylic acid, and alum. As the mixing device, various types of mixing devices commonly used for mixing cement materials can be used, such as a V-type mixer, a ribbon mixer, and a plow-shear mixer.
混合の順序としては特に制限はないが、まず、カルシウムアルミネートと無水石膏とを混合し、得られた混合物に対して、無機炭酸塩、オキシカルボン酸、ミョウバン、さらに必要に応じて無水硫酸ナトリウムやケイ酸ナトリウムなどを加えて混合することが好ましい。無機炭酸塩、オキシカルボン酸、ミョウバンは、上記の無機粉末との混合物として加えてもよいし、カルシウムアルミネートや無水石膏と混合してもよい。 There is no particular restriction on the order of mixing, but first, calcium aluminate and anhydrite are mixed, and the resulting mixture is mixed with inorganic carbonate, oxycarboxylic acid, alum, and if necessary, anhydrous sodium sulfate. It is preferable to add and mix sodium silicate or the like. The inorganic carbonate, oxycarboxylic acid, and alum may be added as a mixture with the above-mentioned inorganic powder, or may be mixed with calcium aluminate or anhydrite.
(セメント)
セメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、高炉セメント、シリカセメント、フライアッシュセメント、シリカフュームセメント等を用いることができる。セメントは、1種を単独で使用してもよいし、2種以上を組合せて使用してもよい。セメントはポルトランドセメント、特に普通ポルトランドセメントを用いることが好ましい。
(cement)
As the cement, ordinary Portland cement, early strength Portland cement, moderate heat Portland cement, low heat Portland cement, blast furnace cement, silica cement, fly ash cement, silica fume cement, etc. can be used. One type of cement may be used alone, or two or more types may be used in combination. As the cement, it is preferable to use Portland cement, particularly ordinary Portland cement.
セメントの配合量は、一般に、速硬性混和材100質量部に対して、セメントを100質量部以上2000質量部以下の範囲内にある。セメントの配合量が上記の範囲内にあると、速硬性混和材による初期強度の発現性とセメントによる長期強度の発現性とに優れた速硬性モルタル組成物を得ることができる。 The amount of cement to be blended is generally in the range of 100 parts by mass or more and 2000 parts by mass or less per 100 parts by mass of the quick-hardening admixture. When the blending amount of cement is within the above range, it is possible to obtain a fast-setting mortar composition that is excellent in the ability to develop initial strength due to the quick-setting admixture and the ability to develop long-term strength due to the cement.
(細骨材)
細骨材は、速硬性モルタル組成物の硬化に伴う硬化体の収縮(自己収縮)や、硬化後の水分の逸散に伴う収縮(乾燥収縮)を抑える作用がある。細骨材は、砂であることが好ましく、粒子径が150~3000μmの砂であることがより好ましく、200~1500μmの砂であることが更に好ましい。また、粒子径が90~1000μmの砂であってもよく、更に90~200μmの砂であってもよい。砂の粒子径が小さくなりすぎると、速硬性モルタル組成物と水とを混合して調製したモルタルあるいはセメントミルクの撹拌性能及び硬化体の耐摩耗性が低下するとともにすべり抵抗性が低下するおそれがある。一方、砂の粒子径が大きくなりすぎると、モルタルあるいはセメントミルク中に砂が沈降し易くなるとともに、モルタルあるいはセメントミルクのコンクリート構造物への付着性や舗装体への注入性が低下するおそれがある。
(fine aggregate)
The fine aggregate has the effect of suppressing shrinkage of the cured product (self-shrinkage) caused by hardening of the fast-setting mortar composition and shrinkage caused by the dissipation of moisture after hardening (drying shrinkage). The fine aggregate is preferably sand, more preferably sand with a particle size of 150 to 3000 μm, even more preferably 200 to 1500 μm. Further, the sand may have a particle size of 90 to 1000 μm, and further may have a particle size of 90 to 200 μm. If the particle size of the sand becomes too small, the stirring performance of mortar or cement milk prepared by mixing a fast-setting mortar composition and water and the abrasion resistance of the hardened product may decrease, as well as the slip resistance may decrease. be. On the other hand, if the particle size of the sand becomes too large, the sand tends to settle into the mortar or cement milk, and there is a risk that the adhesion of the mortar or cement milk to the concrete structure and the ability to pour it into the pavement will decrease. be.
細骨材の配合量は、例えば、断面補修材として利用する場合、速硬性混和材100質量部に対する量として、200質量部以上1000質量部以下の範囲内にある。細骨材の配合量が少なくなりすぎると、硬化体の収縮低減効果が十分に得られないばかりでなく、モルタルの撹拌性能及び耐摩耗性が低下するとともにすべり抵抗性が低下するおそれがある。一方、細骨材の配合量が多くなりすぎると、初期強度発現性が低下するとともに材料分離が発生してブリーディングが発生しやすくなるおそれがある。一方、舗装用注入材として利用する場合、速硬性モルタル組成物の全体量に対して10質量%以上67質量%以下の範囲内となる量である。細骨材の配合量が少なくなりすぎると、硬化体の収縮低減効果が十分に得られないばかりでなく、セメントミルクの撹拌性能及び耐摩耗性が低下するとともにすべり抵抗性が低下するおそれがある。一方、細骨材の配合量が多くなりすぎると、初期強度の発現性が低下するとともに材料分離が発生してブリーディングが発生しやすくなるおそれがある。 For example, when the fine aggregate is used as a cross-section repair material, the amount of the fine aggregate is in the range of 200 parts by mass or more and 1000 parts by mass or less, based on 100 parts by mass of the quick-hardening admixture. If the amount of fine aggregate blended is too small, not only will the shrinkage reduction effect of the hardened product not be sufficiently obtained, but also the stirring performance and abrasion resistance of the mortar will decrease, and there is a risk that the slip resistance will decrease. On the other hand, if the blended amount of fine aggregate is too large, the initial strength development property may be lowered and material separation may occur, leading to a risk of bleeding. On the other hand, when used as a pavement injection material, the amount is within the range of 10% by mass to 67% by mass based on the total amount of the fast-setting mortar composition. If the amount of fine aggregate blended is too small, not only will the shrinkage reduction effect of the hardened product not be sufficiently achieved, but the stirring performance and abrasion resistance of cement milk may decrease as well as the slip resistance may decrease. . On the other hand, if the amount of fine aggregate added is too large, the development of initial strength will be reduced and there is a risk that material separation will occur and bleeding will occur more easily.
(短繊維)
短繊維は補強材として作用する。このため、短繊維を含む速硬性モルタル組成物を硬化させた硬化体はひび割れ抵抗性が向上して、疲労に対する耐久性が優れたものとなる。
短繊維としては、有機短繊維および炭素短繊維を用いることができる。有機短繊維の例としては、PVA短繊維(ポリビニルアルコール短繊維)、ナイロン短繊維、アラミド短繊維、ポリプロピレン短繊維、レーヨン短繊維等が挙げられる。これらの短繊維は、1種を単独で使用してもよいし、2種以上を組合せて使用してもよい。
短繊維は、繊維長が1mm以上10mm以下の範囲内にあることが好ましい。1mmより短いと十分な繊維補強効果が得られないおそれがある。一方、10mmを超えると繊維の抵抗により流動性が損なわれ、狭隘部や半たわみ性舗装への注入性が低下する等、施工性が阻害されるおそれがある。繊維径は、通常、5μm以上100μm以下の範囲内にある。
(short fiber)
Short fibers act as reinforcement. Therefore, a cured product obtained by curing a fast-setting mortar composition containing short fibers has improved cracking resistance and excellent durability against fatigue.
