JP7437207B2 - Mortar for reinforced concrete and reinforcement method for reinforced concrete - Google Patents
Mortar for reinforced concrete and reinforcement method for reinforced concrete Download PDFInfo
- Publication number
- JP7437207B2 JP7437207B2 JP2020055345A JP2020055345A JP7437207B2 JP 7437207 B2 JP7437207 B2 JP 7437207B2 JP 2020055345 A JP2020055345 A JP 2020055345A JP 2020055345 A JP2020055345 A JP 2020055345A JP 7437207 B2 JP7437207 B2 JP 7437207B2
- Authority
- JP
- Japan
- Prior art keywords
- reinforced concrete
- mass
- mortar
- parts
- concrete
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011150 reinforced concrete Substances 0.000 title claims description 57
- 239000004570 mortar (masonry) Substances 0.000 title claims description 39
- 238000000034 method Methods 0.000 title claims description 18
- 230000002787 reinforcement Effects 0.000 title 1
- 239000000463 material Substances 0.000 claims description 58
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 40
- 239000004568 cement Substances 0.000 claims description 30
- 239000003638 chemical reducing agent Substances 0.000 claims description 27
- 239000000126 substance Substances 0.000 claims description 15
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid group Chemical group C(CC(O)(C(=O)O)CC(=O)O)(=O)O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 12
- 239000000843 powder Substances 0.000 claims description 5
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical group C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims 1
- 239000004567 concrete Substances 0.000 description 33
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- 239000003795 chemical substances by application Substances 0.000 description 11
- 238000005452 bending Methods 0.000 description 10
- 239000000292 calcium oxide Substances 0.000 description 7
- 235000012255 calcium oxide Nutrition 0.000 description 7
- 230000003014 reinforcing effect Effects 0.000 description 7
- 239000004576 sand Substances 0.000 description 7
- 239000002585 base Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- -1 calcium aluminates Chemical class 0.000 description 5
- 229910021487 silica fume Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 230000008719 thickening Effects 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 239000011210 fiber-reinforced concrete Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000011398 Portland cement Substances 0.000 description 3
- 235000015165 citric acid Nutrition 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 239000004575 stone Substances 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 2
- 150000008041 alkali metal carbonates Chemical class 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000010440 gypsum Substances 0.000 description 2
- 229910052602 gypsum Inorganic materials 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- WPJGWJITSIEFRP-UHFFFAOYSA-N 1,3,5-triazine-2,4,6-triamine;hydrate Chemical compound O.NC1=NC(N)=NC(N)=N1 WPJGWJITSIEFRP-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 235000010338 boric acid Nutrition 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 239000011411 calcium sulfoaluminate cement Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000006253 efflorescence Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 229910001653 ettringite Inorganic materials 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 238000009415 formwork Methods 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000011440 grout Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011513 prestressed concrete Substances 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 150000003892 tartrate salts Chemical class 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
Landscapes
- Bridges Or Land Bridges (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明は、強化コンクリート用補修材、そのモルタル及び硬化体、並びに強化コンクリートの補強方法に関する。 The present invention relates to a repair material for reinforced concrete, its mortar and cured product, and a method for reinforcing reinforced concrete.
道路橋のコンクリート床版は、鉄筋等を入れて耐力や靱性に優れた強化コンクリートを使用することが多いが、重交通や過積載車両の通行等による疲労や劣化因子(塩化物や炭酸ガス等)の浸入により劣化し、これが原因となって耐力が低下してしまう。このようにして耐力が低下したコンクリート床版を補強して延命化を図るための方法の1つとして、コンクリート床版の上面を増厚する床版上面増厚工法が知られている。 Concrete slabs for road bridges are often made of reinforced concrete with reinforcing bars, etc., which has excellent strength and toughness. ) will deteriorate due to infiltration, and this will cause a decrease in yield strength. As one of the methods for reinforcing and extending the life of a concrete slab whose bearing strength has decreased in this way, a method of increasing the thickness of the upper surface of the concrete slab is known.
この床版上面増厚工法としては、アスファルト舗装を撤去してコンクリート床版の上面に鋼繊維補強コンクリートを増厚層として打設することが広く採用されている。一方、鋼繊維補強コンクリートを用いない増厚方法も提案されている。特許文献1には、コンクリート床版の上面に補強鉄筋の役割を兼ねた帯状鋼板を固定した状態でコンクリートを打設することにより増厚層の形成を行う床版上面増厚工法が記載されている。特許文献2には、コンクリート床版の上面に樹脂モルタル層を、その中間層として繊維補強層を介在させた状態で形成することにより増厚層の形成を行う床版上面増厚工法が記載されている。特許文献3には、コンクリート床版の上面にコンクリートのヤング係数に対して1/3以上の値のヤング係数を有する高弾性の樹脂モルタルにより増厚層の形成を行う床版上面増厚工法が記載されている。 As a construction method for increasing the thickness of the top surface of the deck slab, it is widely adopted to remove the asphalt pavement and pour a thickened layer of steel fiber reinforced concrete on the top surface of the concrete deck slab. On the other hand, a method of increasing the thickness without using steel fiber reinforced concrete has also been proposed. Patent Document 1 describes a method for increasing the thickness of the top surface of a concrete slab, in which a thickening layer is formed by pouring concrete with a strip steel plate that also serves as reinforcing bars fixed on the top surface of the concrete slab. There is. Patent Document 2 describes a method for increasing the thickness of the upper surface of a concrete slab, in which a thickening layer is formed by forming a resin mortar layer on the upper surface of the concrete slab, with a fiber reinforced layer interposed as an intermediate layer. ing. Patent Document 3 describes a method for increasing the thickness of the upper surface of a concrete slab, in which a thickening layer is formed on the upper surface of the concrete slab using a highly elastic resin mortar having a Young's modulus that is 1/3 or more of the Young's modulus of concrete. Are listed.
