JP2008274580A - Filling material for pavement body, and paving method using the same - Google Patents

Filling material for pavement body, and paving method using the same Download PDF

Info

Publication number
JP2008274580A
JP2008274580A JP2007116791A JP2007116791A JP2008274580A JP 2008274580 A JP2008274580 A JP 2008274580A JP 2007116791 A JP2007116791 A JP 2007116791A JP 2007116791 A JP2007116791 A JP 2007116791A JP 2008274580 A JP2008274580 A JP 2008274580A
Authority
JP
Japan
Prior art keywords
mass
pavement
cement
water
cement milk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007116791A
Other languages
Japanese (ja)
Other versions
JP5169007B2 (en
Inventor
Hideo Tawara
英男 田原
Kiyoshi Kamiya
清志 神谷
Hitoshi Inohana
仁 猪鼻
Shigeru Komatsu
茂 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007116791A priority Critical patent/JP5169007B2/en
Publication of JP2008274580A publication Critical patent/JP2008274580A/en
Application granted granted Critical
Publication of JP5169007B2 publication Critical patent/JP5169007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/10Accelerators; Activators
    • C04B2103/12Set accelerators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/10Accelerators; Activators
    • C04B2103/14Hardening accelerators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete

Abstract

<P>PROBLEM TO BE SOLVED: To provide a filling material having a long usable time of about 60 minutes without degrading compressive strength at a young age (at an age on the order of 3 hours). <P>SOLUTION: The filling material for a pavement body contains sand having a particle size of 90 to 1,000 μm, of 5 to 30 mass% and reemulsifiable polymer powder of 1 to 10 mass% in a cement composition of 100 mass% which contains cement mineral of 100 to 1,000 mass% in an admixture of 100 mass%. The admixture contains a condensation adjuster in a predetermined proportion in a high-speed component in which calcium aluminate and an inorganic sulfate are mixed with each other at a predetermined mass ratio. The condensation adjuster is comprised of sodium aluminate, an inorganic carbonate, and carboxylic acids. The calcium aluminate has a vitrification ratio of 80% or more, and provided that any ingredient of the condensation adjustor is contained in an amount of 100 mass%, the other two ingredients are contained in an amount of 60 to 160 mass%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、カルシウムアルミネート及び無機硫酸塩の急硬成分に、アルミン酸ナトリウム、無機炭酸塩及びカルボン酸類からなる凝結調整剤を混合して混和材を調製し、この混和材に普通ポルトランドセメント等のセメント鉱物を含むセメント組成物を混合して得られた半たわみ性を有する舗装体用注入材と、この舗装体用注入材を用いて舗装する方法に関するものである。   The present invention prepares an admixture by mixing a calcium aluminate and an inorganic sulfate rapid-hardening component with a setting modifier composed of sodium aluminate, an inorganic carbonate and a carboxylic acid. The present invention relates to an injection material for a pavement having a semi-flexibility obtained by mixing a cement composition containing a cement mineral and a method for paving using the injection material for a pavement.

従来、カルシウムアルミネートと無機硫酸塩とが重量比で1:(0.5〜3)の割合で混合された急硬成分をセメント鉱物に対して内割で15〜35%含む急硬セメントを主成分とし、この急硬セメントに対して内割重量でアルミン酸ナトリウム0.2〜5%、無機炭酸塩0.2〜5%及びカルボン酸類0.1〜2%を含む超速硬セメント組成物(例えば、特許文献1参照。)が開示されている。
このように構成された超速硬セメント組成物では、このセメント組成物に注水した後、少なくとも20分以上の硬化時間(可使時間)を保持できるとともに、1時間後の圧縮強度が19.6N/mm2以上となる。またその後の圧縮強度も順調に延び、長期耐久性に優れ、更に硬化体に斑点化現象を起こさないようになっている。
Conventionally, a hardened cement containing 15 to 35% of a quick hardening component in which calcium aluminate and inorganic sulfate are mixed at a weight ratio of 1: (0.5 to 3) with respect to the cement mineral. Super fast-hardening cement composition containing sodium aluminate 0.2-5%, inorganic carbonate 0.2-5% and carboxylic acids 0.1-2% by weight based on the rapid-hardening cement as a main component (For example, refer to Patent Document 1).
In the super-hard cement composition thus configured, after pouring water into the cement composition, it is possible to maintain a setting time (pot life) of at least 20 minutes and a compressive strength after 1 hour is 19.6 N / mm 2 or more. Further, the subsequent compressive strength is also steadily extended, excellent in long-term durability, and further, it does not cause a spotting phenomenon in the cured product.

また、ポルトランドセメント又はポルトランドセメントを含む混合セメントからなるセメント成分と、このセメント成分に対して内割りで2〜50重量%の速硬成分と、セメント成分及び速硬成分の合計重量に対して0.1〜5重量%の凝結調整剤とを含む温度緩衝型速硬性組成物(例えば、特許文献2参照。)が開示されている。この温度緩衝型速硬性組成物では、速硬成分が、アルミン酸カルシウムを主成分とする微粉冶金滓40〜95重量%及びII型無水石膏5〜60重量%の混合物に、炭酸アルカリが内割で1〜10重量%添加され、アルミン酸ナトリウム、アルミン酸カリウム及び硫酸アルミニウムからなる群より選ばれた1種又は2種以上が1〜10重量%添加される。更に凝結調整剤が有機酸系凝結遅延剤と硫酸アルカリからなる。
このように構成された温度緩衝型速硬性組成物は、セメント成分、速硬成分及び凝結調整剤の所定量を添加混合して容易に調製することができ、混練水量30〜100重量%にて混練することにより、高強度の硬化体を得ることができる。この結果、温度緩衝型速硬性組成物を用いれば、幅広い施工温度において、安定かつ良好な凝結特性及び作業性を確保できるようになっている。
Moreover, it is 0 with respect to the cement component which consists of Portland cement or the mixed cement containing Portland cement, 2-50 weight% of quick hardening components with respect to this cement component, and the total weight of a cement component and a quick hardening component. A temperature-buffered fast-curing composition containing 1 to 5% by weight of a setting modifier (for example, see Patent Document 2) is disclosed. In this temperature buffered fast-curing composition, the fast-hardening component is a mixture of 40 to 95% by weight of fine metallurgical metal slag mainly composed of calcium aluminate and 5 to 60% by weight of type II anhydrous gypsum, and alkali carbonate is internally contained. 1 to 10% by weight, and 1 to 10% by weight of one or more selected from the group consisting of sodium aluminate, potassium aluminate and aluminum sulfate is added. Further, the setting adjuster comprises an organic acid setting retarder and an alkali sulfate.
The temperature-buffered fast-curing composition thus configured can be easily prepared by adding and mixing predetermined amounts of cement component, fast-hardening component and setting modifier, and the amount of kneading water is 30 to 100% by weight. By kneading, a high-strength cured body can be obtained. As a result, the use of a temperature buffered fast-curing composition makes it possible to ensure stable and good setting characteristics and workability over a wide range of construction temperatures.

更に、カルシウムアルミネート、ポリアクリル酸類、ホウ酸類、炭酸塩及びカルボン酸類を含有するセメント組成物(例えば、特許文献3参照。)が開示されている。
このように構成されたセメント組成物は、流動性と可使時間を長く確保でき、適度な硬度時間を有するとともに、良好な強度を十分に発現でき、更に耐火性や高温強度に優れるとしている。
Furthermore, a cement composition containing calcium aluminate, polyacrylic acids, boric acids, carbonates and carboxylic acids (see, for example, Patent Document 3) is disclosed.
The cement composition thus configured is able to ensure long fluidity and pot life, has an appropriate hardness time, can sufficiently develop good strength, and is excellent in fire resistance and high temperature strength.

一方、先ずポルトランドセメント又は混合セメント100重量部に対して、速硬性硬化材を20〜100重量部混合して速硬性セメント材を調製し、次いでこの速硬性セメント材100重量部に対して、凝結調整剤0.1〜1.0重量部と、セメント用ポリマーをこのポリマーと速硬性セメント材との重量比で1.5〜8.0重量%とを配合してグラウト材を調製し、次にこのグラウト材に、水を速硬性セメント材との質量比で40〜70重量%の範囲内に混練して混練物を調製し、更にこの混練物を空隙率40〜10%のアスファルトコンクリート中に充填する半剛性舗装方法が開示されている(例えば、特許文献4参照。)。この半剛性舗装方法では、上記速硬性硬化材がアルミン酸カルシウム化合物を50重量%以上含有する。
このように構成された半剛性舗装方法では、ポルトランドセメント又は混合セメントに、主として12CaO・7Al23よりなるアルミン酸カルシウムを50重量%以上含有する微粉末冶金滓とII型無水石膏とよりなる速硬性硬化材を配合して得られた速硬性セメントを、水と混練することにより、水和初期において、セメント中の水酸化カルシウムとアルミン酸カルシウムとが水和反応してカルシウムアルミネートハイドレートが生成され、更にこのカルシウムアルミネートハイドレートとII型無水石膏との水和反応によって針状結晶のエトリンガイト及びモノサルフェイト(3CaO・Al23・CaSO4・12H2O)が生成され急速に硬化し、初期強度を発現できる。また凝結調整剤の添加量を変えることにより、硬化開始時間を自由に調整でき、舗装施工時間を短縮できるとともに、施工後に急激に硬化するため、アスファルトコンクリートの空隙への浸透力に優れ、急を要する工事用に最適である。即ち、コンクリート打設作業に必要な時間及び流動性が持続され、かつ短期に強度が上昇する舗装を行えるようになっている。
On the other hand, first, 20 to 100 parts by weight of a fast-curing hardener is mixed with 100 parts by weight of Portland cement or mixed cement to prepare a fast-curing cement material, and then set to 100 parts by weight of the fast-curing cement material. A grout material is prepared by blending 0.1 to 1.0 part by weight of a modifier and 1.5 to 8.0% by weight of the polymer for cement and 1.5 to 8.0% by weight of the polymer and fast-curing cement material. In addition, a kneaded material is prepared by kneading water into the grout material in a mass ratio of 40 to 70% by weight with respect to the fast-curing cement material. The kneaded material is further mixed in asphalt concrete having a porosity of 40 to 10%. Has disclosed a semi-rigid pavement method (see, for example, Patent Document 4). In this semi-rigid pavement method, the fast-curing hardener contains 50% by weight or more of a calcium aluminate compound.
In the semi-rigid pavement method configured as described above, Portland cement or mixed cement is composed of fine powder metallurgy containing 50% by weight or more of calcium aluminate mainly composed of 12CaO · 7Al 2 O 3 and type II anhydrous gypsum. Calcium aluminate hydrate is obtained by hydration reaction of calcium hydroxide and calcium aluminate in the cement at the initial stage of hydration by kneading the fast-curing cement obtained by blending the fast-curing hardener with water. In addition, the hydration reaction of this calcium aluminate hydrate with type II anhydrous gypsum produces acicular crystals of ettringite and monosulfate (3CaO.Al 2 O 3 .CaSO 4 .12H 2 O). The initial strength can be expressed. In addition, by changing the amount of setting modifier added, the curing start time can be adjusted freely, the pavement construction time can be shortened, and since it hardens rapidly after construction, it has excellent penetration power into the voids of asphalt concrete. It is most suitable for construction that requires. That is, it is possible to perform pavement in which the time and fluidity necessary for the concrete placing work are maintained and the strength increases in a short time.

また、空隙率が10〜40%であって、この空隙部分に最大吸水率30〜80質量%の保水性注入材が充填された保水性機能を有する舗装体が開示されている(例えば、特許文献5参照。)。
このように構成された保水性機能を有する舗装体では、舗装面の温度上昇抑制効果を長時間持続させ、かつ舗装面が実用上問題のない圧縮強度が得られるようになっている。
Further, a pavement having a water retention function in which the porosity is 10 to 40% and the void portion is filled with a water retention injection material having a maximum water absorption rate of 30 to 80% by mass is disclosed (for example, a patent). Reference 5).
In the pavement having the water retention function configured as described above, the effect of suppressing the temperature increase of the pavement surface is maintained for a long time, and the pavement surface has a compressive strength with no practical problem.

更に、セメント系結合材と保水性材料とを含み、保水性材料を100質量%とするとき、粒子径0.1〜50μmの珪藻質濾過助剤が保水性材料に30〜100質量%含まれた舗装体用注入材料が開示されている(例えば、特許文献6参照。)。この舗装体用注入材料では、セメント系結合材として、超速硬セメント、普通ポルトランドセメント、早強ポルトランドセメント、白色セメント等が用いられる。上記超速硬セメントは、ポルトランドセメント100質量%に対し、カルシウムアルミネートと無水石膏からなる速硬成分を5〜100質量%混合して得られるセメントであり、MG−5(三菱マテリアル株式会社製)などが挙げられる。またカルシウムアルミネートと無水石膏からなる速硬成分としては、コーカエース(三菱マテリアル株式会社製)、コスミック(電気化学工業株式会社)などがあり、これらはポルトランドセメントと適宜混合して使用される。
このように構成された舗装体用注入材料では、降雨や散水等による水の補給を受けない状態にあっても、日射による熱を受けた場合、その表面の温度が上昇し始めると、珪藻質濾過助剤が吸着した大気中の水分が蒸発して熱を奪い、その舗装体の表面温度の著しい上昇を抑制できるので、水の補給を受けない状態にあっても、その表面の温度上昇を比較的長い間抑制できるようになっている。
特公平3−41420号公報(請求項1、明細書第2頁右欄第28行目〜同頁右欄33行目) 特許第3125316号公報(請求項1、段落番号[0028]、段落番号[0039]) 特開平6−32642号公報(請求項1、段落番号[0066]) 特開平2−145469号公報(請求項1及び2、明細書第3頁右上欄第9行目〜同頁左下欄第2行目、明細書第7頁右下欄第7行目〜同頁同欄第14行目) 特開2005−48403号公報(請求項1、段落番号[0051]) 特開2007−46337号公報(請求項1、段落番号[0013、段落番号[0014]])
Furthermore, when the cementitious binder and the water-retaining material are included and the water-retaining material is 100% by mass, the water-retaining material contains 30-100% by mass of a diatomaceous filter aid having a particle size of 0.1-50 μm. An injection material for pavement is disclosed (for example, see Patent Document 6). In this injecting material for pavement, super fast cement, ordinary Portland cement, early strength Portland cement, white cement or the like is used as a cement-based binder. The super fast-hardening cement is a cement obtained by mixing 5 to 100% by weight of a fast-hardening component consisting of calcium aluminate and anhydrous gypsum with respect to 100% by weight of Portland cement. MG-5 (manufactured by Mitsubishi Materials Corporation) Etc. In addition, examples of the quick-hardening component composed of calcium aluminate and anhydrous gypsum include Coca Ace (manufactured by Mitsubishi Materials Corporation), Cosmic (Electrochemical Industry Co., Ltd.), and the like, and these are used by appropriately mixing with Portland cement.
In the injecting material for pavement constructed in this way, even when it is not in the state of being replenished with water due to rain or watering, when it receives heat from solar radiation, its surface temperature begins to rise, Moisture in the atmosphere adsorbed by the filter aid evaporates and takes heat away, and a significant rise in the surface temperature of the pavement can be suppressed. It can be suppressed for a relatively long time.
Japanese Examined Patent Publication No. 3-41420 (Claim 1, description, page 2, right column, line 28 to page 33, right column, line 33) Japanese Patent No. 3125316 (Claim 1, paragraph number [0028], paragraph number [0039]) JP-A-6-32642 (Claim 1, paragraph number [0066]) JP-A-2-145469 (Claims 1 and 2, specification, page 3, upper right column, line 9 to same page, lower left column, second line, specification, page 7, lower right column, line 7 to same page) (Column 14th line) JP 2005-48403 A (Claim 1, paragraph number [0051]) JP 2007-46337 A (Claim 1, paragraph number [0013, paragraph number [0014]])

しかし、上記従来の特許文献1に示された超速硬セメントでは、若材齢(材齢3時間程度)での圧縮強度を低下させずに、可使時間を60分程度と長く確保することが難しく、また硬化体に斑点の発生が認められ、この部分が欠陥となって長期的な強度も低下する不具合があった。ここで、材齢とは、セメント組成物に水を加えた混合物の練り上がり直後から測定した時間をいい、若材齢(材齢3時間程度)での圧縮強度とは、セメント組成物に水を加えた混合物の練り上がり直後から3時間経過したときの硬化体の圧縮強度をいう。また、可使時間とは、セメント組成物に水を加えた混合物の練り上がり直後からこの混合物に流動性がなくなるまでの時間をいう。
また、上記従来の特許文献1に示された超速硬セメントでは、注水後の混練温度が異なると凝結時間が変化してしまうという凝結時間の温度依存性が大きく、特に混練装置の違いによる凝結時間の温度依存性が大きい問題点があった。
また、上記従来の特許文献1に示された超速硬セメントでは、可使時間を長くするために、凝結調整剤の添加量を多くすると、若材齢(材齢3時間程度)での圧縮強度が低下する問題点もあった。
また、上記従来の特許文献2に示された温度緩衝型速硬性組成物では、カルシウムアルミネートが粉末冶金滓であるため、硬化体の圧縮強度が低下し、凝結時間の温度依存性が未だ大きい問題点があった。
また、上記従来の特許文献3に示されたセメント組成物では、無水石膏等の無機炭酸塩を使用しないため、若材齢(材齢3時間程度)での圧縮強度が低い問題点があった。
However, with the super-hard cement shown in the above-mentioned conventional patent document 1, it is possible to ensure a long pot life of about 60 minutes without reducing the compressive strength at a young age (about 3 hours). It was difficult, and spots were observed on the cured body, and there was a problem that this part became a defect and the long-term strength was lowered. Here, the age is the time measured immediately after kneading the mixture obtained by adding water to the cement composition, and the compressive strength at the young age (about 3 hours of age) is the water in the cement composition. The compressive strength of the cured product when 3 hours have passed immediately after the kneaded mixture is added. The pot life means the time from immediately after kneading the mixture obtained by adding water to the cement composition until the mixture loses fluidity.
Moreover, in the conventional super-hard cement shown in the above-mentioned conventional patent document 1, there is a large temperature dependency of the setting time that the setting time changes if the kneading temperature after water injection is different. There was a problem that the temperature dependency of
Moreover, in the super-hard cement shown in the above-mentioned conventional patent document 1, if the addition amount of the setting modifier is increased in order to increase the pot life, the compressive strength at a young material age (material age of about 3 hours). There was also a problem of lowering.
Further, in the temperature buffered fast-curing composition shown in the above-mentioned conventional Patent Document 2, since calcium aluminate is a powder metallurgy, the compressive strength of the cured body is lowered, and the temperature dependence of the setting time is still large. There was a problem.
Further, the conventional cement composition disclosed in Patent Document 3 does not use inorganic carbonate such as anhydrous gypsum, and thus has a problem of low compressive strength at a young age (about 3 hours). .

また、上記従来の特許文献4に示された半剛性舗装方法では、カルシウムアルミネート源として微粉末冶金滓を使用しているため、凝結時間の温度変化が大きくなり、特に5〜10℃の低温で凝結時間が短くなってしまい、この凝結時間を長くするために凝結調整剤を添加すると、若材齢(材齢3時間程度)の強度が低下するという問題点があった。
また、上記従来の特許文献5に示された保水性機能を有する舗装体では、夏期において降雨や散水による水の補給を受けてからその持続性が3〜4日と短いという不具合があった。
更に、上記従来の特許文献6に示された舗装体用注入材料では、速硬材としてコーカエースやコスミックを使用しているため、可使時間を30〜75分と長く確保した場合、圧縮強度が低下するという問題点があった。
Moreover, in the semi-rigid pavement method shown in the above-mentioned conventional patent document 4, since a fine powder metallurgy is used as a calcium aluminate source, the temperature change of the setting time becomes large, especially at a low temperature of 5 to 10 ° C. Thus, there is a problem that the strength of the young age (about 3 hours of age) is lowered when a setting regulator is added to increase the setting time.
Moreover, in the paving body having the water retention function shown in the above-mentioned conventional Patent Document 5, there is a problem that the sustainability is short as 3 to 4 days after receiving water supply by rain or watering in summer.
Furthermore, in the injection material for pavement shown in the above-mentioned conventional patent document 6, since a caulk ace or cosmic is used as a fast-hardening material, when the pot life is as long as 30 to 75 minutes, the compressive strength is high. There was a problem that it decreased.

本発明の目的は、若材齢(材齢3時間程度)での圧縮強度を低下させずに、可使時間を60分程度と長く確保することができ、更に温度が異なっても凝結時間が殆ど変化せず、凝結時間の温度依存性を小さくすることができる、舗装体用注入材及びこれを用いた舗装方法を提供することにある。
本発明の別の目的は、舗装体の表面の温度上昇を比較的長い間抑制し得る、舗装体用注入材及びこれを用いた舗装方法を提供することにある。
The object of the present invention is to ensure a long pot life of about 60 minutes without lowering the compressive strength at a young age (about 3 hours of age). An object of the present invention is to provide an injecting material for a pavement and a pavement method using the same, which can hardly change the temperature dependency of the setting time.
Another object of the present invention is to provide an injecting material for a paving body and a paving method using the same, which can suppress the temperature rise of the surface of the paving body for a relatively long time.

請求項1に係る発明は、混和材100質量%に対してセメント鉱物を100〜1000質量%含むセメント組成物100質量%に対して、粒径90〜1000μmの砂を5〜30質量%と、再乳化粉末樹脂を1〜10質量%含む舗装体用注入材であって、混和材が、カルシウムアルミネートと無機硫酸塩とが質量比で1:(0.5〜3)の割合で混合された急硬成分に対して内割でアルミン酸ナトリウム0.2〜35.0質量%、無機炭酸塩0.2〜35.0質量%及びカルボン酸類0.1〜15.0質量%からなる凝結調整剤を含むとともに、カルシウムアルミネートのガラス化率が80%以上であって、アルミン酸ナトリウム、無機炭酸塩及びカルボン酸類からなる凝結調整剤のうちのいずれか1種を100質量%とするとき他の2種をそれぞれ60〜160質量%含み、アルミン酸ナトリウム、無機炭酸塩又はカルボン酸類のうちの少なくとも1種の凝結調整剤が、この選ばれた1種の凝結調整剤の総量を100質量%とするとき、平均粒径45μmを越えかつ90μm以下の第1粒子10〜45質量%と、平均粒径90μmを越えかつ150μm以下の第2粒子30〜70質量%と、平均粒径150μmを越えかつ500μm以下の第3粒子5〜30質量%とを含み、かつ第2粒子を第1粒子より多く含むとともに第3粒子より多く含むことを特徴とする舗装体用注入材である。   The invention according to claim 1 is 5 to 30% by mass of sand having a particle size of 90 to 1000 μm with respect to 100% by mass of cement composition containing 100 to 1000% by mass of cement mineral with respect to 100% by mass of the admixture, An injection material for pavement containing 1 to 10% by mass of a re-emulsified powder resin, wherein the admixture is a mixture of calcium aluminate and inorganic sulfate in a mass ratio of 1: (0.5 to 3). Concentration of 0.2 to 35.0 mass% sodium aluminate, 0.2 to 35.0 mass% inorganic carbonate and 0.1 to 15.0 mass% carboxylic acid When containing a regulator and the vitrification rate of calcium aluminate is 80% or more, and any one of the setting regulators consisting of sodium aluminate, inorganic carbonate and carboxylic acid is 100% by mass The other two 60 to 160% by mass of each, and at least one setting modifier of sodium aluminate, inorganic carbonate or carboxylic acid, the total amount of the selected one type of setting regulator is 100% by mass. When the average particle diameter exceeds 45 μm and is 90 μm or less, the first particles are 10 to 45 mass%, the average particle diameter is more than 90 μm and the second particles are 150 μm or less, 30 to 70 mass%, the average particle diameter is more than 150 μm, and 500 μm. The pavement injection material is characterized by containing 5 to 30% by mass of the following third particles and containing more second particles than first particles and more than third particles.