As the short fibers, organic short fibers and carbon short fibers can be used. Examples of organic staple fibers include PVA staple fibers (polyvinyl alcohol staple fibers), nylon staple fibers, aramid staple fibers, polypropylene staple fibers, rayon staple fibers, and the like. These short fibers may be used alone or in combination of two or more.
The short fibers preferably have a fiber length of 1 mm or more and 10 mm or less. If it is shorter than 1 mm, there is a risk that a sufficient fiber reinforcing effect may not be obtained. On the other hand, if the thickness exceeds 10 mm, fluidity may be impaired due to the resistance of the fibers, and workability may be impaired, such as reduced injectability into narrow areas or semi-flexible pavement. The fiber diameter is usually in the range of 5 μm or more and 100 μm or less.
短繊維の配合量は、一般に、速硬性モルタル組成物の全体量に対する量として、0.05質量%以上0.3質量%以下の範囲内にある。短繊維の配合量が少なくなりすぎると、硬化体のひび割れ抵抗性が向上して、疲労に対する耐久性を向上させる作用が不十分となるおそれがある。一方、短繊維の配合量が多くなりすぎると、速硬性モルタル組成物と水の混合物の流動性が低下するおそれがある。 The blending amount of short fibers is generally in the range of 0.05% by mass or more and 0.3% by mass or less based on the total amount of the fast-setting mortar composition. If the blending amount of short fibers is too small, the cracking resistance of the cured product may be improved, and the effect of improving durability against fatigue may become insufficient. On the other hand, if the amount of short fibers added is too large, the fluidity of the mixture of the fast-setting mortar composition and water may decrease.
(再乳化粉末樹脂)
再乳化粉末樹脂は吸水性および透水性が低い樹脂であり、速硬性モルタル組成物を硬化させた硬化体に対して水を浸透しにくくする作用がある。また、再乳化粉末樹脂は、コンクリート構造物に対する速硬性モルタル組成物の付着力を向上させる作用がある。このため、再乳化粉末樹脂を含む速硬性モルタル組成物は、水に浸漬させた後の凍結融解抵抗性に優れ、コンクリート構造物に対する付着力が向上する。
再乳化粉末樹脂の例としては、酢酸ビニル/ベオバ/アクリル酸エステル共重合樹脂、酢酸ビニル共重合樹脂、酢酸ビニル/エチレン共重合、酢酸ビニル/アクリル共重合樹脂、アクリル樹脂などが挙げられる。これらの再乳化粉末樹脂は、1種を単独で使用してもよいし、2種以上を組合せて使用してもよい。
(Re-emulsified powder resin)
The re-emulsified powder resin is a resin with low water absorption and water permeability, and has the effect of making it difficult for water to penetrate into the cured product obtained by curing the fast-setting mortar composition. Furthermore, the re-emulsified powder resin has the effect of improving the adhesion of the fast-setting mortar composition to concrete structures. Therefore, a fast-setting mortar composition containing a re-emulsified powder resin has excellent freeze-thaw resistance after being immersed in water, and has improved adhesion to concrete structures.
Examples of re-emulsified powder resins include vinyl acetate/beova/acrylic acid ester copolymer resins, vinyl acetate copolymer resins, vinyl acetate/ethylene copolymer resins, vinyl acetate/acrylic copolymer resins, and acrylic resins. These re-emulsified powder resins may be used alone or in combination of two or more.
再乳化粉末樹脂の配合量は、一般に、速硬性モルタル組成物の全体量に対する量として、0.5質量%以上30質量%以下の範囲内にある。再乳化粉末樹脂の配合量が少なくなりすぎると、速硬性モルタル組成物の硬化体の凍結融解抵抗性を向上させる作用やが不十分となるおそれがある。一方、再乳化粉末樹脂の配合量が多くなりすぎると、速硬性モルタル組成物と水の混合物の流動性が低下するおそれがある。 The amount of the re-emulsified powder resin blended is generally in the range of 0.5% by mass or more and 30% by mass or less based on the total amount of the fast-setting mortar composition. If the amount of the re-emulsified powder resin is too small, the effect of improving the freeze-thaw resistance of the cured product of the fast-setting mortar composition may become insufficient. On the other hand, if the blending amount of the re-emulsified powder resin is too large, there is a risk that the fluidity of the mixture of the fast-setting mortar composition and water will decrease.
(シリカフューム)
シリカフュームはポゾラン作用を有する。このため、シリカフュームを含む速硬性モルタル組成物は長期強度発現性が向上し、さらにこれを硬化させた硬化体は緻密化して、総細孔量が小さくなり、中性化の進行や塩化物イオンの拡散の進行が抑制される。
(silica fume)
Silica fume has pozzolanic action. For this reason, fast-setting mortar compositions containing silica fume have improved long-term strength development, and the cured product obtained by curing it becomes denser and has a smaller total pore volume, resulting in increased carbonation and chloride ion content. The progress of diffusion is suppressed.
シリカフュームの配合量は、速硬性モルタル組成物の全体量に対する量として、1質量%以上15質量%以下の範囲内にあることが好ましい。シリカフュームの配合量が少なくなりすぎると、ポゾラン反応による長期強度発現性や、速硬性モルタル組成物の硬化体組織の緻密化に拠る中性化抑制効果や塩化物イオンの浸透を抑制する効果が十分ではなくなるおそれがある。一方、シリカフュームの配合量が多くなりすぎると、速硬性モルタル組成物中の速硬性混和材の分量が相対的に少なくなり、初期強度発現性が悪くなるおそれがある。 The amount of silica fume blended is preferably in the range of 1% by mass or more and 15% by mass or less based on the total amount of the fast-setting mortar composition. If the amount of silica fume is too small, the long-term strength development due to the pozzolanic reaction, the neutralization suppressing effect due to the densification of the hardened structure of the fast-curing mortar composition, and the effect suppressing the penetration of chloride ions will be insufficient. There is a possibility that it will not be. On the other hand, if the blending amount of silica fume is too large, the amount of the fast-setting admixture in the fast-setting mortar composition will be relatively small, and there is a possibility that the initial strength development property will be deteriorated.
(合成ポリマー系増粘保水剤)
合成ポリマー系増粘保水剤は、水と接すると微細な気泡を発生する作用がある。このため、合成ポリマー系増粘保水剤を含む速硬性モルタル組成物を硬化させた硬化体は、疑似的にエントレインドエアが導入されて、再乳化粉末樹脂添加による効果と同様に凍結融解抵抗性が向上する。
(Synthetic polymer thickening water retention agent)
Synthetic polymer thickening water retention agents have the effect of generating fine bubbles when they come into contact with water. For this reason, the cured product obtained by curing a fast-setting mortar composition containing a synthetic polymer-based thickening water-retaining agent has the same effect as the addition of re-emulsified powder resin due to the introduction of pseudo entrained air. will improve.
合成ポリマー系増粘保水剤の配合量は、速硬性モルタル組成物の全体量に対する量として、0.05質量%以上5.0質量%以下の範囲内にあることが好ましく、0.10質量%以上5.0質量%以下の範囲内にあることがより好ましく、1.00質量%以上5.0質量%以下の範囲内にあることが特に好ましい。合成ポリマー系増粘保水剤の配合量が少なくなりすぎると、速硬性モルタル組成物の硬化体の凍結融解抵抗性を向上させる作用が不十分となるおそれがある。一方、合成ポリマー系増粘保水剤の配合量が多くなりすぎると、速硬性モルタル組成物と水の混合物の流動性が低下するばかりでなく、過剰な気泡が入り強度を低下させるおそれがある。 The amount of the synthetic polymer-based thickening water-retaining agent is preferably in the range of 0.05% by mass or more and 5.0% by mass or less, and 0.10% by mass based on the total amount of the fast-setting mortar composition. It is more preferably in the range of 5.0% by mass or less, and particularly preferably in the range of 1.00% by mass or more and 5.0% by mass or less. If the amount of the synthetic polymer-based thickening water-retaining agent is too small, the effect of improving the freeze-thaw resistance of the cured product of the fast-setting mortar composition may become insufficient. On the other hand, if the amount of the synthetic polymer-based thickening water-retaining agent is too large, not only will the fluidity of the mixture of the fast-setting mortar composition and water decrease, but also there is a risk that excessive air bubbles will be introduced and the strength will be decreased.