しかしながら、低下した耐力を補強するために従来の上面増厚工法を採用した場合、増厚層の最小施工厚が50mm程度となるため、コンクリート床版の自重が著しく増大してしまい負荷がかかるという問題があった。また、施工厚はコストにも直結する。そのため、施工厚を低減してもコンクリートの耐力を増強できる材料が求められている。 However, if the conventional method of thickening the top surface is adopted to reinforce the reduced yield strength, the minimum thickness of the thickening layer is approximately 50 mm, which significantly increases the weight of the concrete slab and imposes a load on it. There was a problem. Additionally, the construction thickness is directly linked to cost. Therefore, there is a need for materials that can increase the strength of concrete even when the construction thickness is reduced.
したがって、本発明では、薄層施工が可能で、強化コンクリートの耐力及び靱性を向上させることができる強化コンクリート用補修材、そのモルタル及び硬化体、並びに強化コンクリートの補強方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a repair material for reinforced concrete that can be applied in a thin layer and that can improve the strength and toughness of reinforced concrete, its mortar and cured product, and a method for reinforcing reinforced concrete. do.
本発明者が、上記課題について鋭意検討した結果、ポゾラン物質と細骨材の含有量を調整した結果、薄層施工が可能で、コンクリートの靭性を維持しつつ耐力を向上させられる補修材を作製できることを見出した。 As a result of intensive study on the above-mentioned issues, the inventor of the present invention adjusted the contents of pozzolanic substances and fine aggregate, and as a result, created a repair material that can be applied in a thin layer and improves the bearing strength while maintaining the toughness of concrete. I found out what I can do.
すなわち、本発明は以下の[1]~[4]である。
[1]速硬性セメント、ポゾラン物質、膨張材及び細骨材を含み、速硬性セメント100量部に対し、ポゾラン物質の含有量が3~28質量部、細骨材の含有量が60~380質量部である、強化コンクリート用補修材。
[2][1]に記載の補修材及び水を含み、水の含有量が、速硬性セメント100質量部に対し、20~40質量部である、強化コンクリート補修用モルタル。
[3][2]に記載のモルタルの硬化体であって、硬化体における材齢28日の圧縮強度が75N/mm2以上である、硬化体。
[4]強化コンクリートの表面に、8~40mmの厚さで[2]に記載のモルタルを施工する、強化コンクリートの補修方法。
That is, the present invention includes the following [1] to [4].
[1] Contains a quick-hardening cement, a pozzolanic substance, an expansive material, and a fine aggregate, with a pozzolanic substance content of 3 to 28 parts by mass and a fine aggregate content of 60 to 380 parts by mass per 100 parts of quick-hardening cement. Repair material for reinforced concrete, which is the mass part.
[2] A mortar for repairing reinforced concrete, comprising the repair material according to [1] and water, the water content being 20 to 40 parts by mass per 100 parts by mass of quick-setting cement.
[3] A cured product of the mortar according to [2], which has a compressive strength of 75 N/mm 2 or more at 28 days of age.
[4] A method for repairing reinforced concrete, comprising applying the mortar described in [2] to a thickness of 8 to 40 mm on the surface of the reinforced concrete.
本発明によれば、薄層施工が可能で、強化コンクリートの耐力及び靱性を向上させることができる強化コンクリート用補修材、そのモルタル及び硬化体、並びに強化コンクリートの補強方法を提供することができる。 According to the present invention, it is possible to provide a repair material for reinforced concrete that can be applied in a thin layer and that can improve the strength and toughness of reinforced concrete, its mortar and cured product, and a method for reinforcing reinforced concrete.
本明細書において、強化コンクリートとは耐力又は靱性に優れたコンクリートを指し、例えば、繊維補強コンクリート、鉄筋コンクリート、プレストレストコンクリート等が挙げられる。 In this specification, reinforced concrete refers to concrete with excellent strength or toughness, and includes, for example, fiber-reinforced concrete, reinforced concrete, prestressed concrete, and the like.
以下、本発明の一実施形態について詳細に説明する。 Hereinafter, one embodiment of the present invention will be described in detail.
[強化コンクリート用補修材]
本実施形態の強化コンクリート用補修材は、速硬性セメント、ポゾラン物質、膨張材及び細骨材を含む。
[Repair material for reinforced concrete]
The reinforced concrete repair material of this embodiment includes a fast-setting cement, a pozzolanic substance, an expansive material, and a fine aggregate.