この請求項1に記載された舗装体用注入材では、カルシウムアルミネートのガラス化率を80%以上としたので、上記混和材を含むセメント組成物に砂及び再乳化粉末樹脂を混合して舗装体用注入材を調製し、この舗装体用注入材に水を加え混合してセメントミルクを調製し、更にこのセメントミルクを硬化させたとき、この硬化体の若材齢(材齢3時間程度)での圧縮強度を低下させずに、可使時間を60分程度と長く確保することができ、また硬化体に斑点が発生するのを防止でき、更に上記舗装体用注入材に水を加えて得られたセメントミルクの混練温度が異なっても凝結時間が殆ど変化せず、凝結時間の温度依存性を小さくすることができる。
またアルミン酸ナトリウム、無機炭酸塩及びカルボン酸類の混合割合を上記範囲とし、アルミン酸ナトリウム、無機炭酸塩又はカルボン酸類のうちの少なくとも1種の凝結調整剤の第1〜第3粒子の混合割合をそれぞれ上記範囲とし、更に第2粒子を第1粒子より多く含むとともに第3粒子より多く含む凝結調整剤と、セメント鉱物と、急硬成分とからなるセメント組成物に砂及び再乳化粉末樹脂を混合して得られた舗装体用注入材に、更に水を加えて混合したセメントミルクでは、反応開始が速やかに開始し、水和反応が順調に継続する、即ち急激な反応を抑え、連続的に穏やかな水和反応が起こるようにすることにより、有益なエトリンガイト[3CaO・Al23・3CaSO4・32H2O]又はモノサルフェート[3(3CaO・Al23・CaSO4・12H2O)]のいずれか一方又は双方が速やかに生成される。この結果、上記舗装体用注入材に注水して得られたセメントミルクを硬化させたとき、この硬化体の若材齢(材齢3時間程度)での圧縮強度を低下させずに、確実に可使時間を60分程度と長く確保することができるとともに、凝結時間の温度依存性を更に小さくすることができる。
また上記舗装体用注入材100質量%に対して、水を35〜55質量%混合してセメントミルクを調製したときに、このセメントミルクの可使時間が30〜75分であり、かつ材齢3時間の圧縮強度は4.5N/mm2以上であることが好ましい。
In the pavement injecting material described in claim 1, since the vitrification rate of calcium aluminate is 80% or more, the cement composition containing the admixture is mixed with sand and a re-emulsified powder resin. A body injection material is prepared, and cement milk is prepared by adding water to the pavement injection material, and when the cement milk is further cured, the young material age of the cured body (about 3 hours of material age) ), The pot life can be as long as about 60 minutes, and spots can be prevented from occurring on the cured body, and water can be added to the pavement injection material. Even if the kneading temperature of the cement milk obtained in this way is different, the setting time hardly changes, and the temperature dependency of the setting time can be reduced.
Also, the mixing ratio of sodium aluminate, inorganic carbonate and carboxylic acid is in the above range, and the mixing ratio of the first to third particles of at least one setting modifier among sodium aluminate, inorganic carbonate or carboxylic acid is In each of the above ranges, sand and a re-emulsified powder resin are mixed in a cement composition comprising a setting modifier containing more second particles than first particles and more than third particles, a cement mineral, and a rapid hardening component. In the cement milk mixed with water added to the pavement injection material obtained in this way, the reaction starts quickly and the hydration reaction continues smoothly, that is, the rapid reaction is suppressed and continuously. By allowing a mild hydration reaction to occur, beneficial ettringite [3CaO.Al 2 O 3 .3CaSO 4 .32H 2 O] or monosulfate [3 (3CaO. Al 2 O 3 · CaSO 4 · 12H 2 O)] or both are rapidly formed. As a result, when the cement milk obtained by pouring water into the pavement injection material is hardened, the hardened body can be reliably produced without reducing the compressive strength at the young age (about 3 hours). The pot life can be secured as long as about 60 minutes, and the temperature dependency of the setting time can be further reduced.
Moreover, when cement milk is prepared by mixing 35 to 55% by mass of water with respect to 100% by mass of the pavement injection material, the pot life of the cement milk is 30 to 75 minutes, and the age of the material The compressive strength for 3 hours is preferably 4.5 N / mm 2 or more.

請求項3に係る発明は、請求項1又は2に記載の舗装体用注入材に水を混合してセメントミルクを調製する工程と、このセメントミルクを空隙率40〜10%の舗装体の空隙部分に充填する工程とを含む舗装体用注入材を用いた舗装方法である。
この請求項3に記載された舗装体用注入材を用いた舗装方法では、舗装体の空隙部分に充填したセメントミルクが硬化したときに、この硬化体の若材齢(材齢3時間程度)での圧縮強度を低下させずに、確実に可使時間を60分程度と長く確保することができるとともに、凝結時間の温度依存性を小さくすることができる。
The invention according to claim 3 is a step of preparing cement milk by mixing water with the pavement injecting material according to claim 1 or 2, and a void of the pavement having a porosity of 40 to 10%. A pavement method using an injection material for a pavement including a step of filling a part.
In the pavement method using the pavement body injecting material according to claim 3, when the cement milk filled in the void portion of the pavement is hardened, the young material age of the hardened body (material age of about 3 hours) The pot life can be ensured for as long as about 60 minutes without lowering the compression strength at the same time, and the temperature dependence of the setting time can be reduced.

請求項4に係る発明は、混和材100質量%に対してセメント鉱物を100〜1000質量%含むセメント組成物100質量%に対して、保水性材料を5〜80質量%含む舗装体用注入材であって、保水性材料が、珪藻質濾過助剤、製紙スラッジ焼却灰及び天然非焼成バーミキュライトからなる群より選ばれた1種又は2種以上からなり、混和材が、カルシウムアルミネートと無機硫酸塩とが質量比で1:(0.5〜3)の割合で混合された急硬成分に対して内割でアルミン酸ナトリウム0.2〜35.0質量%、無機炭酸塩0.2〜35.0質量%及びカルボン酸類0.1〜15.0質量%からなる凝結調整剤を含むとともに、カルシウムアルミネートのガラス化率が80%以上であって、アルミン酸ナトリウム、無機炭酸塩及びカルボン酸類からなる凝結調整剤のうちのいずれか1種を100質量%とするとき他の2種をそれぞれ60〜160質量%含み、アルミン酸ナトリウム、無機炭酸塩又はカルボン酸類のうちの少なくとも1種の凝結調整剤が、この選ばれた1種の凝結調整剤の総量を100質量%とするとき、平均粒径45μmを越えかつ90μm以下の第1粒子10〜45質量%と、平均粒径90μmを越えかつ150μm以下の第2粒子30〜70質量%と、平均粒径150μmを越えかつ500μm以下の第3粒子5〜30質量%とを含み、かつ第2粒子を第1粒子より多く含むとともに第3粒子より多く含むことを特徴とする舗装体用注入材である。   The invention according to claim 4 is an injecting material for pavement comprising 5 to 80% by mass of a water retaining material with respect to 100% by mass of a cement composition containing 100 to 1000% by mass of cement mineral with respect to 100% by mass of an admixture. The water retention material is composed of one or more selected from the group consisting of diatomaceous filter aid, paper sludge incinerated ash, and natural uncalcined vermiculite, and the admixture is calcium aluminate and inorganic sulfuric acid. Sodium aluminate 0.2 to 35.0 mass%, inorganic carbonate 0.2 to 0.2% by weight with respect to the rapid hardening component in which salt is mixed at a mass ratio of 1: (0.5 to 3) A setting adjuster comprising 35.0% by mass and 0.1 to 15.0% by mass of a carboxylic acid, and a vitrification rate of calcium aluminate is 80% or more, wherein sodium aluminate, inorganic carbonate and carvone When any one of the coagulation regulators made of a cadmium is 100% by mass, the other two types are each included in an amount of 60 to 160% by mass, and at least one of sodium aluminate, inorganic carbonate or carboxylic acids When the total amount of the selected one type of setting modifier is 100% by mass, 10 to 45% by mass of the first particles having an average particle size of more than 45 μm and 90 μm or less, and an average particle size of 90 μm The second particles 30 to 70% by mass exceeding 150 μm or less, the third particles 5 to 30% by mass exceeding 150 μm in average particle size and 500 μm or less, and the second particles more than the first particles are included. It is an injection material for pavements characterized by containing more than 3 particles.

この請求項4に記載された舗装体用注入材では、この舗装体用注入材に水を混合して調製されたセメントミルクを硬化させたときに、上記請求項1と同様に、硬化体の若材齢(材齢3時間程度)での圧縮強度を低下させずに、可使時間を60分程度と長く確保することができ、また硬化体に斑点が発生するのを防止でき、更に上記舗装体用注入材に水を加えて得られたセメントミルクの混練温度が異なっても凝結時間が殆ど変化せず、凝結時間の温度依存性を小さくすることができることに加えて、舗装体の表面の温度上昇を比較的長い間抑制することができる。また上記保水性材料が大気中の水蒸気を吸着してその水分を保水する。
また舗装体用注入材100質量%に対して、水を80〜150質量%混合してセメントミルクを調製したときに、可使時間が30〜75分であり、かつ材齢3時間の圧縮強度が0.5N/mm2以上であり、更に硬化後の吸水率が50〜90質量%であることが好ましい。
また舗装体用注入材100質量%に対して、水を65〜80質量%混合してセメントミルクを調製したときに、可使時間が30〜75分であり、かつ材齢3時間の圧縮強度が4.0N/mm2以上であり、更に硬化後の吸水率が35〜50質量%であることもできる。
更に舗装体用注入材に水を混合して調製されたセメントミルクを硬化したときの硬化体の吸湿率が5〜15質量%であることが好ましい。
In the injecting material for paving bodies described in claim 4, when cement milk prepared by mixing water with the injecting material for paving bodies is hardened, The pot life can be secured as long as about 60 minutes without lowering the compressive strength at a young age (about 3 hours), and it is possible to prevent the occurrence of spots on the cured product. Even if the mixing temperature of cement milk obtained by adding water to the pavement injection material is different, the setting time hardly changes and the temperature dependence of the setting time can be reduced. Can be suppressed for a relatively long time. The water-retaining material adsorbs water vapor in the atmosphere and retains its moisture.
In addition, when cement milk is prepared by mixing 80 to 150% by weight of water with respect to 100% by weight of the injection material for pavement, the pot life is 30 to 75 minutes and the compressive strength is 3 hours. Is 0.5 N / mm 2 or more, and the water absorption after curing is preferably 50 to 90% by mass.
In addition, when cement milk is prepared by mixing 65 to 80% by mass of water with respect to 100% by mass of the injection material for pavement, the pot life is 30 to 75 minutes and the compressive strength is 3 hours. Is 4.0 N / mm 2 or more, and the water absorption after curing may be 35 to 50% by mass.
Furthermore, it is preferable that the moisture absorption rate of the cured product when the cement milk prepared by mixing water with the pavement injection material is cured is 5 to 15% by mass.

請求項8に係る発明は、請求項4ないし7いずれか1項に記載の舗装体用注入材に水を混合してセメントミルクを調製する工程と、このセメントミルクを空隙率40〜10%の舗装体の空隙部分に充填する工程とを含む舗装体用注入材を用いた舗装方法である。
この請求項8に記載された舗装体用注入材を用いた舗装方法では、舗装体の空隙部分に充填したセメントミルクが硬化したときに、この硬化体の若材齢(材齢3時間程度)での圧縮強度を低下させずに、確実に可使時間を60分程度と長く確保することができ、また凝結時間の温度依存性を小さくすることができ、更に上記硬化体により舗装体の表面の温度上昇を比較的長い間抑制することができる。一方、このセメントミルクを舗装体の空隙部分に充填させると、降雨や散水等による水の補給を受けない状態にあっても、大気中の水蒸気を吸着する。更に日射による熱を受けた場合にその表面の温度が上昇し始めると、保水性材料が吸着した大気中の水蒸気が蒸発して熱を奪い、その舗装体の表面温度が著しく上昇することを抑制する。
The invention according to claim 8 is a step of preparing cement milk by mixing water with the pavement injecting material according to any one of claims 4 to 7, and the cement milk having a porosity of 40 to 10%. A pavement method using an injection material for a pavement including a step of filling a void portion of the pavement.
In the pavement method using the pavement body injecting material according to claim 8, when the cement milk filled in the void portion of the pavement is hardened, the young material age of the hardened body (about 3 hours of material age). The pot life can be ensured for as long as about 60 minutes without lowering the compression strength at the same time, and the temperature dependence of the setting time can be reduced. Can be suppressed for a relatively long time. On the other hand, when this cement milk is filled in the gap portion of the pavement, water vapor in the atmosphere is adsorbed even in a state where it is not replenished with water due to rainfall or watering. In addition, when the surface temperature starts to rise when receiving heat from solar radiation, the water vapor in the atmosphere adsorbed by the water retention material evaporates and takes away heat, suppressing the surface temperature of the pavement from rising significantly. To do.

本発明によれば、セメント鉱物及び混和材を含むセメント組成物に、砂及び再乳化粉末樹脂を混合した舗装体用注入材であって、混和材が、カルシウムアルミネートと無機硫酸塩とが混合された急硬成分に、アルミン酸ナトリウム、無機炭酸塩及びカルボン酸類からなる凝結調整剤を含み、上記カルシウムアルミネートのガラス化率を80%以上にし、アルミン酸ナトリウム、無機炭酸塩及びカルボン酸類の混合割合を所定の範囲に設定し、アルミン酸ナトリウム、無機炭酸塩又はカルボン酸類のうちの少なくとも1種の凝結調整剤の第1〜第3粒子の混合割合を所定の範囲に設定し、更に第2粒子を第1粒子より多く含むとともに第3粒子より多く含むように設定したので、この舗装体用注入材に水を加えて混合してセメントミルクを調製し、このセメントミルクを硬化させた場合、硬化体の若材齢(材齢3時間程度)で圧縮強度を低下させずに、可使時間を60分程度と長く確保することができる。また硬化体に斑点が発生しないので、この斑点部分が欠陥となって長期的な硬化体の強度の低下を招くという事態の発生を防止できる。また注水後の混練温度が異なっても凝結時間が殆ど変化せず、凝結時間の温度依存性を小さくすることができる。この結果、どのような作業環境であっても、混和材を含む舗装体用注入材に注水して得られたセメントミルクの粘性変化が略同一の条件で混練作業、打設作業又は塗布作業等を行うことができる。また混和材を含む舗装体用注入材に注水すると、エトリンガイト[3CaO・Al23・3CaSO4・32H2O]又はモノサルフェート[3(3CaO・Al23・CaSO4・12H2O)]のいずれか一方又は双方が生成され、上記エトリンガイトやモノサルフェートが六価クロムを吸収できる。この結果、環境を汚染する有害物質として挙げられている六価クロムが地中に拡散されるのを防止できる。 According to the present invention, there is provided an injecting material for pavement in which a cement composition containing cement mineral and an admixture is mixed with sand and a re-emulsified powder resin, wherein the admixture is a mixture of calcium aluminate and inorganic sulfate. The rapid hardening component contains a setting adjuster composed of sodium aluminate, inorganic carbonate and carboxylic acids, and the vitrification rate of the calcium aluminate is 80% or more, and sodium aluminate, inorganic carbonate and carboxylic acids The mixing ratio is set to a predetermined range, the mixing ratio of the first to third particles of at least one setting modifier among sodium aluminate, inorganic carbonate or carboxylic acid is set to a predetermined range, and Since it was set to contain 2 particles more than the 1st particle and more than the 3rd particle, water was added to this pavement material and mixed to prepare cement milk In this case where the cement milk is hardened, without reducing the compressive strength at the young ages of the cured product (age of about 3 hours), the pot life can be secured as long as about 60 minutes. Further, since no spots are generated on the cured body, it is possible to prevent the occurrence of a situation in which this spot portion becomes a defect and causes a long-term decrease in the strength of the cured body. Even if the kneading temperature after water injection is different, the setting time hardly changes, and the temperature dependence of the setting time can be reduced. As a result, in any working environment, the viscosity change of cement milk obtained by pouring water into the pavement injection material containing the admixture is kneaded, placed or applied, etc. under substantially the same conditions. It can be performed. Moreover, when water is poured into the pavement injection material containing the admixture, ettringite [3CaO · Al 2 O 3 · 3CaSO 4 · 32H 2 O] or monosulfate [3 (3CaO · Al 2 O 3 · CaSO 4 · 12H 2 O) ] Or both of these are produced, and the ettringite and monosulfate can absorb hexavalent chromium. As a result, it is possible to prevent diffusion of hexavalent chromium, which is listed as a harmful substance that pollutes the environment, into the ground.

また混和材を含むセメント組成物100質量%に対して粒径90〜1000μmの砂を5〜30質量%含むので、舗装体用注入材に水を混合して調製されたセメントミルクを混練するときに、上記砂の存在により各材料が良く撹拌されて、凝結調整剤が速やかに溶け、凝結性状の安定化を図ることができるとともに、セメントミルクが硬化して得られた硬化体の表面状態が強靱になる。
また混和材を含むセメント組成物100質量%に対して再乳化粉末樹脂を1〜10質量%含むので、舗装体用注入材に水を混合して調製されたセメントミルクの材料分離が起こり難くなって、ブリーディングが減少し、セメントミルクが硬化して得られた硬化体にひび割れが発生し難くなる。
更に上記砂及び再乳化粉末樹脂を含む舗装体用注入材に水を混合してセメントミルクを調製した後に、このセメントミルクを舗装体の空隙部分に充填すれば、このセメントミルクが硬化したときに、この硬化体の若材齢(材齢3時間程度)での圧縮強度を低下させずに、確実に可使時間を60分程度と長く確保することができるとともに、凝結時間の温度依存性を小さくすることができる。
Moreover, since it contains 5 to 30% by mass of sand having a particle size of 90 to 1000 μm with respect to 100% by mass of the cement composition containing the admixture, when kneading cement milk prepared by mixing water with the pavement injection material In addition, each material is well agitated due to the presence of the sand, the setting modifier dissolves quickly, and the setting property can be stabilized, and the surface state of the cured product obtained by curing the cement milk is Become tough.
Moreover, since 1-10 mass% of re-emulsified powder resin is contained with respect to 100 mass% of cement composition containing an admixture, the material separation of the cement milk prepared by mixing water with the injection material for pavements becomes difficult to occur. As a result, bleeding is reduced and cracks are less likely to occur in the cured product obtained by hardening the cement milk.
Further, after preparing cement milk by mixing water into the pavement injection material containing the sand and the re-emulsified powder resin, if the cement milk is filled in the void portion of the pavement, the cement milk is cured. In addition, it is possible to ensure a long pot life of about 60 minutes without lowering the compressive strength of the hardened body at a young age (about 3 hours), and the temperature dependence of the setting time. Can be small.

一方、セメント鉱物及び混和材を含むセメント組成物に、保水性材料を混合した舗装体用注入材であって、保水性材料が、珪藻質濾過助剤、製紙スラッジ焼却灰及び天然非焼成バーミキュライトからなる群より選ばれた1種又は2種以上からなり、混和材が、カルシウムアルミネートと無機硫酸塩とが混合された急硬成分に、アルミン酸ナトリウム、無機炭酸塩及びカルボン酸類からなる凝結調整剤を含み、上記カルシウムアルミネートのガラス化率を80%以上にし、アルミン酸ナトリウム、無機炭酸塩及びカルボン酸類の混合割合を所定の範囲に設定し、アルミン酸ナトリウム、無機炭酸塩又はカルボン酸類のうちの少なくとも1種の凝結調整剤の第1〜第3粒子の混合割合を所定の範囲に設定し、更に第2粒子を第1粒子より多く含むとともに第3粒子より多く含むように設定すれば、上記と同様に、舗装体用注入材に水を加えて混合してセメントミルクを調製し、このセメントミルクを硬化させた場合、硬化体の若材齢(材齢3時間程度)で圧縮強度を低下させずに、可使時間を60分程度と長く確保することができる。また上記と同様に、硬化体に斑点が発生しないので、この斑点部分が欠陥となって長期的な硬化体の強度の低下を招くという事態の発生を防止できるとともに、注水後の混練温度が異なっても凝結時間が殆ど変化せず、凝結時間の温度依存性を小さくすることができる。この結果、どのような作業環境であっても、混和材を含む舗装体用注入材に注水して得られたセメントミルクの粘性変化が略同一の条件で混練作業、打設作業又は塗布作業等を行うことができるとともに、環境を汚染する有害物質として挙げられている六価クロムが地中に拡散されるのを防止できる。
また上記舗装体用注入材では、吸放湿性に優れる保水性材料を含むので、この保水性材料が大気中の水蒸気を吸着して水分を保水する。このため、保水性材料を含む舗装体用注入材を水と混合してセメントミルクを調製し、このセメントミルクを舗装体の空隙部分に充填させれば、降雨や散水等による水の補給を受けない状態で日射による熱を受けた場合であっても、その表面の温度が上昇し始めると、保水性材料が吸着した大気中の水分が蒸発して熱を奪い、その舗装体の表面温度の著しい上昇を抑制することができるとともに、水の補給を受けない状態が長い間続いても、その舗装体の表面の温度上昇を比較的長い間抑制できる。
On the other hand, a pavement injection material in which a cement composition containing a cement mineral and an admixture is mixed with a water retention material, the water retention material comprising diatomaceous filter aid, paper sludge incineration ash, and natural uncalcined vermiculite. Condensation adjustment consisting of one or two or more selected from the group consisting of a rapid hardening component in which calcium aluminate and inorganic sulfate are mixed, sodium aluminate, inorganic carbonate and carboxylic acids The calcium aluminate has a vitrification rate of 80% or more, the mixing ratio of sodium aluminate, inorganic carbonate and carboxylic acid is set within a predetermined range, and sodium aluminate, inorganic carbonate or carboxylic acid The mixing ratio of the first to third particles of at least one of the set modifiers is set within a predetermined range, and further contains more second particles than the first particles. If both are set to contain more than the third particles, as in the above, water is added to the pavement injecting material and mixed to prepare cement milk. When this cement milk is cured, The pot life can be secured as long as about 60 minutes without lowering the compressive strength at the age of material (material age of about 3 hours). Also, as above, no spots occur on the cured body, so that it is possible to prevent the occurrence of a situation in which the spots become defects and cause a long-term decrease in the strength of the cured body, and the kneading temperature after pouring is different However, the setting time hardly changes and the temperature dependency of the setting time can be reduced. As a result, in any working environment, the viscosity change of cement milk obtained by pouring water into the pavement injection material containing the admixture is kneaded, placed or applied, etc. under substantially the same conditions. It is possible to prevent the diffusion of hexavalent chromium, which is listed as a harmful substance that pollutes the environment, into the ground.
Further, the pavement injecting material includes a water retention material that is excellent in moisture absorption and desorption, so that the water retention material adsorbs water vapor in the atmosphere and retains moisture. For this reason, if pavement infusion material containing a water-retaining material is mixed with water to prepare cement milk, and this cement milk is filled in the voids of the pavement, it will be replenished with water by rain or watering. Even if it receives heat from solar radiation in the absence of heat, when the surface temperature starts to rise, the moisture in the atmosphere adsorbed by the water-retaining material evaporates and takes heat away, and the surface temperature of the pavement A significant increase can be suppressed, and even if a state where water is not replenished continues for a long time, a temperature increase on the surface of the pavement can be suppressed for a relatively long time.

次に本発明を実施するための最良の形態を説明する。
<第1の実施の形態>
舗装用注入材は、混和材100質量%に対してセメント鉱物を100〜1000質量%、好ましくは200〜500質量%含むセメント組成物100質量%に対して、5〜30質量%、好ましくは10〜20質量%の砂と、1〜10質量%、好ましくは2〜5質量%の再乳化粉末樹脂とを含む。砂の粒径は90〜1000μmであることが好ましく、90〜200μmであることが更に好ましい。またセメント鉱物としては、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低発熱セメント、高炉セメント、シリカセメント、フライアッシュセメント、シリカフュームセメント等が挙げられる。ここで、セメント鉱物及び混和材の合計量に対する混和材の混合割合を10〜40質量%の範囲に限定したのは、10質量%未満では早期材齢(若材齢)の強度発現性が低下し、40質量%を越えると製造コストが増大するとともにセメント鉱物が少なくなって長期強度の発現性が低下するからである。
Next, the best mode for carrying out the present invention will be described.
<First Embodiment>
The pavement injecting material is 5 to 30% by mass, preferably 10 to 100% by mass of cement composition containing 100 to 1000% by mass, preferably 200 to 500% by mass of cement mineral with respect to 100% by mass of the admixture. -20 mass% sand and 1-10 mass%, preferably 2-5 mass% re-emulsified powder resin. The particle size of the sand is preferably 90 to 1000 μm, and more preferably 90 to 200 μm. Examples of cement minerals include ordinary Portland cement, early-strength Portland cement, medium heat Portland cement, low heat generation cement, blast furnace cement, silica cement, fly ash cement, and silica fume cement. Here, the mixing ratio of the admixture with respect to the total amount of the cement mineral and the admixture is limited to the range of 10 to 40 mass%, and if it is less than 10 mass%, the strength development of the early age (young material age) decreases. On the other hand, if it exceeds 40% by mass, the production cost increases and the cement mineral decreases, resulting in a decrease in long-term strength.

混和材は、カルシウムアルミネートと無機硫酸塩とが質量比で1:(0.5〜3)の割合で混合された急硬成分に対して、内割でアルミン酸ナトリウム0.2〜35.0質量%、好ましくは0.4〜5.0質量%と、無機炭酸塩0.2〜35.0質量%、好ましくは0.4〜5.0質量%と、カルボン酸類0.1〜15.0質量%、好ましくは0.2〜2.0質量%とからなる凝結調整剤を含む。カルシウムアルミネートの組成としては、12CaO・7Al23、11CaO・7Al23・CaX2(Xはハロゲン元素である。)、3CaO・Al23、CaO・Al23などが挙げられる。また無機硫酸塩としては、無水石膏(組成:CaSO4)、硫酸ナトリウム等が挙げられる。更に無機炭酸塩としては、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸水素カリウム等が挙げられ、カルボン酸類としては、クエン酸、酒石酸、グルコン酸又はリンゴ酸、或いはこれらの酸のナトリウム、カリウム、カルシウム等の水溶性塩が挙げられる。 The admixture is a sodium aluminate 0.2-35.% By weight with respect to the rapid hardening component in which calcium aluminate and inorganic sulfate are mixed at a mass ratio of 1: (0.5-3). 0% by mass, preferably 0.4-5.0% by mass, inorganic carbonate 0.2-35.0% by mass, preferably 0.4-5.0% by mass, and carboxylic acids 0.1-15 0.0% by weight, preferably 0.2 to 2.0% by weight of a setting regulator. As a composition of calcium aluminate, 12CaO · 7Al 2 O 3 , 11CaO · 7Al 2 O 3 · CaX 2 (X is a halogen element), 3CaO · Al 2 O 3 , CaO · Al 2 O 3 and the like can be mentioned. It is done. Examples of the inorganic sulfate include anhydrous gypsum (composition: CaSO 4 ), sodium sulfate and the like. Furthermore, examples of the inorganic carbonate include potassium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and the like, and examples of the carboxylic acids include citric acid, tartaric acid, gluconic acid or malic acid, or sodium, potassium of these acids, Water-soluble salts such as calcium are listed.

ここで、カルシウムアルミネートと無機硫酸塩との混合割合を1:(0.5〜3)の範囲に限定したのは、この範囲外ではセメントミルクの可使時間(作業時間)が短くなるか、或いは硬化体の若材齢(材齢3時間程度)での圧縮強度が低下してしまうからである。アルミン酸ナトリウムの急硬成分に対する混合割合を内割で0.2〜35.0質量%の範囲に限定したのは、0.2質量%未満では硬化体が所定の圧縮強度に達せず、35.0質量%を越えると凝結調整剤を用いてもセメントミルクの可使時間が60分程度、具体的には30〜75分という比較的長い時間を確保できないからである。また無機炭酸塩の急硬成分に対する混合割合を内割で0.2〜35.0質量%の範囲に限定し、カルボン酸類の急硬成分に対する混合割合を内割で0.1〜15.0質量%の範囲に限定したのは、これらの範囲外では施工に必要な作業時間(セメントミルクの可使時間)を確保できないか、或いは硬化体の圧縮強度が低下するからである。   Here, the reason why the mixing ratio of calcium aluminate and inorganic sulfate is limited to the range of 1: (0.5-3) is that the usable time (working time) of cement milk is shortened outside this range. Alternatively, the compressive strength at a young material age (approximately 3 hours of material age) of the cured body is lowered. The mixing ratio of sodium aluminate with respect to the rapid hardening component was limited to the range of 0.2 to 35.0% by mass because the cured product did not reach the predetermined compressive strength at less than 0.2% by mass. This is because, if the content exceeds 0.0 mass%, it is impossible to secure a relatively long time of about 60 minutes, specifically 30 to 75 minutes, even if a setting modifier is used. Moreover, the mixing ratio with respect to the rapid hardening component of the inorganic carbonate is limited to the range of 0.2 to 35.0% by mass, and the mixing ratio of the carboxylic acids with respect to the rapid hardening component is 0.1 to 15.0 with the internal ratio. The reason why it is limited to the range of mass% is that if it is outside these ranges, the working time required for construction (use time of cement milk) cannot be secured, or the compressive strength of the cured product is lowered.

なお、セメントミルクとは、上記舗装体用注入材100質量%に対して、水を35〜55質量%、好ましくは40〜50質量%混合して調製したものであり、硬化体とは、上記セメントミルクを硬化させたものである。このセメントミルクの可使時間が30〜75分、好ましくは40〜60分であるとき、硬化体の材齢3時間の圧縮強度は4.5N/mm2以上、好ましくは5.5〜10.0N/mm2であることが好ましい。ここで、舗装体用注入材100質量%に対する水の混合割合を35〜55質量%の範囲に限定したのは、35質量%未満では流動性が悪くなって硬化体の強度にばらつきが多くなり、55質量%を越えると材料分離を生じて硬化体の強度にばらつきが多くなるからである。また舗装体用注入材中の混和材100質量%に対して、セメントが100〜1000質量%、好ましくは200〜500質量%混合される。ここで、混和材100質量%に対するセメントの混合割合を100〜1000質量%の範囲に限定したのは、100質量%未満ではコスト的に不経済であるとともに、凝結時間の調整が難しくなって可使時間が短くなるからであり、1000質量%を越えると若材齢の圧縮強度が低下するからである。硬化体の材齢3時間の圧縮強度を4.5N/mm2以上に限定したのは、4.5N/mm2未満では車両の走行に必要な強度が不足し、道路を開放できないからである。セメント組成物100質量%に対する砂の混合割合を5〜30質量%の範囲に限定したのは、5質量%未満では撹拌性能及び耐摩耗性が低下するとともにすべり抵抗性も低下してしまい、30質量%を越えると若材齢の圧縮強度が低下するとともに材料分離が発生してブリーディングが多くなるからである。また砂の粒径を90〜1000μmの範囲に限定したのは、90μm未満では撹拌性能及び耐摩耗性が低下するとともにすべり抵抗性も低下してしまい、1000μmを越えるとセメントミルク中に砂が沈降し易くなるとともに、セメントミルクの舗装体への注入性が低下するからである。更にセメント組成物100質量%に対する再乳化粉末樹脂の混合割合を1〜10質量%の範囲に限定したのは、1質量%未満では材料分離を阻止する効果及びひび割れを防止する効果を十分に発揮できず、10質量%を越えるとコスト的に不経済となるからである。この再乳化粉末樹脂は、粉末エマルジョンとも呼ばれ、合成樹脂エマルジョンを噴霧乾燥したものである。この再乳化粉末樹脂の種類は特に限定されないが、エチレン酢酸ビニル(EVA)、酢酸ビニルアセテート(VAVeoVa)、スチレンアクリル酸エステル(SAE)、ポリアクリル酸エステル(PAE)などが挙げられ、耐久性の観点からスチレンアクリル酸エステル(SAE)やポリアクリル酸エステル(PAE)等のアクリル系樹脂を用いることが好ましい。 The cement milk is prepared by mixing 35 to 55% by mass, preferably 40 to 50% by mass of water with respect to 100% by mass of the pavement injecting material. Cement milk is hardened. When the pot life of this cement milk is 30 to 75 minutes, preferably 40 to 60 minutes, the compressive strength of the cured product at the age of 3 hours is 4.5 N / mm 2 or more, preferably 5.5 to 10. It is preferably 0 N / mm 2 . Here, the mixing ratio of water to 100% by mass of the pavement injecting material is limited to the range of 35 to 55% by mass. If the amount is less than 35% by mass, the fluidity is deteriorated and the strength of the cured body is increased. If it exceeds 55% by mass, material separation occurs and the strength of the cured product varies more. Further, 100 to 1000% by mass, preferably 200 to 500% by mass of cement is mixed with 100% by mass of the admixture in the pavement injection material. Here, the cement mixing ratio with respect to 100% by mass of the admixture is limited to the range of 100 to 1000% by mass. If it is less than 100% by mass, it is not economical and adjustment of the setting time may be difficult. This is because the working time is shortened, and when it exceeds 1000% by mass, the compressive strength of the young material age decreases. The reason why the compressive strength at 3 hours of age of the hardened body is limited to 4.5 N / mm 2 or more is that if it is less than 4.5 N / mm 2 , the strength required for running the vehicle is insufficient and the road cannot be opened. . The mixing ratio of sand with respect to 100% by mass of the cement composition is limited to the range of 5 to 30% by mass. When the content is less than 5% by mass, the stirring performance and the wear resistance are lowered and the slip resistance is also reduced. This is because if it exceeds mass%, the compressive strength of the young age will decrease and material separation will occur, leading to increased bleeding. Moreover, the particle size of the sand was limited to the range of 90 to 1000 μm. If the particle size is less than 90 μm, the stirring performance and wear resistance are lowered and the slip resistance is also lowered, and if it exceeds 1000 μm, the sand settles in cement milk. This is because it is easy to do, and the pouring property of cement milk into the pavement decreases. Furthermore, the mixing ratio of the re-emulsified powder resin with respect to 100% by mass of the cement composition is limited to the range of 1 to 10% by mass. If it is less than 1% by mass, the effect of preventing material separation and the effect of preventing cracking are sufficiently exhibited. This is because if it exceeds 10% by mass, the cost becomes uneconomical. This re-emulsified powder resin is also called a powder emulsion, and is obtained by spray-drying a synthetic resin emulsion. The type of this re-emulsified powder resin is not particularly limited, but examples include ethylene vinyl acetate (EVA), vinyl acetate (VAVeoVa), styrene acrylate (SAE), and polyacrylate (PAE). From the viewpoint, it is preferable to use an acrylic resin such as styrene acrylate (SAE) or polyacrylate (PAE).

一方、混和材中のカルシウムアルミネートのガラス化率(非結晶化率)は80%以上、好ましくは80〜98%、更に好ましくは90〜95%である。ここで、カルシウムアルミネートのガラス化率を80%以上に限定したのは、80%未満では、可使時間を長くしたときの強度発現性が低下するからである。また、カルシウムアルミネートのガラス化率が98%を越えると、歩留まりが低下して製造コストを押上げるため好ましくない。なお、上記カルシウムアルミネートのガラス化率(%)は、試料を粉末X線回折法により分析し、メインピークの高さの比により算出した。   On the other hand, the vitrification rate (non-crystallization rate) of calcium aluminate in the admixture is 80% or more, preferably 80 to 98%, more preferably 90 to 95%. Here, the reason why the vitrification rate of calcium aluminate is limited to 80% or more is that when it is less than 80%, the strength developability when the pot life is increased is lowered. Further, if the vitrification rate of calcium aluminate exceeds 98%, it is not preferable because the yield is lowered and the manufacturing cost is increased. The vitrification rate (%) of the calcium aluminate was calculated by analyzing the sample by a powder X-ray diffraction method and comparing the height of the main peak.

またアルミン酸ナトリウム、無機炭酸塩及びカルボン酸類からなる凝結調整剤のうちのいずれか1種を100質量%とするとき他の2種をそれぞれ60〜160質量%、好ましくは66〜150質量%含む。例えば、アルミン酸ナトリウム、無機炭酸塩又はカルボン酸類のうちの任意の1種としてアルミン酸ナトリウムを選び、アルミン酸ナトリウムを混和材の総量に対して0.4質量%含み、無機炭酸塩を混和材の総量に対してそれぞれ0.6質量%含み、カルボン酸類を混和材の総量に対して0.4質量%含む場合、アルミン酸ナトリウムを基準(100質量%)として、無機炭酸塩及びカルボン酸類がそれぞれ150質量%及び100質量%含むことになり、上記設定範囲内となる。またアルミン酸ナトリウム、無機炭酸塩又はカルボン酸類のうちの少なくとも1種の凝結調整剤が、この選ばれた1種の凝結調整剤の総量を100質量%とするとき、平均粒径45μmを越えかつ90μm以下の第1粒子10〜45質量%、好ましくは15〜40質量%と、平均粒径90μmを越えかつ150μm以下の第2粒子30〜70質量%、好ましくは35〜65質量%と、平均粒径150μmを越えかつ500μm以下の第3粒子5〜30質量%、好ましくは10〜25質量%とを含む。第1〜第3粒子の平均粒径が上記範囲に限定されるのは、アルミン酸ナトリウム、無機炭酸塩又はカルボン酸類のうちのいずれか1種でもよく、アルミン酸ナトリウム、無機炭酸塩及びカルボン酸類からなる群より選ばれた2種でもよく、アルミン酸ナトリウム、無機炭酸塩及びカルボン酸類の全てでもよい。また上記選ばれた1種の凝結調整剤が第1〜第3粒子のみからなる場合には、第1〜第3粒子の合計が100質量%となり、上記選ばれた1種の凝結調整剤が第1〜第3粒子の他に平均粒径45μm未満の微粒子などを含む場合には、第1〜第3粒子の合計は100質量%未満となる。更に第2粒子を第1粒子より多く含むとともに第3粒子より多く含む。なお、第3粒子は第1粒子と同量か或いは第1粒子より多く含むことが好ましい。   Further, when any one of the setting regulators consisting of sodium aluminate, inorganic carbonate and carboxylic acids is taken as 100% by mass, the other two types are contained in an amount of 60-160% by mass, preferably 66-150% by mass, respectively. . For example, sodium aluminate is selected as any one of sodium aluminate, inorganic carbonate, or carboxylic acid, and contains 0.4% by mass of sodium aluminate based on the total amount of the admixture, and the inorganic carbonate is admixture. In the case where each containing 0.6% by mass with respect to the total amount of carboxylic acids and 0.4% by mass with respect to the total amount of the admixture, inorganic carbonates and carboxylic acids are used based on sodium aluminate (100% by mass). Each of them contains 150% by mass and 100% by mass, and falls within the set range. When the total amount of the selected one type of setting modifier of sodium aluminate, inorganic carbonate or carboxylic acid is 100% by mass, the average particle size exceeds 45 μm and 10 to 45% by mass of first particles of 90 μm or less, preferably 15 to 40% by mass, and 30 to 70% by mass of second particles having an average particle size of more than 90 μm and 150 μm or less, preferably 35 to 65% by mass, 3-30 mass% of 3rd particle | grains exceeding a particle size of 150 micrometers and 500 micrometers or less, Preferably it contains 10-25 mass%. The average particle size of the first to third particles may be limited to the above range may be any one of sodium aluminate, inorganic carbonate or carboxylic acids, and may be sodium aluminate, inorganic carbonate and carboxylic acids. Two kinds selected from the group consisting of sodium aluminate, inorganic carbonates and carboxylic acids may be used. When the selected one type of setting modifier is composed of only the first to third particles, the total of the first to third particles is 100% by mass, and the selected one type of setting modifier is When the fine particles having an average particle size of less than 45 μm are included in addition to the first to third particles, the total of the first to third particles is less than 100% by mass. Furthermore, it contains more second particles than first particles and more than third particles. The third particles are preferably contained in the same amount as the first particles or more than the first particles.

ここで、アルミン酸ナトリウム、無機炭酸塩及びカルボン酸類からなる凝結調整剤のうちのいずれか1種を100質量%とするとき他の2種をそれぞれ60〜160質量の範囲に限定したのは、アルミン酸ナトリウム、無機炭酸塩及びカルボン酸類の混和材の総量に対する混合割合が比較的広いため、上記選ばれた1種の凝結調整剤の総量より他の種類の凝結調整剤の総量が遙かに多く、かつ他の種類の凝結調整剤の第3粒子の混合割合が上記設定範囲より大幅に多い場合、他の種類の凝結調整剤の影響が大きくなってしまい、硬化体の若材齢(材齢3時間程度)での圧縮強度を低下させずにセメントペーストの可使時間を60分程度、具体的には30〜75分と長く確保することができないからである。また、第1粒子の混合割合を10〜45質量%の範囲に限定したのは次の理由に基づく。第1粒子の混合割合が10質量%未満であると、混和材を含むセメント組成物に注水した場合、反応初期に溶解する薬剤(選ばれた凝結調整剤)が少なくなり、反応開始が遅れるか、或いは凝結の遅延作用が小さくなって凝結が速く進行してしまうため、エトリンガイト[3CaO・Al23・3CaSO4・32H2O]やモノサルフェート[3(3CaO・Al23・CaSO4・12H2O)]等の水和物の生成等に悪影響を与え、若材齢強度(材齢3時間程度)の発現性が悪くなると考えられるからである。第1粒子の混合割合が45質量%を越えると、混和材を含むセメント組成物に注水した場合、反応初期に薬剤(選ばれた凝結調整剤)が多く溶解し、初期の反応が急激に進むか、或いは凝結の遅延作用が大きくなって凝結が遅く進行してしまうため、エトリンガイト等の水和物の生成等に悪影響を与え、若材齢強度(材齢3時間程度)の発現性が悪くなると考えられるからである。 Here, when any one of the setting regulators consisting of sodium aluminate, inorganic carbonate and carboxylic acid is 100% by mass, the other two are limited to the range of 60 to 160 masses, respectively. Because the mixing ratio of sodium aluminate, inorganic carbonate and carboxylic acids to the total amount of the admixture is relatively wide, the total amount of the other type of setting modifier is far greater than the total amount of the one type of setting modifier selected above. When the mixing ratio of the third particles of the other types of setting modifiers is much larger than the above setting range, the influence of the other types of setting modifiers becomes large, and the young age of the cured product (material) This is because the pot life of the cement paste cannot be secured as long as about 60 minutes, specifically 30 to 75 minutes, without reducing the compressive strength at about 3 hours). Moreover, the reason why the mixing ratio of the first particles is limited to the range of 10 to 45 mass% is based on the following reason. If the mixing ratio of the first particles is less than 10% by mass, when water is poured into the cement composition containing the admixture, the amount of chemicals (selected coagulation modifier) that dissolves in the early stage of the reaction decreases, and the reaction start may be delayed. or because the delayed action of coagulation resulting in progressive condensation faster smaller, ettringite [3CaO · Al 2 O 3 · 3CaSO 4 · 32H 2 O] and monosulfate [3 (3CaO · Al 2 O 3 · CaSO 4 This is because it is considered that the production of hydrates such as [12H 2 O)] is adversely affected, and the expression of the strength of the young material (material age of about 3 hours) is deteriorated. When the mixing ratio of the first particles exceeds 45% by mass, when water is poured into the cement composition containing the admixture, a large amount of the drug (selected coagulation modifier) is dissolved at the initial stage of the reaction, and the initial reaction proceeds rapidly. Or, since the setting delaying action increases and the setting progresses slowly, it adversely affects the formation of hydrates such as ettringite, and the expression of the young age strength (age age of about 3 hours) is poor. Because it is considered to be.

第2粒子の混合割合を30〜70質量%の範囲に限定したのは次の理由に基づく。第2粒子の混合割合が30質量%未満であると、混和材を含むセメント組成物に注水した場合、反応中期に溶解する薬剤(選ばれた凝結調整剤)が少なくなり、水和反応が順調に継続しなくなってしまうため、エトリンガイト等の水和物の生成等に悪影響を与え、若材齢強度(材齢3時間程度)の発現性が悪くなると考えられるからである。第2粒子の混合割合が70質量%を越えると、混和材を含むセメント組成物に注水した場合、反応中期に溶解する薬剤(選ばれた凝結調整剤)が多くなり、初期から中期にかけての反応が急激に進んでしまうため、エトリンガイト等の水和物の生成等に悪影響を与え、若材齢強度(材齢3時間程度)の発現性が悪くなると考えられるからである。第3粒子の混合割合を5〜30質量%の範囲に限定したのは次の理由に基づく。第3粒子の混合割合が5質量%未満であると、混和材を含むセメント組成物に注水した場合、反応後期に溶解する薬剤(選ばれた凝結調整剤)が少なくなり、水和反応が順調に継続しなくなってしまうため、エトリンガイト等の水和物の生成等に悪影響を与え、若材齢強度(材齢3時間程度)の発現性が悪くなると考えられるからである。第3粒子の混合割合が30質量%を越えると、混和材を含むセメント組成物に注水した場合、反応後期に溶解する薬剤(選ばれた凝結調整剤)が多くなり、中期から後期にかけての反応が急激に進んでしまうため、エトリンガイト等の水和物の生成等に悪影響を与え、若材齢強度(材齢3時間程度)の発現性が悪くなると考えられるからである。更に第2粒子を第1粒子より多く含むとともに第3粒子より多く含むとしたのは、混和材を含むセメント組成物に注水した場合、反応中期に寄与する第2粒子を比較的多めにすることにより、急激な反応を抑え、連続的に穏やかな水和反応が起こるようにし、若材齢強度(材齢3時間程度)の発現性の良い水和物を生成するためである。なお、混和材として、上記以外に減水剤、消泡剤、増粘剤、分離低減剤等を添加してもよい。特に消泡剤をセメント組成物100質量%に対して0.01〜0.5質量%添加することで、セメントミルクの混練時に発生する泡を消すことができ、硬化体の強度を増進できるという効果がある。   The reason why the mixing ratio of the second particles is limited to the range of 30 to 70% by mass is as follows. When the mixing ratio of the second particles is less than 30% by mass, when water is added to the cement composition containing the admixture, the amount of chemicals (selected coagulation modifier) that dissolves in the middle of the reaction decreases, and the hydration reaction is smooth. This is because it is considered that the generation of hydrates such as ettringite is adversely affected and the expression of the young age strength (material age of about 3 hours) is deteriorated. When the mixing ratio of the second particles exceeds 70% by mass, when water is poured into the cement composition containing the admixture, more chemicals (selected coagulation modifiers) dissolve in the middle of the reaction, and the reaction from the initial to the middle This is because it is considered that the development of hydrates such as ettringite is adversely affected and the expression of the young age strength (about 3 hours of age) is deteriorated. The reason why the mixing ratio of the third particles is limited to the range of 5 to 30% by mass is as follows. When the mixing ratio of the third particles is less than 5% by mass, when water is poured into the cement composition containing the admixture, the amount of chemicals (selected coagulation modifiers) that dissolve in the late stage of the reaction decreases, and the hydration reaction is smooth. This is because it is considered that the generation of hydrates such as ettringite is adversely affected and the expression of the young age strength (material age of about 3 hours) is deteriorated. When the mixing ratio of the third particles exceeds 30% by mass, when water is poured into the cement composition containing the admixture, more chemicals (selected coagulation modifiers) dissolve in the late reaction, and the reaction from the middle to the latter This is because it is considered that the development of hydrates such as ettringite is adversely affected and the expression of the young age strength (about 3 hours of age) is deteriorated. In addition, the reason why the second particles are included more than the first particles and more than the third particles is that when the water is poured into the cement composition containing the admixture, the second particles contributing to the middle stage of the reaction are made relatively large. This is to suppress a rapid reaction, continuously cause a gentle hydration reaction, and generate a hydrate with a good expression of the strength of the young material (a material age of about 3 hours). In addition to the above, a water reducing agent, an antifoaming agent, a thickening agent, a separation reducing agent and the like may be added as an admixture. In particular, by adding 0.01 to 0.5% by mass of the antifoaming agent with respect to 100% by mass of the cement composition, it is possible to eliminate the foam generated during the kneading of the cement milk and to increase the strength of the cured body. effective.

このように構成された舗装体用注入材では、カルシウムアルミネートのガラス化率を80%以上とし、アルミン酸ナトリウム、無機炭酸塩及びカルボン酸類の混合割合を所定の範囲に設定し、アルミン酸ナトリウム、無機炭酸塩又はカルボン酸類のうちの少なくとも1種の凝結調整剤の第1〜第3粒子の混合割合を所定の範囲に設定し、更に第2粒子を第1粒子より多く含むとともに第3粒子より多く含むように設定したので、この舗装体用注入材に、水を加えて混合すると、反応開始が速やかに開始し、水和反応が順調に継続する、即ち急激な反応を抑え、連続的に穏やかな水和反応が起こるようにすることにより、有益なエトリンガイト又はモノサルフェートのいずれか一方又は双方が速やかに生成される。この結果、上記舗装体用注入材に注水して硬化させた硬化体の若材齢(材齢3時間程度)で圧縮強度を低下させずに、可使時間を60分程度と長く確保することができる。また硬化体に斑点が発生しないので、この斑点部分が欠陥となって長期的な硬化体の強度の低下を招くという事態の発生を防止できる。更に注水後の混練温度が異なっても凝結時間が殆ど変化せず、凝結時間の温度依存性を小さくすることができる。従って、どのような作業環境であっても、上記混和材を含むセメント組成物に水を加えた混練物の粘性変化が略同一の条件で混練作業、打設作業又は塗布作業等を行うことができる。
なお、上記混和材を含む舗装体用注入材に注水して生成されたエトリンガイト又はモノサルフェートのいずれか一方又は双方は六価クロムを吸収することができる。この結果、環境を汚染する有害物質として挙げられている六価クロムが地中に拡散されるのを防止できる。
In the pavement injection material thus configured, the vitrification rate of calcium aluminate is 80% or more, the mixing ratio of sodium aluminate, inorganic carbonate and carboxylic acid is set within a predetermined range, and sodium aluminate The mixing ratio of the first to third particles of at least one setting regulator of inorganic carbonates or carboxylic acids is set within a predetermined range, and the second particles are contained more than the first particles and the third particles Since it was set so as to contain more, when water was added to this pavement injection material and mixed, the reaction start started quickly, and the hydration reaction continued smoothly, that is, the rapid reaction was suppressed and the continuous reaction was continued. By allowing a mild hydration reaction to occur, either or both of the beneficial ettringite and monosulfate are rapidly formed. As a result, the pot life can be secured as long as about 60 minutes without reducing the compressive strength at the young age of the cured body (approx. 3 hours of age) of the cured body poured into the pavement injection material and cured. Can do. Further, since no spots are generated on the cured body, it is possible to prevent the occurrence of a situation in which this spot portion becomes a defect and causes a long-term decrease in the strength of the cured body. Further, even if the kneading temperature after water injection is different, the setting time hardly changes, and the temperature dependency of the setting time can be reduced. Therefore, in any work environment, kneading work, placing work or coating work can be performed under substantially the same conditions of viscosity change of the kneaded material obtained by adding water to the cement composition containing the admixture. it can.
In addition, either or both of ettringite and monosulfate produced by pouring water into the pavement injection material containing the admixture can absorb hexavalent chromium. As a result, it is possible to prevent diffusion of hexavalent chromium, which is listed as a harmful substance that pollutes the environment, into the ground.

<第2の実施の形態>
この実施の形態の舗装体用注入材は、混和材100質量%に対してセメント鉱物を100〜1000質量%、好ましくは200〜500質量%含むセメント組成物100質量%に対して、5〜80質量%、好ましくは10〜50質量%の保水性材料を含む。上記混和材及びセメント鉱物は第1の実施の形態の混和材及びセメント鉱物と同一に構成される。また保水性材料としては、珪藻質濾過助剤、製紙スラッジ焼却灰及び天然非焼成バーミキュライトからなる群より選ばれた1種又は2種以上を含むけれども、珪藻土は含まない。ここで、セメント組成物100質量%に対する保水性材料の混合割合を5〜80質量%の範囲に限定したのは、5質量%未満では十分な保水効果が得られず、80質量%を越えるとそれ以上の保水効果が得られないばかりか圧縮強度が低下し、所望の舗装体が得られないからである。そして、普通強度型又は高保水型の硬化体を得るには、舗装体用注入材100質量%に対して、水を80〜150質量%、好ましくは90〜120質量%混合してセメントミルクを調製する。このときセメントミルクの可使時間は30〜75分、好ましくは40〜60分であり、かつ材齢3時間の圧縮強度は0.5N/mm2以上であり、更に硬化後の吸水率は50〜90質量%である。なお、材齢3時間の圧縮強度が1.0N/mm2以上でありかつ4.0N/mm2未満である普通強度型の硬化体は、硬化後の吸水率が55〜65質量%とあまり高くないけれども、硬化後の吸水率が75〜85質量%である高保水型の硬化体は、材齢3時間の圧縮強度が0.5N/mm2以上かつ1.0N/mm2未満とあまり高くない。また普通強度型又は高保水型の硬化体を得るための舗装体用注入材100質量%に対する水の混合割合を80〜150質量%の範囲に限定したのは、80質量%未満では硬化体の吸水率が小さくなり、150質量%を越えると圧縮強度が低下するからである。
<Second Embodiment>
The injection material for pavement of this embodiment is 5 to 80 with respect to 100% by mass of cement composition containing 100 to 1000% by mass, preferably 200 to 500% by mass of cement mineral with respect to 100% by mass of the admixture. It contains 10% to 50% by weight, preferably 10 to 50% by weight of a water-retaining material. The said admixture and cement mineral are comprised the same as the admixture and cement mineral of 1st Embodiment. The water-retaining material includes one or more selected from the group consisting of diatomaceous filter aid, paper sludge incinerated ash, and natural unfired vermiculite, but does not include diatomaceous earth. Here, the mixing ratio of the water-retaining material with respect to 100% by mass of the cement composition is limited to the range of 5 to 80% by mass. If the amount is less than 5% by mass, a sufficient water-retaining effect cannot be obtained. This is because not only a further water retention effect cannot be obtained, but also the compressive strength is lowered and a desired pavement cannot be obtained. And in order to obtain a hardened | cured material of a normal strength type or a high water retention type, 80-150 mass% of water is mixed with respect to 100 mass% of the injection material for pavements, Preferably 90-120 mass% is mixed, and cement milk is mixed. Prepare. At this time, the pot life of the cement milk is 30 to 75 minutes, preferably 40 to 60 minutes, the compressive strength at the age of 3 hours is 0.5 N / mm 2 or more, and the water absorption after curing is 50. It is -90 mass%. In addition, the normal strength type cured body having a compressive strength at a material age of 3 hours of 1.0 N / mm 2 or more and less than 4.0 N / mm 2 has a water absorption rate of 55 to 65% by mass after curing. Although not high, a highly water-retained cured body having a water absorption rate of 75 to 85% by mass after curing has a compressive strength at a material age of 3 hours of 0.5 N / mm 2 or more and less than 1.0 N / mm 2. not high. In addition, the mixing ratio of water to 100% by mass of the pavement injection material for obtaining a normal strength type or high water retention type cured product is limited to the range of 80 to 150% by mass. This is because the water absorption is reduced, and if it exceeds 150% by mass, the compressive strength is lowered.

一方、高強度型の硬化体を得るには、舗装体用注入材100質量%に対して、水を65〜80質量%混合してセメントミルクを調製する。このときセメントミルクの可使時間は30〜75分、好ましくは40〜60分であり、かつ材齢3時間の圧縮強度は4.0N/mm2以上、好ましくは4.5〜7.0N/mm2と高いけれども、硬化後の吸水率は35〜50質量%と低い。ここで、高強度型の硬化体を得るための舗装体用注入材100質量%に対する水の混合割合を65〜80質量%の範囲に限定したのは、65質量%未満では硬化体の吸水率が小さくなり、80質量%を越えると圧縮強度が低下するからである。 On the other hand, in order to obtain a high-strength cured body, cement milk is prepared by mixing 65 to 80% by mass of water with respect to 100% by mass of the pavement injection material. At this time, the pot life of the cement milk is 30 to 75 minutes, preferably 40 to 60 minutes, and the compressive strength at the age of 3 hours is 4.0 N / mm 2 or more, preferably 4.5 to 7.0 N / Although it is as high as mm 2 , the water absorption after curing is as low as 35 to 50% by mass. Here, the water mixing ratio with respect to 100% by mass of the pavement injection material for obtaining a high-strength cured product was limited to the range of 65 to 80% by mass. This is because the compressive strength is reduced when the content of S is smaller than 80% by mass.

一方、保水性材料として、粒径0.1〜50μm、好ましくは1〜30μmの珪藻質濾過助剤を含む場合、この珪藻質濾過助剤は珪藻土を原料として作られた粉末状のものであって、大気中の水蒸気を吸着する吸湿機能を有するものである。具体的には、珪藻質濾過助剤は、天然の珪藻土を粉砕し、800℃〜1200℃で焼成したもの、又は粉砕した天然の珪藻土に少量のソーダ灰を添加して焼成したものである。即ち、この保水性材料に用いられる珪藻質濾過助剤は、天然に存在する天然物ではなく、人為的に作り出された人工物である。ここで、珪藻質濾過助剤の粒径を0.1〜50μmの範囲に限定したのは、0.1μm未満では珪藻質濾過助剤の多孔質性が失われて吸湿能力に欠けることになり、50μmを越えると舗装体の空隙部分に充填することが困難になるからである。保水性材料としては、粒径0.1〜50μmの珪藻質濾過助剤単味で使用することができる。また保水性材料として、非焼成バーミキュライトを含む場合、この非焼成バーミキュライトは、粉体のものが好ましく、粒径は20〜400μm、好ましくは30〜300μmであって、最大吸水率が5質量%以上である天然の非焼成バーミキュライトが好ましい。この非焼成バーミキュライトの更に好ましい最大吸水率は10〜30質量%の範囲である。更に保水性材料として、製紙スラッジ焼却灰を含む場合、この製紙スラッジ焼却灰は、粒径が5〜1000μm、好ましくは10〜500μmであって、主要成分がSiO2とAl23からなり、最大吸水率が30質量%以上である製紙スラッジ焼却灰が好ましく、更に好ましい最大吸水率は40〜80質量%の範囲である。 On the other hand, when a diatomaceous filter aid having a particle size of 0.1 to 50 μm, preferably 1 to 30 μm is included as a water retention material, the diatomaceous filter aid is a powdered material made from diatomaceous earth. Thus, it has a moisture absorption function for adsorbing water vapor in the atmosphere. Specifically, the diatomaceous filter aid is obtained by pulverizing natural diatomaceous earth and firing at 800 ° C. to 1200 ° C., or by adding a small amount of soda ash to pulverized natural diatomaceous earth. That is, the diatomaceous filter aid used for this water retention material is not a naturally occurring natural product but an artificially created artificial product. Here, the particle size of the diatomaceous filter aid was limited to the range of 0.1 to 50 μm, and if it is less than 0.1 μm, the porous property of the diatomaceous filter aid is lost and the hygroscopic ability is lacking. If it exceeds 50 μm, it becomes difficult to fill the void portion of the pavement. As a water retention material, a diatomaceous filter aid having a particle size of 0.1 to 50 μm can be used. When the non-fired vermiculite is included as the water retention material, the non-fired vermiculite is preferably in the form of powder, the particle size is 20 to 400 μm, preferably 30 to 300 μm, and the maximum water absorption is 5% by mass or more. Natural unfired vermiculite is preferred. The more preferable maximum water absorption of this non-baked vermiculite is in the range of 10 to 30% by mass. Further, when paper sludge incineration ash is included as a water retention material, the paper sludge incineration ash has a particle size of 5 to 1000 μm, preferably 10 to 500 μm, and the main components are composed of SiO 2 and Al 2 O 3 , Paper sludge incineration ash having a maximum water absorption of 30% by mass or more is preferable, and a more preferable maximum water absorption is in the range of 40 to 80% by mass.

保水性材料が珪藻質濾過助剤と非焼成バーミキュライトを含み、製紙スラッジ焼却灰を含まない場合には、保水性材料を100質量%とするとき、保水性材料は、珪藻質濾過助剤が30〜80質量%、天然非焼成バーミキュライトが20〜70質量%含まれることが好ましく、珪藻質濾過助剤が40〜70質量%、天然非焼成バーミキュライトが30〜60質量%含まれることが更に好ましい。また保水性材料が珪藻質濾過助剤と製紙スラッジ焼却灰を含み、非焼成バーミキュライトを含まない場合には、保水性材料を100質量%とするとき、保水性材料は、珪藻質濾過助剤が30〜80質量%、製紙スラッジ焼却灰が20〜70質量%含まれることが好ましく、珪藻質濾過助剤が40〜70質量%、製紙スラッジ焼却灰が30〜60質量%含まれることが更に好ましい。更に保水性材料が珪藻質濾過助剤と製紙スラッジ焼却灰と非焼成バーミキュライトを含む場合には、保水性材料を100質量%とするとき、保水性材料は、珪藻質濾過助剤が30〜80質量%、天然非焼成バーミキュライトが20〜50質量%、製紙スラッジ焼却灰が20〜50質量%含まれることが好ましく、珪藻質濾過助剤が40〜70質量%、天然非焼成バーミキュライトが25〜45質量%、製紙スラッジ焼却灰が25〜45質量%含まれることが更に好ましい。このような配合であれば、珪藻質濾過助剤が吸湿した水蒸気を比較的長期にわたって保水することができる。   When the water-retaining material contains diatomaceous filter aid and non-calcined vermiculite and does not contain paper sludge incineration ash, when the water-retaining material is 100% by mass, the water-retaining material is 30 diatomaceous filter aid. It is preferable that ~ 80 mass%, natural non-baked vermiculite is contained in 20-70 mass%, diatomaceous filter aid is contained in 40-70 mass%, and natural non-baked vermiculite is more preferably contained in 30-60 mass%. When the water retention material contains diatomaceous filter aid and paper sludge incinerated ash and does not contain unfired vermiculite, when the water retention material is 100% by mass, the water retention material is diatomaceous filter aid. It is preferable that 30 to 80% by mass, 20 to 70% by mass of papermaking sludge incineration ash is included, 40 to 70% by mass of diatomaceous filter aid, and 30 to 60% by mass of papermaking sludge incineration ash are further preferable. . Further, when the water retention material contains diatomaceous filter aid, paper sludge incinerated ash, and non-fired vermiculite, when the water retention material is 100% by mass, the water retention material is 30 to 80 diatomaceous filter aid. It is preferable that 20 to 50% by mass of natural unfired vermiculite, 20 to 50% by mass of paper sludge incineration ash, 40 to 70% by mass of diatomaceous filter aid, and 25 to 45 of natural nonfired vermiculite. It is more preferable that 25% by mass to 45% by mass of papermaking sludge incineration ash is contained. With such a composition, water vapor absorbed by the diatomaceous filter aid can be retained for a relatively long period of time.

上述の舗装体用注入材に水を混練させたセメントミルクを舗装体の空隙部分に充填することにより、保水性舗装体が得られる。本発明の舗装体用注入材100質量%に水を65〜150質量%混合して練り混ぜたセメントミルクを硬化させた保水性硬化体にあっては、気温20℃、相対湿度80%における吸湿率が5〜15質量%となり、その保水性硬化体の最大吸水率は25〜90質量%になる。吸湿率を5〜15質量%にすることで、大気中の水分を硬化体に吸収できるため、雨が降らなくても舗装体の温度を低減させる効果を持続させることができる。また上記舗装体の空隙率は10〜40%、好ましく10〜35%であり、この舗装体としては、透水性コンクリート舗装体、透水性アスファルト舗装体、透水性インターロッキングブロック、透水平板、玉砂利、バラスト等の舗装体が挙げられる。ここで、舗装体の空隙率を10〜40%の範囲に限定したのは、10%未満ではセメントミルクの注入量が十分でなく、舗装体として十分な保水効果が得られず、温度上昇お抑制効果を十分発揮できないという不具合があり、40%を超えると舗装体の強度が弱くなり走行車両の通行に支障が生じるおそれがあるからである。   A water-retaining pavement can be obtained by filling the gap portion of the pavement with cement milk obtained by kneading water into the pavement injection material described above. In the water-retaining cured body obtained by curing cement milk obtained by mixing 65 to 150 mass% of water with 100 mass% of the pavement injection material of the present invention and kneading, moisture absorption at an air temperature of 20 ° C. and a relative humidity of 80% is achieved. The rate is 5 to 15% by mass, and the maximum water absorption rate of the water-retaining cured body is 25 to 90% by mass. By setting the moisture absorption rate to 5 to 15% by mass, moisture in the atmosphere can be absorbed by the cured body, so that the effect of reducing the temperature of the pavement can be maintained even if it does not rain. Moreover, the porosity of the pavement is 10 to 40%, preferably 10 to 35%. As this pavement, a permeable concrete pavement, a permeable asphalt pavement, a permeable interlocking block, a permeable horizontal plate, a gravel, Pavement bodies such as ballast are listed. Here, the porosity of the pavement is limited to the range of 10 to 40%. If the amount is less than 10%, the amount of cement milk injected is not sufficient, and a sufficient water retention effect as a pavement cannot be obtained. This is because there is a problem that the suppression effect cannot be sufficiently exhibited, and when it exceeds 40%, the strength of the pavement is weakened and there is a possibility that the traveling vehicle may be obstructed.

このような舗装体の空隙部分に充填されるセメントミルクは、上述した舗装体用注入材料に水を65〜150質量%加えて混練させることにより得られたものである。即ち、このセメントミルクは、セメント組成物100質量%に対して、珪藻質濾過助剤を含む保水性材料を5〜80質量%と、水を65〜150質量%を含むものである。従って、保水性材料が非焼成バーミキュライト及び製紙スラッジ焼却灰のいずれも含まない場合には、保水性材料を100質量%とするとき、その保水性材料は粒径0.1〜50μmの珪藻質濾過助剤を100質量%含むものである。保水性材料が珪藻質濾過助剤と非焼成バーミキュライトを含み、製紙スラッジ焼却灰を含まない場合には、保水性材料を100質量%とするとき、その保水性材料は粒径0.1〜50μmの珪藻質濾過助剤を30〜80質量%と、粒径20〜400μmの天然非焼成バーミキュライトを20〜70質量%含むことが好ましく、更に好ましくは珪藻質濾過助剤を40〜70質量%含み、天然非焼成バーミキュライトを30〜60質量%含む。   Cement milk filled in the void portion of such a pavement is obtained by adding 65 to 150% by mass of water to the above-described pavement injection material and kneading. That is, this cement milk contains 5 to 80% by mass of a water retaining material containing a diatomaceous filter aid and 65 to 150% by mass of water with respect to 100% by mass of the cement composition. Therefore, when the water retention material does not include any non-fired vermiculite and paper sludge incineration ash, when the water retention material is 100% by mass, the water retention material is a diatomaceous filter with a particle size of 0.1 to 50 μm. 100% by mass of auxiliary agent is included. When the water retention material contains diatomaceous filter aid and non-calcined vermiculite and does not contain paper sludge incineration ash, the water retention material has a particle size of 0.1 to 50 μm when the water retention material is 100% by mass. 30 to 80% by mass of diatomaceous filter aid and 20 to 70% by mass of natural non-baked vermiculite with a particle size of 20 to 400 μm, more preferably 40 to 70% by mass of diatomaceous filter aid. 30 to 60% by mass of natural unfired vermiculite.

また保水性材料が珪藻質濾過助剤と製紙スラッジ焼却灰を含み、非焼成バーミキュライトを含まない場合には、保水性材料100質量%に対して、その保水性材料は、粒径0.1〜50μmの珪藻質濾過助剤を30〜80質量%と、粒径が5〜1000μmであって主要成分がSiO2とAl23からなる製紙スラッジ焼却灰を20〜70質量%含むことが好ましく、更に好ましくは珪藻質濾過助剤を40〜70質量%含み、製紙スラッジ焼却灰を30〜60質量%含む。更に保水性材料が珪藻質濾過助剤と製紙スラッジ焼却灰と非焼成バーミキュライトを含む場合には、保水性材料100質量%に対して、保水性材料は、粒径0.1〜50μmの珪藻質濾過助剤を30〜80質量%と、粒径20〜400μmの天然非焼成バーミキュライトを20〜50質量%と、粒径が5〜1000μmであって主要成分がSiO2とAl23からなる製紙スラッジ焼却灰を20〜50質量%含むことが好ましく、更に好ましくは珪藻質濾過助剤を40〜70質量%含み、天然非焼成バーミキュライトを25〜45質量%含み、製紙スラッジ焼却灰を25〜45質量%含む。 In addition, when the water retention material contains a diatomaceous filter aid and paper sludge incinerated ash and does not contain unfired vermiculite, the water retention material has a particle size of 0.1 to 100% by mass with respect to 100% by mass of the water retention material. It is preferable that 30 to 80% by mass of a 50 μm diatomaceous filter aid and 20 to 70% by mass of paper sludge incineration ash having a particle size of 5 to 1000 μm and main components composed of SiO 2 and Al 2 O 3 are contained. More preferably, it contains 40-70% by mass of a diatomaceous filter aid and 30-60% by mass of paper sludge incineration ash. Further, when the water retention material contains a diatomaceous filter aid, paper sludge incinerated ash, and non-calcined vermiculite, the water retention material is diatomaceous matter having a particle diameter of 0.1 to 50 μm with respect to 100% by mass of the water retention material. 30-80% by mass of filter aid, 20-50% by mass of natural unfired vermiculite having a particle size of 20-400 μm, a particle size of 5-1000 μm, and the main components are composed of SiO 2 and Al 2 O 3. It is preferable to contain 20 to 50% by mass of papermaking sludge incineration ash, more preferably 40 to 70% by mass of diatomaceous filter aid, 25 to 45% by mass of natural unfired vermiculite, and 25 to 25% of papermaking sludge incineration ash. Including 45% by mass.

このような保水性材料5〜80質量%と、舗装体用注入材100質量%と、水65〜150質量%とを混練することにより、その最大吸水率が25〜90質量%であるセメントミルクを得ることができる。ここで水の量が65〜150質量%とするのは、保水性材料の注入性や施工性等を考慮してこの範囲で選択することが最良だからである。そして、このような最大吸水率を有するセメントミルクを舗装体の空隙部分に注入することにより保水性を有する舗装体が得られる。そして、舗装体の空隙部分にこのような最大吸水率が25〜90質量%であるセメントミルクを注入することにより、舗装体表面の温度上昇の抑制効果を長時間持続させ、かつ舗装体の表面に削れやはがれなどの生じない実用上問題のない圧縮強度が得られるという優れた効果を奏するものである。なお、混和材は上記第1の実施の形態と同一に構成される。   Cement milk having a maximum water absorption of 25 to 90% by mass by kneading 5 to 80% by mass of such a water retaining material, 100% by mass of an injecting material for pavement, and 65 to 150% by mass of water. Can be obtained. The reason why the amount of water is 65 to 150% by mass is that it is best to select in this range in consideration of the pouring property and workability of the water retaining material. And the pavement which has water retention is obtained by inject | pouring the cement milk which has such a maximum water absorption rate into the space | gap part of a pavement. And by injecting cement milk having such a maximum water absorption rate of 25 to 90% by mass into the void portion of the pavement, the effect of suppressing the temperature rise of the pavement surface is maintained for a long time, and the surface of the pavement Thus, an excellent effect is obtained in that a compressive strength having no practical problem can be obtained without causing any shaving or peeling. The admixture is configured in the same way as in the first embodiment.

次に本発明の実施例を比較例とともに詳しく説明する。
先ず使用材料の種類及び略号、即ちカルシウムアルミネート、無機硫酸塩、セメント鉱物、アルミン酸ナトリウム、無機炭酸塩及びカルボン酸類の種類及び略号を次の表1に示す。なお、表1において、『C12A7』は『12CaO・7Al23』であり、『C11A7F』は『11CaO・7Al23・CaF2』である。またブレーン値は、1gのカルシウムアルミネート粒子の総表面積であり、ブレーン空気透過式比表面積測定法で測定される。
Next, examples of the present invention will be described in detail together with comparative examples.
First, the types and abbreviations of materials used, that is, the types and abbreviations of calcium aluminate, inorganic sulfate, cement mineral, sodium aluminate, inorganic carbonate and carboxylic acids are shown in Table 1 below. In Table 1, “C12A7” is “12CaO · 7Al 2 O 3 ”, and “C11A7F” is “11CaO · 7Al 2 O 3 · CaF 2 ”. The brane value is the total surface area of 1 g of calcium aluminate particles, and is measured by the brane air permeation specific surface area measurement method.

Figure 2008274580
上記表1中のアルミン酸ナトリウム、無機炭酸塩及びカルボン酸類をそれぞれ所定の平均粒径の範囲毎に混合割合を変えた。その混合割合を表2に示す。なお、表2中の『0-45』は『0μmを越えかつ45μm以下』であり、『45-90』は『45μmを越えかつ90μm以下』であり、『90-150』は『90μmを越えかつ150μm以下』であり、『150-500』は『150μmを越えかつ500μm以下』であることを意味する。
Figure 2008274580
The mixing ratio of sodium aluminate, inorganic carbonate and carboxylic acid in Table 1 was changed for each predetermined average particle size range. The mixing ratio is shown in Table 2. In Table 2, “0-45” is “over 0 μm and under 45 μm”, “45-90” is “over 45 μm and under 90 μm”, and “90-150” is over “90 μm”. “150-500” means “over 150 μm and 500 μm or less”.

Figure 2008274580
表2において、使用材料の略号『Al-1』、『Na-1』及び『Ci-1』で示す第1〜第3粒子の混合割合は全て本発明の範囲内、即ち請求項1及び4で設定した範囲内にあり、使用材料の略号『Al-2』、『Na-2』及び『Ci-2』で示す第1〜第3粒子のうち少なくとも1種の混合割合が本発明の範囲外、即ち請求項1及び4で設定した範囲外にある。
更に表1のカルシウムアルミネートのうち略号CA70、CA80及びCA90の化学組成毎の含有割合をガラス化率及びブレーン値とともに表3に示す。
Figure 2008274580
In Table 2, the mixing ratios of the first to third particles indicated by the abbreviations “Al-1”, “Na-1” and “Ci-1” of the materials used are all within the scope of the present invention, that is, claims 1 and 4. The mixing ratio of at least one of the first to third particles indicated by the abbreviations “Al-2”, “Na-2” and “Ci-2” of the materials used is within the scope of the present invention. Outside, that is, outside the range set in claims 1 and 4.
Furthermore, the content ratio for each chemical composition of the abbreviations CA70, CA80 and CA90 in the calcium aluminate of Table 1 is shown in Table 3 together with the vitrification rate and the brain value.

Figure 2008274580
<実施例1>
カルシウムアルミネートCA90を10質量%と、フッ酸二型無水石膏S8を10質量%と、普通ポルトランドセメントNを80質量%と、アルミン酸ソーダAl−1を0.6質量%と、ソーダ灰Na−1を0.9質量%と、クエン酸Ci−1を0.6質量%と、砂Sa−1を5.1質量%と、ポリマーを4.08質量%と、水とを混合してセメントミルクを調製した。このセメントミルクを実施例1とした。なお、砂Sa−1はセメント組成物(カルシウムアルミネートCA90、フッ酸二型無水石膏S8、普通ポルトランドセメントN、アルミン酸ソーダAl−1、ソーダ灰Na−1及びクエン酸Ci−1)100質量%に対して5.0質量%であり、ポリマーはセメント組成物100質量%に対して4.00質量%であった。また水はこの水以外の材料の混合物(舗装体用注入材)100質量%に対して45質量%混合した。
<実施例2>
砂Sa−1を15.3質量%混合したこと以外は、実施例1と同様にしてセメントミルクを調製した。このセメントミルクを実施例2とした。なお、砂Sa−1はセメント組成物100質量%に対して15.0質量%であった。
<実施例3>
砂Sa−1を15.3質量%と、消泡剤を0.01質量%混合したこと以外は、実施例1と同様にしてセメントミルクを調製した。このセメントミルクを実施例3とした。なお、砂Sa−1はセメント組成物100質量%に対して15.0質量%であった。
<実施例4>
アルミン酸ソーダAl−1を0.8質量%と、ソーダ灰Na−1を1.2質量%と、クエン酸Ci−1を0.8質量%と、砂Sa−1を15.3質量%混合したこと以外は、実施例1と同様にしてセメントミルクを調製した。このセメントミルクを実施例4とした。なお、砂Sa−1はセメント組成物100質量%に対して15.0質量%であった。
<実施例5>
砂Sa−1を30.6質量%混合したこと以外は、実施例1と同様にしてセメントミルクを調製した。このセメントミルクを実施例5とした。なお、砂Sa−1はセメント組成物100質量%に対して30.0質量%であった。
Figure 2008274580
<Example 1>
10% by weight of calcium aluminate CA90, 10% by weight of hydrofluoric acid type 2 anhydrous gypsum S8, 80% by weight of ordinary Portland cement N, 0.6% by weight of sodium aluminate Al-1 and soda ash Na -1 is 0.9 mass%, citric acid Ci-1 is 0.6 mass%, sand Sa-1 is 5.1 mass%, polymer is 4.08 mass%, and water is mixed. Cement milk was prepared. This cement milk was designated as Example 1. Sand Sa-1 is 100 mass of cement composition (calcium aluminate CA90, hydrofluoric acid type 2 anhydrous gypsum S8, ordinary Portland cement N, sodium aluminate Al-1, soda ash Na-1 and citric acid Ci-1). %, And the polymer was 4.00% by mass with respect to 100% by mass of the cement composition. Water was mixed in an amount of 45% by mass with respect to 100% by mass of the mixture of materials other than water (pavement injection material).
<Example 2>
Cement milk was prepared in the same manner as in Example 1 except that 15.3% by mass of sand Sa-1 was mixed. This cement milk was designated as Example 2. In addition, sand Sa-1 was 15.0 mass% with respect to 100 mass% of cement compositions.
<Example 3>
Cement milk was prepared in the same manner as in Example 1 except that 15.3% by mass of sand Sa-1 and 0.01% by mass of antifoaming agent were mixed. This cement milk was designated as Example 3. In addition, sand Sa-1 was 15.0 mass% with respect to 100 mass% of cement compositions.
<Example 4>
Sodium aluminate Al-1 is 0.8 mass%, soda ash Na-1 is 1.2 mass%, citric acid Ci-1 is 0.8 mass%, and sand Sa-1 is 15.3 mass%. Cement milk was prepared in the same manner as in Example 1 except for mixing. This cement milk was designated as Example 4. In addition, sand Sa-1 was 15.0 mass% with respect to 100 mass% of cement compositions.
<Example 5>
Cement milk was prepared in the same manner as in Example 1 except that 30.6% by mass of sand Sa-1 was mixed. This cement milk was designated as Example 5. In addition, sand Sa-1 was 30.0 mass% with respect to 100 mass% of cement compositions.

<比較例1>
砂Sa−1を2.1質量%混合したけれども、ポリマーを混合しなかったこと以外は、実施例1と同様にしてセメントミルクを調製した。このセメントミルクを比較例1とした。なお、砂Sa−1はセメント組成物100質量%に対して2.0質量%であった。
<比較例2>
ポリマーを混合しなかったこと以外は、実施例1と同様にしてセメントミルクを調製した。このセメントミルクを比較例2とした。
<比較例3>
砂Sa−1(粒径:90〜1000μm)に代えて、砂Sa−2(粒径:1000μmを越えかつ3000μm以下)を15.3質量%混合したこと以外は、実施例1と同様にしてセメントミルクを調製した。このセメントミルクを比較例3とした。なお、砂Sa−1はセメント組成物100質量%に対して15.0質量%であった。
<比較例4>
砂Sa−1を15.3質量%混合し、ポリマーを0.50質量%混合したこと以外は、実施例1と同様にしてセメントミルクを調製した。このセメントミルクを比較例4とした。なお、砂Sa−1はセメント組成物100質量%に対して15.0質量%であった。
<Comparative Example 1>
Cement milk was prepared in the same manner as in Example 1 except that 2.1% by mass of sand Sa-1 was mixed but no polymer was mixed. This cement milk was designated as Comparative Example 1. In addition, sand Sa-1 was 2.0 mass% with respect to 100 mass% of cement compositions.
<Comparative example 2>
Cement milk was prepared in the same manner as in Example 1 except that the polymer was not mixed. This cement milk was designated as Comparative Example 2.
<Comparative Example 3>
It replaced with sand Sa-1 (particle size: 90-1000 micrometers), and carried out similarly to Example 1 except having mixed sand Sa-2 (particle diameter: more than 1000 micrometers and 3000 micrometers or less) 15.3% by mass. Cement milk was prepared. This cement milk was designated as Comparative Example 3. In addition, sand Sa-1 was 15.0 mass% with respect to 100 mass% of cement compositions.
<Comparative Example 4>
Cement milk was prepared in the same manner as in Example 1 except that 15.3% by mass of sand Sa-1 was mixed and 0.50% by mass of the polymer was mixed. This cement milk was designated as Comparative Example 4. In addition, sand Sa-1 was 15.0 mass% with respect to 100 mass% of cement compositions.

<比較例5>
砂Sa−1を35.7質量%混合したこと以外は、実施例1と同様にしてセメントミルクを調製した。このセメントミルクを比較例5とした。なお、砂Sa−1はセメント組成物100質量%に対して35.0質量%であった。
<比較例6>
カルシウムアルミネートCA90、フッ酸二型無水石膏S8、アルミン酸ソーダAl−1、ソーダ灰Na−1及びクエン酸Ci−1を混合せずに、速硬材KAを20質量%と、凝結調整剤KSetを1.5質量%と、砂Sa−1を15.3質量%混合したこと以外は、実施例1と同様にしてセメントミルクを調製した。このセメントミルクを比較例6とした。なお、砂Sa−1はセメント組成物(普通ポルトランドセメントN、速硬材KA及び凝結調整剤KSet)100質量%に対して15.0質量%であった。
<比較例7>
カルシウムアルミネートCA90、フッ酸二型無水石膏S8、アルミン酸ソーダAl−1、ソーダ灰Na−1及びクエン酸Ci−1を混合せずに、速硬材KAを20質量%と、凝結調整剤KSetを2.5質量%と、砂Sa−1を15.3質量%混合したこと以外は、実施例1と同様にしてセメントミルクを調製した。このセメントミルクを比較例7とした。なお、砂Sa−1はセメント組成物(普通ポルトランドセメントN、速硬材KA及び凝結調整剤KSet)100質量%に対して15.0質量%であった。
<Comparative Example 5>
Cement milk was prepared in the same manner as in Example 1 except that 35.7% by mass of sand Sa-1 was mixed. This cement milk was designated as Comparative Example 5. In addition, sand Sa-1 was 35.0 mass% with respect to 100 mass% of cement compositions.
<Comparative Example 6>
Calcium aluminate CA90, hydrofluoric acid type 2 anhydrous gypsum S8, sodium aluminate Al-1, soda ash Na-1 and citric acid Ci-1 are not mixed, and 20% by mass of fast-hardening material KA is a coagulation regulator. Cement milk was prepared in the same manner as in Example 1 except that 1.5% by mass of KSet and 15.3% by mass of sand Sa-1 were mixed. This cement milk was designated as Comparative Example 6. In addition, sand Sa-1 was 15.0 mass% with respect to 100 mass% of cement compositions (ordinary Portland cement N, quick-hardening material KA, and setting regulator KSet).
<Comparative Example 7>
Calcium aluminate CA90, hydrofluoric acid type 2 anhydrous gypsum S8, sodium aluminate Al-1, soda ash Na-1 and citric acid Ci-1 are not mixed, and 20% by mass of fast-hardening material KA is a coagulation regulator. Cement milk was prepared in the same manner as in Example 1 except that 2.5% by mass of KSet and 15.3% by mass of sand Sa-1 were mixed. This cement milk was designated as Comparative Example 7. In addition, sand Sa-1 was 15.0 mass% with respect to 100 mass% of cement compositions (ordinary Portland cement N, quick-hardening material KA, and setting regulator KSet).

<比較試験1及び評価>
実施例2〜4と比較例6及び7のセメントミルクについて、混練時の雰囲気温度をそれぞれ5℃、20℃及び35℃として、練り上がり温度、P漏斗流下時間、可使時間、始発時間、終結時間及び圧縮強度をそれぞれ測定した。ここで、練り上がり温度は、練り上がり直後のセメントミルクを温度計により測定した温度である。P漏斗流下時間は、プレパックドコンクリートの注入モルタルの流動性試験方法(JSCE−F521)に準じた方法、即ちP漏斗試験装置の漏斗にセメントミルクを充填して、この漏斗の下端の孔からセメントミルクを流出させたときの流下時間である。可使時間は、練り上がり直後から測定した時間であって、P漏斗流下時間が11秒を越えるまでの時間である。また、凝結の始発時間及び凝結の終結時間は、JIS R 5201に準じて自動凝結試験機を用いて測定した。具体的には、凝結の始発時間は、練り上がり直後から測定した時間であって、セメントミルクに対して直径1mmの針が底面から1mm上がった位置で止まるまでの時間であり、凝結の終結時間は、練り上がり直後から測定した時間であって、直径1mmの針がセメントミルクに突き刺さらなくなるまでの時間である。更に圧縮強度は、JIS R 5201に準じて測定した強度であり、材齢3時間での圧縮強度を測定した。なお、上記凝結の始発時間及び凝結の終結時間の両者を合せて凝結時間と呼ぶ。これらの結果を表4に示す。
<Comparative test 1 and evaluation>
For the cement milks of Examples 2 to 4 and Comparative Examples 6 and 7, the kneading temperature, the P funnel flow time, the pot life, the start time, and the termination were set at 5 ° C., 20 ° C. and 35 ° C., respectively. Time and compressive strength were measured respectively. Here, the kneading temperature is a temperature obtained by measuring the cement milk immediately after kneading with a thermometer. The P funnel flow-down time is a method according to the pre-packed concrete pouring mortar fluidity test method (JSCE-F521), that is, the cement funnel of the P funnel test apparatus is filled with cement milk, and the funnel at the lower end of the funnel is filled with cement. Flowing time when milk is spilled. The pot life is a time measured immediately after kneading and is a time until the P funnel flow time exceeds 11 seconds. The initial setting time and the final setting time of the setting were measured using an automatic setting tester in accordance with JIS R 5201. Specifically, the initial setting time is the time measured immediately after kneading, and is the time until the needle with a diameter of 1 mm stops 1 mm from the bottom of the cement milk. Is the time measured immediately after kneading until the needle with a diameter of 1 mm does not pierce the cement milk. Furthermore, the compressive strength is the strength measured according to JIS R 5201, and the compressive strength at a material age of 3 hours was measured. The initial setting time and the final setting time of the setting are collectively referred to as setting time. These results are shown in Table 4.

Figure 2008274580
表4から明らかなように、凝結調整剤としてコーカセッターKSet(三菱マテリアル社製)を1.5質量%含む比較例6では、作業雰囲気温度5℃での可使時間が30分以下であり、凝結調整剤としてコーカセッターKSet(三菱マテリアル社製)を2.0質量%含む比較例7では、作業雰囲気温度5℃及び20℃における材齢3時間での圧縮強度が4.0N/mm2未満であった。これに対し、凝結調整剤としてAl−1(アルミン酸ソーダ)、Na−1(ソーダ灰)及びCi−1(クエン酸)を用いた実施例2〜4では、作業雰囲気温度5℃、20℃及び35℃における可使時間が30〜75分と比較的長く、かつ材齢3時間での圧縮強度が4.0N/mm2以上と高いことが分った。また消泡剤Defを混合した実施例3では、圧縮強度が6.3〜7.5N/mm2と実施例2及び4より高くなり、Al−1(アルミン酸ソーダ)、Na−1(ソーダ灰)及びCi−1(クエン酸)の混合割合を実施例2及び3の約1.3倍に増やした実施例4では、可使時間が60〜75分と実施例2及び3より長くなることが分った。
Figure 2008274580
As is apparent from Table 4, in Comparative Example 6 containing 1.5% by mass of the coca setter KSet (manufactured by Mitsubishi Materials Corporation) as a setting modifier, the pot life at a working atmosphere temperature of 5 ° C. is 30 minutes or less, In Comparative Example 7 containing 2.0% by mass of the coca setter KSet (manufactured by Mitsubishi Materials Corporation) as a setting modifier, the compressive strength at a working age of 5 ° C. and 20 ° C. at a material age of 3 hours is less than 4.0 N / mm 2. Met. On the other hand, in Examples 2 to 4 using Al-1 (sodium aluminate), Na-1 (soda ash), and Ci-1 (citric acid) as a setting modifier, the working atmosphere temperature was 5 ° C, 20 ° C. It was found that the pot life at 35 ° C. was relatively long as 30 to 75 minutes, and the compressive strength at a material age of 3 hours was as high as 4.0 N / mm 2 or more. In Example 3 in which the antifoaming agent Def was mixed, the compressive strength was 6.3 to 7.5 N / mm 2, which was higher than those in Examples 2 and 4, and Al-1 (sodium aluminate) and Na-1 (soda). In Example 4 in which the mixing ratio of ash) and Ci-1 (citric acid) was increased to about 1.3 times that in Examples 2 and 3, the pot life was 60 to 75 minutes, which was longer than in Examples 2 and 3. I found out.

<比較試験2及び評価>
実施例1〜5及び比較例1〜5のセメントミルクのブリーディング試験を行った。このブリーディング試験は、先ず容器に1リットルのセメントミルクを入れた後に蓋をし、セメントミルクの始発時に、ブリーディング水を採取してブリーディング量を測定した。次にこのブリーディング量BQ(ml)からブリーディング率BR(%)を次の式(1)より算出した。
R=(BQ/1000)×100 ……(1)
また上記セメントミルクが硬化して得られた硬化体表面の性状を目視により観察した。上記ブリーディング率BR及び硬化体表面の性状を表5に示す。なお、表5には、凝結調整剤の種類及び含有量と、砂の種類及び含有量と、ポリマーP及び消泡剤Defの含有量と、作業雰囲気温度20℃における練り上がり温度と、P漏斗流下時間と、可使時間と、始発時間と、終結時間も合わせて示す。また砂、ポリマーP及び消泡剤Defの含有量はセメント組成物100質量%に対する含有量とした。更にブリーディングとは、コンクリート打設時に重い材料が下に沈み、軽い水が表面に上がってくる現象をいう。なお、上記実施例1〜5及び比較例1〜5のセメントミルクの混練時の雰囲気温度は20℃であった。
<Comparative test 2 and evaluation>
A bleeding test of the cement milks of Examples 1 to 5 and Comparative Examples 1 to 5 was performed. In this bleeding test, 1 liter of cement milk was first put in a container and then the lid was put on, and at the start of cement milk, bleeding water was collected and the amount of bleeding was measured. Next, the bleeding rate B R (%) was calculated from the bleeding amount B Q (ml) by the following equation (1).
B R = (B Q / 1000) × 100 (1)
Further, the properties of the surface of the cured product obtained by curing the cement milk were visually observed. The properties of the bleeding rate B R and curing the surface shown in Table 5. Table 5 shows the types and contents of setting modifiers, the types and contents of sand, the contents of polymer P and defoaming agent Def, the kneading temperature at a working atmosphere temperature of 20 ° C., and the P funnel. The flow-down time, pot life, start time, and end time are also shown. The contents of sand, polymer P and antifoaming agent Def were the contents with respect to 100% by mass of the cement composition. Furthermore, bleeding is a phenomenon in which heavy material sinks down and light water rises to the surface when placing concrete. In addition, the atmospheric temperature at the time of kneading | mixing of the cement milk of the said Examples 1-5 and Comparative Examples 1-5 was 20 degreeC.

Figure 2008274580
表5から明らかなように、砂の含有量が2.0質量%と少ない比較例1や、ポリマーを含まない比較例2や、砂の粒径が1000〜3000μmと大きい比較例3や、ポリマーの含有量が0.50質量%と少ない比較例4や、砂の含有量が35.0質量%と多い比較例5では、ブリーディング率が2.1〜3.1%と比較的多かった。これらに対し、粒径が90〜1000μmである砂を5.0〜30.0質量%含有するとともに、ポリマーを4.00質量%含有する実施例1〜5では、ブリーディング率が0.7〜1.2と少ないことが分った。また比較例1〜5では、硬化体表面にひび割れが発生したり、硬化体表面が脆弱であったり、或いは材料が分離したのに対し、実施例1〜5では、硬化体表面が良好であることが分った。
Figure 2008274580
As is apparent from Table 5, Comparative Example 1 with a low sand content of 2.0% by mass, Comparative Example 2 without a polymer, Comparative Example 3 with a large sand particle size of 1000 to 3000 μm, and a polymer In Comparative Example 4 with a low content of 0.50% by mass and Comparative Example 5 with a high sand content of 35.0% by mass, the bleeding rate was relatively high at 2.1 to 3.1%. On the other hand, in Examples 1-5 which contain 5.0-30.0 mass% of sand whose particle size is 90-1000 micrometers and contain 4.00 mass% of polymers, the bleeding rate is 0.7- It was found that there was only 1.2. In Comparative Examples 1 to 5, cracks occurred on the surface of the cured body, the surface of the cured body was fragile, or the material was separated, whereas in Examples 1 to 5, the surface of the cured body was good. I found out.

<実施例6>
カルシウムアルミネートCA90を15質量%と、フッ酸二型無水石膏S8を15質量%と、普通ポルトランドセメントNを70質量%と、アルミン酸ソーダAl−1を0.6質量%と、ソーダ灰Na−1を0.9質量%と、クエン酸Ci−1を0.6質量%と、珪藻質濾過助剤H01を7.5質量%と、製紙スラッジ灰H02を7.5質量%と、ポリマーPを4質量%と、水を77.4質量%混合してセメントミルクを調製した。このセメントミルクを実施例6とした。なお、珪藻質濾過助剤H01はセメント組成物(カルシウムアルミネートCA90、フッ酸二型無水石膏S8、普通ポルトランドセメントN、アルミン酸ソーダAl−1、ソーダ灰Na−1及びクエン酸Ci−1)100質量%に対して7.5質量%であり、製紙スラッジ灰H02はセメント組成物100質量%に対して7.5質量%であり、ポリマーPはセメント組成物100質量%に対して4質量%であった。また水はこの水以外の材料の混合物(舗装体用注入材)100質量%に対して65質量%であった。
<実施例7>
水を95.2質量%混合したこと以外は、実施例6と同様にしてセメントミルクを調製した。このセメントミルクを実施例7とした。なお、水は舗装体用注入材100質量%に対して80質量%であった。
<実施例8>
珪藻質濾過助剤H01を15質量%と、製紙スラッジ灰H02を15質量%と、水を113.9質量%混合したこと以外は、実施例6と同様にしてセメントミルクを調製した。このセメントミルクを実施例8とした。なお、珪藻質濾過助剤H01はセメント組成物100質量%に対して15質量%であり、製紙スラッジ灰H02はセメント組成物100質量%に対して15質量%であり、ポリマーPはセメント組成物100質量%に対して4質量%であった。また水は舗装体用注入材100質量%に対して85質量%であった。
<実施例9>
珪藻質濾過助剤H01を15質量%と、製紙スラッジ灰H02を15質量%と、水を120.6質量%混合したこと以外は、実施例6と同様にしてセメントミルクを調製した。このセメントミルクを実施例9とした。なお、珪藻質濾過助剤H01はセメント組成物100質量%に対して15質量%であり、製紙スラッジ灰H02はセメント組成物100質量%に対して15質量%であった。また水は舗装体用注入材100質量%に対して90質量%であった。
<実施例10>
珪藻質濾過助剤H01を25質量%と、製紙スラッジ灰H02を25質量%と、水を184.8質量%混合したこと以外は、実施例6と同様にしてセメントミルクを調製した。このセメントミルクを実施例10とした。なお、珪藻質濾過助剤H01はセメント組成物100質量%に対して25質量%であり、製紙スラッジ灰H02はセメント組成物100質量%に対して25質量%であった。また水は舗装体用注入材100質量%に対して120質量%であった。
<Example 6>
15% by weight of calcium aluminate CA90, 15% by weight of hydrofluoric acid type 2 anhydrous gypsum S8, 70% by weight of ordinary Portland cement N, 0.6% by weight of sodium aluminate Al-1 and soda ash Na -1 0.9 mass%, citric acid Ci-1 0.6 mass%, diatomaceous filter aid H01 7.5 mass%, paper sludge ash H02 7.5 mass%, polymer Cement milk was prepared by mixing 4% by mass of P and 77.4% by mass of water. This cement milk was designated as Example 6. Diatomaceous filter aid H01 is a cement composition (calcium aluminate CA90, hydrofluoric acid type 2 anhydrous gypsum S8, ordinary Portland cement N, sodium aluminate Al-1, soda ash Na-1 and citric acid Ci-1). It is 7.5% by mass with respect to 100% by mass, the papermaking sludge ash H02 is 7.5% by mass with respect to 100% by mass of the cement composition, and the polymer P is 4% with respect to 100% by mass of the cement composition. %Met. Moreover, water was 65 mass% with respect to 100 mass% of the mixture (injection material for pavement bodies) other than this water.
<Example 7>
Cement milk was prepared in the same manner as in Example 6 except that 95.2% by mass of water was mixed. This cement milk was designated as Example 7. In addition, water was 80 mass% with respect to 100 mass% of injection materials for pavements.
<Example 8>
Cement milk was prepared in the same manner as in Example 6 except that 15% by mass of diatomaceous filter aid H01, 15% by mass of papermaking sludge ash H02, and 113.9% by mass of water were mixed. This cement milk was designated as Example 8. The diatomaceous filter aid H01 is 15% by mass with respect to 100% by mass of the cement composition, the papermaking sludge ash H02 is 15% by mass with respect to 100% by mass of the cement composition, and the polymer P is the cement composition. It was 4 mass% with respect to 100 mass%. Moreover, water was 85 mass% with respect to 100 mass% of injection materials for pavements.
<Example 9>
Cement milk was prepared in the same manner as in Example 6 except that 15% by mass of diatomaceous filter aid H01, 15% by mass of papermaking sludge ash H02, and 120.6% by mass of water were mixed. This cement milk was designated as Example 9. The diatomaceous filter aid H01 was 15% by mass with respect to 100% by mass of the cement composition, and the papermaking sludge ash H02 was 15% by mass with respect to 100% by mass of the cement composition. Moreover, water was 90 mass% with respect to 100 mass% of the injection material for pavements.
<Example 10>
Cement milk was prepared in the same manner as in Example 6 except that 25% by mass of diatomaceous filter aid H01, 25% by mass of papermaking sludge ash H02, and 184.8% by mass of water were mixed. This cement milk was designated as Example 10. The diatomaceous filter aid H01 was 25% by mass with respect to 100% by mass of the cement composition, and the papermaking sludge ash H02 was 25% by mass with respect to 100% by mass of the cement composition. Water was 120% by mass with respect to 100% by mass of the pavement injection material.

<実施例11>
製紙スラッジ灰H02に代えて天然非焼成バーミキュライトH03を7.5質量%混合したこと以外は、実施例6と同様にしてセメントミルクを調製した。このセメントミルクを実施例11とした。なお、天然非焼成バーミキュライトH03はセメント組成物100質量%に対して7.5質量%であった。
<実施例12>
製紙スラッジ灰H02に代えて天然非焼成バーミキュライトH03を7.5質量%と、水を95.2質量%混合したこと以外は、実施例6と同様にしてセメントミルクを調製した。このセメントミルクを実施例12とした。なお、天然非焼成バーミキュライトH03はセメント組成物100質量%に対して7.5質量%であり、水は舗装体用注入材100質量%に対して80質量%であった。
<実施例13>
珪藻質濾過助剤H01を15質量%と、製紙スラッジ灰H02に代えて天然非焼成バーミキュライトH03を15質量%と、水を120.6質量%混合したこと以外は、実施例6と同様にしてセメントミルクを調製した。このセメントミルクを実施例13とした。なお、珪藻質濾過助剤H01はセメント組成物100質量%に対して15質量%であり、天然非焼成バーミキュライトH03はセメント組成物100質量%に対して15質量%であった。また水は舗装体用注入材100質量%に対して90質量%であった。
<実施例14>
珪藻質濾過助剤H01を25質量%と、製紙スラッジ灰H02に代えて天然非焼成バーミキュライトH03を25質量%と、水を184.8質量%混合したこと以外は、実施例6と同様にしてセメントミルクを調製した。このセメントミルクを実施例14とした。なお、珪藻質濾過助剤H01はセメント組成物100質量%に対して25質量%であり、天然非焼成バーミキュライトH03はセメント組成物100質量%に対して25質量%であった。また水は舗装体用注入材100質量%に対して120質量%であった。
<実施例15>
製紙スラッジ灰H02を混合せずに、珪藻質濾過助剤H01を15質量%混合したこと以外は、実施例6と同様にしてセメントミルクを調製した。このセメントミルクを実施例15とした。なお、珪藻質濾過助剤H01はセメント組成物100質量%に対して15質量%であった。
<Example 11>
Cement milk was prepared in the same manner as in Example 6 except that 7.5% by mass of natural non-fired vermiculite H03 was mixed in place of papermaking sludge ash H02. This cement milk was designated as Example 11. In addition, natural unbaked vermiculite H03 was 7.5 mass% with respect to 100 mass% of cement compositions.
<Example 12>
Cement milk was prepared in the same manner as in Example 6 except that 7.5% by mass of natural non-fired vermiculite H03 and 95.2% by mass of water were mixed in place of the papermaking sludge ash H02. This cement milk was designated as Example 12. Natural unfired vermiculite H03 was 7.5% by mass with respect to 100% by mass of the cement composition, and water was 80% by mass with respect to 100% by mass of the pavement injection material.
<Example 13>
Except that 15% by mass of diatomaceous filter aid H01, 15% by mass of natural unfired vermiculite H03 instead of paper sludge ash H02, and 120.6% by mass of water were mixed in the same manner as in Example 6. Cement milk was prepared. This cement milk was designated as Example 13. The diatomaceous filter aid H01 was 15% by mass with respect to 100% by mass of the cement composition, and the natural non-baked vermiculite H03 was 15% by mass with respect to 100% by mass of the cement composition. Moreover, water was 90 mass% with respect to 100 mass% of the injection material for pavements.
<Example 14>
Except that 25% by mass of diatomaceous filter aid H01, 25% by mass of natural unfired vermiculite H03 instead of paper sludge ash H02, and 184.8% by mass of water were mixed as in Example 6. Cement milk was prepared. This cement milk was designated as Example 14. The diatomaceous filter aid H01 was 25% by mass with respect to 100% by mass of the cement composition, and the natural non-baked vermiculite H03 was 25% by mass with respect to 100% by mass of the cement composition. Water was 120% by mass with respect to 100% by mass of the pavement injection material.
<Example 15>
Cement milk was prepared in the same manner as in Example 6 except that 15% by mass of diatomaceous filter aid H01 was mixed without mixing papermaking sludge ash H02. This cement milk was designated as Example 15. In addition, diatomaceous filter aid H01 was 15 mass% with respect to 100 mass% of cement compositions.

<実施例16>
製紙スラッジ灰H02を混合せずに、珪藻質濾過助剤H01を15質量%と、水を95.2質量%混合したこと以外は、実施例6と同様にしてセメントミルクを調製した。このセメントミルクを実施例16とした。なお、珪藻質濾過助剤H01はセメント組成物100質量%に対して15質量%であり、水は舗装体用注入材100質量%に対して80質量%であった。
<実施例17>
製紙スラッジ灰H02を混合せずに、珪藻質濾過助剤H01を30質量%と、水を120.6質量%混合したこと以外は、実施例6と同様にしてセメントミルクを調製した。このセメントミルクを実施例17とした。なお、珪藻質濾過助剤H01はセメント組成物100質量%に対して30質量%であり、水は舗装体用注入材100質量%に対して90質量%であった。
<実施例18>
製紙スラッジ灰H02を混合せずに、珪藻質濾過助剤H01を50質量%と、水を184.8質量%混合したこと以外は、実施例6と同様にしてセメントミルクを調製した。このセメントミルクを実施例18とした。なお、珪藻質濾過助剤H01はセメント組成物100質量%に対して50質量%であり、水は舗装体用注入材100質量%に対して120質量%であった。
<実施例19>
ポリマーを混合せずに、製紙スラッジ灰H02に代えて天然非焼成バーミキュライトH03を7.5質量%と、水を74.8質量%混合したこと以外は、実施例6と同様にしてセメントミルクを調製した。このセメントミルクを実施例19とした。なお、天然非焼成バーミキュライトH03はセメント組成物100質量%に対して7.5質量%であり、水は舗装体用注入材100質量%に対して65質量%であった。
<実施例20>
製紙スラッジ灰H02に代えて天然非焼成バーミキュライトH03を7.5質量%と、ポリマーを2質量%と、水を76.1質量%混合したこと以外は、実施例6と同様にしてセメントミルクを調製した。このセメントミルクを実施例20とした。なお、天然非焼成バーミキュライトH03はセメント組成物100質量%に対して7.5質量%であり、ポリマーはセメント組成物100質量%に対して2質量%であり、水は舗装体用注入材100質量%に対して65質量%であった。
<Example 16>
Cement milk was prepared in the same manner as in Example 6 except that 15% by mass of diatomaceous filter aid H01 and 95.2% by mass of water were mixed without mixing papermaking sludge ash H02. This cement milk was designated as Example 16. In addition, the diatomaceous filter aid H01 was 15% by mass with respect to 100% by mass of the cement composition, and the water was 80% by mass with respect to 100% by mass of the pavement injection material.
<Example 17>
Cement milk was prepared in the same manner as in Example 6 except that 30% by mass of diatomaceous filter aid H01 and 120.6% by mass of water were mixed without mixing papermaking sludge ash H02. This cement milk was designated as Example 17. In addition, the diatomaceous filter aid H01 was 30% by mass with respect to 100% by mass of the cement composition, and the water was 90% by mass with respect to 100% by mass of the pavement injection material.
<Example 18>
Cement milk was prepared in the same manner as in Example 6 except that 50% by mass of diatomaceous filter aid H01 and 184.8% by mass of water were mixed without mixing papermaking sludge ash H02. This cement milk was designated as Example 18. In addition, the diatomaceous filter aid H01 was 50% by mass with respect to 100% by mass of the cement composition, and water was 120% by mass with respect to 100% by mass of the pavement injection material.
<Example 19>
Cement milk was prepared in the same manner as in Example 6 except that 7.5% by mass of natural non-baked vermiculite H03 and 74.8% by mass of water were mixed in place of the papermaking sludge ash H02 without mixing the polymer. Prepared. This cement milk was designated as Example 19. Natural unfired vermiculite H03 was 7.5% by mass with respect to 100% by mass of the cement composition, and water was 65% by mass with respect to 100% by mass of the pavement injection material.
<Example 20>
Cement milk was prepared in the same manner as in Example 6 except that 7.5% by mass of natural uncalcined vermiculite H03, 2% by mass of polymer, and 76.1% by mass of water were mixed in place of papermaking sludge ash H02. Prepared. This cement milk was designated as Example 20. In addition, natural non-baked vermiculite H03 is 7.5% by mass with respect to 100% by mass of the cement composition, the polymer is 2% by mass with respect to 100% by mass of the cement composition, and water is the injection material 100 for pavement. It was 65 mass% with respect to the mass%.

<比較例8>
カルシウムアルミネートCA90、フッ酸二型無水石膏S8、アルミン酸ソーダAl−1、ソーダ灰Na−1及びクエン酸Ci−1を混合せずに、速硬材KAを30質量%と、凝結調整剤KSetを1.5質量%混合したこと以外は、実施例6と同様にしてセメントミルクを調製した。このセメントミルクを比較例8とした。
<比較例9>
カルシウムアルミネートCA90、フッ酸二型無水石膏S8、アルミン酸ソーダAl−1、ソーダ灰Na−1及びクエン酸Ci−1を混合せずに、速硬材KAを30質量%と、凝結調整剤KSetを1.5質量%と、珪藻質濾過助剤H01を15質量%と、製紙スラッジ灰H02を15質量%と、水を120.6質量%混合したこと以外は、実施例6と同様にしてセメントミルクを調製した。このセメントミルクを比較例9とした。なお、珪藻質濾過助剤H01はセメント組成物100質量%に対して15質量%であり、製紙スラッジ灰H02はセメント組成物100質量%に対して15質量%であり、水は舗装体用注入材100質量%に対して90質量%であった。
<比較例10>
珪藻質濾過助剤H01を2.0質量%と、製紙スラッジ灰H02を2.0質量%と、水を70.2質量%混合したこと以外は、実施例6と同様にしてセメントミルクを調製した。このセメントミルクを比較例10とした。なお、珪藻質濾過助剤H01はセメント組成物100質量%に対して2.0質量%であり、製紙スラッジ灰H02はセメント組成物100質量%に対して2.0質量%であり、水は舗装体用注入材100質量%に対して65質量%であった。
<比較例11>
珪藻質濾過助剤H01を45質量%と、製紙スラッジ灰H02を45質量%と、水を126.1質量%混合したこと以外は、実施例6と同様にしてセメントミルクを調製した。このセメントミルクを比較例11とした。なお、珪藻質濾過助剤H01はセメント組成物100質量%に対して45質量%であり、製紙スラッジ灰H02はセメント組成物100質量%に対して45質量%であり、水は舗装体用注入材100質量%に対して65質量%であった。
<比較例12>
珪藻質濾過助剤H01及び製紙スラッジ灰H02を混合せずに、珪藻土H04を15質量%混合したこと以外は、実施例6と同様にしてセメントミルクを調製した。このセメントミルクを比較例12とした。なお、珪藻土H04はセメント組成物100質量%に対して15質量%であった。
<Comparative Example 8>
Calcium aluminate CA90, hydrofluoric acid type 2 anhydrous gypsum S8, sodium aluminate Al-1, soda ash Na-1 and citric acid Ci-1 were not mixed, and the quick-hardening material KA was 30% by mass, and a coagulation modifier. Cement milk was prepared in the same manner as in Example 6 except that 1.5% by mass of KSet was mixed. This cement milk was designated as Comparative Example 8.
<Comparative Example 9>
Calcium aluminate CA90, hydrofluoric acid type 2 anhydrous gypsum S8, sodium aluminate Al-1, soda ash Na-1 and citric acid Ci-1 were not mixed, and the quick-hardening material KA was 30% by mass, and a coagulation modifier. Same as Example 6 except that 1.5% by weight of KSet, 15% by weight of diatomaceous filter aid H01, 15% by weight of paper sludge ash H02, and 120.6% by weight of water were mixed. Cement milk was prepared. This cement milk was designated as Comparative Example 9. The diatomaceous filter aid H01 is 15% by mass with respect to 100% by mass of the cement composition, the papermaking sludge ash H02 is 15% by mass with respect to 100% by mass of the cement composition, and water is injected for pavement. It was 90 mass% with respect to 100 mass% of materials.
<Comparative Example 10>
Cement milk was prepared in the same manner as in Example 6 except that 2.0% by mass of diatomaceous filter aid H01, 2.0% by mass of papermaking sludge ash H02, and 70.2% by mass of water were mixed. did. This cement milk was designated as Comparative Example 10. The diatomaceous filter aid H01 is 2.0% by mass with respect to 100% by mass of the cement composition, the papermaking sludge ash H02 is 2.0% by mass with respect to 100% by mass of the cement composition, and the water is It was 65 mass% with respect to 100 mass% of the injection material for pavements.
<Comparative Example 11>
Cement milk was prepared in the same manner as in Example 6 except that 45% by mass of diatomaceous filter aid H01, 45% by mass of papermaking sludge ash H02, and 126.1% by mass of water were mixed. This cement milk was designated as Comparative Example 11. The diatomaceous filter aid H01 is 45% by mass with respect to 100% by mass of the cement composition, the papermaking sludge ash H02 is 45% by mass with respect to 100% by mass of the cement composition, and water is injected for pavement. It was 65 mass% with respect to 100 mass% of materials.
<Comparative Example 12>
Cement milk was prepared in the same manner as in Example 6 except that 15% by mass of diatomaceous earth H04 was mixed without mixing diatomaceous filter aid H01 and papermaking sludge ash H02. This cement milk was designated as Comparative Example 12. In addition, diatomaceous earth H04 was 15 mass% with respect to 100 mass% of cement compositions.

<比較試験3及び評価>
実施例6〜20及び比較例8〜12のセメントミルクの配合割合を表6に示す。なお、図6中のセメント組成物Aは、普通ポルトランドセメントNを70質量%と、カルシウムアルミネートCA90を15質量%と、フッ酸二型無水石膏S8を15質量%と、アルミン酸ソーダAl−1を0.6質量%と、ソーダ灰Na−1を0.9質量%と、クエン酸Ci−1を0.6質量%とを混合したものであり、セメント組成物Bは、普通ポルトランドセメントNを70質量%と、速硬材KAを30質量%と、凝結調整剤KSetを1.5質量%混合したものである。これらのセメント組成物A及びBの各原料の配合割合を表7に示す。
上記実施例6〜20及び比較例8〜12のセメントミルク混練物を4×4×16cmの型枠にそれぞれ流し込んで成型し、材齢3時間で脱型した。これらの圧縮強度を、JIS R 5201「セメントの物理試験方法」の定めに準拠した方法によりそれぞれ求めた。このようにして求められた実施例6〜20及び比較例8〜12におけるそれぞれの圧縮強度を表8に示す。なお、表8には、セメント組成物と、セメント組成物に対する保水性材料の混合割合と、舗装体用注入材に対する水の混合割合と、ポリマーPの添加量を合せて示す。また、上記実施例6〜20及び比較例8〜12のセメントミルクの混練時の雰囲気温度は20℃であった。
<Comparative test 3 and evaluation>
Table 6 shows the blending ratios of the cement milks of Examples 6 to 20 and Comparative Examples 8 to 12. The cement composition A in FIG. 6 is composed of 70% by weight of ordinary Portland cement N, 15% by weight of calcium aluminate CA90, 15% by weight of hydrofluoric acid type 2 anhydrous gypsum S8, sodium aluminate Al— 1 is 0.6% by mass, soda ash Na-1 is 0.9% by mass, and citric acid Ci-1 is 0.6% by mass. Cement composition B is a normal Portland cement. 70% by mass of N, 30% by mass of the fast-hardening material KA, and 1.5% by mass of the setting modifier KSet are mixed. Table 7 shows the blending ratio of each raw material of these cement compositions A and B.
The cement milk kneaded materials of Examples 6 to 20 and Comparative Examples 8 to 12 were each poured into a 4 × 4 × 16 cm mold and molded, and demolded at a material age of 3 hours. These compressive strengths were determined by methods in accordance with the provisions of JIS R 5201 “Cement physical test method”. Table 8 shows the respective compressive strengths in Examples 6 to 20 and Comparative Examples 8 to 12 obtained in this way. In Table 8, the cement composition, the mixing ratio of the water retention material to the cement composition, the mixing ratio of water to the pavement injection material, and the addition amount of the polymer P are shown together. Moreover, the atmospheric temperature at the time of kneading | mixing of the cement milk of the said Examples 6-20 and Comparative Examples 8-12 was 20 degreeC.

Figure 2008274580
Figure 2008274580

Figure 2008274580
Figure 2008274580

Figure 2008274580
表8から明らかなように、比較例11では保水性材料を90質量%と多く混合したため、材齢3時間での圧縮強度を測定できなかったのに対し、実施例6〜20と比較例8〜10及び12では、材齢3時間での圧縮強度に顕著な差異を生じていない。このため実施例6〜20に含まれる舗装体用注入材は比較例1及び2に含まれる従来の舗装体用注入材と同様の強度を保つことができることが分った。
Figure 2008274580
As apparent from Table 8, in Comparative Example 11, since the water-retaining material was mixed as much as 90% by mass, the compressive strength at the age of 3 hours could not be measured, whereas Examples 6 to 20 and Comparative Example 8 No. 10 to 12 and no significant difference in compressive strength at the age of 3 hours. For this reason, it turned out that the injection | pouring material for paving bodies contained in Examples 6-20 can maintain the same intensity | strength as the injection material for conventional paving bodies contained in Comparative Examples 1 and 2.

<比較試験4及び評価>
実施例6〜20及び比較例8〜12のセメントミルクを4×4×16cmの型枠にそれぞれ流し込み、材齢3日で脱型した。これらを20℃の水の中に24時間以上浸漬した後、質量をそれぞれ測定した(飽和質量)。これらを60℃の通風乾燥機で24時間以上乾燥したものの質量をそれぞれ測定した(絶乾質量)。これらより次式で最大吸水率をそれぞれ算出した。
最大吸水率(%)=100×(飽和質量−絶乾質量)/絶乾質量
この式により求められた実施例6〜20及び比較例8〜12におけるそれぞれの最大吸水率を表8に示す。
表8から明らかなように、実施例6〜20及び比較例8〜12のセメントミルクはその最大吸水率に顕著な差異を生じていない。このため実施例6〜20に含まれる舗装体用注入材は比較例8〜12に含まれる従来の舗装体用注入材と同様の最大吸水率を有するものになり、これを舗装体に充填することにより、その舗装体の表面温度が上昇することを有効に防止できることが分った。
<Comparative test 4 and evaluation>
The cement milks of Examples 6 to 20 and Comparative Examples 8 to 12 were respectively poured into 4 × 4 × 16 cm molds and demolded at a material age of 3 days. After these were immersed in water at 20 ° C. for 24 hours or more, the masses were measured (saturated masses). The mass of those dried for 24 hours or more with a 60 ° C. ventilation dryer was measured (absolute dry mass). From these, the maximum water absorption was calculated by the following equation.
Maximum water absorption rate (%) = 100 × (saturated mass−absolute dry mass) / absolute dry mass Table 8 shows the maximum water absorption rates in Examples 6 to 20 and Comparative Examples 8 to 12 determined by this equation.
As is apparent from Table 8, the cement milks of Examples 6 to 20 and Comparative Examples 8 to 12 do not have a significant difference in the maximum water absorption rate. Therefore, the pavement injection material included in Examples 6 to 20 has the same maximum water absorption rate as the conventional pavement injection material included in Comparative Examples 8 to 12, and this is filled in the pavement. As a result, it has been found that the surface temperature of the pavement can be effectively prevented from increasing.

<比較試験5及び評価>
実施例6〜20及び比較例8〜12のセメントミルクを4×4×16cmの型枠にそれぞれ流し込み、材齢3日で脱型した。これらを60℃の通風乾燥機で24時間乾燥したものの質量をそれぞれ測定した(乾燥質量)。その後、これらを温度が20℃であって湿度が90%の部屋に24時間放置し、24時間後の質量をそれぞれ測定した(吸湿質量)。これらより次式で吸湿率をそれぞれ算出した。
吸湿率(%)=100×(吸湿質量−乾燥質量)/乾燥質量
この式により求められた実施例6〜20及び比較例8〜12におけるそれぞれの吸湿率を表8に示す。
表8から明らかなように、比較例10及び12のセメントミルクが硬化した硬化体の吸湿率は4.5%及び2.4%と低かったのに対し、実施例6〜20のセメントミルクが硬化した硬化体の吸湿率は5.2〜14.4%と高いことが分った。また実施例6〜20と比較例8及び9のセメントミルクはその吸湿率に顕著な差異を生じていないことが分った。このため実施例6〜20に含まれる舗装体用注入材は比較例8及び9に含まれる従来の舗装体用注入材と同様の吸湿率を有するものになり、これを舗装体に充填することにより、大気中の水蒸気を有効に付着できるものと考えられ、これが充填された舗装体の温度が上昇することをその水蒸気により防止するであろうことが分った。
<Comparative test 5 and evaluation>
The cement milks of Examples 6 to 20 and Comparative Examples 8 to 12 were respectively poured into 4 × 4 × 16 cm molds and demolded at a material age of 3 days. The masses of those dried for 24 hours with a 60 ° C. ventilator were measured (dry mass). Thereafter, these were left in a room with a temperature of 20 ° C. and a humidity of 90% for 24 hours, and the mass after 24 hours was measured (hygroscopic mass). From these, the moisture absorption rate was calculated by the following equation.
Moisture absorption rate (%) = 100 × (moisture absorption mass−dry mass) / dry mass Table 8 shows the respective moisture absorption rates in Examples 6 to 20 and Comparative Examples 8 to 12 determined by this equation.
As is apparent from Table 8, the moisture absorption rates of the cured bodies obtained by curing the cement milks of Comparative Examples 10 and 12 were as low as 4.5% and 2.4%, whereas the cement milks of Examples 6 to 20 were low. It was found that the moisture absorption rate of the cured product was as high as 5.2 to 14.4%. Further, it was found that the cement milks of Examples 6 to 20 and Comparative Examples 8 and 9 did not have a significant difference in moisture absorption. Therefore, the pavement injection material included in Examples 6 to 20 has the same moisture absorption rate as the conventional pavement injection material included in Comparative Examples 8 and 9, and this is filled in the pavement. Thus, it is considered that water vapor in the atmosphere can be effectively attached, and it has been found that the water vapor will prevent the temperature of the pavement filled with the water from rising.

<比較試験6及び評価>
30cm×30cm×10cmの形状を有し、空隙率24%の開粒度を有するアスファルトからなる舗装体を準備した。この舗装体の空隙部分に実施例6に示されるセメントミルクを充填して実施例6に示されるセメントミルクが充填された保水性舗装体1を得た。また、これと同形同大のアスファルトからなる別の舗装体を準備し、この舗装体の空隙部分に比較例12に示されるセメントミルクを充填して比較例12に示されるセメントミルクが充填された保水性舗装体2を得た。得られた保水性舗装体1及び2は、1日間20℃の気中で養生した後、7日間水中に浸漬してそれぞれの保水性材料を飽水状態とした。
次に、これらの保水性舗装体1及び2から40cmの上部に赤外線ランプをそれぞれ配置し、そのランプを点灯させて赤外線を保水性舗装体1及び2のそれぞれの表面に12時間照射し、その後そのランプを12時間消灯させることを1サイクルとし、これを10サイクルそれぞれ繰り返した。一方、保水性舗装体1及び2の表面には温度センサーをそれぞれ設置し、その温度センサにより保水性舗装体1及び2のそれぞれの表面温度を測定し、これを温度記録計に記録させた。この結果を示すグラフを図1に示す。
図1から明らかなように、比較例12の珪藻質濾過助剤H01を含まない舗装体用注入材を使用した保水性舗装体2では、4サイクルあたりからその表面温度が徐々に上昇していることが分った。これに対して実施例6の舗装体用注入材を使用した保水性舗装体1では、10サイクル以上にもわたって、その表面温度の上昇を抑制できていることが分った。これは保水性材料に含ませた珪藻質濾過助剤H01に水蒸気が付着してその保水性材料自体が乾燥することを防止した結果によるものと考えられる。
<Comparative test 6 and evaluation>
A pavement made of asphalt having a shape of 30 cm × 30 cm × 10 cm and having an open particle size with a porosity of 24% was prepared. The cement milk shown in Example 6 was filled in the void portion of the pavement, and the water-retaining pavement 1 filled with the cement milk shown in Example 6 was obtained. Further, another pavement made of asphalt having the same shape and size as this is prepared, and the cement milk shown in Comparative Example 12 is filled by filling the gap portion of this pavement with the cement milk shown in Comparative Example 12. A water-retaining pavement 2 was obtained. The obtained water-retaining pavements 1 and 2 were cured in the air at 20 ° C. for 1 day and then immersed in water for 7 days to make each water-retaining material saturated.
Next, an infrared lamp is placed on the upper part of each of the water-retaining pavements 1 and 2 to 40 cm, and the lamps are turned on to irradiate each surface of the water-retaining pavements 1 and 2 for 12 hours. The lamp was extinguished for 12 hours as one cycle, and this was repeated for 10 cycles. On the other hand, temperature sensors were installed on the surfaces of the water-retaining pavements 1 and 2, respectively, the surface temperatures of the water-retaining pavements 1 and 2 were measured by the temperature sensors, and recorded on a temperature recorder. A graph showing the results is shown in FIG.
As is clear from FIG. 1, the surface temperature of the water-retaining pavement 2 using the pavement injection material that does not contain the diatomaceous filter aid H01 of Comparative Example 12 gradually increases from around 4 cycles. I found out. On the other hand, it was found that in the water-retaining pavement 1 using the pavement injecting material of Example 6, the increase in the surface temperature was suppressed over 10 cycles or more. This is considered to be due to the result of preventing water vapor from adhering to the diatomaceous filter aid H01 contained in the water retention material and drying the water retention material itself.

<比較試験7及び評価>
実施例6に示されるセメントミルクと比較例12に示されるセメントミルクを4×4×16cmの型枠にそれぞれ流し込み、材齢3日で脱型した。これにより4×4×16cmの実施例6に示されるセメントミルクからなる保水性硬化体1と比較例12に示されるセメントミルクからなる保水性硬化体2を得た。得られた保水性硬化体1及び2は、1日間20℃の気中で養生した後、7日間水中に浸漬させた。
次に、これらの保水性硬化体1及び2から40cmの上部に赤外線ランプをそれぞれ配置し、そのランプを点灯させて赤外線を保水性硬化体1及び2のそれぞれの表面に12時間照射し、その後そのランプを12時間消灯させることを1サイクルとし、これを10サイクルそれぞれ繰り返した。その間における保水性硬化体1及び2のそれぞれの質量を測定し、質量の変化をそれぞれ算出した。この結果である保水性硬化体1及び2のそれぞれの質量の変化を示すグラフを図2に示す。
図2から明らかなように、実施例6の舗装体用注入材を使用した保水性硬化体1では、水分の蒸発と吸着を繰り返しながらその質量が徐々に減少するのに対して、比較例12の珪藻質濾過助剤H01を含まない舗装体用注入材を使用した硬化体2では、その質量の減少が著しいことが分った。これは、保水性硬化体1では保水性材料に含ませた珪藻質濾過助剤H01に水蒸気が吸着してその水蒸気の質量が含まれる結果によるものと考えられる。
<Comparative test 7 and evaluation>
The cement milk shown in Example 6 and the cement milk shown in Comparative Example 12 were each poured into a 4 × 4 × 16 cm mold and demolded at a material age of 3 days. Thus, a water-retained cured body 1 made of cement milk shown in Example 6 having a size of 4 × 4 × 16 cm and a water-retained cured body 2 made of cement milk shown in Comparative Example 12 were obtained. The obtained water-retaining cured bodies 1 and 2 were cured in the air at 20 ° C. for 1 day, and then immersed in water for 7 days.
Next, an infrared lamp is disposed on each of the water-retaining cured bodies 1 and 2 to 40 cm, and the lamp is turned on to irradiate each surface of the water-retaining cured bodies 1 and 2 with the infrared rays for 12 hours. The lamp was extinguished for 12 hours as one cycle, and this was repeated for 10 cycles. In the meantime, the mass of each of the water-retaining cured bodies 1 and 2 was measured, and the change in mass was calculated. The graph which shows the change of each mass of the water retention hardened | cured material 1 and 2 which is this result is shown in FIG.
As is clear from FIG. 2, in the water-retaining cured body 1 using the pavement injection material of Example 6, the mass gradually decreases while repeating the evaporation and adsorption of moisture, while the comparative example 12 It was found that the mass of the cured body 2 using the pavement injection material not containing the diatomaceous filter aid H01 was significantly reduced. This is considered to be due to the result that water vapor is adsorbed on the diatomaceous filter aid H01 contained in the water retentive material and the mass of the water vapor is contained in the water retentive cured body 1.

<実施例2>
この実施例2は上記表4及び表5に挙げた実施例2と同一のセメントミルクであるが、次の実施例21〜24と比較例13及び14のセメントミルクとの対比を容易にするために、改めてここに記載したものである。カルシウムアルミネートCA90を10質量%と、フッ酸二型無水石膏S8を10質量%と、普通ポルトランドセメントNを80質量%と、アルミン酸ソーダAl−1を0.6質量%と、ソーダ灰Na−1を0.9質量%と、クエン酸Ci−1を0.6質量%と、砂Sa−1を15.3質量%と、ポリマーを4.08質量%と、水とを混合してセメントミルクを調製した。このセメントミルクを実施例2とした。なお、砂Sa−1はセメント組成物(カルシウムアルミネートCA90、フッ酸二型無水石膏S8、普通ポルトランドセメントN、アルミン酸ソーダAl−1、ソーダ灰Na−1及びクエン酸Ci−1)100質量%に対して15.0質量%であり、ポリマーはセメント組成物100質量%に対して4.00質量%であった。また水はこの水以外の材料の混合物(舗装体用注入材)100質量%に対して45質量%混合した。
<Example 2>
Example 2 is the same cement milk as Example 2 listed in Tables 4 and 5 above, but in order to facilitate the comparison between the following Examples 21 to 24 and the cement milks of Comparative Examples 13 and 14. This is a new description here. 10% by weight of calcium aluminate CA90, 10% by weight of hydrofluoric acid type 2 anhydrous gypsum S8, 80% by weight of ordinary Portland cement N, 0.6% by weight of sodium aluminate Al-1 and soda ash Na -1 is 0.9 mass%, citric acid Ci-1 is 0.6 mass%, sand Sa-1 is 15.3 mass%, polymer is 4.08 mass%, and water is mixed. Cement milk was prepared. This cement milk was designated as Example 2. Sand Sa-1 is 100 mass of cement composition (calcium aluminate CA90, hydrofluoric acid type 2 anhydrous gypsum S8, ordinary Portland cement N, sodium aluminate Al-1, soda ash Na-1 and citric acid Ci-1). % Of the polymer was 4.00% by mass with respect to 100% by mass of the cement composition. Water was mixed in an amount of 45% by mass with respect to 100% by mass of the mixture of materials other than water (pavement injection material).

<実施例21>
ソーダ灰Na−1を0.6質量%混合したこと以外は、実施例2と同様にしてセメントミルクを調製した。このセメントミルクを実施例21とした。なお、砂Sa−1はセメント組成物100質量%に対して15.0質量%であった。
<実施例22>
アルミン酸ナトリウムAl−1(粉砕品)に代えてアルミン酸ナトリウムAl−2(市販品)を用い、クエン酸Ci−1(粉砕品)に代えてクエン酸Ci−2(市販品)を用いたこと以外は、実施例2と同様にしてセメントミルクを調製した。このセメントミルクを実施例22とした。なお、砂Sa−1はセメント組成物100質量%に対して15.0質量%であった。
<実施例23>
クエン酸Ci−1(粉砕品)に代えてクエン酸Ci−2(市販品)を用いたこと以外は、実施例2と同様にしてセメントミルクを調製した。このセメントミルクを実施例23とした。なお、砂Sa−1はセメント組成物100質量%に対して15.0質量%であった。
<実施例24>
カルシウムアルミネートCA90に代えてカルシウムアルミネートCA80を用いたこと以外は、実施例2と同様にしてセメントミルクを調製した。このセメントミルクを実施例24とした。なお、砂Sa−1はセメント組成物100質量%に対して15.0質量%であった。
<Example 21>
Cement milk was prepared in the same manner as in Example 2 except that 0.6% by mass of soda ash Na-1 was mixed. This cement milk was determined as Example 21. In addition, sand Sa-1 was 15.0 mass% with respect to 100 mass% of cement compositions.
<Example 22>
Sodium aluminate Al-2 (commercial product) was used instead of sodium aluminate Al-1 (comminuted product), and citric acid Ci-2 (commercial product) was used instead of citric acid Ci-1 (comminuted product). Except for this, cement milk was prepared in the same manner as in Example 2. This cement milk was determined as Example 22. In addition, sand Sa-1 was 15.0 mass% with respect to 100 mass% of cement compositions.
<Example 23>
Cement milk was prepared in the same manner as in Example 2 except that citric acid Ci-2 (commercial product) was used instead of citric acid Ci-1 (pulverized product). This cement milk was determined as Example 23. In addition, sand Sa-1 was 15.0 mass% with respect to 100 mass% of cement compositions.
<Example 24>
Cement milk was prepared in the same manner as in Example 2 except that calcium aluminate CA80 was used instead of calcium aluminate CA90. This cement milk was designated as Example 24. In addition, sand Sa-1 was 15.0 mass% with respect to 100 mass% of cement compositions.

<実施例25>
ソーダ灰Na−1を0.96質量%、クエン酸Ci−1を0.36質量%混合したこと以外は、実施例2と同様にしてセメントミルクを調製した。このセメントミルクを実施例25とした。なお、砂Sa−1はセメント組成物100質量%に対して15.0質量%であった。
<実施例26>
ソーダ灰Na−1を0.36質量%、クエン酸Ci−1を0.36質量%混合したこと以外は、実施例2と同様にしてセメントミルクを調製した。このセメントミルクを実施例26とした。なお、砂Sa−1はセメント組成物100質量%に対して15.0質量%であった。
<実施例27>
ソーダ灰Na−1を0.96質量%と、クエン酸Ci−1を0.96質量%混合したこと以外は、実施例2と同様にしてセメントミルクを調製した。このセメントミルクを実施例27とした。なお、砂Sa−1はセメント組成物100質量%に対して15.0質量%であった。
<Example 25>
Cement milk was prepared in the same manner as in Example 2 except that 0.96% by mass of soda ash Na-1 and 0.36% by mass of citric acid Ci-1 were mixed. This cement milk was determined as Example 25. In addition, sand Sa-1 was 15.0 mass% with respect to 100 mass% of cement compositions.
<Example 26>
Cement milk was prepared in the same manner as in Example 2 except that 0.36% by mass of soda ash Na-1 and 0.36% by mass of citric acid Ci-1 were mixed. This cement milk was designated as Example 26. In addition, sand Sa-1 was 15.0 mass% with respect to 100 mass% of cement compositions.
<Example 27>
Cement milk was prepared in the same manner as in Example 2 except that 0.96% by mass of soda ash Na-1 and 0.96% by mass of citric acid Ci-1 were mixed. This cement milk was designated as Example 27. In addition, sand Sa-1 was 15.0 mass% with respect to 100 mass% of cement compositions.

<比較例13>
アルミン酸ナトリウムAl−1(粉砕品)に代えてアルミン酸ナトリウムAl−2(市販品)を用い、ソーダ灰Na−1(粉砕品)に代えてソーダ灰Na−2(市販品)を用い、クエン酸Ci−1(粉砕品)に代えてクエン酸Ci−2(市販品)を用いたこと以外は、実施例2と同様にしてセメントミルクを調製した。このセメントミルクを比較例13とした。なお、砂Sa−1はセメント組成物100質量%に対して15.0質量%であった。
<比較例14>
カルシウムアルミネートCA90に代えてカルシウムアルミネートCA70を用いたこと以外は、実施例2と同様にしてセメントミルクを調製した。このセメントミルクを比較例13とした。なお、砂Sa−1はセメント組成物100質量%に対して15.0質量%であった。
<Comparative Example 13>
Instead of sodium aluminate Al-1 (crushed product), sodium aluminate Al-2 (commercial product) was used, soda ash Na-1 (crushed product) was used, soda ash Na-2 (commercial product) was used, Cement milk was prepared in the same manner as in Example 2 except that citric acid Ci-2 (commercial product) was used instead of citric acid Ci-1 (pulverized product). This cement milk was designated as Comparative Example 13. In addition, sand Sa-1 was 15.0 mass% with respect to 100 mass% of cement compositions.
<Comparative example 14>
Cement milk was prepared in the same manner as in Example 2 except that calcium aluminate CA70 was used instead of calcium aluminate CA90. This cement milk was designated as Comparative Example 13. In addition, sand Sa-1 was 15.0 mass% with respect to 100 mass% of cement compositions.

<比較試験8及び評価>
実施例2と実施例21〜27と比較例13及び14のセメントミルクについて、混練時の雰囲気温度をそれぞれ5℃、20℃及び35℃として、練り上がり温度、P漏斗流下時間、可使時間、始発時間、終結時間及び材齢3時間での圧縮強度をそれぞれ測定した。ここで、上記練り上がり温度、P漏斗流下時間、可使時間、始発時間、終結時間及び材齢3時間での圧縮強度の各測定は、比較試験1と同様にして行った。これらの結果を、カルシウムアルミネートのガラス化率と、凝結調整剤の種類及び配合比と、舗装体用注入材に対する水の混合割合とともに、表9及び表10に示す。
<Comparative test 8 and evaluation>
For the cement milks of Example 2, Examples 21 to 27 and Comparative Examples 13 and 14, the ambient temperature during kneading was 5 ° C., 20 ° C. and 35 ° C., respectively, and the kneading temperature, P funnel flow time, pot life, The compressive strength at the start time, the end time, and the material age of 3 hours was measured. Here, each measurement of the above kneading temperature, P funnel flow time, pot life, start time, end time, and compressive strength at a material age of 3 hours was carried out in the same manner as in Comparative Test 1. These results are shown in Tables 9 and 10 together with the vitrification ratio of calcium aluminate, the type and blending ratio of the setting modifier, and the mixing ratio of water to the pavement injection material.

Figure 2008274580
Figure 2008274580

Figure 2008274580
表2、表9及び表10から明らかなように、アルミン酸ソーダAl、ソーダ灰Na及びクエン酸Ciの平均粒径が、90μmを越えかつ150μm以下と比較的大きいものと、平均粒径が150μmを越えかつ500μm以下と極めて大きいものだけを含む比較例13では、作業雰囲気温度5℃での可使時間が25分と短く、作業雰囲気温度5℃であって材齢3時間での圧縮強度が3.2N/mm2以下と低かった。また上記比較例13では、凝結時間、即ち凝結の始発時間及び終結時間が作業雰囲気温度によって大きく変化した。これに対し、アルミン酸ソーダAl、ソーダ灰Na又はクエン酸Ciのうちの少なくとも1種の第1〜第3粒子の混合割合が本発明の範囲内にあり、かつ第3粒子を第1粒子より多く含むとともに第2粒子より多く含む実施例2及び実施例21〜27では、作業雰囲気温度5℃での可使時間が45〜55分と長くなり、作業雰囲気温度5℃であって材齢3時間での圧縮強度が4.6〜5.8N/mm2と高くなることが分った。また実施例2及び21〜27では、凝結時間、即ち凝結の始発時間及び終結時間が作業雰囲気温度によってあまり大きく変化しないことが分った。
Figure 2008274580
As apparent from Tables 2, 9, and 10, the average particle size of sodium aluminate Al, soda ash Na, and citric acid Ci is more than 90 μm and 150 μm or less, and the average particle size is 150 μm. In Comparative Example 13 including only a very large material exceeding 5 μm and 500 μm or less, the pot life at a working atmosphere temperature of 5 ° C. is as short as 25 minutes, the working atmosphere temperature is 5 ° C., and the compressive strength at a material age of 3 hours is It was as low as 3.2 N / mm 2 or less. In Comparative Example 13, the setting time, that is, the start time and the setting time of the setting changed greatly depending on the working atmosphere temperature. On the other hand, the mixing ratio of at least one of the first to third particles of sodium aluminate Al, soda ash Na or citric acid Ci is within the scope of the present invention, and the third particles are more than the first particles. In Example 2 and Examples 21 to 27 containing a large amount and containing more than the second particles, the pot life at a working atmosphere temperature of 5 ° C. was as long as 45 to 55 minutes, the working atmosphere temperature was 5 ° C., and the age of 3 It was found that the compressive strength over time was as high as 4.6 to 5.8 N / mm 2 . Further, in Examples 2 and 21 to 27, it was found that the setting time, that is, the start time and the end time of the setting did not change greatly depending on the working atmosphere temperature.

一方、表9及び表10から明らかなように、ガラス化率70%のカルシウムアルミネートを含む比較例14では、作業雰囲気温度5℃での可使時間が20分と短く、作業雰囲気温度5℃であって材齢3時間での圧縮強度が2.8N/mm2と低かった。また比較例14では、凝結時間、即ち凝結の始発時間及び終結時間が作業雰囲気温度によって大きく変化した。これに対し、ガラス化率90%のカルシウムアルミネートを含む実施例2、実施例21〜23及び実施例25〜27と、ガラス化率80%のカルシウムアルミネートを含む実施例24では、作業雰囲気温度5℃で可使時間が45〜55分と長くなり、作業雰囲気温度5℃であって材齢3時間での圧縮強度が4.6〜5.8N/mm2と高くなることが分った。また実施例2及び実施例21〜27では、凝結時間、即ち凝結の始発時間及び終結時間が作業雰囲気温度によってあまり大きく変化しないことが分った。 On the other hand, as apparent from Tables 9 and 10, in Comparative Example 14 containing calcium aluminate with a vitrification rate of 70%, the pot life at a working atmosphere temperature of 5 ° C. was as short as 20 minutes, and the working atmosphere temperature was 5 ° C. The compressive strength at a material age of 3 hours was as low as 2.8 N / mm 2 . In Comparative Example 14, the setting time, that is, the start time and the setting time of the setting changed greatly depending on the working atmosphere temperature. On the other hand, in Example 2, Examples 21-23 and Examples 25-27 containing calcium aluminate with a vitrification rate of 90%, and Example 24 containing calcium aluminate with a vitrification rate of 80%, working atmosphere It can be seen that the pot life is increased to 45 to 55 minutes at a temperature of 5 ° C., and the compressive strength at a working age temperature of 5 ° C. and a material age of 3 hours is increased to 4.6 to 5.8 N / mm 2. It was. Moreover, in Example 2 and Examples 21-27, it turned out that setting time, ie, the start time and end time of setting, do not change so much with working atmosphere temperature.

<実施例20>
この実施例20上記表6及び表8に挙げた実施例20と同一のセメントミルクであるが、次の実施例28〜34と比較例15及び16のセメントミルクとの対比を容易にするために、改めてここに記載したものである。カルシウムアルミネートCA90を15質量%と、フッ酸二型無水石膏S8を15質量%と、普通ポルトランドセメントNを70質量%と、アルミン酸ソーダAl−1を0.6質量%と、ソーダ灰Na−1を0.9質量%と、クエン酸Ci−1を0.6質量%と、珪藻質濾過助剤H01を7.5質量%と、天然非焼成バーミキュライトH03を7.5質量%と、ポリマーPを2質量%と、水を76.1質量%混合してセメントミルクを調製した。このセメントミルクを実施例20とした。なお、珪藻質濾過助剤H01はセメント組成物(カルシウムアルミネートCA90、フッ酸二型無水石膏S8、普通ポルトランドセメントN、アルミン酸ソーダAl−1、ソーダ灰Na−1及びクエン酸Ci−1)100質量%に対して7.5質量%であり、天然非焼成バーミキュライトH03はセメント組成物100質量%に対して7.5質量%であり、ポリマーPはセメント組成物100質量%に対して2質量%であった。また水はこの水以外の材料の混合物(舗装体用注入材)100質量%に対して65質量%であった。
<Example 20>
This Example 20 is the same cement milk as Example 20 listed in Table 6 and Table 8 above, but to facilitate comparison of the following Examples 28-34 with the cement milk of Comparative Examples 15 and 16. , Here again. 15% by weight of calcium aluminate CA90, 15% by weight of hydrofluoric acid type 2 anhydrous gypsum S8, 70% by weight of ordinary Portland cement N, 0.6% by weight of sodium aluminate Al-1 and soda ash Na -1 0.9% by weight, citric acid Ci-1 0.6% by weight, diatomaceous filter aid H01 7.5% by weight, natural unfired vermiculite H03 7.5% by weight, Cement milk was prepared by mixing 2% by mass of polymer P and 76.1% by mass of water. This cement milk was designated as Example 20. Diatomaceous filter aid H01 is a cement composition (calcium aluminate CA90, hydrofluoric acid type 2 anhydrous gypsum S8, ordinary Portland cement N, sodium aluminate Al-1, soda ash Na-1 and citric acid Ci-1). 7.5% by mass with respect to 100% by mass, natural uncalcined vermiculite H03 is 7.5% by mass with respect to 100% by mass of the cement composition, and polymer P is 2% with respect to 100% by mass of the cement composition. It was mass%. Moreover, water was 65 mass% with respect to 100 mass% of the mixture (injection material for pavement bodies) other than this water.

<実施例28>
ソーダ灰Na−1を0.6質量%混合したこと以外は、実施例20と同様にしてセメントミルクを調製した。このセメントミルクを実施例28とした。
<実施例29>
アルミン酸ナトリウムAl−1(粉砕品)に代えてアルミン酸ナトリウムAl−2(市販品)を用い、クエン酸Ci−1(粉砕品)に代えてクエン酸Ci−2(市販品)を用いたこと以外は、実施例20と同様にしてセメントミルクを調製した。このセメントミルクを実施例29とした。
<実施例30>
クエン酸Ci−1(粉砕品)に代えてクエン酸Ci−2(市販品)を用いたこと以外は、実施例20と同様にしてセメントミルクを調製した。このセメントミルクを実施例30とした。
<実施例31>
カルシウムアルミネートCA90に代えてカルシウムアルミネートCA80を用いたこと以外は、実施例20と同様にしてセメントミルクを調製した。このセメントミルクを実施例31とした。
<Example 28>
Cement milk was prepared in the same manner as in Example 20 except that 0.6% by mass of soda ash Na-1 was mixed. This cement milk was designated as Example 28.
<Example 29>
Sodium aluminate Al-2 (commercial product) was used instead of sodium aluminate Al-1 (comminuted product), and citric acid Ci-2 (commercial product) was used instead of citric acid Ci-1 (comminuted product). Except for this, cement milk was prepared in the same manner as in Example 20. This cement milk was designated as Example 29.
<Example 30>
Cement milk was prepared in the same manner as Example 20 except that citric acid Ci-2 (commercial product) was used instead of citric acid Ci-1 (pulverized product). This cement milk was designated as Example 30.
<Example 31>
Cement milk was prepared in the same manner as in Example 20 except that calcium aluminate CA80 was used instead of calcium aluminate CA90. This cement milk was designated as Example 31.

<実施例32>
ソーダ灰Na−1を0.96質量%、クエン酸Ci−1を0.36質量%混合したこと以外は、実施例20と同様にしてセメントミルクを調製した。このセメントミルクを実施例32とした。
<実施例33>
ソーダ灰Na−1を0.36質量%、クエン酸Ci−1を0.36質量%混合したこと以外は、実施例20と同様にしてセメントミルクを調製した。このセメントミルクを実施例33とした。
<実施例34>
ソーダ灰Na−1を0.96質量%と、クエン酸Ci−1を0.96質量%混合したこと以外は、実施例20と同様にしてセメントミルクを調製した。このセメントミルクを実施例34とした。
<Example 32>
Cement milk was prepared in the same manner as in Example 20 except that 0.96% by mass of soda ash Na-1 and 0.36% by mass of citric acid Ci-1 were mixed. This cement milk was designated as Example 32.
<Example 33>
Cement milk was prepared in the same manner as in Example 20 except that 0.36% by mass of soda ash Na-1 and 0.36% by mass of citric acid Ci-1 were mixed. This cement milk was designated as Example 33.
<Example 34>
Cement milk was prepared in the same manner as in Example 20 except that 0.96 mass% of soda ash Na-1 and 0.96 mass% of citric acid Ci-1 were mixed. This cement milk was designated as Example 34.

<比較例15>
アルミン酸ナトリウムAl−1(粉砕品)に代えてアルミン酸ナトリウムAl−2(市販品)を用い、ソーダ灰Na−1(粉砕品)に代えてソーダ灰Na−2(市販品)を用い、クエン酸Ci−1(粉砕品)に代えてクエン酸Ci−2(市販品)を用いたこと以外は、実施例20と同様にしてセメントミルクを調製した。このセメントミルクを比較例15とした。
<比較例16>
カルシウムアルミネートCA90に代えてカルシウムアルミネートCA70を用いたこと以外は、実施例20と同様にしてセメントミルクを調製した。このセメントミルクを比較例16とした。
<Comparative Example 15>
Instead of sodium aluminate Al-1 (crushed product), sodium aluminate Al-2 (commercial product) was used, soda ash Na-1 (crushed product) was used, soda ash Na-2 (commercial product) was used, Cement milk was prepared in the same manner as Example 20 except that citric acid Ci-2 (commercial product) was used instead of citric acid Ci-1 (pulverized product). This cement milk was designated as Comparative Example 15.
<Comparative Example 16>
Cement milk was prepared in the same manner as in Example 20 except that calcium aluminate CA70 was used instead of calcium aluminate CA90. This cement milk was designated as Comparative Example 16.

<比較試験9及び評価>
実施例20と実施例28〜34と比較例15及び16のセメントミルクについて、混練時の雰囲気温度をそれぞれ5℃、20℃及び35℃として、練り上がり温度、可使時間及び材齢3時間での圧縮強度をそれぞれ測定した。ここで、上記練り上がり温度及び可使時間の各測定は、比較試験1と同様にして行った。また上記材齢3時間での圧縮強度の各測定は、比較試験3と同様にして行った。これらの結果を、カルシウムアルミネートのガラス化率と、凝結調整剤の種類及び配合比と、舗装体用注入材に対する水の混合割合とともに、表11及び表12に示す。
<Comparative test 9 and evaluation>
For the cement milk of Example 20, Examples 28 to 34 and Comparative Examples 15 and 16, the ambient temperature during kneading was 5 ° C, 20 ° C and 35 ° C, respectively, and the kneading temperature, pot life and material age were 3 hours. The compressive strength of each was measured. Here, each measurement of the kneading temperature and pot life was performed in the same manner as in Comparative Test 1. Each measurement of the compressive strength at the age of 3 hours was performed in the same manner as in Comparative Test 3. These results are shown in Tables 11 and 12 together with the vitrification rate of calcium aluminate, the types and blending ratios of the setting modifiers, and the mixing ratio of water to the pavement injection material.

Figure 2008274580
Figure 2008274580

Figure 2008274580
表2、表11及び表12から明らかなように、アルミン酸ソーダAl、ソーダ灰Na及びクエン酸Ciの平均粒径が、90μmを越えかつ150μm以下と比較的大きいものと、平均粒径が150μmを越えかつ500μm以下と極めて大きいものだけを含む比較例15では、作業雰囲気温度5℃であって材齢3時間での圧縮強度が1.4N/mm2以下と低かった。これに対し、アルミン酸ソーダAl、ソーダ灰Na又はクエン酸Ciのうちの少なくとも1種の第1〜第3粒子の混合割合が本発明の範囲内にあり、かつ第3粒子を第1粒子より多く含むとともに第2粒子より多く含む実施例20及び実施例28〜34では、作業雰囲気温度5℃であって材齢3時間での圧縮強度が4.0〜4.3N/mm2と高くなることが分った。
Figure 2008274580
As is apparent from Tables 2, 11, and 12, the average particle size of sodium aluminate Al, soda ash Na, and citric acid Ci exceeds 90 μm and is 150 μm or less, and the average particle size is 150 μm. In Comparative Example 15, which included only a very large material exceeding 5 μm and 500 μm or less, the compressive strength at a working atmosphere temperature of 5 ° C. and a material age of 3 hours was as low as 1.4 N / mm 2 or less. On the other hand, the mixing ratio of at least one kind of the first to third particles of sodium aluminate Al, soda ash Na or citric acid Ci is within the scope of the present invention, and the third particles are more than the first particles. In Example 20 and Examples 28 to 34 containing a large amount and containing more than the second particles, the working atmosphere temperature is 5 ° C., and the compressive strength at a material age of 3 hours is as high as 4.0 to 4.3 N / mm 2. I found out.

一方、表11及び表12から明らかなように、ガラス化率70%のカルシウムアルミネートを含む比較例16では、作業雰囲気温度が5℃であって材齢3時間での圧縮強度が1.7N/mm2と低かった。これに対し、ガラス化率90%のカルシウムアルミネートを含む実施例20、実施例28〜30及び実施例32〜34と、ガラス化率80%のカルシウムアルミネートを含む実施例31では、作業雰囲気温度5℃であって材齢3時間での圧縮強度が4.0〜4.3N/mm2と高くなることが分った。 On the other hand, as is clear from Tables 11 and 12, in Comparative Example 16 containing calcium aluminate with a vitrification rate of 70%, the working atmosphere temperature is 5 ° C., and the compressive strength at a material age of 3 hours is 1.7 N. / Mm 2 was low. In contrast, in Example 20, Examples 28-30 and Examples 32-34 containing calcium aluminate with a vitrification rate of 90%, and Example 31 containing calcium aluminate with a vitrification rate of 80%, working atmosphere It was found that the compressive strength at a temperature of 5 ° C. and a material age of 3 hours was as high as 4.0 to 4.3 N / mm 2 .

実施例6及び比較例12のセメントミルクを空隙部分に充填した舗装体表面の温度の変化を示す図である。It is a figure which shows the change of the temperature of the pavement body surface which filled the space | gap part with the cement milk of Example 6 and Comparative Example 12. 実施例6及び比較例12のセメントミルクを硬化させた硬化体の質量の変化を示す図である。It is a figure which shows the change of the mass of the hardening body which hardened the cement milk of Example 6 and Comparative Example 12.

Claims (8)

混和材100質量%に対してセメント鉱物を100〜1000質量%含むセメント組成物100質量%に対して、粒径90〜1000μmの砂を5〜30質量%と、再乳化粉末樹脂を1〜10質量%含む舗装体用注入材であって、
前記混和材が、カルシウムアルミネートと無機硫酸塩とが質量比で1:(0.5〜3)の割合で混合された急硬成分に対して内割でアルミン酸ナトリウム0.2〜35.0質量%、無機炭酸塩0.2〜35.0質量%及びカルボン酸類0.1〜15.0質量%からなる凝結調整剤を含むとともに、
前記カルシウムアルミネートのガラス化率が80%以上であって、
前記アルミン酸ナトリウム、前記無機炭酸塩及び前記カルボン酸類からなる凝結調整剤のうちのいずれか1種を100質量%とするとき他の2種をそれぞれ60〜160質量%含み、
前記アルミン酸ナトリウム、前記無機炭酸塩又は前記カルボン酸類のうちの少なくとも1種の凝結調整剤が、この選ばれた1種の凝結調整剤の総量を100質量%とするとき、平均粒径45μmを越えかつ90μm以下の第1粒子10〜45質量%と、平均粒径90μmを越えかつ150μm以下の第2粒子30〜70質量%と、平均粒径150μmを越えかつ500μm以下の第3粒子5〜30質量%とを含み、かつ前記第2粒子を前記第1粒子より多く含むとともに前記第3粒子より多く含むことを特徴とする舗装体用注入材。
5 to 30% by mass of sand having a particle size of 90 to 1000 μm and 1 to 10 of re-emulsified powder resin with respect to 100% by mass of cement composition containing 100 to 1000% by mass of cement mineral with respect to 100% by mass of the admixture. An injection material for pavement containing mass%,
The said admixture is sodium aluminate 0.2-35.% With respect to the quick-hardening component in which calcium aluminate and inorganic sulfate are mixed at a mass ratio of 1: (0.5-3). Including a setting modifier consisting of 0% by weight, inorganic carbonate 0.2-35.0% by weight and carboxylic acids 0.1-15.0% by weight,
Vitrification rate of the calcium aluminate is 80% or more,
When one of the sodium aluminate, the inorganic carbonate and the carboxylic acid is set to 100% by mass, the other two types are included in an amount of 60 to 160% by mass,
When the total amount of the selected one kind of setting modifier among the sodium aluminate, the inorganic carbonate or the carboxylic acid is 100% by mass, the average particle size is 45 μm. 10 to 45% by mass of first particles exceeding 90 μm and less, 30 to 70% by mass of second particles exceeding 90 μm and having an average particle size of not more than 150 μm, and 3 to 5% third particles having an average particle size exceeding 150 μm and not more than 500 μm An injection material for a pavement comprising 30% by mass and containing more of the second particles than the first particles and more than the third particles.
舗装体用注入材100質量%に対して、水を35〜55質量%混合してセメントミルクを調製したときに、可使時間が30〜75分であり、かつ材齢3時間の圧縮強度が4.5N/mm2以上である請求項2記載の舗装体用注入材。 When cement milk is prepared by mixing 35 to 55% by mass of water with respect to 100% by mass of the pavement injection material, the pot life is 30 to 75 minutes, and the compressive strength at the age of 3 hours is The injection material for pavement according to claim 2, which is 4.5 N / mm 2 or more. 請求項1又は2に記載の舗装体用注入材に水を混合してセメントミルクを調製する工程と、
前記セメントミルクを空隙率40〜10%の舗装体の空隙部分に充填する工程と
を含む舗装体用注入材を用いた舗装方法。
A step of preparing cement milk by mixing water with the pavement injection material according to claim 1 or 2,
Filling the void portion of the pavement having a porosity of 40 to 10% with the cement milk.
混和材100質量%に対してセメント鉱物を100〜1000質量%含むセメント組成物100質量%に対して、保水性材料を5〜80質量%含む舗装体用注入材であって、
前記保水性材料が、珪藻質濾過助剤、製紙スラッジ焼却灰及び天然非焼成バーミキュライトからなる群より選ばれた1種又は2種以上からなり、
前記混和材が、カルシウムアルミネートと無機硫酸塩とが質量比で1:(0.5〜3)の割合で混合された急硬成分に対して内割でアルミン酸ナトリウム0.2〜35.0質量%、無機炭酸塩0.2〜35.0質量%及びカルボン酸類0.1〜15.0質量%からなる凝結調整剤を含むとともに、
前記カルシウムアルミネートのガラス化率が80%以上であって、
前記アルミン酸ナトリウム、前記無機炭酸塩及び前記カルボン酸類からなる凝結調整剤のうちのいずれか1種を100質量%とするとき他の2種をそれぞれ60〜160質量%含み、
前記アルミン酸ナトリウム、前記無機炭酸塩又は前記カルボン酸類のうちの少なくとも1種の凝結調整剤が、この選ばれた1種の凝結調整剤の総量を100質量%とするとき、平均粒径45μmを越えかつ90μm以下の第1粒子10〜45質量%と、平均粒径90μmを越えかつ150μm以下の第2粒子30〜70質量%と、平均粒径150μmを越えかつ500μm以下の第3粒子5〜30質量%とを含み、かつ前記第2粒子を前記第1粒子より多く含むとともに前記第3粒子より多く含むことを特徴とする舗装体用注入材。
An injecting material for a pavement containing 5 to 80% by mass of a water retaining material with respect to 100% by mass of a cement composition containing 100 to 1000% by mass of cement mineral with respect to 100% by mass of an admixture,
The water retention material is composed of one or more selected from the group consisting of diatomaceous filter aid, paper sludge incinerated ash, and natural unfired vermiculite,
The said admixture is sodium aluminate 0.2-35.% With respect to the quick-hardening component in which calcium aluminate and inorganic sulfate are mixed at a mass ratio of 1: (0.5-3). Including a setting modifier consisting of 0% by weight, inorganic carbonate 0.2-35.0% by weight and carboxylic acids 0.1-15.0% by weight,
Vitrification rate of the calcium aluminate is 80% or more,
When one of the sodium aluminate, the inorganic carbonate and the carboxylic acid is set to 100% by mass, the other two types are included in an amount of 60 to 160% by mass,
When the total amount of the selected one kind of setting modifier among the sodium aluminate, the inorganic carbonate or the carboxylic acid is 100% by mass, the average particle size is 45 μm. 10 to 45% by mass of first particles exceeding 90 μm and less, 30 to 70% by mass of second particles exceeding 90 μm and having an average particle size of not more than 150 μm, and 3 to 5% third particles having an average particle size exceeding 150 μm and not more than 500 μm An injection material for a pavement comprising 30% by mass and containing more of the second particles than the first particles and more than the third particles.
舗装体用注入材100質量%に対して、水を80〜150質量%混合してセメントミルクを調製したときに、可使時間が30〜75分であり、かつ材齢3時間の圧縮強度が0.5N/mm2以上であり、更に硬化後の吸水率が50〜90質量%である請求項4記載の舗装体用注入材。 When cement milk is prepared by mixing 80 to 150% by weight of water with respect to 100% by weight of the pavement injection material, the pot life is 30 to 75 minutes, and the compressive strength at the age of 3 hours is The injectable material for a pavement according to claim 4, which is 0.5 N / mm 2 or more and further has a water absorption after curing of 50 to 90% by mass. 舗装体用注入材100質量%に対して、水を65〜80質量%混合してセメントミルクを調製したときに、可使時間が30〜75分であり、かつ材齢3時間の圧縮強度が4.0N/mm2以上であり、更に硬化後の吸水率が35〜50質量%である請求項4記載の舗装体用注入材。 When cement milk is prepared by mixing 65 to 80% by mass of water with respect to 100% by mass of the pavement injection material, the pot life is 30 to 75 minutes, and the compressive strength at a material age of 3 hours is The injectable material for a pavement according to claim 4, which is 4.0 N / mm 2 or more and further has a water absorption after curing of 35 to 50% by mass. 舗装体用注入材に水を混合して調製されたセメントミルクを硬化したときの硬化体の吸湿率が5〜15質量%である請求項4ないし6いずれか1項に記載の舗装体用注入材。   The injection for pavement according to any one of claims 4 to 6, wherein when the cement milk prepared by mixing water with the injection for pavement is cured, the cured product has a moisture absorption of 5 to 15% by mass. Wood. 請求項4ないし7いずれか1項に記載の舗装体用注入材に水を混合してセメントミルクを調製する工程と、
前記セメントミルクを空隙率40〜10%の舗装体の空隙部分に充填する工程と
を含む舗装体用注入材を用いた舗装方法。
A step of preparing cement milk by mixing water with the pavement injection material according to any one of claims 4 to 7,
Filling the void portion of the pavement having a porosity of 40 to 10% with the cement milk.
JP2007116791A 2007-04-26 2007-04-26 Injection material for pavement and pavement method using the same Active JP5169007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007116791A JP5169007B2 (en) 2007-04-26 2007-04-26 Injection material for pavement and pavement method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007116791A JP5169007B2 (en) 2007-04-26 2007-04-26 Injection material for pavement and pavement method using the same

Publications (2)

Publication Number Publication Date
JP2008274580A true JP2008274580A (en) 2008-11-13
JP5169007B2 JP5169007B2 (en) 2013-03-27

Family

ID=40052871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007116791A Active JP5169007B2 (en) 2007-04-26 2007-04-26 Injection material for pavement and pavement method using the same

Country Status (1)

Country Link
JP (1) JP5169007B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173466A (en) * 2008-01-21 2009-08-06 Mitsubishi Materials Corp Cement composition for pavement having freeze inhibiting function and paved article using same
JP6014802B1 (en) * 2016-01-21 2016-10-26 株式会社Ihiインフラシステム Concrete construction method
JP2017082092A (en) * 2015-10-28 2017-05-18 デンカ株式会社 Soil pavement material
WO2017170992A1 (en) * 2016-03-31 2017-10-05 三菱マテリアル株式会社 Rapid-hardening cement composition
WO2017171009A1 (en) * 2016-03-31 2017-10-05 三菱マテリアル株式会社 Rapid-hardening mortar composition
WO2017171006A1 (en) * 2016-03-31 2017-10-05 三菱マテリアル株式会社 Rapid-hardening admixture and production method for same
JP2017186237A (en) * 2016-03-31 2017-10-12 三菱マテリアル株式会社 Ultrarapid hardening admixture and method for producing the same
CN108129080A (en) * 2017-12-25 2018-06-08 长沙理工大学 A kind of cement bonded sand cream suitable for rich water karst large-cavity strata anti-seepage reinforcing is starched
JP2019011233A (en) * 2017-06-29 2019-01-24 国立研究開発法人 海上・港湾・航空技術研究所 High pulverization resistant backfill grout and backfill grout material thereof
JP2021160994A (en) * 2020-03-31 2021-10-11 三菱マテリアル株式会社 Quick-hardening cement composition
CN114368955A (en) * 2022-01-30 2022-04-19 上海艺盛实业有限公司 Inorganic grouting material applied to semi-rigid pavement for solving ruts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341420B2 (en) * 1983-11-12 1991-06-24
JPH05270880A (en) * 1992-03-23 1993-10-19 Mitsubishi Materials Corp Temperature buffer-type premix grout material
WO2005123620A1 (en) * 2004-06-15 2005-12-29 Denki Kagaku Kogyo Kabushiki Kaisha Set accelerating agent for spraying, spraying material, and spraying method using the same
JP2007046337A (en) * 2005-08-10 2007-02-22 Mitsubishi Materials Corp Filling material for pavement body and water retaining pavement body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341420B2 (en) * 1983-11-12 1991-06-24
JPH05270880A (en) * 1992-03-23 1993-10-19 Mitsubishi Materials Corp Temperature buffer-type premix grout material
WO2005123620A1 (en) * 2004-06-15 2005-12-29 Denki Kagaku Kogyo Kabushiki Kaisha Set accelerating agent for spraying, spraying material, and spraying method using the same
JP2007046337A (en) * 2005-08-10 2007-02-22 Mitsubishi Materials Corp Filling material for pavement body and water retaining pavement body

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173466A (en) * 2008-01-21 2009-08-06 Mitsubishi Materials Corp Cement composition for pavement having freeze inhibiting function and paved article using same
JP2017082092A (en) * 2015-10-28 2017-05-18 デンカ株式会社 Soil pavement material
JP6014802B1 (en) * 2016-01-21 2016-10-26 株式会社Ihiインフラシステム Concrete construction method
JP2017128934A (en) * 2016-01-21 2017-07-27 株式会社Ihiインフラシステム Concrete construction method
US11117833B2 (en) 2016-03-31 2021-09-14 Mitsubishi Materials Corporation Rapid-hardening mortar composition
KR20180131532A (en) 2016-03-31 2018-12-10 미츠비시 마테리알 가부시키가이샤 Quick hard mortar composition
WO2017171006A1 (en) * 2016-03-31 2017-10-05 三菱マテリアル株式会社 Rapid-hardening admixture and production method for same
JP2017186238A (en) * 2016-03-31 2017-10-12 三菱マテリアル株式会社 Rapid hardening mortar composition
JP2017186237A (en) * 2016-03-31 2017-10-12 三菱マテリアル株式会社 Ultrarapid hardening admixture and method for producing the same
JP2017186239A (en) * 2016-03-31 2017-10-12 三菱マテリアル株式会社 Rapid hardening mortar composition
WO2017170992A1 (en) * 2016-03-31 2017-10-05 三菱マテリアル株式会社 Rapid-hardening cement composition
WO2017171009A1 (en) * 2016-03-31 2017-10-05 三菱マテリアル株式会社 Rapid-hardening mortar composition
US10829416B2 (en) 2016-03-31 2020-11-10 Mitsubishi Materials Corporation Rapid-hardening admixture and method for producing same
US10800701B2 (en) 2016-03-31 2020-10-13 Mitsubishi Materials Corporation Rapid-hardening cement composition
JP2019011233A (en) * 2017-06-29 2019-01-24 国立研究開発法人 海上・港湾・航空技術研究所 High pulverization resistant backfill grout and backfill grout material thereof
JP7054109B2 (en) 2017-06-29 2022-04-13 国立研究開発法人 海上・港湾・航空技術研究所 Highly powder-resistant backfill grout and its backfill grout material
CN108129080A (en) * 2017-12-25 2018-06-08 长沙理工大学 A kind of cement bonded sand cream suitable for rich water karst large-cavity strata anti-seepage reinforcing is starched
JP2021160994A (en) * 2020-03-31 2021-10-11 三菱マテリアル株式会社 Quick-hardening cement composition
JP7442373B2 (en) 2020-03-31 2024-03-04 Muマテックス株式会社 Fast-setting cement composition
CN114368955A (en) * 2022-01-30 2022-04-19 上海艺盛实业有限公司 Inorganic grouting material applied to semi-rigid pavement for solving ruts

Also Published As

Publication number Publication date
JP5169007B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP5169007B2 (en) Injection material for pavement and pavement method using the same
KR102294203B1 (en) Quick-hardening mortar composition
Izaguirre et al. Effect of a polypropylene fibre on the behaviour of aerial lime-based mortars
JP4626541B2 (en) Ultra-fast hardening grout composition
WO2017170992A1 (en) Rapid-hardening cement composition
JP2008184353A (en) Mortar used for repair and tunnel maintenance and repair method using it
JP6446307B2 (en) Acid-resistant hydraulic composition, mortar composition, and cured mortar
JP6763335B2 (en) Semi-flexible pavement cement milk and its manufacturing method and semi-flexible pavement construction method
JP2008273762A (en) Concrete cross section repairing material
KR101074371B1 (en) Cement milk for highly durable semi-rigid pavement using chloride resistant cement and semi-rigid pavement method using filling the same into asphalt with vibrating
NO328449B1 (en) Putty comprising hydraulic cement and the use of aplite as a constituent in cement for such putty.
JP4644561B2 (en) Pavement injection material and water retentive pavement
JP3912425B1 (en) Admixture and cement composition using the same
JP2005048403A (en) Pavement body having water retaining function
JP2010155739A (en) Ultra-light mortar
JP2004197310A (en) Block for pavement
JP4255802B2 (en) Pavement
JP2006027937A (en) Cement composition for grout and grouting material
JP2009173466A (en) Cement composition for pavement having freeze inhibiting function and paved article using same
CN107445527A (en) A kind of method for reducing concrete permeability and water imbibition
JP2021160994A (en) Quick-hardening cement composition
JP5656139B2 (en) Ground improvement soil and ground improvement method
Scolaro et al. Effect of filler nature on mechanical performance and drying shrinkage of self-leveling mortars
JP7074527B2 (en) Cement composite
JP5830792B2 (en) Ground improvement soil and ground improvement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Ref document number: 5169007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250