(凝結調整剤)
本実施形態の速硬性モルタル組成物では、上述のとおり、速硬性混和材の構成成分として凝結調整剤が平均粒子径5μm以下の微粒子として含まれているが、速硬性モルタル組成物の全体量に対する凝結調整剤の含有量が0.01質量%以上5質量%以下の範囲内となるように、さらに、凝結調整剤が添加されていてもよい。ここで、速硬性モルタル組成物の全体量に対する凝結調整剤の含有量は、速硬性混和材中に含まれている凝結調整剤と、速硬性混和材とは別に添加された凝結調整剤との合計量である。この場合は、速硬性混和材中に含まれている凝結調整剤と、速硬性混和材とは別に添加された凝結調整剤とによって凝結時間を調整できるので、環境温度および長期間の保存による速硬性モルタル組成物の凝結始発時間の変動をさらに確実に小さくすることができる。また、凝結調整剤を別に添加することによって、速硬性モルタル組成物の凝結始発時間を所要の時間に調整することができる。また、本実施形態の速硬性モルタル組成物では、速硬性混和材中に含まれている凝結調整剤は微粒子で水に溶解しやすく、通常は可使時間を十分に確保できるので、別に添加する凝結調整剤の量は少なくできる。
速硬性モルタル組成物の全体量に対する凝結調整剤の含有量が0.01質量%未満であると、凝結時間を調整する作用が不十分となるおそれがある。一方、速硬性モルタル組成物の全体量に対する凝結調整剤の含有量が5質量%を超えると、モルタルによる長期強度の発現性が低下するおそれがある。
(setting regulator)
In the fast-setting mortar composition of the present embodiment, as described above, the setting modifier is contained as a component of the fast-setting admixture in the form of fine particles with an average particle size of 5 μm or less, but it is A setting modifier may be further added so that the content of the setting modifier is within the range of 0.01% by mass or more and 5% by mass or less. Here, the content of the setting modifier with respect to the total amount of the quick-setting mortar composition is the difference between the setting modifier contained in the quick-setting admixture and the setting modifier added separately from the quick-setting admixture. This is the total amount. In this case, the setting time can be adjusted by the setting modifier contained in the fast-setting admixture and the setting modifier added separately from the fast-setting admixture, so the setting time can be adjusted depending on the environmental temperature and long-term storage. Fluctuations in the initial setting time of the hard mortar composition can be further reliably reduced. Furthermore, by separately adding a setting regulator, the initial setting time of the fast-setting mortar composition can be adjusted to a required time. In addition, in the fast-setting mortar composition of this embodiment, the setting modifier contained in the fast-setting admixture is a fine particle that easily dissolves in water, and usually has a sufficient pot life, so it is not added separately. The amount of setting modifier can be reduced.
If the content of the setting modifier based on the total amount of the fast-setting mortar composition is less than 0.01% by mass, the effect of adjusting the setting time may become insufficient. On the other hand, if the content of the setting modifier with respect to the total amount of the fast-setting mortar composition exceeds 5% by mass, there is a possibility that the ability of the mortar to develop long-term strength may be reduced.
速硬性混和材とは別に添加する凝結調整剤は、単独で速硬性モルタル組成物に添加してもよいが、無機粉末と凝結調整剤を予め混合した混合物として添加することが好ましい。無機粉末と凝結調整剤の混合物は、無機粉末100質量部に対して凝結調整剤を50質量部以上300質量部以下の範囲内に含有する凝結調整剤高濃度含有混合物であることが好ましい。凝結調整剤を凝結調整剤高濃度含有混合物として速硬性モルタル組成物に添加することによって、凝結調整剤を速硬性モルタル組成物中に均一に分散させ易くなる。無機粉末としては、セメント(特に、ポルトランドセメント)、石灰石粉末、珪石粉末、高炉スラグ粉末、石炭灰、フライアッシュ、粘土鉱物、カルシウムアルミネート粉末、無機硫酸塩粉末を用いることができる。無機粉末は、ブレーン比表面積が2500cm2/g以上5000cm2/g以下の範囲内にある微粉末であることが好ましい。ブレーン比表面積が、上記の範囲内にある無機粉末は分散性が高いため、この無機粉末を用いた凝結調整剤高濃度含有混合物は、速硬性モルタル組成物に均一に分散させ易くなる。凝結調整剤高濃度含有混合物に含まれている凝結調整剤の粒子径は、1μm以上500μm以下の範囲にあることが好ましい。粒子径が上記の範囲内にある凝結調整剤は、無機粉末への分散性が高く、組成が均一な凝結調整剤高濃度含有混合物を調製しやすくなる。 The setting modifier added separately from the fast-setting admixture may be added alone to the fast-setting mortar composition, but it is preferably added as a mixture of the inorganic powder and the setting modifier mixed in advance. The mixture of the inorganic powder and the setting modifier is preferably a mixture containing a high concentration of the setting modifier, which contains the setting modifier in a range of 50 parts by mass or more and 300 parts by mass or less based on 100 parts by mass of the inorganic powder. By adding the setting modifier to the fast-setting mortar composition as a mixture containing a high concentration of the setting modifier, it becomes easier to uniformly disperse the setting modifier in the fast-setting mortar composition. As the inorganic powder, cement (particularly Portland cement), limestone powder, silica powder, blast furnace slag powder, coal ash, fly ash, clay mineral, calcium aluminate powder, and inorganic sulfate powder can be used. The inorganic powder is preferably a fine powder having a Blaine specific surface area of 2500 cm 2 /g or more and 5000 cm 2 /g or less. Since an inorganic powder having a Blaine specific surface area within the above range has high dispersibility, a mixture containing a high concentration of a setting modifier using this inorganic powder can be easily dispersed uniformly in a fast-setting mortar composition. The particle size of the setting modifier contained in the mixture containing a high concentration of setting modifier is preferably in the range of 1 μm or more and 500 μm or less. A setting modifier having a particle size within the above range has high dispersibility in the inorganic powder, making it easy to prepare a mixture containing a high concentration of the setting modifier and having a uniform composition.
(防凍剤)
酢酸ナトリウム、酢酸カルシウム、亜硝酸カルシウムは水と反応して発熱して、水が凍結するような極低温の温度環境下において、速硬性モルタル組成物と水の混合物の凍結を防止する防凍剤として作用する。このため、防凍剤を含む速硬性モルタル組成物は、極低温の温度環境下においても、水と混練した速硬性モルタル組成物の凍結を抑制することができ、初期強度発現性が高くなる。
防凍剤は、1種を単独で使用してもよいし、2種以上を組合せて使用してもよい。
(antifreeze)
Sodium acetate, calcium acetate, and calcium nitrite react with water to generate heat and are used as antifreeze agents to prevent a mixture of fast-setting mortar composition and water from freezing in extremely low temperature environments where water freezes. act. Therefore, a fast-setting mortar composition containing an antifreeze agent can suppress freezing of the fast-setting mortar composition kneaded with water even in an extremely low temperature environment, and has high initial strength development.
One type of antifreeze agent may be used alone, or two or more types may be used in combination.