速硬性セメントは、カルシウムアルミネート類を有効成分として含有するものが好ましく、11CaO・7Al2O3・CaX2(Xはハロゲン原子を示す)又は3CaO・3Al2O3・CaSO4(アウイン)を有効成分として含有するものがより好ましい。11CaO・7Al2O3・CaX2は、いわゆるカルシウムアルミネートハロゲン化物系セメントである。ハロゲン原子はフッ素原子が好ましい。アウインは、カルシウムサルホアルミネート系セメント(アウイン系セメント)とも称されるものである。これらは超速硬セメントと呼ばれるものであり、商品名ジェットセメント又はスーパージェットセメントとして市販されている。速硬性セメントは、アウイン系セメントが最も好ましい。
カルシウムアルミネート類としては、この他にもCaOをC、Al2O3をA、Fe2O3をFで表示した場合、C3A、C2A、C12A7、C5A3、CA、C3A5、CA2等と表示される鉱物組成を有するカルシウムアルミネート、C2AF、C4AF等と表示されるカルシウムアルミノフェライト、アルミナセメント、並びにこれらにSiO2、K2O、Fe2O3、TiO2等が固溶又は化合したもの等が含まれる。カルシウムアルミネート類は結晶質又は非晶質のいずれであってもよいし、結晶質及び非晶質の混合体のようなものでもよい。これらのカルシウムアルミネート類と石膏等の無機塩類とを配合して調製された速硬性混和材を、ポルトランドセメントに添加したものも速硬性セメントとして用いることができる。
Preferably, the fast-setting cement contains calcium aluminates as an active ingredient, and 11CaO.7Al 2 O 3.CaX 2 (X represents a halogen atom) or 3CaO.3Al 2 O 3.CaSO 4 (Auin). Those containing it as an active ingredient are more preferred. 11CaO.7Al 2 O 3.CaX 2 is a so-called calcium aluminate halide cement. The halogen atom is preferably a fluorine atom. Auin is also called calcium sulfoaluminate cement (auin cement). These are called super-fast hardening cements and are commercially available under the trade name Jet Cement or Super Jet Cement. The most preferred quick-hardening cement is Auin-based cement.
Other examples of calcium aluminates include C 3 A, C 2 A, C1 2 A 7 , C 5 A 3 when CaO is expressed as C, Al 2 O 3 is expressed as A, and Fe 2 O 3 is expressed as F. , CA, C 3 A 5 , CA 2, etc. , calcium aluminoferrite, alumina cement, and these, as well as SiO 2 , K 2 It includes solid solutions or combinations of O, Fe 2 O 3 , TiO 2 and the like. Calcium aluminates may be either crystalline or amorphous, or a mixture of crystalline and amorphous. A fast-setting admixture prepared by blending these calcium aluminates and an inorganic salt such as gypsum can also be used as a fast-setting cement by adding it to Portland cement.
ポゾラン物質は、JIS A 6201:2015に記載されている各種フライアッシュ、JIS A 6207:2016に記載されているシリカフューム、スラグ粉末、非晶質アルミノシリケート等が挙げられる。ポゾラン物質は、長期の強度発現や施工性に一層優れるという観点から、シリカフューム、非晶質アルミノシリケートが好ましい。ポゾラン物質は一種を単独で用いてもよく、二種以上を併せて用いてもよい。 Pozzolanic substances include various fly ash described in JIS A 6201:2015, silica fume, slag powder, amorphous aluminosilicate, etc. described in JIS A 6207:2016. As the pozzolan substance, silica fume and amorphous aluminosilicate are preferable from the viewpoint of long-term strength development and workability. One type of pozzolan substance may be used alone, or two or more types may be used in combination.
ポゾラン物質の含有量は、速硬性セメント100質量部に対し、3~28質量部である。ポゾラン物質の含有量が上記範囲外であると、モルタル時の性状が優れず薄層施工性が低下し、また補修したコンクリートの耐力や靱性も得られにくい。ポゾラン物質の含有量は、補修したコンクリートの耐力及び靱性が一層優れたものになるという観点から、速硬性セメント100質量部に対し、4~25質量部であることが好ましく、5~20質量部であることがより好ましい。 The content of the pozzolanic substance is 3 to 28 parts by mass per 100 parts by mass of fast-setting cement. If the content of the pozzolanic substance is outside the above range, the mortar properties will not be excellent and thin layer workability will deteriorate, and it will be difficult to obtain the strength and toughness of the repaired concrete. The content of the pozzolanic substance is preferably 4 to 25 parts by mass, and 5 to 20 parts by mass, based on 100 parts by mass of quick-setting cement, from the viewpoint of improving the strength and toughness of the repaired concrete. It is more preferable that
膨張材は、コンクリート用膨張材として一般に使用されているJIS適合の膨張材(JIS A 6202:2008)であれば、何れの膨張材でもかまわない。膨張材としては、例えば、遊離生石灰を主成分とする膨張材(生石灰系膨張材)、アウインを主成分とする膨張材(エトリンガイト系膨張材)、遊離生石灰とエトリンガイト生成物質の複合系膨張材が挙げられる。これらの中では、生石灰系膨張材が好ましい。膨張材は、一種を単独で用いてもよく、二種以上を併せて用いてもよい。膨張材はブレーン比表面積が2000~6000cm2/gのものを使用することが好ましい。 The expansion material may be any expansion material as long as it is a JIS-compliant expansion material (JIS A 6202:2008) that is generally used as an expansion material for concrete. Examples of the expanding material include an expanding material whose main component is free quicklime (quicklime-based expanding material), an expanding material whose main component is Auin (ettringite-based expanding material), and a composite expanding material of free quicklime and ettringite-forming substances. Can be mentioned. Among these, quicklime-based expansion materials are preferred. One type of expansion material may be used alone, or two or more types may be used in combination. It is preferable to use an expanding material having a Blaine specific surface area of 2000 to 6000 cm 2 /g.
膨張材の含有量は、速硬性セメント100質量部に対し、0.1~10質量部であることが好ましく、0.5~8質量部であることがより好ましく、1~5質量部であることが更に好ましい。膨張材の含有量が上記範囲内であれば、圧縮強度、寸法変化率等がより一層優れたものとなる。 The content of the expanding agent is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 8 parts by mass, and 1 to 5 parts by mass based on 100 parts by mass of quick-hardening cement. More preferably. If the content of the expanding material is within the above range, the compressive strength, dimensional change rate, etc. will be even better.
細骨材は特に限定されるものではなく、例えば、川砂、珪砂、砕砂、寒水石、石灰石砂、スラグ骨材等が挙げられる。細骨材は、これらの中でも珪砂が好ましい。細骨材は、一種を単独で用いてもよく、二種以上を併せて用いてもよい。細骨材は、通常用いられる粒径5mm以下のもの(5mmふるい通過分)を使用するのが好ましい。 The fine aggregate is not particularly limited, and includes, for example, river sand, silica sand, crushed sand, kansui stone, limestone sand, slag aggregate, and the like. Among these, silica sand is preferable as the fine aggregate. One type of fine aggregate may be used alone, or two or more types may be used in combination. As the fine aggregate, it is preferable to use a commonly used particle size of 5 mm or less (the amount that passes through a 5 mm sieve).
細骨材の含有量は、速硬性セメント100質量部に対し、60~380質量部である。細骨材の含有量が上記範囲外であると、モルタル時の性状が優れず施工性が低下し、また強度発現性が得られにくい。細骨材の含有量は、施工性を更に良好にするという観点から、セメント100質量部に対し、70~350質量部であることが好ましく、80~320質量部であることがより好ましい。 The content of fine aggregate is 60 to 380 parts by mass per 100 parts by mass of quick-hardening cement. If the content of fine aggregate is outside the above range, the mortar properties will not be excellent, workability will be reduced, and strength development will be difficult to obtain. From the viewpoint of further improving workability, the content of the fine aggregate is preferably 70 to 350 parts by mass, more preferably 80 to 320 parts by mass, based on 100 parts by mass of cement.
本実施形態の強化コンクリート用補修材は減水剤を含んでもよい。減水剤は、高性能減水剤、高性能AE減水剤、AE減水剤及び流動化剤を含む。このような減水剤としては、JIS A 6204:2011「コンクリート用化学混和剤」に規定される減水剤が挙げられる。減水剤としては、例えば、ポリカルボン酸系減水剤、ナフタレンスルホン酸系減水剤、リグニンスルホン酸系減水剤、メラミン系減水剤、アクリル系減水剤が挙げられる。これらの中では、ナフタレンスルホン酸系減水剤が好ましい。減水剤は、一種を単独で用いてもよく、二種以上を併せて用いてもよい。 The reinforced concrete repair material of this embodiment may contain a water reducing agent. Water reducers include superplasticizers, super AE water reducers, AE water reducers, and superplasticizers. Examples of such water reducing agents include water reducing agents specified in JIS A 6204:2011 "Chemical admixtures for concrete". Examples of the water reducing agent include polycarboxylic acid water reducing agents, naphthalene sulfonic acid water reducing agents, lignin sulfonic acid water reducing agents, melamine water reducing agents, and acrylic water reducing agents. Among these, naphthalenesulfonic acid water reducing agents are preferred. One type of water reducing agent may be used alone, or two or more types may be used in combination.
減水剤の含有量は、速硬性セメント100質量部に対し、0.1~10質量部であることが好ましく、0.3~5質量部であることがより好ましく、0.5~2.5質量部であることが更に好ましい。減水剤の含有量が上記範囲内であれば、モルタルとした際により良好な流動性及びコテ性状が得られやすく、硬化時の強度発現性もより向上しやすい。 The content of the water reducing agent is preferably 0.1 to 10 parts by mass, more preferably 0.3 to 5 parts by mass, and 0.5 to 2.5 parts by mass based on 100 parts by mass of quick-setting cement. More preferably, it is parts by mass. If the content of the water reducing agent is within the above range, better fluidity and troweling properties can be easily obtained when made into mortar, and strength development during curing can also be more easily improved.
本実施形態の強化コンクリート用補修材は凝結遅延剤を含んでもよい。凝結遅延剤としては、例えば、クエン酸、グルコン酸、リンゴ酸、酒石酸等の有機酸又はその塩;ホウ酸、ホウ酸ナトリウム等のホウ酸塩、リン酸塩、アルカリ金属炭酸塩、アルカリ金属重炭酸塩等の無機塩;糖類が挙げられる。これらの中でも、クエン酸、クエン酸塩、酒石酸、酒石酸塩、アルカリ金属炭酸塩が好ましい。凝結遅延剤は、粉体であってもよく、液状体(例えば、水溶液、エマルジョン、懸濁液の形態)であってもよい。凝結遅延剤は、一種を単独で用いてもよく、二種以上を併せて用いてもよい。 The reinforced concrete repair material of this embodiment may contain a setting retarder. Examples of setting retarders include organic acids or salts thereof such as citric acid, gluconic acid, malic acid, and tartaric acid; borates such as boric acid and sodium borate, phosphates, alkali metal carbonates, and alkali metal heavy Examples include inorganic salts such as carbonates; sugars. Among these, citric acid, citrates, tartaric acid, tartrates, and alkali metal carbonates are preferred. The setting retarder may be in the form of a powder or a liquid (eg, in the form of an aqueous solution, emulsion, or suspension). The setting retarder may be used alone or in combination of two or more.
凝結遅延剤の含有量は、速硬性セメント100質量部に対し、0.1~8質量部であることが好ましく、0.5~5質量部であることがより好ましく、0.8~3質量部であることが更に好ましい。凝結遅延剤の含有量が上記範囲内であれば、可使時間を確保しやすい。 The content of the setting retarder is preferably 0.1 to 8 parts by mass, more preferably 0.5 to 5 parts by mass, and 0.8 to 3 parts by mass based on 100 parts by mass of fast-setting cement. It is more preferable that it is part. If the content of the setting retarder is within the above range, it is easy to ensure a long pot life.
本実施形態の強化コンクリート用補修材には、本発明の効果が損なわれない範囲で各種混和剤(材)を配合してもよい。混和剤(材)としては、例えば、石膏類、セメント用ポリマー、発泡剤、消泡剤、防水剤、防錆剤、収縮低減剤、保水剤、顔料、撥水剤、白華防止剤、増粘剤、粉じん低減剤、強度増進剤、石粉、土鉱物粉末、繊維が挙げられる。 The reinforced concrete repair material of this embodiment may contain various admixtures (materials) as long as the effects of the present invention are not impaired. Examples of admixtures (materials) include gypsum, cement polymers, foaming agents, antifoaming agents, waterproofing agents, rust preventives, shrinkage reducing agents, water retention agents, pigments, water repellents, anti-efflorescence agents, and thickeners. Examples include sticky agents, dust reducers, strength enhancers, stone powder, earth mineral powders, and fibers.
本実施形態の強化コンクリート用補修材を製造する方法は、特に限定されず、例えば、V型混合機や可傾式コンクリートミキサー等の重力式ミキサー、ヘンシェル式ミキサー、噴射型ミキサー、リボンミキサー、パドルミキサー等のミキサーにより混合することで製造することができる。 The method for manufacturing the reinforced concrete repair material of this embodiment is not particularly limited, and examples include gravity mixers such as V-type mixers and tilting concrete mixers, Henschel mixers, injection mixers, ribbon mixers, and paddle mixers. It can be manufactured by mixing with a mixer such as a mixer.
[強化コンクリート用補修モルタル]
本実施形態の強化コンクリート用補修材は、水と混合して強化コンクリート用補修モルタルとして調製することができ、水の含有量は用途に応じて適宜調整すればよい。水の含有量は、速硬性セメント100質量部に対し、20~40質量部であることが好ましく、25~38質量部であることがより好ましく、28~35質量部であることが更に好ましい。水の含有量が上記範囲内であれば、より施工性を確保しやすく、材料分離の発生、硬化体の収縮の増加を抑制しやすい。
[Repair mortar for reinforced concrete]
The reinforced concrete repair material of this embodiment can be mixed with water to prepare a reinforced concrete repair mortar, and the water content may be adjusted as appropriate depending on the application. The water content is preferably 20 to 40 parts by mass, more preferably 25 to 38 parts by mass, and even more preferably 28 to 35 parts by mass, based on 100 parts by mass of the quick-hardening cement. When the water content is within the above range, it is easier to ensure workability, and it is easier to suppress the occurrence of material separation and increase in shrinkage of the cured product.
本実施形態の強化コンクリート用補修モルタルの調製は、通常の強化コンクリート用補修材と同様の混練器具を使用することができ、特に限定されるものではない。混練器具としては、例えば、モルタルミキサー、グラウトミキサー、ハンドミキサー、傾胴ミキサー、二軸ミキサー等が挙げられる。 The preparation of the repair mortar for reinforced concrete of this embodiment can be carried out using the same kneading equipment as for ordinary repair materials for reinforced concrete, and is not particularly limited. Examples of the kneading device include a mortar mixer, grout mixer, hand mixer, tilting mixer, and twin-screw mixer.
強化コンクリート用補修モルタルの硬化体において、材齢28日の圧縮強度は75N/mm2以上であることが好ましく、78~150N/mm2であることがより好ましく、80~130N/mm2であることが更に好ましい。硬化体の圧縮強度が上記範囲内であれば、劣化しにくく、補修したコンクリートの耐力及び靱性が一層優れたものになる。圧縮強度は、JIS A 1108:2018「コンクリートの圧縮強度試験方法」に準じて測定することができる。 In the cured product of repair mortar for reinforced concrete, the compressive strength after 28 days is preferably 75 N/mm 2 or more, more preferably 78 to 150 N/mm 2 , and more preferably 80 to 130 N/mm 2 . More preferably. If the compressive strength of the cured product is within the above range, it will not easily deteriorate, and the repaired concrete will have even better yield strength and toughness. Compressive strength can be measured according to JIS A 1108:2018 "Testing method for compressive strength of concrete".
[強化コンクリートの補修方法]
本実施形態の強化コンクリートの補修方法は、強化コンクリートの表面に上記強化コンクリート用補修モルタルを施工することで行われる。施工する強化コンクリート用補修モルタルの厚さは、8~40mmであることが好ましく、10~30mmであることがより好ましく、12~25mmであることが更に好ましい。モルタルの厚さが上記範囲内であれば、自重増加を抑制しつつ、強化コンクリートの耐力及び靱性を十分に補強できる傾向にある。
[Repair method for reinforced concrete]
The reinforced concrete repair method of this embodiment is performed by applying the above-mentioned reinforced concrete repair mortar on the surface of reinforced concrete. The thickness of the reinforced concrete repair mortar to be applied is preferably 8 to 40 mm, more preferably 10 to 30 mm, and even more preferably 12 to 25 mm. If the thickness of the mortar is within the above range, it tends to be possible to sufficiently reinforce the yield strength and toughness of the reinforced concrete while suppressing an increase in its own weight.
強化コンクリート補修用モルタルの施工方法としては特に限定されず、凹部にコテで充填する方法、充填後にバイブレーター等で均した後にコテで仕上げる方法等が選択できる。 The method of applying mortar for repairing reinforced concrete is not particularly limited, and can be selected from methods such as filling the recesses with a trowel, leveling the filling with a vibrator, etc., and finishing with a trowel.
本実施形態の強化コンクリート用補修材又は強化コンクリート用補修モルタルを用いることで、強化コンクリートを補修した際に、強化コンクリートの靭性を維持しつつ耐力向上させることができる。また、本実施形態の強化コンクリート用補修材又は強化コンクリート用補修モルタルは薄層施工が可能なため、強化コンクリートの補修の際に自重の増加を抑えることもできる。したがって、本実施形態の強化コンクリート用補修材又は強化コンクリート用補修モルタルは、強化コンクリートを用いる土木構造物の補修において好適に用いることができる。土木構造物としては、例えば、道路、橋梁、港湾構造物、河川構造物(護岸や桟橋等)、地下構造物(トンネルやボックスカルバート等)、ダム等が挙げられる。 By using the reinforced concrete repair material or the reinforced concrete repair mortar of the present embodiment, when reinforced concrete is repaired, the strength can be improved while maintaining the toughness of the reinforced concrete. Moreover, since the reinforced concrete repair material or the reinforced concrete repair mortar of this embodiment can be applied in a thin layer, it is possible to suppress an increase in dead weight when repairing reinforced concrete. Therefore, the reinforced concrete repair material or the reinforced concrete repair mortar of this embodiment can be suitably used in the repair of civil engineering structures using reinforced concrete. Examples of civil engineering structures include roads, bridges, port structures, river structures (such as sea walls and piers), underground structures (such as tunnels and box culverts), and dams.
以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれに限定されるものではない。 EXAMPLES Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto.
[強化コンクリート用補修材・強化コンクリート用補修モルタルの作製]
・材料
セメント:
速硬性セメント(CSA)
普通ポルトランドセメント(NC)
ポゾラン物質:シリカフューム(SF)
細骨材:珪砂
膨張材:生石灰系膨張材
減水剤:ナフタレンスルホン酸系減水剤
凝結遅延剤:クエン酸
[Production of repair material for reinforced concrete and repair mortar for reinforced concrete]
・Material cement:
Quick setting cement (CSA)
Ordinary Portland cement (NC)
Pozzolanic substance: silica fume (SF)
Fine aggregate: Silica sand Expanding material: Quicklime-based expanding agent Water reducing agent: Naphthalene sulfonic acid-based water reducing agent Set retardant: Citric acid
セメント100質量部に対し、シリカフューム、細骨材を表1に示す割合とし、膨張材を2質量部、減水剤を1質量部、凝結遅延剤を1質量部として配合設計した。20℃環境下において、セメント100質量部に対し、水32質量部を10Lの円筒容器に添加し、配合設計した強化コンクリート用補修材の各材料を添加し、ハンドミキサーで90秒混練してモルタルを約3L作製した. The composition was designed using 100 parts by mass of cement, silica fume and fine aggregate in the proportions shown in Table 1, 2 parts by mass of expanding agent, 1 part by mass of water reducing agent, and 1 part by mass of setting retarder. In a 20°C environment, 100 parts by mass of cement and 32 parts by mass of water were added to a 10L cylindrical container, each material of the reinforced concrete repair material designed to be mixed was added, and the mixture was kneaded for 90 seconds with a hand mixer to form mortar. Approximately 3L of was made.
[母材コンクリートの作製]
・材料
セメント:早強ポルトランドセメント(C)
細骨材:山砂(S)
粗骨材:砕石(G)
繊維:鋼繊維(F)
膨張材:生石灰系膨張材(Ex)
減水剤:高性能AE減水剤(AE)
[Preparation of base material concrete]
・Material cement: Early strength Portland cement (C)
Fine aggregate: Mountain sand (S)
Coarse aggregate: Crushed stone (G)
Fiber: Steel fiber (F)
Expanding material: Quicklime-based expanding material (Ex)
Water reducing agent: High performance AE water reducing agent (AE)
20℃環境下において、表2に示す割合で配合設計したコンクリート組成物の各材料を添加し、強制練りミキサーにて120秒混錬して母材コンクリートを約25L作製した。 In a 20°C environment, each material of the concrete composition designed in the ratio shown in Table 2 was added and mixed for 120 seconds with a forced mixing mixer to prepare about 25 L of base material concrete.
[評価方法]
各項目について以下の方法で評価した。評価結果を表3に示す。
1)圧縮強度
JIS A 1108:2018「コンクリートの圧縮強度試験方法」に準じて、強化コンクリート用補修モルタルの材齢28日における圧縮強度を測定した。供試体の寸法は、直径100mm、高さ200mmとした。供試体は翌日に脱型した後、材齢日まで水中で養生した。養生は常に20℃の恒温槽内で行った。
2)静弾性係数
JIS A 1149:2017「コンクリートの静弾性係数試験方法」に準じて、強化コンクリート補修用モルタルの材齢28日における静弾性係数を測定した。供試体の寸法は、直径100mm、高さ200mmとした。供試体は翌日に脱型した後、材齢日まで水中で養生した。養生は常に20℃の恒温槽内で行った。測定は圧縮強度試験を兼ねて行った。
3)曲げ強度(耐力)
JIS A 1106:2018「コンクリートの曲げ強度試験方法」に準じて、材齢28日における曲げ強度を測定した。供試体の寸法は、幅100mm、高さ100mm、長さ400mmとした。供試体は母材コンクリートを高さ85mmで成形し、翌日に脱型した後、材齢7日まで水中で養生した。その後、表面処理を行い残り高さ15mmをモルタルで成形し、所定の供試体寸法としてさらに材齢28日間まで水中養生した。養生は常に20℃の恒温槽内で行った。
4)曲げ靭性係数(靱性)
JSCE-G552-2013「鋼繊維補強コンクリートの曲げ強度および曲げタフネス試験方法」に準じて、材齢28日における曲げ靭性係数を測定した。供試体の寸法は、幅100mm、高さ100mm、長さ400mmとした。供試体は母材コンクリートを高さ85mmで成形し、翌日に脱型した後、材齢7日まで水中で養生した。その後、残り高さ15mmをモルタルで成形し、所定の供試体寸法としてさらに材齢28日間まで水中養生した。養生は常に20℃の恒温槽内で行った。測定は曲げ強度試験を兼ねて行った。
5)薄層施工性
型枠(30×30×3cm)を勾配5%の状態に設置し、モルタルを施工した後コテで均してモルタルのダレ性状を目視観察した。ダレが生じたものを不良(×)と評価し、ダレを生じなかったものを良好(○)と評価した。
[Evaluation method]
Each item was evaluated using the following method. The evaluation results are shown in Table 3.
1) Compressive strength The compressive strength of the repair mortar for reinforced concrete at an age of 28 days was measured according to JIS A 1108:2018 "Testing method for compressive strength of concrete". The dimensions of the specimen were 100 mm in diameter and 200 mm in height. The specimens were demolded the next day and then cured in water until the age of the specimen. Curing was always carried out in a constant temperature bath at 20°C.
2) Static elastic modulus The static elastic modulus of the reinforced concrete repair mortar at 28 days of age was measured according to JIS A 1149:2017 "Test method for static elastic modulus of concrete." The dimensions of the specimen were 100 mm in diameter and 200 mm in height. The specimens were demolded the next day and then cured in water until the age of the specimen. Curing was always carried out in a constant temperature bath at 20°C. The measurement was also performed as a compressive strength test.
3) Bending strength (yield strength)
The bending strength at the age of 28 days was measured according to JIS A 1106:2018 "Test method for bending strength of concrete". The dimensions of the specimen were 100 mm in width, 100 mm in height, and 400 mm in length. The specimens were molded from base material concrete to a height of 85 mm, removed from the mold the next day, and then cured in water until the material age was 7 days. After that, surface treatment was performed, and the remaining height of 15 mm was molded with mortar, and the specimen was cured in water to a predetermined specimen size until the material age was 28 days. Curing was always carried out in a constant temperature bath at 20°C.
4) Bending toughness coefficient (toughness)
The flexural toughness coefficient at 28 days of age was measured according to JSCE-G552-2013 "Bending strength and flexural toughness test method of steel fiber reinforced concrete". The dimensions of the specimen were 100 mm in width, 100 mm in height, and 400 mm in length. The specimens were molded from base material concrete to a height of 85 mm, removed from the mold the next day, and then cured in water until the material age was 7 days. Thereafter, the remaining height of 15 mm was molded with mortar, and the sample was cured in water until the age of the sample was 28 days. Curing was always carried out in a constant temperature bath at 20°C. The measurement was also performed as a bending strength test.
5) Thin layer workability A formwork (30 x 30 x 3 cm) was installed at a slope of 5%, and after applying mortar, it was leveled with a trowel and the sagging properties of the mortar were visually observed. Those in which sag occurred were evaluated as poor (×), and those in which sag did not occur were evaluated as good (◯).
実施例の試験体では、母材コンクリートよりも靱性係数を維持し、且つ、曲げ強度が向上しており、強化コンクリート用補修材により耐力(曲げ強度)及び靱性(曲げ靱性係数)が向上していた。一方、比較例の試験体では、薄層施工ができない場合や、母材コンクリートよりも曲げ強度や靱性係数が向上せず、耐力及び靱性の補強効果は見られない場合があった。 In the test specimen of the example, the toughness coefficient was maintained and the bending strength was improved compared to the base material concrete, and the proof strength (bending strength) and toughness (bending toughness coefficient) were improved by the repair material for reinforced concrete. Ta. On the other hand, in the test specimens of comparative examples, there were cases where thin layer construction was not possible, and where the bending strength and toughness coefficient did not improve compared to the base material concrete, and no reinforcing effect on yield strength and toughness was observed.
Claims (4)
金属粉末を含まず、
前記速硬性セメント100量部に対し、前記ポゾラン物質の含有量が3~28質量部、前記細骨材の含有量が60~380質量部であり、前記減水剤の含有量が0.1~2.5質量部であり、前記凝結遅延剤の含有量が0.1~3質量部であり、前記水の含有量が20~40質量部であり、
前記モルタルの硬化体における材齢28日の圧縮強度が75N/mm 2 以上である、強化コンクリート補修用モルタル。 A mortar for repairing reinforced concrete, comprising a repair material for reinforced concrete containing a quick-setting cement, a pozzolanic substance, an expansive material, a fine aggregate, a water reducing agent and a setting retarder, and water, the mortar comprising:
Contains no metal powder,
With respect to 100 parts by mass of the quick-hardening cement, the content of the pozzolan substance is 3 to 28 parts by mass, the content of the fine aggregate is 60 to 380 parts by mass, and the content of the water reducing agent is 0.1 parts by mass. ~2.5 parts by mass, the content of the setting retarder is 0.1 to 3 parts by mass, and the content of water is 20 to 40 parts by mass,
A mortar for repairing reinforced concrete, wherein the compressive strength of the cured mortar at 28 days of age is 75 N/mm 2 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020055345A JP7437207B2 (en) | 2020-03-26 | 2020-03-26 | Mortar for reinforced concrete and reinforcement method for reinforced concrete |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020055345A JP7437207B2 (en) | 2020-03-26 | 2020-03-26 | Mortar for reinforced concrete and reinforcement method for reinforced concrete |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021155241A JP2021155241A (en) | 2021-10-07 |
JP7437207B2 true JP7437207B2 (en) | 2024-02-22 |
Family
ID=77917086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020055345A Active JP7437207B2 (en) | 2020-03-26 | 2020-03-26 | Mortar for reinforced concrete and reinforcement method for reinforced concrete |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7437207B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007320783A (en) | 2006-05-30 | 2007-12-13 | Taiheiyo Material Kk | Thick applying mortar |
JP2008031008A (en) | 2006-07-31 | 2008-02-14 | Denki Kagaku Kogyo Kk | Low-shrinkage mortar composition |
JP2015054791A (en) | 2013-09-11 | 2015-03-23 | 電気化学工業株式会社 | Continuous milling construction method using super rapid hardening grout material |
JP2019099454A (en) | 2017-12-06 | 2019-06-24 | 太平洋マテリアル株式会社 | Polymer cement mortar composition and polymer cement mortar |
JP2019218224A (en) | 2018-06-19 | 2019-12-26 | 太平洋マテリアル株式会社 | Polymer cement mortar composition and polymer cement mortar |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11322400A (en) * | 1998-05-20 | 1999-11-24 | Mitsubishi Materials Corp | Extremely fast-setting cement composition having low shrink property |
-
2020
- 2020-03-26 JP JP2020055345A patent/JP7437207B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007320783A (en) | 2006-05-30 | 2007-12-13 | Taiheiyo Material Kk | Thick applying mortar |
JP2008031008A (en) | 2006-07-31 | 2008-02-14 | Denki Kagaku Kogyo Kk | Low-shrinkage mortar composition |
JP2015054791A (en) | 2013-09-11 | 2015-03-23 | 電気化学工業株式会社 | Continuous milling construction method using super rapid hardening grout material |
JP2019099454A (en) | 2017-12-06 | 2019-06-24 | 太平洋マテリアル株式会社 | Polymer cement mortar composition and polymer cement mortar |
JP2019218224A (en) | 2018-06-19 | 2019-12-26 | 太平洋マテリアル株式会社 | Polymer cement mortar composition and polymer cement mortar |
Also Published As
Publication number | Publication date |
---|---|
JP2021155241A (en) | 2021-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Carballosa et al. | Influence of cement and expansive additive types in the performance of self-stressing and self-compacting concretes for structural elements | |
Ramachandran et al. | Superplasticizers | |
Corinaldesi | Combined effect of expansive, shrinkage reducing and hydrophobic admixtures for durable self compacting concrete | |
Calvo et al. | Comparison between the performance of expansive SCC and expansive conventional concretes in different expansion and curing conditions | |
US20070125273A1 (en) | Lightweight concrete mix and method of using same | |
JP7394194B2 (en) | grout mortar | |
JP7395633B2 (en) | polymer cement mortar | |
JP2019163177A (en) | Polymer cement mortar composition and polymer cement mortar | |
Arum et al. | Making of strong and durable concrete | |
JP2581803B2 (en) | Cement admixture and cement composition | |
JPH0680456A (en) | Fluid hydraulic composition | |
JP7141195B2 (en) | Polymer cement mortar composition and polymer cement mortar | |
KR19980035124A (en) | Thin-film Cement-based Self-Planning Mortar Composition | |
JP7437207B2 (en) | Mortar for reinforced concrete and reinforcement method for reinforced concrete | |
JP6965136B2 (en) | Construction method of mortar or concrete using ultra-fast hard cement | |
JP4822498B2 (en) | Cement admixture and cement composition | |
JP7442373B2 (en) | Fast-setting cement composition | |
JP7437203B2 (en) | mortar concrete | |
JP2003212632A (en) | Cement-based grout composition | |
JP7343284B2 (en) | Rapid hardening cement, cement mortar, cement concrete, road repair materials, and road repair methods | |
JP7493974B2 (en) | Fiber Reinforced Mortar | |
JP7177891B2 (en) | Polymer cement mortar composition and polymer cement mortar | |
JP6824778B2 (en) | Polymer cement concrete and its construction method | |
JP7442372B2 (en) | Rapid hardening mortar composition | |
JP2023135697A (en) | Mortar composition and mortar |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231004 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231017 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240209 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7437207 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |