JP2017082092A - Soil pavement material - Google Patents

Soil pavement material Download PDF

Info

Publication number
JP2017082092A
JP2017082092A JP2015212076A JP2015212076A JP2017082092A JP 2017082092 A JP2017082092 A JP 2017082092A JP 2015212076 A JP2015212076 A JP 2015212076A JP 2015212076 A JP2015212076 A JP 2015212076A JP 2017082092 A JP2017082092 A JP 2017082092A
Authority
JP
Japan
Prior art keywords
soil
pavement material
soil pavement
cement
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015212076A
Other languages
Japanese (ja)
Other versions
JP6634267B2 (en
Inventor
佐々木 崇
Takashi Sasaki
崇 佐々木
寺島 勲
Isao Terajima
寺島  勲
渡辺 晃
Akira Watanabe
晃 渡辺
盛岡 実
Minoru Morioka
実 盛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd filed Critical Denka Co Ltd
Priority to JP2015212076A priority Critical patent/JP6634267B2/en
Publication of JP2017082092A publication Critical patent/JP2017082092A/en
Application granted granted Critical
Publication of JP6634267B2 publication Critical patent/JP6634267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a soil pavement material having rapid hardening property, excellent in resistance to freezing damage and good in impact absorption property.SOLUTION: There is provided (1) a soil pavement material containing calcium aluminate having vitrification rate of 70% or more, CaO/AlOmolar ratio of 1.0 to 2.7, impurities of 15% or less and Blaine specific surface area of 3000 cm/g or more and soil, (2) a soil pavement material further containing gypsum, (3) the soil pavement material of (1) or (2) containing one or more kind selected from calcium silicate, a polymer for cement admixture and an asphalt emulsion.SELECTED DRAWING: None

Description

本発明は、土壌舗装材料に関する。   The present invention relates to a soil pavement material.

土壌舗装は天然の土壌が持つ弾力性や保水性を残し、衝撃の吸収や路面温度の安定化に寄与する舗装である。特に路面温度の上昇を抑える効果が高く、ヒートアイランド現象の対策として注目されている。また周囲の自然環境に調和しやすいため、公園や遊歩道、歴史的建造物の周囲など景観を重視する用途でも採用されている。    Soil pavement is a pavement that retains the elasticity and water retention of natural soil and contributes to shock absorption and stabilization of road surface temperature. In particular, it is highly effective in suppressing the increase in road surface temperature, and is attracting attention as a countermeasure against the heat island phenomenon. Also, because it is easy to harmonize with the surrounding natural environment, it is also used for applications that place importance on the landscape, such as around parks, promenades, and historic buildings.

従来、土壌舗装材料としては、生石灰系またはセメント系あるいはマグネシア系の固化剤を土壌に添加したものが知られている。   Conventionally, as a soil pavement material, a lime-based, cement-based, or magnesia-based solidifying agent added to soil is known.

セメントに土質材料を一定量加え、均一に混合した後、特定の無機硬化剤を含有する添加水を配合した舗装用組成物が記載されている(特許文献1)。また、真砂土に対してセメント及び要すれば炭酸カルシウム及び珪石粉を主成分とする透水性土壌硬化混和剤を混練して舗装基礎上に敷設することが記載されている(特許文献2)。天然土、セメント及び少量の硬化剤を水練りする舗装組成物において、硬化剤として塩化マグネシウム、塩化アルミニウム、塩化カルシウム、塩化カリウム、塩化ナトリウムを含むものを用いてなる天然土舗装組成物が記載されている(特許文献3)。   A paving composition in which a certain amount of a soil material is added to cement and mixed uniformly, and then added water containing a specific inorganic curing agent is described (Patent Document 1). In addition, it is described that kneaded cement and, if necessary, a water-permeable soil hardening admixture mainly composed of calcium carbonate and silica stone powder are laid on a paving foundation (Patent Document 2). A pavement composition in which natural soil, cement and a small amount of a hardener are kneaded with water, which contains magnesium chloride, aluminum chloride, calcium chloride, potassium chloride, sodium chloride as a hardener, is described. (Patent Document 3).

これらのセメント系あるいは生石灰系を用いた土壌舗装材料による舗装は、剛性が強く弾性に富んだ舗装に課題が残る。また硬化に時間を要するため、早期開放ができない課題がある。さらにpHが12以上の強アルカリとなり、周辺の植生への影響や六価クロムの溶出に課題があった。   The pavement by the soil pavement material using these cement type or quick lime type has a problem in the pavement having high rigidity and high elasticity. Moreover, since time is required for curing, there is a problem that early opening is impossible. Furthermore, it became a strong alkali having a pH of 12 or more, and there was a problem in the influence on surrounding vegetation and elution of hexavalent chromium.

また、マグネシア系の固化剤を土壌に対して添加するものが提案されている。酸化マグネシウムと異種金属塩とを含有する土壌舗装材料(特許文献4)や、平均ペリクレース結晶子径が330〜430Åの酸化マグネシウムと、土壌とを予め混合した舗装材料(特許文献5)、さらに、マグネシア系固化剤、乳化性樹脂及び水を含有する透水性舗装材組成物混合物(特許文献6)などの土壌改良剤がある。   Moreover, what adds a magnesia type solidification agent with respect to soil is proposed. Soil pavement material (patent document 4) containing magnesium oxide and a different metal salt, pavement material (patent document 5) in which magnesium oxide having an average periclase crystallite diameter of 330 to 430 mm and soil are mixed in advance, There are soil improvers such as a water-permeable pavement composition mixture (Patent Document 6) containing a magnesia-based solidifying agent, an emulsifying resin, and water.

これらのマグネシアを含有する固化剤(硬化剤)を用いた土壌舗装材料による舗装にあっては、硬化時間が長く、低温時には固まらず、凍害を受けてしまうといった課題があった。   In the pavement by the soil pavement material using the solidifying agent (hardening agent) containing these magnesias, there is a problem that the curing time is long, the solidification does not occur at a low temperature, and frost damage is caused.

また、カルシウムアルミネート系スラグを用いた土系固化材が提案されている(特許文献7)。カルシウムアルミネート系スラグを用いた場合、不純物が多く、ガラス化率が低いことから、CaO/Alモル比を高くし反応活性を上げているが、セメント系や生石灰系やマグネシアを含有する固化剤と同様、硬化時間が長く、低温時には固まらず、凍害を受けてしまうといった課題があった。 Further, a soil-based solidified material using calcium aluminate-based slag has been proposed (Patent Document 7). When calcium aluminate-based slag is used, there are many impurities and the vitrification rate is low, so the reaction activity is increased by increasing the CaO / Al 2 O 3 molar ratio, but it contains cement, quicklime, and magnesia. As with the solidifying agent, the curing time is long, and there is a problem that it does not harden at low temperatures and suffers from frost damage.