防凍剤の配合量は、一般に、速硬性モルタル組成物の全体量に対する量として、1質量%以上10質量%以下の範囲内にある。防凍剤の配合量が少なくなりすぎると、防凍剤としての作用が不十分となり、速硬性モルタル組成物が凍結してしまい強度が全く出なくなるおそれがある。一方、防凍剤の配合量が多くなりすぎると、速硬性モルタル組成物と水の混合物において塩析作用が生じ、流動性が低下するおそれがある。 The amount of the antifreeze agent is generally in the range of 1% by mass or more and 10% by mass or less based on the total amount of the fast-setting mortar composition. If the amount of the antifreeze is too small, its action as an antifreeze will be insufficient, and the fast-setting mortar composition may freeze and lose its strength at all. On the other hand, if the amount of antifreeze added is too large, salting-out effect may occur in the mixture of the fast-setting mortar composition and water, which may reduce fluidity.
(減水剤)
グラウト材として用いる速硬性モルタル組成物は、減水剤を含んでいてもよい。減水剤は、グラウト材の流動性を改善し、自然流下によるコンクリート舗装版下の隙間へのグラウト材の注入を容易にする作用がある。減水剤としては、市販品のポリカルボン酸塩系高性能減水剤(商品名メルフラックス等)などを用いることができる。
(Water reducer)
The fast-setting mortar composition used as a grouting material may contain a water reducing agent. The water reducing agent has the effect of improving the fluidity of the grout and making it easier to inject the grout into the gaps under the concrete pavement slab by gravity. As the water reducing agent, a commercially available polycarboxylate-based high performance water reducing agent (trade name: Melflux, etc.) can be used.
減水剤の配合量は、一般に、速硬性モルタル組成物の全体量に対する量として、0.05質量%以上1.0質量%以下の範囲内にある。減水剤の配合量が少なくなりすぎると、減水剤として作用が不十分とあるおそれがある。一方、減水剤の配合量が多くなりすぎるとグラウト材の流動性が過剰となって材料分離を生じ、繊維がグラウト材の上面に浮いてくるおそれがある。 The amount of the water reducing agent is generally in the range of 0.05% by mass or more and 1.0% by mass or less based on the total amount of the fast-setting mortar composition. If the amount of the water reducing agent is too small, there is a risk that the water reducing agent will not function sufficiently. On the other hand, if the amount of water reducing agent added is too large, the fluidity of the grout material will become excessive, causing material separation, and there is a risk that fibers will float to the top surface of the grout material.
以上のような構成とされた本実施形態の速硬性モルタル組成物によれば、速硬性混和材に含まれるカルシウムアルミネートとして、Al2O3に対するCaOの含有量がモル比で1.5以上2.0以下の範囲内にあって、ガラス化率が80%以上であるものを用いるので初期強度が向上し、白斑の発生を抑制することができる。また、本実施形態の速硬性モルタル組成物によれば、速硬性混和材として、アルミン酸ナトリウムの代わりにミョウバンを用いるので、初期強度の向上作用と白斑の発生の抑制作用とが長期間にわたって低下しにくい。 According to the fast-setting mortar composition of the present embodiment configured as above, the content of CaO to Al 2 O 3 is 1.5 or more in molar ratio as calcium aluminate contained in the fast-setting admixture. Since it is within the range of 2.0 or less and has a vitrification ratio of 80% or more, the initial strength is improved and the occurrence of vitiligo can be suppressed. Furthermore, according to the fast-setting mortar composition of the present embodiment, since alum is used instead of sodium aluminate as a fast-setting admixture, the effect of improving initial strength and suppressing the occurrence of vitiligo are reduced over a long period of time. It's hard to do.
また、本実施形態の速硬性モルタル組成物において、速硬性混和材100質量部に対して、細骨材を200質量部以上1000質量部以下の範囲内の量で含有する場合は、初期強度発現性に優れたものとなると共に、速硬性モルタル組成物の硬化に伴う硬化体の収縮(自己収縮)や、硬化後の水分の逸散に伴う収縮(乾燥収縮)が抑えられる。このため、硬化体のひび割れの発生を抑制することができ、硬化体の強度が高くなる。従って、この速硬性モルタル組成物は、断面修復材として特に有用である。 In addition, in the fast-setting mortar composition of this embodiment, when fine aggregate is contained in an amount within the range of 200 parts by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the fast-setting admixture, the initial strength is In addition to being excellent in properties, shrinkage of the cured product (self-shrinkage) caused by the hardening of the fast-curing mortar composition and shrinkage caused by the dissipation of moisture after curing (drying shrinkage) are suppressed. Therefore, the occurrence of cracks in the cured product can be suppressed, and the strength of the cured product can be increased. Therefore, this fast-setting mortar composition is particularly useful as a cross-sectional repair material.
また、本実施形態の速硬性モルタル組成物において、細骨材を、速硬性モルタル組成物の全体量に対して10質量%以上67質量%以下の範囲内にて含有する場合は、初期強度発現性に優れたものとなると共に、水を加えた特の細骨材の流動性が向上する。このため、半たわみ性舗装における開粒度アスファルト混合物の空隙のように微細な空間内に対しても、細骨材が媒体となるので、良好に充填することができる。従って、この速硬性モルタル組成物は、舗装用注入材として特に有用である。 In addition, in the fast-hardening mortar composition of the present embodiment, when the fine aggregate is contained in the range of 10% by mass or more and 67% by mass or less based on the total amount of the fast-hardening mortar composition, the initial strength is It has excellent properties and improves the fluidity of fine aggregates with water added. Therefore, fine aggregates can be used as a medium to fill fine spaces, such as the voids of an open-grained asphalt mixture in semi-flexible pavement. Therefore, this fast-setting mortar composition is particularly useful as a pavement pouring material.
また、本実施形態の速硬性モルタル組成物においては、さらに、ケイ酸ナトリウムをカルシウムアルミネートと無水石膏の合計量100質量部に対して0.1質量部以上5.0質量部以下の範囲内の量で含むことによって、初期強度がより向上する。 In addition, in the fast-setting mortar composition of the present embodiment, sodium silicate is further added in a range of 0.1 parts by mass or more and 5.0 parts by mass or less based on 100 parts by mass of the total amount of calcium aluminate and anhydrite. The initial strength is further improved by including the amount of .
また、本実施形態の速硬性モルタル組成物においては、さらに、無水硫酸ナトリウムをカルシウムアルミネートと無水石膏の合計量100質量部に対して0.1質量部以上5.0質量部以下の範囲内の量で含むことによって、初期強度の向上作用と白斑の発生の抑制作用と共に、流動性が向上する。 In addition, in the fast-setting mortar composition of the present embodiment, anhydrous sodium sulfate is further added in a range of 0.1 parts by mass or more and 5.0 parts by mass or less based on 100 parts by mass of the total amount of calcium aluminate and anhydrite. By including it in an amount of , the initial strength is improved and the occurrence of vitiligo is inhibited, and fluidity is improved.
また、本実施形態の速硬性モルタル組成物においては、ミョウバンがカリウムミョウバンであって、カリウムミョウバンの含有量がカルシウムアルミネートと無水石膏の合計量100質量部に対して0.2質量部以上6.0質量部以下の範囲内にあることによって、初期強度の向上作用と白斑の発生の抑制作用とがより確実に向上する。 Further, in the fast-setting mortar composition of the present embodiment, the alum is potassium alum, and the content of potassium alum is 0.2 parts by mass or more with respect to 100 parts by mass of the total amount of calcium aluminate and anhydrite. By being within the range of 0.0 parts by mass or less, the effect of improving initial strength and suppressing the occurrence of vitiligo are more reliably improved.
また、本実施形態の速硬性モルタル組成物においては、ミョウバンが、無機粉末とミョウバンとを質量比で20:80~80:20の範囲内の量で含む混合物として含まれていることによって、速硬性モルタル組成物中のミョウバンが均一に分散されやすくなり、ミョウバンによる作用が得られやすくなる。 In addition, in the fast-setting mortar composition of the present embodiment, alum is contained as a mixture containing an inorganic powder and alum in an amount within the range of 20:80 to 80:20 in mass ratio, so that the quick-hardening mortar composition has a fast-setting mortar composition. Alum in the hard mortar composition is more likely to be uniformly dispersed, making it easier to obtain the effects of alum.
本発明の作用効果を、実施例により詳しく説明する。
本実施例において使用した使用材料の種類、組成及び略号を、下記の表1に示す。
The effects of the present invention will be explained in detail with reference to Examples.
The types, compositions, and abbreviations of the materials used in this example are shown in Table 1 below.
[カルシウムアルミネート粉砕物の作製]
下記の表2に示すカルシウムアルミネートクリンカーを用意した。カルシウムアルミネートクリンカー100質量部に対して、炭酸ナトリウム(N)1.0質量部と酒石酸(Ta)0.5質量部を加えて、混合粉砕機を用いて、ブレーン比表面積が4500cm2/gとなるまで粉砕して、カルシウムアルミネート粉砕物を得た。得られたカルシウムアルミネート粉砕物の組成、ブレーン比表面積の実測値を、下記の表3に示す。
[Preparation of pulverized calcium aluminate]
Calcium aluminate clinkers shown in Table 2 below were prepared. To 100 parts by mass of calcium aluminate clinker, 1.0 parts by mass of sodium carbonate (N) and 0.5 parts by mass of tartaric acid (Ta) were added, and using a mixing mill, the Blaine specific surface area was 4500 cm 2 /g. The powder was ground to give a ground calcium aluminate product. The composition of the obtained calcium aluminate pulverized product and the measured Blaine specific surface area are shown in Table 3 below.
[本発明例1]
カルシウムアルミネート粉砕物をカルシウムアルミネート量として45質量部、無水石膏(CS)を55質量部となる割合でV型混合機に投入して10分間混合することによってカルシウムアルミネートと石膏の混合物を得た。得られた混合物100質量部に対して、カリウムミョウバン混合物(BK)を6.0質量部、メタケイ酸ナトリウム(MS)を0.6質量部の割合で加えて、さらに10分間混合して速硬性混和材(SA)を作製した。得られた速硬性混和材(SA)100質量部に対して、普通ポルトランドセメント(N)400質量部、細骨材(S)500質量部、凝結調整剤(SET)8質量部、減水剤(6681F)1.5質量部、消泡剤(14HP)1.2質量部の割合で混合して速硬性モルタル組成物を作製した。
[Example 1 of the present invention]
A mixture of calcium aluminate and gypsum was prepared by putting the ground calcium aluminate into a V-type mixer at a ratio of 45 parts by mass of calcium aluminate and 55 parts by mass of anhydrite (CS) and mixing for 10 minutes. Obtained. To 100 parts by mass of the obtained mixture, 6.0 parts by mass of potassium alum mixture (BK) and 0.6 parts by mass of sodium metasilicate (MS) were added, and the mixture was further mixed for 10 minutes to achieve rapid hardening. An admixture (SA) was prepared. For 100 parts by mass of the obtained fast-setting admixture (SA), 400 parts by mass of ordinary Portland cement (N), 500 parts by mass of fine aggregate (S), 8 parts by mass of setting modifier (SET), and water reducing agent ( 6681F) and 1.2 parts by mass of an antifoaming agent (14HP) were mixed to prepare a quick-hardening mortar composition.
[比較例1]
カルシウムアルミネートと石膏の混合物100質量部に対して、カリウムミョウバン混合物(BK)及びメタケイ酸ナトリウム(MS)の代わりに、アルミン酸ナトリウム(AL)1.0質量部を加えたこと以外は、本発明例1と同様にして速硬性混和材(SA)を作製した。そして、得られた速硬性混和材(SA)を用いたこと以外は、本発明例1と同様にして速硬性モルタル組成物を作製した。
[Comparative example 1]
Except that 1.0 parts by mass of sodium aluminate (AL) was added to 100 parts by mass of the mixture of calcium aluminate and gypsum instead of the potassium alum mixture (BK) and sodium metasilicate (MS). A fast-setting admixture (SA) was prepared in the same manner as in Invention Example 1. Then, a fast-setting mortar composition was prepared in the same manner as in Invention Example 1, except that the obtained fast-setting admixture (SA) was used.
本発明例1及び比較例1で作製した速硬性混和材(SA)の組成を、下記の表4に示す。本発明例1及び比較例1で作製した速硬性モルタル組成物の組成を、下記の表5に示す。 The compositions of the fast-setting admixtures (SA) produced in Inventive Example 1 and Comparative Example 1 are shown in Table 4 below. The compositions of the fast-hardening mortar compositions prepared in Inventive Example 1 and Comparative Example 1 are shown in Table 5 below.
[評価]
本発明例1及び比較例1で得られた速硬性モルタル組成物100質量部に対して、水を18質量部となる割合で混合してモルタルを作製した。なお、速硬性モルタル組成物は、製造直後(製造後1日以内)のものを使用した。得られたモルタルについて、J14ロート流下時間、凝結時間、圧縮強度の各物性を、下記の方法により測定した。また、圧縮強度の測定で得られた材齢が28日の供試体の白斑の有無を確認した。各物性の測定は5℃、20℃、35℃の各環境温度で行なった。その結果を、下記の表6に示す。
[evaluation]
Mortar was prepared by mixing 18 parts by mass of water with 100 parts by mass of the quick-hardening mortar compositions obtained in Inventive Example 1 and Comparative Example 1. In addition, the quick-hardening mortar composition was used immediately after production (within 1 day after production). Regarding the obtained mortar, physical properties such as J14 funnel flow time, setting time, and compressive strength were measured by the following methods. In addition, the presence or absence of white spots on the specimens with an age of 28 days obtained by measuring the compressive strength was confirmed. Measurements of each physical property were performed at each environmental temperature of 5°C, 20°C, and 35°C. The results are shown in Table 6 below.
(J14ロート流下時間)
土木学会規準JSCE-F 541「充てんモルタルの流動性試験方法」に準拠して測定した。
(J14 funnel flow time)
It was measured in accordance with the Japan Society of Civil Engineers standard JSCE-F 541 "Fluidity test method for filled mortar".
(凝結時間)
JIS R 5201「セメントの物理試験方法」に準拠して測定した。
(setting time)
It was measured in accordance with JIS R 5201 "Physical test method for cement".
(圧縮強度)
JIS R 5201「セメントの物理試験方法」に準拠して測定した。
(compressive strength)
It was measured in accordance with JIS R 5201 "Physical test method for cement".
本発明例1及び比較例1で得られた速硬性モルタル組成物を、ビニール袋(容量:12L)に梱包し、ビニール袋の角部の4カ所にピンホール(孔径:0.5mm)を開け、温度30℃、湿度80%RHの室内に静置して保存した。3ヵ月保存後と6ヵ月保存後の速硬性モルタル組成物を用いて、上記と同様にモルタルを作製して評価した。なお、各物性の測定は20℃の環境温度で行なった。その結果を、製造直後の速硬性モルタル組成物を用いて作製したモルタルの結果と併せて、下記の表7に示す。 The fast-hardening mortar compositions obtained in Inventive Example 1 and Comparative Example 1 were packed in a plastic bag (capacity: 12 L), and pinholes (hole diameter: 0.5 mm) were punched at four corners of the plastic bag. It was left standing and stored indoors at a temperature of 30° C. and a humidity of 80% RH. Mortars were prepared and evaluated in the same manner as above using the fast-setting mortar compositions after 3 months storage and 6 months storage. Note that the measurements of each physical property were performed at an environmental temperature of 20°C. The results are shown in Table 7 below, together with the results of mortar produced using the quick-setting mortar composition immediately after production.