特開平6−10305号公報JP-A-6-10305 特許第2533452号Japanese Patent No. 2533452 特開平9−87621号公報Japanese Patent Laid-Open No. 9-87621 特開2005−154735号公報JP 2005-154735 A 特開2014−51849号公報JP 2014-51849 A 特許第4310782号Japanese Patent No. 4310788 特許第5561921号Japanese Patent No. 5561921

従来の土壌舗装材料では、セメント系固化剤(硬化剤)を用いた場合には、剛性が強く弾性に富んだ舗装に課題があり、マグネシア系の固化剤やカルシウムアルミネート系スラグを用いた場合には、硬化時間が長く、低温時には固まらず、凍害をうけてしまう課題があった。
本発明は、上記の課題を解決し、速硬性で凍害への抵抗性に優れ、かつ、衝撃吸収性も良好な土壌舗装材料を提供する。
In conventional soil pavement materials, when cement-based solidifying agents (hardening agents) are used, there is a problem with highly rigid and elastic pavements. When magnesia-based solidifying agents and calcium aluminate slag are used Has a problem that it takes a long time to cure, does not harden at low temperatures, and suffers from frost damage.
The present invention solves the above-mentioned problems, and provides a soil pavement material that is fast-curing, excellent in resistance to frost damage, and excellent in shock absorption.

即ち、本発明は、(1)ガラス化率が70%以上、CaO/Alモル比が1.0〜2.7、不純物が15%以下、ブレーン比表面積が3000cm/g以上であるカルシウムアルミネートと土壌を含有してなる土壌舗装材料、(2)さらに、石膏を含有してなる(1)の土壌舗装材料、(3)さらに、カルシウムシリケート、セメント混和用ポリマー、アスファルト乳剤から選ばれた1種又は2種以上を含有してなる(1)又は(2)の土壌舗装材料、である。 That is, the present invention has (1) a vitrification ratio of 70% or more, a CaO / Al 2 O 3 molar ratio of 1.0 to 2.7, impurities of 15% or less, and a brain specific surface area of 3000 cm 2 / g or more. A soil pavement material containing a certain calcium aluminate and soil, (2) a soil pavement material comprising (1) gypsum, (3) a calcium silicate, a cement admixture polymer, and an asphalt emulsion. The soil pavement material according to (1) or (2), which contains one or more selected ones.

本発明に依れば、速硬性で凍害への抵抗性に優れ、かつ、衝撃吸収性も良好な土壌舗装材料とすることが可能となる。 According to the present invention, it is possible to provide a soil pavement material that is fast-curing, excellent in resistance to frost damage, and excellent in shock absorption.

以下、本発明を詳細に説明する。
なお、本発明で使用する部や%は質量基準である。
Hereinafter, the present invention will be described in detail.
The parts and% used in the present invention are based on mass.

本発明に使用するカルシウムアルミネートは、カルシア原料とアルミナ原料などを混合して、キルンで焼成し、あるいは、電気炉で溶融し冷却して得られるCaOとAlとを主成分とする水和活性を有する物質の総称であり、硬化時間が早く、初期強度発現性が高い材料である。
本発明のカルシウムアルミネートとしては、例えば、アルミナセメントよりも短時間で硬化し、その後の初期強度発現性が高い点から、カルシア原料とアルミナ原料の混合物を溶融後に急冷した非晶質カルシウムアルミネートが使用できる
本発明のカルシウムアルミネートのCaOとAlとのモル比(CaO/Alモル比)は、1.0〜2.7が好ましく、2.0〜2.5がより好ましい。1.0未満では硬化に時間を要し、2.7を超えると硬化が早過ぎる場合がある。
The calcium aluminate used in the present invention is mainly composed of CaO and Al 2 O 3 obtained by mixing a calcia raw material and an alumina raw material and firing the kiln or melting and cooling in an electric furnace. It is a general term for substances having hydration activity, and is a material with a fast curing time and high initial strength development.
The calcium aluminate of the present invention is, for example, an amorphous calcium aluminate that is hardened in a shorter time than alumina cement and is rapidly cooled after melting a mixture of calcia raw material and alumina raw material from the viewpoint of high initial strength development thereafter. The molar ratio of CaO to Al 2 O 3 in the calcium aluminate of the present invention that can be used (CaO / Al 2 O 3 molar ratio) is preferably 1.0 to 2.7, and preferably 2.0 to 2.5. More preferred. If it is less than 1.0, curing takes time, and if it exceeds 2.7, curing may be too early.

本発明のカルシウムアルミネートの成分であるCaOやAl以外の成分(不純物)は、15%以下であることが初期強度発現性の観点から好ましく、10%以下であることがさらに好ましい。15%を超えると硬化時間が長く、低温時には固まらない課題がある。
本発明のカルシウムアルミネートに含まれる不純物の代表例として酸化ケイ素があり、その他、アルカリ金属酸化物、アルカリ土類金属酸化物、酸化チタン、酸化鉄、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、アルカリ金属硫酸塩、及びアルカリ土類金属硫酸塩等があり、これらがCaOやAlの一部を置換したものがあるが、特に限定されるものでない。
本発明のカルシウムアルミネートのガラス化率は、反応活性の面で70%以上が好ましく、90%以上がより好ましい。70%以下であると初期強度発現性が低下する場合がある。
Components (impurities) other than CaO and Al 2 O 3 which are components of the calcium aluminate of the present invention are preferably 15% or less, more preferably 10% or less, from the viewpoint of initial strength development. If it exceeds 15%, the curing time is long, and there is a problem that it does not harden at low temperatures.
Typical examples of impurities contained in the calcium aluminate of the present invention include silicon oxide. In addition, alkali metal oxides, alkaline earth metal oxides, titanium oxide, iron oxide, alkali metal halides, alkaline earth metal halides. There are alkali metal sulfates, alkaline earth metal sulfates, and the like, which are substituted for a part of CaO and Al 2 O 3 , but are not particularly limited.
The vitrification rate of the calcium aluminate of the present invention is preferably 70% or more, more preferably 90% or more in terms of reaction activity. If it is 70% or less, the initial strength development may be lowered.

カルシウムアルミネートのガラス化率の測定は、加熱前のサンプルについて粉末X線回折法により結晶鉱物のメインピーク面積Sを予め測定し、その後1000℃で2時間加熱後、1〜10℃/分の冷却速度で徐冷し、粉末X線回折法による加熱後の結晶鉱物のメインピーク面積Sを求め、S及びSの値を用い、次の式を用いてガラス化率χを算出する。
ガラス化率χ(%)=100×(1−S/S
The measurement of the vitrification rate of calcium aluminate is performed by measuring the main peak area S of the crystal mineral in advance by a powder X-ray diffraction method on the sample before heating, and then heating at 1000 ° C. for 2 hours, and then 1-10 ° C./min. Slow cooling is performed at the cooling rate, the main peak area S 0 of the crystal mineral after heating is determined by powder X-ray diffraction, and the vitrification rate χ is calculated using the following equation using the values of S 0 and S.
Vitrification rate χ (%) = 100 × (1−S / S 0 )

本発明のカルシウムアルミネートの粒度は、初期強度発現性の面で、ブレーン比表面積値3000cm/g以上が好ましく、5000cm/g以上がより好ましい。3000cm/g未満であると初期強度発現性が低下する場合がある。 The particle size of the calcium aluminate of the present invention, in terms of initial strength development is preferably more than Blaine specific surface area 3000cm 2 / g, 5000cm 2 / g or more is more preferable. If it is less than 3000 cm 2 / g, the initial strength development may be lowered.

本発明の石膏としては、半水石膏と無水石膏が挙げられ、強度発現性の面では無水石膏が好ましく、弗酸副生無水石膏や天然無水石膏が使用できる。石膏を水に浸漬させたときのpHは、pH8以下の弱アルカリから酸性のものが好ましい。pHが高い場合、石膏成分の溶解度が高くなり、初期の強度発現性を阻害する場合がある。ここでいうpHとは、石膏/イオン交換水=1g/100gの20℃における希釈スラリーのpHをイオン交換電極等を用いて測定したものである。 Examples of the gypsum of the present invention include hemihydrate gypsum and anhydrous gypsum. In terms of strength development, anhydrous gypsum is preferable, and hydrofluoric acid byproduct anhydrous gypsum and natural anhydrous gypsum can be used. The pH when the gypsum is immersed in water is preferably from a weak alkali having a pH of 8 or less to acidic. When the pH is high, the solubility of the gypsum component becomes high, which may inhibit the initial strength development. The pH here is a value obtained by measuring the pH of the diluted slurry at 20 ° C. of gypsum / ion exchange water = 1 g / 100 g using an ion exchange electrode or the like.

本発明の石膏の粒度は、ブレーン比表面積値で3000cm/g以上が好ましく、5000cm/g以上が初期強度発現性と、適正な作業時間が得られる観点から好ましい。
本発明に使用する石膏の使用量は、カルシウムアルミネート100部に対して、50〜150部が好ましい。50部未満では、作業時間が取れなくなり、強度発現性が低下する場合がある。150部を超えると作業時間は十分に取れるが、初期強度が得られない場合がある。
The particle size of the gypsum of the present invention is preferably 3000 cm 2 / g or more in Blaine specific surface area value, from the viewpoint of the 5000 cm 2 / g or higher initial strength development, the proper work time is obtained.
The amount of gypsum used in the present invention is preferably 50 to 150 parts with respect to 100 parts of calcium aluminate. If it is less than 50 parts, work time cannot be taken and strength development may fall. If it exceeds 150 parts, sufficient working time can be taken, but initial strength may not be obtained.

本発明では、強度を増進させる目的でカルシウムシリケートを使用できる。
カルシウムシリケートは、3CaO・SiOや2CaO・SiOがあり、特に限定されるものではないが、γ−2CaO・SiOが大気中の二酸化炭素を吸収して強度を増加させるため、最も好ましい。
γ−2CaO・SiOは、2CaO・SiOで表される化合物の中で、低温相として知られるものであり、高温相であるα−2CaO・SiOやβ−2CaO・SiOとは異なるものである。これらの化合物はいずれも2CaO・SiOで同じ化学組成を有するが、結晶構造は異なっている。セメントクリンカ中に存在する2CaO・SiOはβ−2CaO・SiOである。β−2CaO・SiOは水硬性を有するが、本発明におけるγ−2CaO・SiOは水硬性を持たないが、大気中の二酸化炭素を吸収して硬化する特性があることを見出した。
γ−2CaO・SiOの粒度は、特に制限されないが、ブレーン比表面積値で3000cm/g以上が好ましく、4,000〜8,000cm/gがより好ましい。ブレーン比表面積値が3,000cm/g未満では、大気中の二酸化炭素を吸収して強度が充分に得られない場合がある。8,000cm/gを超えても更なる効果の増進が期待できない。
In the present invention, calcium silicate can be used for the purpose of increasing strength.
Calcium silicates include 3CaO · SiO 2 and 2CaO · SiO 2 , and are not particularly limited. However, γ-2CaO · SiO 2 absorbs carbon dioxide in the atmosphere and increases strength, and thus is most preferable.
γ-2CaO · SiO 2 is different among the compounds represented by 2CaO · SiO 2, is what is known as low-temperature phase, the α-2CaO · SiO 2 and β-2CaO · SiO 2 is a high temperature phase Is. All of these compounds are 2CaO · SiO 2 and have the same chemical composition, but their crystal structures are different. 2CaO · SiO 2 present in the cement clinker is β-2CaO · SiO 2 . Although β-2CaO · SiO 2 has hydraulic properties, γ-2CaO · SiO 2 in the present invention does not have hydraulic properties, but has been found to have a property of absorbing and curing carbon dioxide in the atmosphere.
The particle size of the γ-2CaO · SiO 2 is not particularly limited but is preferably 3000 cm 2 / g or more in Blaine specific surface area value, 4,000~8,000cm 2 / g is more preferable. If the Blaine specific surface area value is less than 3,000 cm 2 / g, the carbon dioxide in the atmosphere may be absorbed and sufficient strength may not be obtained. Even if it exceeds 8,000 cm 2 / g, further enhancement of the effect cannot be expected.

本発明では、粘弾性を付与させ、振動等の衝撃を工場させる目的でセメント混和用ポリマーを使用できる。
本発明のセメント混和用ポリマーは、例えば、JIS A 6203で規定されているセメント混和用のポリマーであり、水の中にポリマーの微粒子が分散しているポリマーディルパージョンや、ゴムラテックスおよび樹脂エマルジョンに安定剤などを加えたものを乾燥して得られる再乳化形粉末樹脂などを称するものである。
例えば、アクリロニトリル・ブタジエンゴム、スチレン・ブタジエンゴム、クロロプレンゴム、及び天然ゴムなどのゴムラテックス、エチレン・酢酸ビニル共重合体、ポリアクリル酸エステル、酢酸ビニルビニルバーサテート系共重合体、及びスチレン・アクリル酸エステル共重合体やアクリロニトリル・アクリル酸エステルに代表されるアクリル酸エステル系共重合体、エポキシ樹脂、不飽和ポリエステル樹脂に代表される液状ポリマーなどが挙げられ、これらの1種又は2種以上の混合物を使用できる。これらは液状のものでも粉状のものでも使用でき、特に限定されるものではない。
In the present invention, a cement-mixing polymer can be used for the purpose of imparting viscoelasticity and causing an impact such as vibration.
The cement-mixing polymer of the present invention is, for example, a cement-mixing polymer specified in JIS A 6203, and is used in polymer dilversion in which fine particles of polymer are dispersed in water, rubber latex and resin emulsion. This refers to a re-emulsified powder resin obtained by drying a material to which a stabilizer or the like is added.
For example, rubber latex such as acrylonitrile-butadiene rubber, styrene-butadiene rubber, chloroprene rubber, and natural rubber, ethylene-vinyl acetate copolymer, polyacrylic acid ester, vinyl acetate vinyl versatate copolymer, and styrene-acrylic Examples include acid ester copolymers, acrylic acid ester copolymers represented by acrylonitrile / acrylic acid esters, epoxy resins, liquid polymers represented by unsaturated polyester resins, and the like. Mixtures can be used. These can be used in liquid or powder form and are not particularly limited.

さらに、本発明では、粘弾性を付与させ、振動等の衝撃を工場させる目的でアスファルト乳剤を使用できる。
本発明のアスファルト乳剤は、天然に得られる又は石油の蒸留残渣として得られる瀝青物を主成分とするアスファルトの微粒子を、水中に分散させて得られるコロイド液体のことであり、瀝青物、例えば、針入度40/60〜200/500程度のストレートアスファルトを主材とし、これに界面活性剤と多価金属塩とを加え、さらに、必要に応じて乳化助剤、分散剤、及び保護コロイド等を適宜使用して水中に乳化させたものである。
また、瀝青物に、ゴムや合成高分子重合体等を添加・混合して、改質した瀝青物を乳化したものを使用することも可能である。
アスファルト乳剤中の瀝青物含有量は、40〜70%が好ましく、55〜65%がより好ましい。40%未満では土壌舗装材料に粘弾性を与える効果が得られない場合があり、70%を超えると強度の発現が低下する場合がある。これらは液状のものでも塊状のものでも使用でき、特に限定されるものではない。
Furthermore, in the present invention, an asphalt emulsion can be used for the purpose of imparting viscoelasticity and causing an impact such as vibration.
The asphalt emulsion of the present invention is a colloidal liquid obtained by dispersing asphalt fine particles mainly composed of a bituminous product obtained in nature or as a petroleum distillation residue, in water. Mainly straight asphalt with a penetration of about 40/60 to 200/500, a surfactant and a polyvalent metal salt are added thereto, and further, an emulsification aid, a dispersing agent, a protective colloid, etc., if necessary Is emulsified in water using as appropriate.
It is also possible to use a bituminous material obtained by emulsifying a modified bituminous material by adding and mixing rubber, a synthetic polymer or the like.
The bitumen content in the asphalt emulsion is preferably 40 to 70%, more preferably 55 to 65%. If it is less than 40%, the effect of imparting viscoelasticity to the soil pavement material may not be obtained, and if it exceeds 70%, the expression of strength may be reduced. These can be used either in liquid form or in bulk, and are not particularly limited.

本発明で使用するカルシウムアルミネート、あるいは、カルシウムアルミネートと石膏に、強度増進や粘弾性を向上させる目的でカルシウムシリケート、セメント混和用ポリマー、アスファルト乳剤の1種又は2種以上を含有することができる。
カルシウムシリケート、セメント混和用ポリマーやアスファルト乳剤の配合割合は、カルシウムアルミネート、あるいは、カルシウムアルミネートと石膏の合計100部に10〜70部が好ましく、20〜50部がより好ましい。カルシウムシリケート、セメント混和用ポリマーやアスファルト乳剤が少ないと長期強度が低くなる傾向であり、70部を超えると初期の強度発現性が落ちる傾向になるが、これらの配合割合は、特に限定されるものではない。
セメント混和用ポリマーまたはアスファルト乳剤の混合方法は、硬化前のカルシウムアルミネートと水を練混ぜる際に事前に混合することも可能であり、硬化後のものに液状のものを散布することも可能であり、特に限定されるものではない。
The calcium aluminate used in the present invention, or calcium aluminate and gypsum may contain one or more of calcium silicate, cement admixture polymer and asphalt emulsion for the purpose of enhancing strength and improving viscoelasticity. it can.
The blending ratio of calcium silicate, cement admixture polymer and asphalt emulsion is preferably 10 to 70 parts, more preferably 20 to 50 parts per 100 parts of calcium aluminate or calcium aluminate and gypsum. If the amount of calcium silicate, cement admixture polymer or asphalt emulsion is small, the long-term strength tends to be low, and if it exceeds 70 parts, the initial strength development tends to decrease, but the blending ratio of these is particularly limited is not.
The mixing method of cement admixture polymer or asphalt emulsion can be pre-mixed when kneading calcium aluminate before water and water, and it is also possible to spray liquid after curing. There is no particular limitation.

本発明の土壌舗装材料100部に対する土壌の割合は、特に限定されるものではないが、通常、100〜1000部が好ましく、200〜600部がより好ましい。土壌が100部より低いと強度発現性は高いが経済的に好ましくない。1000部より高いと強度が低く、凹んでしまう可能性がある。   Although the ratio of the soil with respect to 100 parts of soil pavement materials of this invention is not specifically limited, Usually, 100-1000 parts are preferable and 200-600 parts are more preferable. If the soil is lower than 100 parts, the strength development is high, but it is not economically preferable. If it is higher than 1000 parts, the strength is low and there is a possibility that it will be recessed.

本発明で使用する土壌とは、砂利、砂、礫、粘土のいずれか1種又は2種以上を含むものであり、特に限定されるものではない。山砂、川砂、海砂等のサンド質土壌やシルト質土壌、クレイ質土壌、工事から発生する残土、軽量骨材や再生骨材などいずれも使用できる。一般には、天然土である真砂土や乾燥砂は品質が安定しておりより好ましい。 The soil used in the present invention includes one or more of gravel, sand, gravel and clay, and is not particularly limited. Sandy soil such as mountain sand, river sand, sea sand, silty soil, clayey soil, residual soil generated from construction, lightweight aggregate and recycled aggregate can be used. In general, natural sand and dry sand, which are natural soils, are more preferable because of their stable quality.

本発明では、水の配合量は、土壌舗装材料100部に対して15〜100部が好ましい。15部未満では混合が困難となる場合があり、100部を超えると強度が得られない場合がある。   In the present invention, the blending amount of water is preferably 15 to 100 parts with respect to 100 parts of the soil pavement material. If it is less than 15 parts, mixing may be difficult, and if it exceeds 100 parts, strength may not be obtained.

本発明では、凝結調整剤を使用することが可能である。凝結調整剤はセメントの凝結を促進、遅延するものであれば特に限定されるものではない。具体的には、水酸化アルカリ、アルカリ金属塩化物塩、アルカリ金属炭酸塩、オキシカルボン酸又はその塩、リン酸又はその塩、デキストリン、ショ糖、ポリアクリル酸又はその塩、さらにナフタレン系、メラミン系、アミノスルホン酸系、ポリカルボン酸系、ポリエーテル系に代表される減水剤などを1種又は2種以上、本発明の目的を実質的に阻害しない範囲で使用することが可能である。   In the present invention, it is possible to use a setting regulator. The setting modifier is not particularly limited as long as it accelerates or delays the setting of the cement. Specifically, alkali hydroxide, alkali metal chloride salt, alkali metal carbonate, oxycarboxylic acid or salt thereof, phosphoric acid or salt thereof, dextrin, sucrose, polyacrylic acid or salt thereof, naphthalene, melamine One, two or more water reducing agents typified by a system, an aminosulfonic acid system, a polycarboxylic acid system, and a polyether system can be used as long as the object of the present invention is not substantially inhibited.

本発明では、酸化マグネシウムなどの低pHの固化材、ウッドチップ、もみ殻などの嵩をあげる増量材、各種ポルトランドセメント、水酸化カルシウム、塩化カルシウム、石灰石微粉末、フライアッシュ、カオリン、シラス、珪藻土及びシリカフュームなどの混和材料、消泡剤、増粘剤、防錆剤、防凍剤、ポリマー、ベントナイトなどの粘土鉱物、ハイドロタルサイトなどのアニオン交換体、並びに、ビニロン繊維、ポリプロピレン繊維、ガラス繊維などの長さ10mm以下の短繊維、着色剤などを1種又は2種以上、本発明の目的を実質的に阻害しない範囲で使用することが可能である。   In the present invention, low pH solidified material such as magnesium oxide, wood chip, bulking agent such as rice husk, various portland cement, calcium hydroxide, calcium chloride, fine limestone powder, fly ash, kaolin, shirasu, diatomaceous earth And silica fume admixtures, antifoaming agents, thickeners, rust inhibitors, antifreeze agents, polymers, clay minerals such as bentonite, anion exchangers such as hydrotalcite, vinylon fibers, polypropylene fibers, glass fibers, etc. One or two or more short fibers having a length of 10 mm or less, a colorant, and the like can be used within a range that does not substantially impair the object of the present invention.

次に、本発明における舗装方法について説明する。
本発明に係る土壌舗装材料を施工するには、各土壌舗装材料が均一に混合されれば、特に施工方法が限定されるものではない。このような本件発明に係る土壌舗装方法による舗装は、例えば道路の路側、中央分離帯、植樹帯、庭園、公園、各種施設周り等に好適に適用される。
Next, the pavement method in the present invention will be described.
In order to construct the soil pavement material according to the present invention, the construction method is not particularly limited as long as each soil pavement material is uniformly mixed. Such a pavement by the soil pavement method according to the present invention is suitably applied to, for example, a roadside, a median strip, a tree planting zone, a garden, a park, and around various facilities.

以下、本発明の実験例に基づいて説明する。 Hereinafter, description will be made based on experimental examples of the present invention.

「実験例1」
石膏100部に対して、表1に示すカルシウムアルミネート100部を調製し、硬化時間、圧縮強度、初期凍害性の測定を行った。
表1に示すカルシウムアルミネートと石膏の合計100部に対して、土壌を600部とし、カルシウムアルミネートと石膏と骨材の合計100部に対して凝結調整剤としてクエン酸ナトリウムを0.5部、水を20部加えて土壌舗装材料を調製した。結果を表1に併記した。
"Experiment 1"
100 parts of calcium aluminate shown in Table 1 was prepared with respect to 100 parts of gypsum, and the setting time, compressive strength, and initial frost damage were measured.
The total amount of calcium aluminate and gypsum shown in Table 1 is 100 parts, and the soil is 600 parts. The total amount of calcium aluminate, gypsum, and aggregate is 100 parts. A soil pavement material was prepared by adding 20 parts of water. The results are also shown in Table 1.

<使用材料>
石膏:天然無水石膏、ブレーン比表面積値5000cm/g
土壌:新潟県産川砂乾燥品、1.2mm篩下
水:水道水
アルミナセメント:アルミナセメント1号、デンカ社製、CaO/Alモル比1.0、結晶質
凝結調整剤:無水クエン酸ナトリウム、磐田化学工業社製
<Materials used>
Gypsum: natural anhydrous gypsum, Blaine specific surface area value 5000 cm 2 / g
Soil: dried river sand from Niigata prefecture, 1.2 mm Sieve water: tap water Alumina cement: Alumina cement No. 1, Denka, CaO / Al 2 O 3 molar ratio 1.0, crystalline coagulation modifier: anhydrous citric acid Sodium, manufactured by Iwata Chemical Industry

<測定方法>
硬化時間:練混ぜた土壌固化材を指で押してもへこまない時間を測定した。
圧縮強度:一軸圧縮強度は、20℃・相対湿度60%の環境で安定処理混合物の一軸圧縮試験方法( 舗装試験法便覧 日本道路協会)に準拠し、供試体寸法を直径1 0 0 m m 、高さ1 2 7 m m の円柱状とし、供試体の作成は3 層2 5 回とした。材齢6時間と28日強度を測定し、養生方法は、20℃・相対湿度60%の環境下で気乾養生とした。
初期凍害抵抗性:20℃・相対湿度60%の環境下で圧縮強度と同様な方法で練混ぜ、供試体を作製後、直ちに、−10℃環境下で材齢7日まで養生した。その後、材齢28日まで20℃・相対湿度60%の環境下で気乾養生とした後、強度を測定した。常時、20℃環境下で練混ぜ・養生していた28日強度との値を比較し、強度低減割合を算出した。
<Measurement method>
Hardening time: The time when the soiled solidified material was not depressed even when pressed with a finger was measured.
Compressive strength: Uniaxial compressive strength conforms to the uniaxial compression test method of the stable treatment mixture in an environment of 20 ° C. and 60% relative humidity (Japanese Road Association), and the specimen size is 100 mm in diameter. The height was 1 27 mm, and the specimen was prepared in 3 layers 2 5 times. The strength of the material was measured for 6 hours and 28 days, and the curing method was air drying in an environment of 20 ° C. and a relative humidity of 60%.
Initial freezing damage resistance: Kneaded in the same manner as the compressive strength in an environment of 20 ° C. and 60% relative humidity, and immediately after the specimen was prepared, it was cured in a −10 ° C. environment until the age of 7 days. Then, the strength was measured after air-drying in an environment of 20 ° C. and a relative humidity of 60% until the age of 28 days. The strength reduction ratio was calculated by comparing the value with the 28-day strength that was constantly mixed and cured in a 20 ° C. environment.

Figure 2017082092
Figure 2017082092

表1より、本発明の土壌舗装材料が優れた硬化特性、強度発現、凍害抵抗性を示すことが分かる。また、カルシウムアルミネートの種類により硬化に時間を要し、初期凍害抵抗性に劣ることが分かる。 From Table 1, it can be seen that the soil pavement material of the present invention exhibits excellent hardening characteristics, strength development, and frost damage resistance. Moreover, it turns out that hardening requires time with the kind of calcium aluminate, and it is inferior to initial stage frost damage resistance.

「実験例2」
実験例1の実験No.1-4のカルシウムアルミネートを使用し、表2に示す割合でカルシウムアルミネートと石膏の割合を変えたこと以外は実験例1と同様に行った。結果を表2に併記した。
また、比較として、普通セメントを用いたモルタル、マグネシア系固化材を調製した。モルタルの配合は、水セメント比50%、(社)セメント協会製標準砂と普通ポルトランドセメントの割合(質量比)を3/1としたJISR 5201に記載のモルタルを調製した。マグネシア系固化材は、中国産マグネシウムを焼成した市販の酸化マグネシウム100部に対して、土壌を600部、水を20部加えて土壌舗装材料を調製した。
圧縮強度、初期凍害抵抗性は実験例1と同じ測定方法で行い、曲げひずみ、GB反発係数も測定した。
"Experimental example 2"
The same procedure as in Experimental Example 1 was performed except that the calcium aluminate of Experiment No. 1-4 of Experimental Example 1 was used and the ratio of calcium aluminate and gypsum was changed in the ratio shown in Table 2. The results are shown in Table 2.
For comparison, mortar and magnesia solidified material using ordinary cement was prepared. A mortar described in JIS R 5201 was prepared by blending mortar with a water cement ratio of 50% and a ratio (mass ratio) of standard sand made by Cement Association and ordinary Portland cement to 3/1. A magnesia-based solidified material was prepared by adding 600 parts of soil and 20 parts of water to 100 parts of commercially available magnesium oxide obtained by firing Chinese magnesium.
The compressive strength and initial frost damage resistance were measured by the same measurement method as in Experimental Example 1, and the bending strain and GB restitution coefficient were also measured.

<使用材料>
カルシウムアルミネート:CaO/Alモル比2.2、不純物含有量2%、ガラス化率97%、ブレーン比表面積値5000cm/g
石膏:天然無水石膏、ブレーン比表面積値5000cm/g
凝結調整剤:無水クエン酸ナトリウム、磐田化学工業社製
土壌:新潟県産川砂乾燥品、1.2mm篩下
水:水道水
普通セメント:普通ポルトランドセメント、市販品
砂:(社)セメント協会製標準砂
マグネシア系固化材:中国産マグネシウムを焼成した酸化マグネシウム、市販品
<Materials used>
Calcium aluminate: CaO / Al 2 O 3 molar ratio 2.2, impurity content 2%, vitrification rate 97%, Blaine specific surface area value 5000 cm 2 / g
Gypsum: natural anhydrous gypsum, Blaine specific surface area value 5000 cm 2 / g
Coagulation modifier: anhydrous sodium citrate, Soda Chemical Industries Co., Ltd. soil: dried river sand from Niigata Prefecture, 1.2 mm sieve water: tap water ordinary cement: ordinary Portland cement, commercial sand: standard sand made by Cement Association Magnesia-based solidification material: Magnesium oxide fired from Chinese magnesium, commercial product

<測定方法>
曲げひずみ:JIS A 1106に基づき、曲げ試験を実施した際の破壊時のひずみを測定し、柔軟性の尺度とした。
GB反発係数:20℃・相対湿度60%の環境で土壌に各土壌固化剤を基礎面上に均一に敷設した後、6時間と28日後にハンド振動機で締め固めて形成した測定路面に、ゴルフボールを1mの高さから自然落下させ、跳ね返り高さを測定し、弾力性の尺度とした。
<Measurement method>
Bending strain: Based on JIS A 1106, the strain at the time of the bending test was measured and used as a measure of flexibility.
GB coefficient of restitution: After each soil solidifying agent is evenly laid on the foundation surface in the environment of 20 ° C and 60% relative humidity, the measurement road surface formed by compacting with a hand vibrator after 6 hours and 28 days, The golf ball was naturally dropped from a height of 1 m, the bounce height was measured, and it was used as a measure of elasticity.

Figure 2017082092
Figure 2017082092

表2より、本発明の土壌舗装材料が優れた物性を示すことが分かる。比較のモルタルは、短時間強度が低く、材齢28日では強度が高いものの、弾力性を示すGB反発係数が高く剛性が高いため、曲げひずみが低いことが分かる。また、短時間強度が低いため、初期凍害を受けていることがわかる。マグネシア系固化材は強度が低く、曲げひずみも低く、初期凍害を受けていることが分かる。 Table 2 shows that the soil pavement material of this invention shows the outstanding physical property. Although the comparative mortar has low strength for a short time and high strength at the age of 28 days, it can be seen that the bending strain is low because the GB restitution coefficient indicating elasticity is high and the rigidity is high. Moreover, since the intensity | strength is low for a short time, it turns out that it suffers from initial frost damage. It can be seen that the magnesia-based solidified material has low strength, low bending strain, and is subject to initial frost damage.

「実験例3」
実験例1の実験No.1-4のカルシウムアルミネートと石膏を当量ずつ混合したものに、表3に示す割合でカルシウムシリケートを混合した合計100部に対し、土壌を600部、水を20部加えて土壌舗装材料を調製した。
長期強度を測定するため、材齢6時間と180日で測定し、土壌の種類を変えたこと以外は実験例2と同様に行った。
"Experiment 3"
For a total of 100 parts in which calcium silicate was mixed in the proportions shown in Table 3 in an equivalent mixture of calcium aluminate and gypsum of Experiment No. 1-4 of Experimental Example 1, 20 parts of water and 20 parts of water In addition, a soil pavement material was prepared.
In order to measure the long-term strength, the measurement was carried out in the same manner as in Experimental Example 2 except that the measurement was performed at a material age of 6 hours and 180 days and the type of soil was changed.

<使用材料>
カルシウムシリケート イ:3CaO・SiO試薬の炭酸カルシウム3モル及び二酸化ケイ素1モルを混合粉砕した後、電気炉で焼成し合成した。ブレーン比表面積値1800cm/g。
カルシウムシリケート ロ:β−2CaO・SiO試薬の炭酸カルシウム2モル及び二酸化ケイ素1モルを混合粉砕した後、電気炉で焼成し合成した。ブレーン比表面積値1800cm/g。
カルシウムシリケート ハ:γ−2CaO・SiO試薬の炭酸カルシウム2モル及び二酸化ケイ素1モルを混合粉砕した後、電気炉で焼成し合成した。ブレーン比表面積値1800cm/g。
土壌:愛知県産真砂土、5mm篩下
<Materials used>
Calcium silicate i: 3 mol of calcium carbonate as a 3CaO · SiO 2 reagent and 1 mol of silicon dioxide were mixed and pulverized, and then baked in an electric furnace and synthesized. Blaine specific surface area value 1800 cm 2 / g.
Calcium silicate: After mixing and grinding 2 mol of calcium carbonate and 1 mol of silicon dioxide of β-2CaO · SiO 2 reagent, they were synthesized by firing in an electric furnace. Blaine specific surface area value 1800 cm 2 / g.
Calcium silicate C: After mixing and grinding 2 mol of calcium carbonate and 1 mol of silicon dioxide of γ-2CaO · SiO 2 reagent, they were synthesized by firing in an electric furnace. Blaine specific surface area value 1800 cm 2 / g.
Soil: Aichi Prefectural sand sand, 5mm sieve

Figure 2017082092
Figure 2017082092

表3より、本発明の土壌舗装材料が優れた物性を示すことが分かる。カルシウムシリケートを混入することで180日の強度が増進し、衝撃吸収性(GB反発係数や曲げひずみ)にも大きな影響がないことが分かる。 From Table 3, it can be seen that the soil pavement material of the present invention exhibits excellent physical properties. It can be seen that the strength of 180 days is increased by mixing calcium silicate, and the impact absorbability (GB restitution coefficient and bending strain) is not greatly affected.

「実験例4」
実験例1の実験No.1-4のカルシウムアルミネートと石膏を当量ずつ混合したものに、表4に示す割合でセメント混和用ポリマー、アスファルト乳剤を混合した合計100部に対し、土壌を600部、水を20部加えて土壌舗装材料を調製したこと以外は実験例3と同様に行った。
"Experimental example 4"
600 parts of soil to 100 parts in total of the mixture of calcium aluminate and gypsum of Experiment No. 1-4 in Experiment Example 1 mixed with the cement admixture polymer and asphalt emulsion in the proportions shown in Table 4 The same procedure as in Experimental Example 3 was conducted except that 20 parts of water was added to prepare a soil pavement material.

<使用材料>
セメント混和用ポリマーイ:EVA系エマルジョン、固形分濃度20%
セメント混和用ポリマーロ:クロロプレン系ラテックス、固形分濃度20%
セメント混和用ポリマーハ:アクリル系エマルジョン、固形分濃度20%
アスファルト乳剤:主成分アスファルト、瀝青物含有量60%、東亜道路工業社製
土壌:愛知県産真砂土、5mm篩下
<Materials used>
Polymer admixture for cement: EVA emulsion, solid content 20%
Cement admixture polymer: chloroprene latex, solid content 20%
Cement admixture polymer c: acrylic emulsion, solid content 20%
Asphalt emulsion: main component asphalt, bitumen content 60%, soil made by Toa Road Industry Co., Ltd.

Figure 2017082092
Figure 2017082092

表4より、本発明の土壌舗装材料は、セメント混和用ポリマー、アスファルト乳剤を混合することで、弾力性を示すGB反発係数が低く、曲げひずみが大きくなり衝撃吸収性に優れることが分かる。 From Table 4, it can be seen that the soil pavement material of the present invention has a low GB restitution coefficient indicating elasticity, a large bending strain, and excellent shock absorption by mixing a cement-mixing polymer and an asphalt emulsion.

本発明の土壌舗装材料により、速硬性であることから早期開放でき、寒冷地や低温環境下でも安定した舗装ができ、さらに衝撃吸収性に優れた土壌舗装材料を提供することが可能となるため主に土木、建築分野で好適に使用される。   Since the soil pavement material of the present invention is fast-hardening, it can be opened early, stable pavement can be achieved even in cold regions and low-temperature environments, and it is possible to provide a soil pavement material excellent in shock absorption. Mainly used in civil engineering and construction fields.

Claims (3)

ガラス化率が70%以上、CaO/Alモル比が1.0〜2.7、不純物が15%以下、ブレーン比表面積が3000cm/g以上であるカルシウムアルミネートと土壌を含有してなる土壌舗装材料。 Contains calcium aluminate and soil with a vitrification rate of 70% or more, CaO / Al 2 O 3 molar ratio of 1.0 to 2.7, impurities of 15% or less, and Blaine specific surface area of 3000 cm 2 / g or more. Soil pavement material. さらに、石膏を含有してなる請求項1記載の土壌舗装材料。 The soil pavement material according to claim 1, further comprising gypsum. さらに、カルシウムシリケート、セメント混和用ポリマー、アスファルト乳剤から選ばれた1種又は2種以上を含有してなる請求項1又は2に記載の土壌舗装材料。 Furthermore, the soil pavement material of Claim 1 or 2 formed by containing the 1 type (s) or 2 or more types chosen from the calcium silicate, the polymer for cement mixing, and an asphalt emulsion.
JP2015212076A 2015-10-28 2015-10-28 Soil pavement material Active JP6634267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015212076A JP6634267B2 (en) 2015-10-28 2015-10-28 Soil pavement material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015212076A JP6634267B2 (en) 2015-10-28 2015-10-28 Soil pavement material

Publications (2)

Publication Number Publication Date
JP2017082092A true JP2017082092A (en) 2017-05-18
JP6634267B2 JP6634267B2 (en) 2020-01-22

Family

ID=58710788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015212076A Active JP6634267B2 (en) 2015-10-28 2015-10-28 Soil pavement material

Country Status (1)

Country Link
JP (1) JP6634267B2 (en)

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061646A (en) * 1992-06-22 1994-01-11 Denki Kagaku Kogyo Kk Composition for road
JPH08109050A (en) * 1994-10-05 1996-04-30 Toyota Central Res & Dev Lab Inc Cement
JPH08165466A (en) * 1994-12-14 1996-06-25 Sumitomo Osaka Cement Co Ltd Hardening material composition for soil improvement
JP2000271924A (en) * 1999-03-25 2000-10-03 Toyota Motor Corp Manufacture of inorganic formed plate
JP2001288468A (en) * 2000-04-03 2001-10-16 Denki Kagaku Kogyo Kk Soil solidifying composition for vegetation
JP2005082440A (en) * 2003-09-08 2005-03-31 Denki Kagaku Kogyo Kk Quick hardening cement admixture, cement composition, and mortar composition
JP2005162949A (en) * 2003-12-04 2005-06-23 Taiheiyo Material Kk Grouting material
JP2007031662A (en) * 2005-07-29 2007-02-08 Denki Kagaku Kogyo Kk Elastic composition and repairing method using the same
JP2007177212A (en) * 2005-11-29 2007-07-12 Denki Kagaku Kogyo Kk Elastic composition and repairing method using the same
JP2008179504A (en) * 2007-01-24 2008-08-07 Nippon Steel Corp Blast furnace slag cement
JP2008239693A (en) * 2007-03-26 2008-10-09 Nippon Steel & Sumikin Stainless Steel Corp Soil based solidifying material and method of paving soil-base solidifying material
JP2008274580A (en) * 2007-04-26 2008-11-13 Mitsubishi Materials Corp Filling material for pavement body, and paving method using the same
JP2010065158A (en) * 2008-09-11 2010-03-25 Nippon Steel & Sumikin Stainless Steel Corp Soil-based solidifying material
JP2010138588A (en) * 2008-12-10 2010-06-24 Denki Kagaku Kogyo Kk Soil improving method
JP2013127030A (en) * 2011-12-19 2013-06-27 Taiheiyo Materials Corp Civil engineering material
JP2013127029A (en) * 2011-12-19 2013-06-27 Taiheiyo Materials Corp Civil engineering material
JP2013136669A (en) * 2011-12-28 2013-07-11 Taiheiyo Materials Corp Cement-based grouting material
JP2014201502A (en) * 2013-04-08 2014-10-27 電気化学工業株式会社 Method for solidifying ground
JP2014202646A (en) * 2013-04-05 2014-10-27 電気化学工業株式会社 Ground consolidation method
JP2015074896A (en) * 2013-10-08 2015-04-20 電気化学工業株式会社 Ground solidification method
WO2015182170A1 (en) * 2014-05-30 2015-12-03 太平洋マテリアル株式会社 Admixture for rapid setting
JP2016041640A (en) * 2014-08-19 2016-03-31 太平洋マテリアル株式会社 Accelerator for spray material
JP2016124741A (en) * 2014-12-26 2016-07-11 太平洋マテリアル株式会社 High strength spray concrete

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061646A (en) * 1992-06-22 1994-01-11 Denki Kagaku Kogyo Kk Composition for road
JPH08109050A (en) * 1994-10-05 1996-04-30 Toyota Central Res & Dev Lab Inc Cement
JPH08165466A (en) * 1994-12-14 1996-06-25 Sumitomo Osaka Cement Co Ltd Hardening material composition for soil improvement
JP2000271924A (en) * 1999-03-25 2000-10-03 Toyota Motor Corp Manufacture of inorganic formed plate
JP2001288468A (en) * 2000-04-03 2001-10-16 Denki Kagaku Kogyo Kk Soil solidifying composition for vegetation
JP2005082440A (en) * 2003-09-08 2005-03-31 Denki Kagaku Kogyo Kk Quick hardening cement admixture, cement composition, and mortar composition
JP2005162949A (en) * 2003-12-04 2005-06-23 Taiheiyo Material Kk Grouting material
JP2007031662A (en) * 2005-07-29 2007-02-08 Denki Kagaku Kogyo Kk Elastic composition and repairing method using the same
JP2007177212A (en) * 2005-11-29 2007-07-12 Denki Kagaku Kogyo Kk Elastic composition and repairing method using the same
JP2008179504A (en) * 2007-01-24 2008-08-07 Nippon Steel Corp Blast furnace slag cement
JP2008239693A (en) * 2007-03-26 2008-10-09 Nippon Steel & Sumikin Stainless Steel Corp Soil based solidifying material and method of paving soil-base solidifying material
JP2008274580A (en) * 2007-04-26 2008-11-13 Mitsubishi Materials Corp Filling material for pavement body, and paving method using the same
JP2010065158A (en) * 2008-09-11 2010-03-25 Nippon Steel & Sumikin Stainless Steel Corp Soil-based solidifying material
JP2010138588A (en) * 2008-12-10 2010-06-24 Denki Kagaku Kogyo Kk Soil improving method
JP2013127030A (en) * 2011-12-19 2013-06-27 Taiheiyo Materials Corp Civil engineering material
JP2013127029A (en) * 2011-12-19 2013-06-27 Taiheiyo Materials Corp Civil engineering material
JP2013136669A (en) * 2011-12-28 2013-07-11 Taiheiyo Materials Corp Cement-based grouting material
JP2014202646A (en) * 2013-04-05 2014-10-27 電気化学工業株式会社 Ground consolidation method
JP2014201502A (en) * 2013-04-08 2014-10-27 電気化学工業株式会社 Method for solidifying ground
JP2015074896A (en) * 2013-10-08 2015-04-20 電気化学工業株式会社 Ground solidification method
WO2015182170A1 (en) * 2014-05-30 2015-12-03 太平洋マテリアル株式会社 Admixture for rapid setting
JP2016041640A (en) * 2014-08-19 2016-03-31 太平洋マテリアル株式会社 Accelerator for spray material
JP2016124741A (en) * 2014-12-26 2016-07-11 太平洋マテリアル株式会社 High strength spray concrete

Also Published As

Publication number Publication date
JP6634267B2 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
JP6924632B2 (en) Road repair material
JP6649774B2 (en) Weed control material and method of using it
KR100971226B1 (en) Cement mixture for chloride resistance in road pavement and repair
JP3122532B2 (en) Road composition
JP6914102B2 (en) Road repair material
JP6948263B2 (en) Weed control material and how to use it
JP2017160663A (en) Soil pavement material and soil pavement method with it
JP6893425B2 (en) Soil pavement material
JP6634267B2 (en) Soil pavement material
JP6979768B2 (en) Soil pavement material
JP4247989B2 (en) Soil pavement admixture and soil pavement using the same
JP6876408B2 (en) Weed control material and how to use it
JP6809820B2 (en) Weed control material and how to use it
JP6914071B2 (en) Weed control material and how to use it
JP3460165B2 (en) Cement admixture, cement composition, and injection material using the same
JP6985548B1 (en) Repair mortar material, repair mortar composition and cured product
JP2018080138A (en) Weed-preventing material and application method therefor
JP2014136665A (en) Expansion suppressing material, concrete and method of suppressing expansion of concrete
JPH0891894A (en) Cement admixture and cement composition
JP7181355B1 (en) Cement admixture, method for producing cement admixture, and cement composition
JP2017082486A (en) Soil pavement material and soil pavement method
JP6865026B2 (en) Weed control material and how to use it
JP2018068239A (en) Weed-proof material and method of using the same
JP3397463B2 (en) Cement admixture for injection material and cement composition for injection material
JP6782174B2 (en) Soil pavement material and its construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190620

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R150 Certificate of patent or registration of utility model

Ref document number: 6634267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250