表6の結果から、製造直後の速硬性モルタル組成物を用いて作製したモルタルについては、本発明例1と比較例1との間で明らかな差は見られなかった。また、表7の結果から、本発明例1では、製造直後、3ヵ月保存後及び6ヵ月保存後のいずれにおいても同等の物性を示すことが確認された。これに対して、比較例1では、保護期間が長くなるに伴って、J14ロート流下時間及び凝結時間が長くなり、圧縮強度が低くなり、白斑が発生しやすくなることが確認された。これは、比較例1の速硬性モルタル組成物に含まれるアルミン酸ナトリウムが、保存中に湿して溶解し、その作用が失われたことによると考えられる。 From the results in Table 6, no obvious difference was observed between Inventive Example 1 and Comparative Example 1 in the mortar produced using the quick-hardening mortar composition immediately after production. Moreover, from the results in Table 7, it was confirmed that Example 1 of the present invention exhibited equivalent physical properties immediately after production, after storage for 3 months, and after storage for 6 months. On the other hand, in Comparative Example 1, it was confirmed that as the protection period became longer, the flow time through the J14 funnel and the setting time became longer, the compressive strength became lower, and white spots were more likely to occur. This is considered to be because the sodium aluminate contained in the fast-setting mortar composition of Comparative Example 1 became wet and dissolved during storage, and its effect was lost.
[本発明例2~6]
本発明例1で作製した速硬性モルタル組成物に、有機短繊維としてPVA短繊維(PVA)を、速硬性モルタル組成物の全体量に対する含有量がそれぞれ0.05質量%(本発明例2)、0.1質量%(本発明例3)、0.5質量%(本発明例4)、1.0質量%(本発明例5)、3.0質量%(本発明例6)となる量にてそれぞれ添加し、混合して、本発明例2~6の有機短繊維含有速硬性モルタル組成物を作製した。得られた有機短繊維含有速硬性モルタル組成物100に対して水18質量部となる割合で混合して有機短繊維含有モルタルを作製した。
[Examples 2 to 6 of the present invention]
PVA short fibers (PVA) were added as organic short fibers to the quick-hardening mortar composition prepared in Inventive Example 1, and the content thereof was 0.05% by mass relative to the total amount of the quick-hardening mortar composition (Inventive Example 2). , 0.1% by mass (Example 3 of the present invention), 0.5% by mass (Example 4 of the present invention), 1.0% by mass (Example 5 of the present invention), and 3.0% by mass (Example 6 of the present invention). The organic short fiber-containing fast-hardening mortar compositions of Examples 2 to 6 of the present invention were prepared by adding and mixing them in different amounts. A mortar containing organic short fibers was prepared by mixing 18 parts by mass of water with 100 parts of the obtained fast-setting mortar composition containing organic short fibers.
得られた有機短繊維含有モルタルについて、J14ロート流下時と疲労試験を行なった。疲労試験は、旧JSTM C 7104:1999「繰返し圧縮応力によるコンクリートの疲労試験方法」に準拠した方法により行なった。疲労試験の水準は、静的圧縮強度:50N/mm2、上限応力比:65%、下限応力比:10%、繰返し速度:10Hzとし、供試体の寸法はφ50×100mmとした。その結果を、本発明例1の製造直後の速硬性モルタル組成物を用いて作製したモルタルの測定結果と共に、下記の表8に示す。 The obtained mortar containing organic short fibers was subjected to a fatigue test while flowing down a J14 funnel. The fatigue test was conducted in accordance with the old JSTM C 7104:1999 "Fatigue test method for concrete using repeated compressive stress". The fatigue test level was static compressive strength: 50 N/mm 2 , upper limit stress ratio: 65%, lower limit stress ratio: 10%, repetition rate: 10 Hz, and the dimensions of the specimen were φ50×100 mm. The results are shown in Table 8 below, along with the measurement results of the mortar produced using the quick-setting mortar composition immediately after production of Example 1 of the present invention.
表8の結果から、PVA短繊維を含む速硬性モルタル組成物を用いて作製した供試体(硬化体)の圧縮疲労耐久性は、短繊維の添加量が0.05質量%の場合でも大きく向上し、特に短繊維の添加量が0.1質量%以上になると格段に向上して、繰返し回数が200万回でも供試体の状況は健全となることが確認された。 From the results in Table 8, it can be seen that the compression fatigue durability of the specimen (cured body) prepared using the fast-setting mortar composition containing PVA short fibers was significantly improved even when the amount of short fibers added was 0.05% by mass. However, it was confirmed that when the amount of short fibers added was 0.1% by mass or more, the improvement was markedly improved, and the condition of the specimen remained healthy even after 2 million repetitions.
[本発明例7~12]
本発明例1で作製した速硬性モルタル組成物に、再乳化粉末樹脂(P)を速硬性モルタル組成物の全体量に対する含有量がそれぞれ0.5質量%(本発明例7)、1.0質量%(本発明例8)、2.0質量%(本発明例9)、5.0質量%(本発明例10)、10.0質量%(本発明例11)、15.0質量%(本発明例12)となる量にてそれぞれ添加し、混合して、実施例7~12の再乳化粉末樹脂含有速硬性モルタル組成物を作製した。得られた再乳化粉末樹脂含有速硬性モルタル組成物100質量部に対して水を18質量部となる割合で混合して再乳化粉末樹脂含有モルタルを作製した。
[Examples 7 to 12 of the present invention]
The re-emulsified powder resin (P) was added to the quick-hardening mortar composition prepared in Inventive Example 1 at a content of 0.5% by mass (inventive Example 7) and 1.0% by mass relative to the total amount of the quick-hardening mortar composition, respectively. Mass% (present invention example 8), 2.0 mass% (present invention example 9), 5.0 mass% (present invention example 10), 10.0 mass% (present invention example 11), 15.0 mass% (Example 12 of the present invention) were added and mixed to prepare fast-setting mortar compositions containing re-emulsified powder resin of Examples 7 to 12. A re-emulsified powder resin-containing mortar was prepared by mixing 18 parts by mass of water with 100 parts by mass of the obtained fast-setting mortar composition containing the re-emulsified powder resin.
得られた再乳化粉末樹脂含有モルタルについて、J14ロート流下時間を測定した。また、得られたモルタルを、ウオータジェットで目粗し処理を施したコンクリート平板の表面に、乾式吹き付け工法に塗布した。塗布した再乳化粉末樹脂含有モルタルを、材齢28日まで封かん養生して硬化させた。得られたモルタル硬化体の圧縮強度、および硬化体とコンクリート平板の付着強度を測定した。付着強度は建研式付着性試験機を用いて測定した。その結果を、本発明例1の製造直後の速硬性モルタル組成物を用いて作製したモルタルの測定結果と共に、下記の表9に示す。 The J14 funnel flow time was measured for the obtained mortar containing the re-emulsified powder resin. In addition, the obtained mortar was applied by dry spraying onto the surface of a concrete flat plate that had been roughened with a water jet. The applied mortar containing the re-emulsified powder resin was sealed and cured until it was 28 days old. The compressive strength of the resulting hardened mortar body and the adhesion strength between the hardened body and concrete plate were measured. Adhesive strength was measured using a Kenken type adhesion tester. The results are shown in Table 9 below, along with the measurement results of the mortar produced using the quick-setting mortar composition immediately after production of Example 1 of the present invention.
表9の結果から、再乳化粉末樹脂含有速硬性モルタル組成物を用いて作製した硬化体はコンクリート平板との付着強度が向上することが確認された。 From the results in Table 9, it was confirmed that the adhesive strength of the cured product produced using the fast-setting mortar composition containing re-emulsified powder resin to the concrete flat plate was improved.
[本発明例13~16]
本発明例1で作製した速硬性モルタル組成物に、シリカフューム(SF)を速硬性モルタル組成物の全体量に対する含有量がそれぞれ1.0質量%(本発明例13)、5.0質量%(本発明例14)、10.0質量%(本発明例15)、15.0質量%(本発明例16)となる量にてそれぞれ添加し、混合して本発明例13~16のシリカフューム含有速硬性モルタル組成物を作製した。得られたシリカフューム含有速硬性モルタル組成物に100質量部に対して水を18質量部となる割合で混合してシリカフューム含有モルタルを作製した。得られたシリカフューム含有モルタルを100×100×400mmの型枠に流し込み、試験体を作製した。作製した試験体の中性化深さ、塩化物イオン拡散係数、総細孔量を下記の方法により測定した。その結果を、本発明例1の製造直後の速硬性モルタル組成物を用いて作製したモルタルの測定結果と共に、下記の表10に示す。
[Examples 13 to 16 of the present invention]
Silica fume (SF) was added to the quick-hardening mortar composition prepared in Inventive Example 1 at a content of 1.0% by mass (Inventive Example 13) and 5.0% by mass (inventive Example 13), respectively, based on the total amount of the fast-hardening mortar composition. Inventive Example 14), 10.0% by mass (Inventive Example 15), and 15.0% by mass (Inventive Example 16), respectively, and mixed to prepare silica fume-containing products of Inventive Examples 13 to 16. A fast-hardening mortar composition was prepared. A silica fume-containing mortar was prepared by mixing water in a ratio of 18 parts by mass to 100 parts by mass of the obtained silica fume-containing fast-setting mortar composition. The obtained silica fume-containing mortar was poured into a mold of 100 x 100 x 400 mm to prepare a test specimen. The neutralization depth, chloride ion diffusion coefficient, and total pore volume of the prepared test specimen were measured by the following methods. The results are shown in Table 10 below, along with the measurement results of the mortar produced using the quick-setting mortar composition immediately after production of Example 1 of the present invention.
(中性化深さの測定方法)
JIS A 1153「コンクリートの促進中性化試験方法」に準拠し、CO2濃度5%の促進試験を実施して測定した。
(塩化物イオン拡散係数の測定方法)
土木学会規準 JSCE-G 572「浸漬によるコンクリート中の塩化物イオンの見掛けの拡散係数試験方法」に準拠して測定した。
(総細孔量の測定方法)
水銀圧入式ポロシメーターにより測定した。
(Method of measuring neutralization depth)
The measurement was conducted in accordance with JIS A 1153 "Accelerated carbonation test method for concrete" by conducting an accelerated test at a CO 2 concentration of 5%.
(Method for measuring chloride ion diffusion coefficient)
It was measured in accordance with the Japan Society of Civil Engineers standard JSCE-G 572 "Test method for apparent diffusion coefficient of chloride ions in concrete by immersion".
(Method for measuring total pore volume)
It was measured using a mercury intrusion porosimeter.
表10の結果から、シリカフューム含有速硬性モルタル組成物を用いて作製した試験体(硬化体)は総細孔量が減少し、これにより中性化の進行や塩化物イオンの拡散の進行が抑制されることが確認された。 From the results in Table 10, the total pore volume of the test specimen (cured material) prepared using the silica fume-containing fast-setting mortar composition decreased, and this suppressed the progress of neutralization and the progress of chloride ion diffusion. It was confirmed that
[本発明例17~22]
実施例1で作製した速硬性モルタル組成物に、合成ポリマー系増粘保水剤(Ad)を速硬性モルタル組成物の全体量に対する含有量がそれぞれ0.05質量%(本発明例17)、0.10質量%(本発明例18)、0.50質量%(本発明例19)、1.00質量%(本発明例20)、3.00質量%(本発明例21)、5.00質量%(本発明例22)となる量にてそれぞれ添加し、混合して本発明例17~22の増粘保水剤含有速硬性モルタル組成物を作製した。得られた合成ポリマー系増粘保水剤含有速硬性モルタル組成物100質量部に対して水を18質量部となる割合で混合して合成ポリマー系増粘保水剤含有モルタルを作製した。
[Examples 17 to 22 of the present invention]
The fast-setting mortar composition prepared in Example 1 was added with a synthetic polymer-based thickening and water-retaining agent (Ad) at a content of 0.05% by mass (inventive example 17) and 0%, respectively, based on the total amount of the fast-setting mortar composition. .10 mass% (present invention example 18), 0.50 mass% (present invention example 19), 1.00 mass% (present invention example 20), 3.00 mass% (present invention example 21), 5.00 They were each added in an amount of % by mass (Example 22 of the present invention) and mixed to prepare rapid hardening mortar compositions containing thickening water retention agents of Examples 17 to 22 of the present invention. A mortar containing a synthetic polymer-based thickening water-retaining agent was prepared by mixing 18 parts by weight of water with 100 parts by weight of the resulting fast-setting mortar composition containing a synthetic polymer-based thickening water-retaining agent.
得られた合成ポリマー系増粘保水剤含有モルタルについて、J14ロート流下時間と材齢2日の圧縮強度を測定した。また、得られた合成ポリマー系増粘保水剤含有モルタルを用いて、凍結融解試験を実施した。試験方法は、JIS A 1145「コンクリートの凍結融解試験方法」に準拠して300サイクルまで行い、50サイクル目の動弾性係数を100%とした相対動弾性係数を測定した。その結果を、本発明例1の製造直後の速硬性モルタル組成物を用いて作製したモルタルの測定結果と共に、下記の表11に示す。 Regarding the resulting mortar containing a synthetic polymer-based thickening water retention agent, the flow time through a J14 funnel and the compressive strength of 2 days old were measured. Furthermore, a freeze-thaw test was conducted using the resulting mortar containing a synthetic polymer-based thickening water-retaining agent. The test method was conducted up to 300 cycles in accordance with JIS A 1145 "Freeze-thaw test method for concrete", and the relative dynamic elastic modulus was measured with the dynamic elastic modulus at the 50th cycle being 100%. The results are shown in Table 11 below, along with the measurement results of the mortar produced using the quick-setting mortar composition immediately after production of Example 1 of the present invention.
表11の結果から、合成ポリマー系増粘保水剤の添加量の増加に伴ってモルタルのJ14ロート流下時間が大きくなること、すなわちモルタルの粘度が高くなることが確認された。また、合成ポリマー系増粘保水剤の添加量が0.05質量%以上のモルタルを用いて作製したモルタルの硬化体は、300サイクル終了後の相対動弾性係数が50%以上であり凍結融解試験における凍結融解抵抗性が向上した。特に、合成ポリマー系増粘保水剤の添加量が0.10%以上の場合は、300サイクル終了後の動弾性係数が70%以上となり凍結融解抵抗性がより向上した。さらに合成ポリマー系増粘保水剤の添加量が1.00%以上の場合は、300サイクル終了後の動弾性係数が100%であり、凍結融解抵抗性が格段に向上することが確認された。 From the results in Table 11, it was confirmed that as the amount of the synthetic polymer-based thickening water retaining agent increased, the time required for the mortar to flow through the J14 funnel increased, that is, the viscosity of the mortar increased. In addition, the cured mortar produced using mortar containing 0.05% by mass or more of a synthetic polymer thickening water retention agent has a relative dynamic elastic modulus of 50% or more after 300 cycles and is tested in freeze-thaw tests. improved freeze-thaw resistance. In particular, when the amount of the synthetic polymer thickening water retention agent added was 0.10% or more, the dynamic elastic modulus after 300 cycles was 70% or more, and the freeze-thaw resistance was further improved. Furthermore, when the amount of the synthetic polymer thickening water retention agent added was 1.00% or more, the dynamic elastic modulus after 300 cycles was 100%, and it was confirmed that the freeze-thaw resistance was significantly improved.
Claims (13)
前記速硬性混和材100質量部に対して、前記セメントを100質量部以上2000質量部以下の範囲内の量で含有し、
前記速硬性混和材が、カルシウムアルミネートと、無水石膏と、無機炭酸塩と、オキシカルボン酸と、ミョウバンと、メタケイ酸ナトリウムと、石英粉末とを含み、
前記カルシウムアルミネートは、Al2O3に対するCaOの含有量がモル比で1.5以上2.0以下の範囲内にあって、ガラス化率が80%以上であり、
前記無水石膏の含有量は、前記カルシウムアルミネートと前記無水石膏の合計量100質量部に対して35質量部以上65質量部以下の範囲内にあって、
前記無機炭酸塩、前記オキシカルボン酸および前記ミョウバンの含有量は、それぞれ前記カルシウムアルミネートと前記無水石膏の合計量100質量部に対して0.1質量部以上であって、前記無機炭酸塩、前記オキシカルボン酸および前記ミョウバンの合計含有量は、前記カルシウムアルミネートと前記無水石膏の合計量100質量部に対して10質量部以下であることを特徴とする速硬性モルタル組成物。 A fast-setting mortar composition comprising a fast-setting admixture, cement, and fine aggregate,
Containing the cement in an amount of 100 parts by mass or more and 2000 parts by mass or less with respect to 100 parts by mass of the quick-hardening admixture,
The fast-hardening admixture includes calcium aluminate, anhydrite, inorganic carbonate, oxycarboxylic acid, alum , sodium metasilicate, and quartz powder ,
The calcium aluminate has a content of CaO to Al 2 O 3 in a molar ratio of 1.5 to 2.0, and a vitrification rate of 80% or more,
The content of the anhydrite is within the range of 35 parts by mass or more and 65 parts by mass or less based on 100 parts by mass of the total amount of the calcium aluminate and the anhydrite,
The content of the inorganic carbonate, the oxycarboxylic acid, and the alum is 0.1 parts by mass or more based on 100 parts by mass of the total amount of the calcium aluminate and anhydrite, and the inorganic carbonate, A fast-setting mortar composition, wherein the total content of the oxycarboxylic acid and the alum is 10 parts by mass or less based on 100 parts by mass of the calcium aluminate and the anhydrite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020064647A JP7442372B2 (en) | 2020-03-31 | 2020-03-31 | Rapid hardening mortar composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020064647A JP7442372B2 (en) | 2020-03-31 | 2020-03-31 | Rapid hardening mortar composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021160989A JP2021160989A (en) | 2021-10-11 |
JP7442372B2 true JP7442372B2 (en) | 2024-03-04 |
Family
ID=78002439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020064647A Active JP7442372B2 (en) | 2020-03-31 | 2020-03-31 | Rapid hardening mortar composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7442372B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005289656A (en) | 2004-03-31 | 2005-10-20 | Denki Kagaku Kogyo Kk | Ultra rapid hardening cement admixture, ultra rapid hardening cement composition, ultra rapid hardening grout mortar and mortar hardened body obtained by using the same |
JP2014122129A (en) | 2012-12-21 | 2014-07-03 | Taiheiyo Material Kk | Hydraulic composition |
JP2017186238A (en) | 2016-03-31 | 2017-10-12 | 三菱マテリアル株式会社 | Rapid hardening mortar composition |
KR101891565B1 (en) | 2017-12-19 | 2018-09-28 | 에스엠산업 주식회사 | Wet-curing cement mortar composition and method for protecting surface of concrete structure therewith |
JP2020066543A (en) | 2018-10-23 | 2020-04-30 | デンカ株式会社 | Ultrarapid hardening hydraulic composition, cement composition, concrete composition, and spraying method |
JP2020164413A (en) | 2019-03-29 | 2020-10-08 | 三菱マテリアル株式会社 | Fast curing admixture |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2548379B2 (en) * | 1989-06-08 | 1996-10-30 | 電気化学工業株式会社 | Super quick hardening cement composition |
JPH0813696B2 (en) * | 1989-08-11 | 1996-02-14 | 電気化学工業株式会社 | Cement hardwood |
JP3162758B2 (en) * | 1991-10-04 | 2001-05-08 | 電気化学工業株式会社 | Cement composition and quick-setting method |
-
2020
- 2020-03-31 JP JP2020064647A patent/JP7442372B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005289656A (en) | 2004-03-31 | 2005-10-20 | Denki Kagaku Kogyo Kk | Ultra rapid hardening cement admixture, ultra rapid hardening cement composition, ultra rapid hardening grout mortar and mortar hardened body obtained by using the same |
JP2014122129A (en) | 2012-12-21 | 2014-07-03 | Taiheiyo Material Kk | Hydraulic composition |
JP2017186238A (en) | 2016-03-31 | 2017-10-12 | 三菱マテリアル株式会社 | Rapid hardening mortar composition |
KR101891565B1 (en) | 2017-12-19 | 2018-09-28 | 에스엠산업 주식회사 | Wet-curing cement mortar composition and method for protecting surface of concrete structure therewith |
JP2020066543A (en) | 2018-10-23 | 2020-04-30 | デンカ株式会社 | Ultrarapid hardening hydraulic composition, cement composition, concrete composition, and spraying method |
JP2020164413A (en) | 2019-03-29 | 2020-10-08 | 三菱マテリアル株式会社 | Fast curing admixture |
Also Published As
Publication number | Publication date |
---|---|
JP2021160989A (en) | 2021-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102294203B1 (en) | Quick-hardening mortar composition | |
Özbay et al. | Utilization and efficiency of ground granulated blast furnace slag on concrete properties–A review | |
Meddah et al. | Potential use of binary and composite limestone cements in concrete production | |
Nazari et al. | RETRACTED: the effects of TiO2 nanoparticles on properties of binary blended concrete | |
KR101352903B1 (en) | Cement mortar composite with excellent flowability and workability, repair method of concrete structure, injection repair method for the concrete structure, surface treating method of the concrete structure and surface protection method of the concrete structure using the composite | |
JP6258697B2 (en) | Fast-setting grout composition | |
Nazari et al. | RETRACTED: Assessment of the effects of Fe2O3 nanoparticles on water permeability, workability, and setting time of concrete | |
JP4740785B2 (en) | Polymer cement grout material composition and grout material | |
JP7395633B2 (en) | polymer cement mortar | |
JP6924632B2 (en) | Road repair material | |
JP7085050B1 (en) | Cement admixture, hard mortar concrete material, hard mortar concrete composition, and hardened material | |
JP6508789B2 (en) | Method using polymer cement mortar and polymer cement mortar | |
Papayianni et al. | Experimental study of nano-modified lime-based grouts | |
JP7442373B2 (en) | Fast-setting cement composition | |
JP2010285849A (en) | Repair method for pavement surface layer | |
JP7442372B2 (en) | Rapid hardening mortar composition | |
JP6203546B2 (en) | Polymer cement mortar and method using polymer cement mortar | |
JP6914102B2 (en) | Road repair material | |
JP2688774B2 (en) | Semi-rigid pavement method | |
JP7437207B2 (en) | Mortar for reinforced concrete and reinforcement method for reinforced concrete | |
JP7355953B1 (en) | Liquid quick-setting agent, repair material, cured product | |
JP7082451B2 (en) | Polymer cement mortar | |
JP2023145108A (en) | Ultra-fast setting cement mortar | |
JP2022156483A (en) | Fast hardening grout composition | |
JP2022156484A (en) | Fast setting mortar composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20220530 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231114 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231115 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20231218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240220 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7442372 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |