JP2010065158A - Soil-based solidifying material - Google Patents
Soil-based solidifying material Download PDFInfo
- Publication number
- JP2010065158A JP2010065158A JP2008233373A JP2008233373A JP2010065158A JP 2010065158 A JP2010065158 A JP 2010065158A JP 2008233373 A JP2008233373 A JP 2008233373A JP 2008233373 A JP2008233373 A JP 2008233373A JP 2010065158 A JP2010065158 A JP 2010065158A
- Authority
- JP
- Japan
- Prior art keywords
- soil
- slag
- mass
- parts
- elution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002689 soil Substances 0.000 title claims abstract description 165
- 239000000463 material Substances 0.000 title claims abstract description 138
- 239000002893 slag Substances 0.000 claims abstract description 91
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 claims abstract description 60
- 239000010440 gypsum Substances 0.000 claims abstract description 49
- 229910052602 gypsum Inorganic materials 0.000 claims abstract description 49
- JGIATAMCQXIDNZ-UHFFFAOYSA-N calcium sulfide Chemical compound [Ca]=S JGIATAMCQXIDNZ-UHFFFAOYSA-N 0.000 claims abstract description 35
- 239000000203 mixture Substances 0.000 claims abstract description 24
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 21
- 239000011343 solid material Substances 0.000 claims 1
- 238000010828 elution Methods 0.000 abstract description 57
- 238000002156 mixing Methods 0.000 abstract description 28
- 229910052745 lead Inorganic materials 0.000 abstract description 18
- 230000007613 environmental effect Effects 0.000 abstract description 16
- 229910052711 selenium Inorganic materials 0.000 abstract description 16
- 229910001385 heavy metal Inorganic materials 0.000 abstract description 10
- 239000010438 granite Substances 0.000 abstract description 4
- 238000013329 compounding Methods 0.000 abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 16
- 239000004576 sand Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 11
- 238000007711 solidification Methods 0.000 description 11
- 230000008023 solidification Effects 0.000 description 11
- 238000007922 dissolution test Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 229910000831 Steel Inorganic materials 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 239000010426 asphalt Substances 0.000 description 6
- 239000004568 cement Substances 0.000 description 6
- 229910001653 ettringite Inorganic materials 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 239000011575 calcium Substances 0.000 description 4
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 4
- 239000000920 calcium hydroxide Substances 0.000 description 4
- 235000011116 calcium hydroxide Nutrition 0.000 description 4
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 229910052753 mercury Inorganic materials 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 235000010755 mineral Nutrition 0.000 description 4
- 239000004575 stone Substances 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 3
- 229910052793 cadmium Inorganic materials 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000000378 calcium silicate Substances 0.000 description 2
- 229910052918 calcium silicate Inorganic materials 0.000 description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- SURQXAFEQWPFPV-UHFFFAOYSA-L iron(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O SURQXAFEQWPFPV-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910052979 sodium sulfide Inorganic materials 0.000 description 1
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- -1 specifically Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Road Paving Structures (AREA)
- Processing Of Solid Wastes (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Abstract
Description
本発明は土に固化材を配合した土系固化材に関する。 The present invention relates to a soil-based solidified material in which a solidified material is mixed with soil.
以下の説明で、固化材とは、土系舗装のために土と混合する固化材であり、固化材自体は土を含まない。土系舗装用固化材も同様である。また土系固化材とは、土と上記固化材とを混合したものをいう。土系固化材を混合土と呼ぶこともある。 In the following description, the solidified material is a solidified material mixed with soil for earth-based pavement, and the solidified material itself does not include soil. The same applies to the solidified material for soil paving. The earth-based solidifying material refers to a mixture of soil and the above-mentioned solidifying material. Soil-based solidification material is sometimes called mixed soil.
土の道路や歩道では通行に伴い轍や凹みが生じて快適な運転や安全な歩行ができなくなるばかりでなく、雨天時には轍や凹み部に水溜りができるため、道路にアスファルト舗装をするようになってきた。しかしアスファルト舗装は透水性が悪く水溜りが生じ、また夏季には舗装面が熱をためやすく、ヒートアイランド現象を引き起こす欠点があった。そこで、アスファルトの透水性を改善した透水性アスファルト舗装、保水性を有した保水性アスファルト舗装が広まりつつあるが、自然環境が好まれる居住区内や公園などの道路では歩道のアスファルトは人工的な景観になり、路面が硬く反発が強いため足に負担がかかっている。そこで、近年より自然に近く、人に優しい土系舗装が取り入れられつつある。 On dirt roads and sidewalks, not only can ridges and dents occur due to traffic, making it impossible to drive comfortably and walk safely, but also it is possible to puddle the pits and dents when it rains, so asphalt pave the road It has become. However, asphalt pavement has poor water permeability and water pools. In addition, the pavement surface easily accumulates heat in summer, which causes a heat island phenomenon. Therefore, water-permeable asphalt pavement with improved water permeability of asphalt and water-retentive asphalt pavement with water retention are spreading. It becomes a landscape, and the road surface is hard and the repulsion is strong. Therefore, in recent years, earth-based pavement that is closer to nature and is more human-friendly is being introduced.
土系舗装とは、自然の土を利用して固化材と混合して土の強度を増し、土の良さを保持しつつ舗装としての機能を発揮するものである。土系舗装に用いる固化材として、従来はセメントを主原料としたセメント系固化材と石灰を主原料とした石灰系が主流であったが、近年スラグを使用した固化材も見られる。 Soil-based pavement uses natural soil and mixes with a solidifying material to increase the strength of the soil and to exhibit its function as a pavement while maintaining the goodness of the soil. Conventionally, cement-based solidified materials using cement as a main raw material and lime-based materials using lime as a main raw material have been mainstream as solidifying materials used for soil-based pavement, but recently solidified materials using slag are also seen.
特許文献1では土と土系舗装用固化材を混合した混合土を舗装場所に敷き均した後、転圧及び養生する土系舗装において、土系舗装用固化材が多孔質材料を含まず、消石灰とスラグを含むことを開示している。消石灰及びスラグを含む混合土は、常温下で固化が進行し、従来のアスファルト等からなるものほど高くなく、自然の土だけからなるものほど低くない強度及び硬度を有して固化するものである。実施例1によれば、消石灰を100質量部、粘土を50質量部、高炉スラグを50質量部混合して土系舗装用固化材とし、舗装現場で土に土系舗装用固化材を添加し、舗装施工した結果、充分な強度を有し、透水性を確保している。 In Patent Document 1, after mixing and mixing the soil mixed with soil and soil-based pavement solidifying material in the pavement place, the soil-based pavement solidifying material does not include a porous material in the soil-based pavement that is rolled and cured. It discloses that it contains slaked lime and slag. The mixed soil containing slaked lime and slag solidifies at room temperature, solidifies with strength and hardness not as low as those made of conventional asphalt and not as low as those made of natural soil only. . According to Example 1, 100 parts by mass of slaked lime, 50 parts by mass of clay, and 50 parts by mass of blast furnace slag were mixed to obtain a solidified material for soil-based pavement, and the soil-based pavement solidified material was added to the soil at the pavement site. As a result of pavement construction, it has sufficient strength and ensures water permeability.
また、スラグ単独で水硬性を持つものがあり、例えば特許文献2ではカルシウムアルミネート系スラグの特定の成分範囲を有するスラグを選別することにより、スラグそのものを水硬性組成物として提供している。 Moreover, there exists what has hydraulic property only in slag, for example, in patent document 2, the slag itself is provided as a hydraulic composition by selecting the slag which has the specific component range of a calcium aluminate-type slag.
土系舗装に使用する自然の土は花崗岩が風化し粒状となった真砂土が多く使用されており、一般に真砂土舗装と呼ばれて、透水性に優れる特性がある。その他、舗装現場近くの産地から採取される粒状砕石、土壌なども使用される。真砂土の多くはナトリウム、カリウムなどのアルカリ分が無く、溶出液のpHは5〜6と酸性を示す。しかし、産地により溶出液のpHが9程度のアルカリ性を示すものがあり、環境庁告示46号法で測定した溶出成分もFで0.6mg/リットル近く検出され、土壌環境基準の0.8mg/リットル以下には合格するも限界近くにあるものもある。このようなアルカリ性を示す土を使用し、かつFをわずかに含むスラグ系の固化材をこの土と混合して土系固化材とし、この土系固化材を使用して真砂土舗装しようとする場合、この土系固化材の溶出を確認すると、溶出液のpHが11〜12と高く、Fの溶出が土壌環境基準を超える場合があり、またpHが高くなることでPb,Seなどの重金属の溶出も検出されやすくなり、舗装材として使用することはできない。真砂土舗装などに使用する土系固化材の材料は、土壌環境基準を満足し、安心して使用できる品質を確保する必要がある。 The natural soil used for soil-based pavement is mostly sandy soil that is granulated from granite and is generally called granite. It is generally called sandy-sand pavement and has excellent water permeability. In addition, granular crushed stone and soil collected from production areas near the pavement site are also used. Most of the pure sand soil does not have alkalis such as sodium and potassium, and the pH of the eluate is 5 to 6 and is acidic. However, depending on the place of origin, the pH of the eluate may be about 9 alkaline, and the elution component measured by the Environmental Agency Notification No. 46 method is nearly 0.6 mg / liter in F. Some liters or less pass but are close to the limit. Using soil that shows such alkalinity and mixing a slag-based solidified material containing a slight amount of F with this soil to form a solid-based solidified material, and using this soil-based solidified material, try to pave true sandy soil. In this case, when the elution of the soil-based solidifying material is confirmed, the pH of the eluate is as high as 11 to 12, the elution of F may exceed the soil environment standard, and heavy metals such as Pb and Se due to the increase in pH. The elution of is easily detected and cannot be used as a paving material. It is necessary to ensure the quality of the soil-based solidifying material used for the sand sand pavement, etc., which satisfies the soil environmental standards and can be used safely.
土壌からのFの溶出を抑制する方法としては、(1)セメントで固める方法、例えば廃棄物をセメントで混練し、重金属を珪酸カルシウムの水和物に表面吸着・固定化する方法や、(2)薬剤で処理する方法、例えば硫化ナトリウムではCd、Pb、Hgの不溶化による溶出を抑制し、硫酸第一鉄ではCr6+の溶出の抑制、塩化第二鉄ではAsの溶出を抑制する方法、(3)スラグ、石膏などの材料を添加して処理する方法、例えば特許文献3では、Cr6+、As、Se、Cd、Hgを含む汚染土壌に高炉スラグ微粉末、石膏、カルシウムを含むアルカリ材料、具体的には消石灰を混合することで汚染土壌から前記の溶出を抑制する方法がある。 As a method for suppressing the elution of F from the soil, (1) a method of solidifying with cement, for example, a method of kneading waste with cement and adsorbing and immobilizing heavy metal to calcium silicate hydrate, (2 ) A method of treating with a chemical, for example, sodium sulfide suppresses dissolution due to insolubilization of Cd, Pb, Hg, ferrous sulfate suppresses Cr 6+ elution, ferric chloride suppresses As elution, (3) A method of processing by adding materials such as slag and gypsum, for example, in Patent Document 3, alkali containing blast furnace slag fine powder, gypsum, and calcium in contaminated soil containing Cr 6+ , As, Se, Cd, and Hg There exists a method of suppressing the said elution from a contaminated soil by mixing a material, specifically, slaked lime.
(1)セメント系固化材では、先に説明したように使用する土により溶出が検出されやすく、またセメントに含有する六価クロムも溶出する危険性がある。(2)薬剤処理する方法では、薬剤のコスト負担が大きい上、土との混合時に薬剤起因の有害ガスが発生する危険がある。(3)スラグ、石膏などの材料を添加する方法は、本発明が対象とする土系固化材などへの適用は、溶出抑制のために更にスラグなどの添加が必要になり量が増えて実用的でない。また、溶出元素の特性に応じた処理方法が異なるため、全ての溶出元素を抑制できる万能な処理は難しく、特にFとPb、Seなどの重金属の溶出を同時に抑制することはできない。 (1) In the cement-based solidified material, elution is easily detected depending on the soil used as described above, and there is a risk that hexavalent chromium contained in the cement is also eluted. (2) In the method of treating the medicine, the cost burden of the medicine is large, and there is a risk that harmful gas caused by the medicine is generated when mixing with the soil. (3) The method of adding materials such as slag, gypsum, etc. is applied to the soil-based solidified material targeted by the present invention. Not right. Moreover, since the processing method according to the characteristic of an elution element differs, the universal process which can suppress all the elution elements is difficult, and especially elution of heavy metals, such as F, Pb, and Se, cannot be suppressed simultaneously.
本発明は、真砂土などの土にカルシウムアルミネート系スラグを固化材として使用した土系固化材において、土系固化材のFとPb、Seなどの重金属の溶出を土壌環境基準内に安定して制御した土系固化材を提供することを目的としたものである。 The present invention stabilizes the elution of heavy metals such as F, Pb, and Se in the soil-based solidified material in a soil-based solidified material using calcium aluminate-based slag as a solidified material in soil such as sand sand. The purpose is to provide a soil-based solidified material that has been controlled.
本発明は、真砂土舗装に使用される土の特性により、カルシウムアルミネート系スラグと混合した土系固化材の溶出が、環境基準を超えて発生する土において、カルシウムアルミネート系スラグに加えて、石膏および硫化カルシウムを特定の比率で混合することにより、Fを不溶化させ、かつ溶出液のpHを制御することで重金属の溶出を抑制し、更に重金属を硫化カルシウムで固定させる微妙な条件に調整することで、これら固化材と混合した土系固化材のFとPb、Seなどの重金属の溶出を土壌環境基準以下に抑制することを見出したものである。 The present invention, in addition to calcium aluminate slag, in the soil where elution of soil solidification material mixed with calcium aluminate slag exceeds the environmental standards due to the characteristics of the soil used for sand sand pavement By mixing gypsum and calcium sulfide at a specific ratio, F is insolubilized, and the pH of the eluate is controlled to suppress elution of heavy metals, and further adjusted to subtle conditions for fixing heavy metals with calcium sulfide. Thus, it has been found that the elution of heavy metals such as F, Pb, and Se in the earth-based solidified material mixed with these solidified materials is suppressed to the soil environment standard or less.
即ち、本発明の要旨とするところは以下の通りである。
(1) 土にカルシウムアルミネート系スラグと石膏と硫化カルシウムを配合してなり、カルシウムアルミネート系スラグ100質量部に対し、石膏が50〜150質量部、硫化カルシウムが2.5〜10質量部の範囲であることを特徴とする土系固化材。
(2)カルシウムアルミネート系スラグの組成が、CaOとAl2O3の含有量の合計で70質量%以上、かつCaO/ Al2O3が1.5〜2.0であることを特徴とする上記(1)に記載の土系固化材。
(3)土が100質量部に対して、カルシウムアルミネート系スラグ、石膏及び硫化カルシウムの合計を5〜20質量部配合したことを特徴とする上記(1)又は(2)に記載の土系固化材。
That is, the gist of the present invention is as follows.
(1) Calcium aluminate-based slag, gypsum and calcium sulfide are blended into the soil, and 50 to 150 parts by mass of gypsum and 2.5 to 10 parts by mass of calcium sulfide with respect to 100 parts by mass of calcium aluminate-based slag. A soil-based solidifying material characterized by being in the range of.
(2) The composition of the calcium aluminate-based slag is 70% by mass or more in total of the contents of CaO and Al 2 O 3 and CaO / Al 2 O 3 is 1.5 to 2.0. The earth-based solidifying material according to (1) above.
(3) The soil system according to (1) or (2) above, wherein 5 to 20 parts by mass of a total of calcium aluminate slag, gypsum and calcium sulfide is blended with respect to 100 parts by mass of the soil. Solidified material.
本発明においてカルシウムアルミネート系スラグとは、鋼の製造工程において副産される鉄鋼スラグであり、溶鋼の脱酸剤としてアルミニウムを使用した時に生成するアルミナ高含有スラグであって、スラグの主たる鉱物組成が12CaO・7Al2O3などのカルシウムアルミネートである特徴を有するスラグである。 In the present invention, calcium aluminate-based slag is steel slag produced as a by-product in the production process of steel, and is a high-alumina-containing slag produced when aluminum is used as a deoxidizer for molten steel, the main mineral of slag The slag is characterized in that the composition is calcium aluminate such as 12CaO · 7Al 2 O 3 .
さらに、本発明で固化材とは、土系舗装のために土と混合する固化材であり、固化材自体は土を含まない。また土系固化材とは、土と上記固化材とを混合したものをいう。土系固化材を混合土と呼ぶこともある。 Furthermore, the solidifying material in the present invention is a solidifying material mixed with soil for earth-based pavement, and the solidifying material itself does not contain soil. The earth-based solidifying material refers to a mixture of soil and the above-mentioned solidifying material. Soil-based solidification material is sometimes called mixed soil.
本発明は、真砂土などの土に、カルシウムアルミネート系スラグを主体とする固化材を混合した土系固化材において、土系固化材からのFとPb、Seなどの重金属の溶出を土壌環境基準内に安定して制御し、かつ強度と透水性を有する土系固化材であり、この土系固化材を用いて道路や歩道、運動場や競技場などの表層部を舗装することができる。 The present invention relates to a soil-based solidified material in which a solidified material mainly composed of calcium aluminate-based slag is mixed with soil such as sand sand, and elution of heavy metals such as F, Pb, and Se from the soil-based solidified material It is a soil-based solidified material that is stably controlled within the standard and has strength and water permeability. By using this soil-based solidified material, surface layers such as roads, sidewalks, playgrounds, and stadiums can be paved.
本発明の土系固化材は、土にカルシウムアルミネート系スラグと石膏と硫化カルシウムを配合してなる。カルシウムアルミネート系スラグを用いる理由は、カルシウムアルミネート系スラグと石膏を配合したときに、土系固化材としての優れた性質を発揮し得るからである。 The soil-based solidifying material of the present invention is obtained by blending calcium aluminate-based slag, gypsum, and calcium sulfide into soil. The reason for using calcium aluminate slag is that when calcium aluminate slag and gypsum are blended, excellent properties as a soil-based solidifying material can be exhibited.
鋼の製造工程における溶鋼の溶製において、溶鋼の脱酸剤にアルミニウムを使用して脱酸した場合には、スラグ中にAl2O3が生成される。そのAl2O3を含めたスラグの組成は、例えばステンレス鋼の溶製において、質量%でCaO:50%、Al2O3:30%、SiO2:4%、その他MgOを含むカルシウムアルミネート系スラグが形成される。これらのスラグ組成は、溶製方法などの操業条件により大きく変化する。 In the melting of molten steel in the steel manufacturing process, when aluminum is used as a deoxidizer for molten steel, Al 2 O 3 is generated in the slag. The composition of the slag including Al 2 O 3 is, for example, a calcium aluminate system containing CaO: 50% by mass, Al 2 O 3 : 30%, SiO2: 4%, and other MgO in melting of stainless steel. Slag is formed. These slag compositions vary greatly depending on operating conditions such as the melting method.
カルシウムアルミネート系スラグは鉄の製造工程において副産される鉄鋼スラグを特定の成分範囲に選別することでスラグをそのまま使用することができ経済的である。 Calcium aluminate-based slag is economical because slag can be used as it is by selecting steel slag by-produced in the iron production process into a specific component range.
該スラグは、石膏と硫化カルシウムを配合し、土に混合して水を加えると硬化し、強度を発する。予め土と該スラグと石膏と硫化カルシウムを土の特性に合わせて適量の割合で混合したものを土系固化材として提供でき、水を加えるだけで舗装することができる。 The slag is mixed with gypsum and calcium sulfide, mixed with soil and added with water to harden and emit strength. A mixture of soil, the slag, gypsum, and calcium sulfide in an appropriate amount according to the characteristics of the soil can be provided as a soil-based solidifying material, and paving can be performed by simply adding water.
しかし、土の産地により溶出液のpHが9程度のアルカリ性を示すものがあり、環境庁告示46号法で測定した溶出成分もFで0.6mg/リットル近く検出され、土壌環境基準の0.8mg/リットル以下には合格するも限界近くにあるものもある。このような土を使用し、かつFをわずかに含むスラグ系の固化材を混合した土系固化材を使用して真砂土舗装しようとするとき、混合土(土系固化材)からの溶出を確認すると、溶出液のpHが11〜12と高く、Fの溶出が土壌環境基準を超える場合があり、またpHが高くなることでPb,Seなどの重金属の溶出も検出されやすくなり、舗装材として使用することはできない。真砂土舗装などに使用する材料は、舗装に使用する混合した土で土壌環境基準を満足し、安心して使用できる品質を確保する必要がある。 However, depending on the soil production area, some of the eluate has an alkalinity of about 9 and the elution component measured by the Environment Agency Notification No. 46 method is also detected by F at nearly 0.6 mg / liter, which is 0. Below 8 mg / liter, some pass but are close to the limit. When using this type of soil and pavement with pure sand using a soil-based solidification material mixed with a slag-based solidification material containing a small amount of F, elution from the mixed soil (soil-based solidification material) When confirmed, the pH of the eluate is as high as 11 to 12, the elution of F may exceed the soil environmental standards, and the elution of heavy metals such as Pb and Se can be easily detected by increasing the pH. Cannot be used as It is necessary to ensure the quality of the materials used for the sand sand pavement, etc., which satisfies the soil environmental standards with the mixed soil used for the pavement and can be used safely.
本発明はカルシウムアルミネート系スラグ、石膏及び硫化カルシウムを混合した固化材と土を混合した土系固化材であり、混合土(土系固化材)からの溶出を土壌環境基準内に安定して制御した土系固化材を提供するものである。 The present invention is a soil-based solidifying material in which calcium aluminate-based slag, gypsum and calcium sulfide are mixed and soil is mixed, and the elution from the mixed soil (soil-based solidifying material) is stabilized within the soil environment standard. A controlled soil-based solidifying material is provided.
ここで土とは、日本で多く採れる花崗岩などが風化してできた真砂土と呼ばれるもの、その他、舗装現場近くの産地から採取される粒状砕石、土壌などなどで、天然に採取される土である。これらは歩道、公園、グランド、敷地内の庭や駐車場に多く使われている。また、これら採取された土に砂や砕石、スラグ骨材を混合したもの、瓦、ガラス、木材チップ、ゴムなど破砕して粒度調整した材料を混合して色調、質感、景観などの特性を活かした混合した土を含む。 Here, soil is soil that is naturally collected, such as what is called true sand soil that has been weathered from granite that is often harvested in Japan, and other granular crushed stones, soil, etc. collected from production areas near the pavement site. is there. These are often used for sidewalks, parks, grounds, on-site gardens and parking lots. In addition, these collected soils are mixed with sand, crushed stones, slag aggregates, tiles, glass, wood chips, rubber and other materials that have been crushed and adjusted in particle size to make full use of properties such as color tone, texture, and landscape. Contains mixed soil.
本発明の土にカルシウムアルミネート系スラグ、石膏及び硫化カルシウムを混合した土系固化材において、配合割合は、カルシウムアルミネート系スラグが100質量部に対し、石膏を50〜150質量部、硫化カルシウムを2.5〜10質量部含有することが必要である。 In the earth-based solidified material in which calcium aluminate slag, gypsum and calcium sulfide are mixed in the soil of the present invention, the blending ratio is 50 to 150 parts by mass of gypsum with respect to 100 parts by mass of calcium aluminate slag, calcium sulfide. It is necessary to contain 2.5-10 mass parts.
カルシウムアルミネート系スラグに石膏を加えて混合した水和物はエトリンガイトを形成し、カルシウムアルミネート系スラグを単独で使用したときの固化体の圧縮強度より更に強度を増すことができる。従って、土に配合するこれらの混合した固化材の割合を減少させる効果がある。さらに、カルシウムアルミネート系スラグに石膏を加え、土と混合した混合土(土系固化材)からの環境庁告示46号法による溶出試験では、溶出液のpHを低く抑えて、溶出を抑制する効果がある。 Hydrates in which gypsum is added to calcium aluminate slag and mixed form ettringite, and the strength can be further increased than the compressive strength of the solidified product when calcium aluminate slag is used alone. Therefore, there is an effect of reducing the ratio of these mixed solidifying materials blended in the soil. Furthermore, in the elution test by the Environment Agency Notification No. 46 from mixed soil (soil-based solidified material) mixed with soil by adding gypsum to calcium aluminate slag, the pH of the eluate is kept low to suppress elution. effective.
カルシウムアルミネート系スラグ単体を固化材として用いた場合、土に固化材を混合した混合土(土系固化材)からの環境庁告示46号法による溶出試験では、溶出液のpHが12程度と高くなり、真砂土の種類、例えばアルカリ質土壌などを使用した土系固化材の場合ではF、Pb、Seなどが溶出して検出されやすい。いずれの元素の溶出もpHと相関があり、溶出を抑制するためには、pHを下げる必要がある。 When calcium aluminate-based slag alone is used as the solidifying material, in the elution test by the Environment Agency Notification No. 46 from the mixed soil (soil-based solidifying material) in which the solidifying material is mixed with the soil, the pH of the eluate is about 12 In the case of an earth-based solidified material using a type of true sand, for example, alkaline soil, F, Pb, Se, etc. are easily eluted and detected. The elution of any element has a correlation with the pH, and it is necessary to lower the pH in order to suppress the elution.
土と固化材を混合して土系固化材とするに際し、固化材としてカルシウムアルミネート系スラグに石膏を適量配合することにより、土系固化材からの溶出液のpHを溶出の抑制範囲に下げることができることが分かった。カルシウムアルミネート系スラグが100質量部に対し、石膏を50〜150質量部することが適切である。石膏の配合量が50質量部未満では均一に配合することが難しく、かつpH制御の安定性に欠ける。石膏の配合量が150質量部より多いと、エトリンガイトが効果的に生成するための石膏の量が多くなりすぎてカルシウムアルミネート系スラグと石膏の配合による強度の増加が見られず、安定領域に入り、かつ溶出を安定的に抑制できない。石膏の配合はFの溶出抑制に特に効果があり、石膏はカルシウムアルミネート系スラグからの溶出液のpHの上昇を抑えつつ溶出液中のCaの溶解量が増すため、石膏50〜150質量部の範囲でFの溶出を安定的に防止できる。好ましくは石膏80〜120質量部の範囲に配合することが望ましい。 When mixing soil and solidified material to make a soil-based solidified material, mix the appropriate amount of gypsum with calcium aluminate-based slag as the solidified material, thereby lowering the pH of the eluate from the soil-based solidified material to the elution suppression range. I found out that I could do it. It is appropriate that calcium aluminate-based slag is 50 to 150 parts by mass of gypsum with respect to 100 parts by mass. If the amount of gypsum is less than 50 parts by mass, it is difficult to uniformly mix and the stability of pH control is lacking. If the amount of gypsum is more than 150 parts by mass, the amount of gypsum for effectively producing ettringite will be too large, and the increase in strength due to the combination of calcium aluminate slag and gypsum will not be seen, and in the stable region Entering and elution cannot be suppressed stably. The composition of gypsum is particularly effective in suppressing the elution of F. Since gypsum suppresses an increase in the pH of the eluate from calcium aluminate-based slag, the amount of Ca dissolved in the eluate increases. In this range, the elution of F can be stably prevented. It is desirable to blend in the range of 80 to 120 parts by mass of gypsum.
さらに、溶出液のpHを下げることにより、Pb、Seの溶出も抑制することができるが、土壌環境基準以下への制御の安定性に欠け、石膏だけでは安定してPb、Seの溶出を防止することはできない。 Furthermore, the elution of Pb and Se can be suppressed by lowering the pH of the eluate, but the stability of the control to below the soil environmental standard is lacking, and the elution of Pb and Se is prevented with gypsum alone. I can't do it.
Pb、Seの溶出を安定して防止するには、カルシウムアルミネート系スラグが100質量部に対し、石膏を50〜150質量部の配合に加え、さらに硫化カルシウムを2.5〜10質量部配合することが適切である。硫化カルシウムは、溶出液のpH制御により溶出を抑制した上で、残存する溶出元素を還元して、成分の溶出量を安定して土壌環境基準以下に制御できる。硫化カルシウムが2.5質量より少ないと還元不足になり溶出を安定的に抑制できない。また10質量部より多く配合すると、硫化カルシウムが溶出液のpHを高くする作用があるため、還元による溶出の抑制効果以上に溶出が増えるため溶出を防止することができない。従って、カルシウムアルミネート系スラグが100質量部に対し、石膏を50〜150質量部、硫化カルシウムを2.5〜10質量部配合することとした。溶出を防止するより望ましい範囲は3.0〜8.0質量部配合することが好ましい。 In order to stably prevent the elution of Pb and Se, calcium aluminate-based slag is added to 100 parts by mass of gypsum in addition to 50 to 150 parts by mass, and further 2.5 to 10 parts by mass of calcium sulfide. It is appropriate to do. Calcium sulfide can suppress the elution by controlling the pH of the eluate, reduce the remaining elution elements, and stably control the elution amount of the components to be below the soil environment standard. If the calcium sulfide is less than 2.5 mass, the reduction is insufficient and the elution cannot be suppressed stably. Moreover, when it mixes more than 10 mass parts, since calcium sulfide has the effect | action which raises the pH of an eluate, since elution will increase more than the inhibitory effect of the elution by reduction | restoration, elution cannot be prevented. Accordingly, 50 to 150 parts by mass of gypsum and 2.5 to 10 parts by mass of calcium sulfide are added to 100 parts by mass of calcium aluminate-based slag. A more desirable range for preventing elution is preferably 3.0 to 8.0 parts by mass.
カルシウムアルミネート系スラグの組成は、CaOとAl2O3の含有量の合計で70質量%以上、かつCaO/ Al2O3が1.5〜2.0であることが適切である。 As for the composition of the calcium aluminate slag, it is appropriate that the total content of CaO and Al 2 O 3 is 70% by mass or more, and CaO / Al 2 O 3 is 1.5 to 2.0.
上述のとおり、土系固化材の強度を確保しつつ混合土の溶出を土壌環境基準以下に安定的に制御するために、カルシウムアルミネート系スラグ、石膏及び硫化カルシウムを混合した土系固化材の配合割合は、カルシウムアルミネート系スラグが100質量部に対し、石膏を50〜150質量部、硫化カルシウムを2.5〜10質量部配合する。本発明の土系固化材に水を加えて固化体とした際の固化体の強度は、カルシウムアルミネート系スラグと石膏との配合で決まり、硫化カルシウムの配合の影響は小さい。カルシウムアルミネート系スラグに石膏を加えて混合した水和物はエトリンガイトを形成し、カルシウムアルミネート系スラグを単独で固化材として使用したときの土系固化材の固化体の圧縮強度より更に強度を増す。エトリンガイトの生成には、スラグの鉱物組成として、12CaO・7Al2O3が主体的に存在することが望ましい。12CaO・7Al2O3の鉱物組成を構成するためには、スラグ中のCaOとAl2O3の含有量の総和は質量%で70%以上有ることが適切であり、望ましくは80%以上有ることが好ましい。70%より少ないと、SiO2或いはMgOの含有量が増えてカルシウムシリケート等が発生するため、エトリンガイトの生成が少なくなり、固化材の配合を抑えて強度を確保する観点から適切でない。また、12CaO・7Al2O3の鉱物組成が主体的に発生するスラグの成分は、CaO/Al2O3の比で1.5〜2.0が適切であり、1.5〜1.7がより好ましい。従って、カルシウムアルミネート系スラグの組成が、CaOとAl2O3の含有量の合計が70%以上、かつCaO/Al2O3が1.5〜2.0とした。 As mentioned above, in order to stably control the elution of the mixed soil below the soil environmental standard while ensuring the strength of the soil-based solidified material, the soil-based solidified material mixed with calcium aluminate-based slag, gypsum and calcium sulfide. The blending ratio is 50 to 150 parts by mass of gypsum and 2.5 to 10 parts by mass of calcium sulfide with respect to 100 parts by mass of calcium aluminate slag. The strength of the solidified body when water is added to the soil-based solidified material of the present invention to form a solidified body is determined by the combination of calcium aluminate slag and gypsum, and the influence of the mixing of calcium sulfide is small. Hydrates obtained by adding gypsum to calcium aluminate-based slag form ettringite, which is stronger than the compressive strength of the solidified solidified material of calcium-based aluminate slag when used alone as the solidified material. Increase. For the production of ettringite, it is desirable that 12CaO · 7Al 2 O 3 is mainly present as the mineral composition of slag. In order to constitute the mineral composition of 12CaO · 7Al 2 O 3 , the total content of CaO and Al 2 O 3 in the slag is suitably 70% or more by mass%, desirably 80% or more. It is preferable. If it is less than 70%, the content of SiO 2 or MgO increases and calcium silicate or the like is generated, so that the production of ettringite is reduced, which is not appropriate from the viewpoint of suppressing the blending of the solidifying material and ensuring the strength. Further, components of the slag mineral composition of 12CaO · 7Al 2 O 3 occurs subjectively is 1.5 to 2.0 is appropriate at a ratio of CaO / Al 2 O 3, 1.5~1.7 Is more preferable. Therefore, the composition of the calcium aluminate slag was such that the total content of CaO and Al 2 O 3 was 70% or more, and CaO / Al 2 O 3 was 1.5 to 2.0.
本発明の土系固化体は、土が100質量部に対して、カルシウムアルミネート系スラグ、石膏及び硫化カルシウムの合計を5〜20質量部配合することが適切である。以下、カルシウムアルミネート系スラグ、石膏及び硫化カルシウムの合計を固化材ともいう。 In the soil-based solidified body of the present invention, it is appropriate that 5 to 20 parts by mass of the total of calcium aluminate-based slag, gypsum and calcium sulfide is blended with respect to 100 parts by mass of soil. Hereinafter, the total of calcium aluminate slag, gypsum and calcium sulfide is also referred to as a solidifying material.
真砂土などの土に固化材を混合して土系固化体とし、これを固化させて舗装するには、上記の条件で配合した固化材を使用し、さらに土が100質量部に対して固化材を少なくとも5質量部を混合すると好ましい。固化材を多く配合すると強度は増すものの、強度が高すぎて足に負担の少ない舗装で無いばかりでなく、溶出が増える。また固化材の配合を増やすと固化材の費用が高くなる。従って固化材を20質量部以下とすることが適切であり、望ましくは5〜12質量部の範囲が好ましい。 A solidified material is mixed with soil such as pure sand soil to form an earth-based solidified body, and to solidify and pave, use the solidified material blended under the above conditions, and further solidify the soil to 100 parts by mass. It is preferable to mix at least 5 parts by mass of the material. When a large amount of a solidifying material is added, the strength increases, but not only is the pavement having a too high strength and less burden on the foot, but also increases the elution. Moreover, the cost of a solidification material will become high if the compounding of a solidification material is increased. Therefore, it is appropriate that the solidifying material is 20 parts by mass or less, and desirably it is in the range of 5 to 12 parts by mass.
本発明は、土にカルシウムアルミネート系スラグ、石膏及び硫化カルシウムを混合したことを特徴とする土系固化材であって、土の特性に合わせて固化材を適量に混合した土系固化材を使用し、或いは現地で土にカルシウムアルミネート系スラグ、石膏及び硫化カルシウムを混合して土系固化材となし、水を加えて敷き均し適度に転圧して敷き固めて舗装することができる。土系固化材と水を混合する際にコンクリート用のミキサーがあれば容易に水と均一に混合できるが、混合機が無い場合、人力で混合するには負担が大きいため、混合した土系固化材を敷き均した後、表面から均一に散水して水を加えた後、敷き固めて舗装することもできる。 The present invention is an earth-based solidifying material characterized in that calcium aluminate-based slag, gypsum and calcium sulfide are mixed in the soil, and an earth-based solidifying material obtained by mixing an appropriate amount of the solidifying material in accordance with the characteristics of the soil. It can be used or mixed with calcium aluminate-based slag, gypsum and calcium sulfide in the soil to form a soil-based solidified material, added with water, leveled, and properly pressed and solidified for paving. When mixing soil-based solidification material and water, if there is a concrete mixer, it can be easily mixed uniformly with water. However, if there is no mixer, it is difficult to mix manually, so mixed soil-based solidification After the material is spread and leveled, water can be uniformly sprayed from the surface and water can be added, and then spread and paved.
舗装するに当り、車両などの重量物が載る場合には、表層の舗装の下に砕石などの下層路盤材を敷き詰めるとよい。下層路盤材の敷き詰める厚さ、及び表層の舗装材の敷き詰める厚さは用途に応じて決定する。例えば歩道などでは、下層の路盤材を厚さ50〜100mmで敷き固めた後、表層部に土系固化材を50mm程度敷き固めて舗装するとよい。 When paving a heavy object such as a vehicle, it is better to lay down a subgrade material such as crushed stone under the surface pavement. The thickness of the lower roadbed material and the thickness of the surface pavement material are determined according to the application. For example, in a sidewalk or the like, after a lower roadbed material is laid and hardened to a thickness of 50 to 100 mm, an earth-based solidified material is laid and hardened about 50 mm on the surface layer.
土とカルシウムアルミネート系スラグ、石膏及び硫化カルシウムの混合割合は、使用用途と土の特性を勘案して混合した土系固化材の溶出と路面強度から適切に決定することができる。歩道など足に負担のかからない路面の強度でよい場合、或いは駐車場などで路面強度が必要な場合などその用途に応じて適切な強度があるため、強度に応じた配合を決定することが望ましい。また、土の産地により品質が異なるので、現に使用する土の特性により同じ割合のカルシウムアルミネート系スラグ、石膏及び硫化カルシウムを混合しても溶出特性や強度が異なる。従って、予め配合試験を行い土とカルシウムアルミネート系スラグ、石膏及び硫化カルシウムの配合及び添加水分量を適切な溶出抑制、強度に適合するように求めておくことが必要である。 The mixing ratio of soil and calcium aluminate-based slag, gypsum and calcium sulfide can be appropriately determined from the elution of the mixed soil-based solidified material and the road surface strength in consideration of the intended use and soil characteristics. When the strength of the road surface that does not burden the foot such as a sidewalk is sufficient, or when the road surface strength is required in a parking lot or the like, there is an appropriate strength depending on the application, so it is desirable to determine the composition according to the strength. In addition, since the quality varies depending on the production area of the soil, even if the same proportion of calcium aluminate slag, gypsum and calcium sulfide are mixed, the elution characteristics and strength differ. Therefore, it is necessary to conduct a blending test in advance and determine the blending of soil and calcium aluminate-based slag, gypsum and calcium sulfide and the amount of added water so as to meet appropriate elution suppression and strength.
以下、本発明を実施例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to a following example.
土系固化材に用いる土としては、一般的に公園、グランドなどに使用される真砂土のうち、アルカリ性を示し、比較的Fの溶出量の高い土を選んだ。土に混合する固化材は、種々の成分組成を有するカルシウムアルミネート系スラグを用いて、石膏及び硫化カルシウムを混合した。土と固化材を混合した土系固化材の圧縮強度、溶出試験結果について評価した。 As the soil to be used for the soil-based solidifying material, among the sands generally used for parks, grounds, etc., soils that are alkaline and have a relatively high F elution amount were selected. As the solidifying material to be mixed with the soil, gypsum and calcium sulfide were mixed using calcium aluminate-based slag having various component compositions. The compressive strength and dissolution test results of the soil-based solidified material mixed with soil and solidified material were evaluated.
土系固化材の圧縮強度の評価方法は、土と固化材を混合した土系固化材を良く混練した後に水を30%加えてさらに混練し、JIS A 1108(コンクリートの圧縮強度試験方法)に従って供試体を製作し、7日間養生後に1軸圧縮強度を測定した。 The evaluation method of the compressive strength of the soil-based solidified material is that the soil-based solidified material obtained by mixing the soil and the solidified material is well kneaded, then 30% water is added and further kneaded, and in accordance with JIS A 1108 (Concrete compressive strength test method). Specimens were manufactured and uniaxial compressive strength was measured after curing for 7 days.
圧縮強度を測定した後の供試体試料を用いて、環境庁告示46号法に従って溶出試験を行った。溶出試験の分析を行う成分は、Cd、Pb、Cr6+、As、Se、F、B、Hgの8元素の確認を行った。これらのうち、Cd、Cr6+、As、B、Hgは使用した土、及び土と混合した固化材で安定して検出されなかったため、Pb、Se、Fを調査元素とした。 Using the specimen sample after measuring the compressive strength, a dissolution test was conducted according to the Environmental Agency Notification No. 46 method. As the components to be analyzed in the dissolution test, eight elements of Cd, Pb, Cr 6+ , As, Se, F, B, and Hg were confirmed. Among these, Cd, Cr 6+ , As, B, and Hg were not stably detected in the used soil and the solidified material mixed with the soil, so Pb, Se, and F were used as the survey elements.
[実施例1]
実施例で用いたスラグの成分組成を表1に示す。
[Example 1]
Table 1 shows the composition of the slag components used in the examples.
表1の本発明例1に示すカルシウムアルミネートスラグ(A)を用いて固化材とし、この固化材と真砂土との混合による土系固化材の評価を行った。 The calcium aluminate slag (A) shown in Table 1 of the present invention was used as a solidified material, and the soil-based solidified material was evaluated by mixing the solidified material with true sand.
まず、実施例比較として、固化材を使用せずに真砂土のみを水で混練して試験体を製作して圧縮強度と溶出試験を行った。この結果を表2の実施例比較1に示す。固化材を配合しないで成型した試験体の強度は全く無い。その供試体の溶出試験では、pHが9.6とアルカリ性を示し、Fの溶出量は0.6mg/リットルであった。実施例比較2でカルシウムアルミネート系スラグのみを固化材に使用し、真砂土100質量部に対し、固化材を10質量部配合して混合した後に水を加えて混練し試験体を作成して、7日間養生した後に圧強度を測定した。圧縮強度は3.4N/mm2得られるものの、F、Pb、Seの溶出が土壌環境基準を超えて発生した。また実施例比較3では、固化材にカルシウムアルミネート系スラグと石膏を等量配合して均一混合したものを固化材とし、真砂土100質量部に対し、固化材10質量部を配合した試験体強度を測定した。圧縮強度は5.7N/mm2と高くなり、溶出試験結果ではFの溶出が土壌環境基準以下に抑制されたものの、Pb、Seの溶出が土壌環境基準を超えて発生した。 First, as a comparative example, a test specimen was manufactured by kneading only pure sand with water without using a solidifying material, and a compressive strength and a dissolution test were performed. The results are shown in Example Comparative Example 1 in Table 2. There is no strength at all of the specimens molded without compounding the solidifying material. In the elution test of the specimen, the pH was 9.6, indicating alkalinity, and the F elution amount was 0.6 mg / liter. In Example Comparative Example 2, only calcium aluminate-based slag was used as a solidifying material, and 10 parts by mass of the solidifying material was mixed and mixed with 100 parts by mass of sandy sand. The pressure strength was measured after curing for 7 days. Although a compressive strength of 3.4 N / mm 2 was obtained, elution of F, Pb, and Se occurred beyond the soil environment standard. Moreover, in Example Comparative Example 3, a test specimen in which equal amounts of calcium aluminate slag and gypsum were mixed in a solidified material and mixed uniformly was used as a solidified material, and 10 parts by mass of the solidified material was blended with 100 parts by mass of sand. The strength was measured. The compressive strength was as high as 5.7 N / mm 2. In the dissolution test results, the dissolution of F was suppressed below the soil environmental standard, but the dissolution of Pb and Se occurred beyond the soil environmental standard.
表2の本発明例1〜3では、カルシウムアルミネート系スラグ100質量部に対し、石膏を50〜150質量部、硫化カルシウムを2.5〜10質量部配合し、均一に混合して固化材とした。比較例と同様に真砂土100質量部に対し、固化材を10質量部配合して試験体を作成し、強度と溶出試験を行った。圧縮強度は充分な強度が得られ、溶出試験においてもF、Pb、Seの何れも土壌環境基準を満足し、本発明の優位性が明らかである。 In Invention Examples 1 to 3 in Table 2, 50 to 150 parts by mass of gypsum and 2.5 to 10 parts by mass of calcium sulfide are blended with 100 parts by mass of calcium aluminate-based slag and mixed uniformly to obtain a solidified material. It was. Similarly to the comparative example, 10 parts by mass of a solidifying material was blended with 100 parts by mass of sand sand, and a test specimen was prepared and subjected to strength and dissolution tests. A sufficient compressive strength is obtained, and all of F, Pb, and Se satisfy the soil environmental standards in the dissolution test, and the superiority of the present invention is clear.
[実施例2]
表3に示すように、カルシウムアルミネート系スラグの成分について表1の本発明例1〜比較例2(A〜G)のものを用い、カルシウムアルミネート系スラグのCaOとAl2O3の成分を変動させ、土系固化材の圧縮強度と溶出試験を行った。
[Example 2]
As shown in Table 3, the components of the calcium aluminate slag were those of Invention Example 1 to Comparative Example 2 (A to G) in Table 1, and CaO and Al 2 O 3 components of the calcium aluminate slag. , And the compressive strength and dissolution test of the soil-based solidified material were conducted.
実施例比較1は表1におけるスラグの種類Fを用いた。Al2O3の含有量が少なく、CaOとAl2O3の合計量では46.7%と少なく、同時にCaO/Al2O3が2.6と高くなっている。また、実施例比較2のスラグの種類GはCaOとAl2O3の合計量が74%と70%を超えているものの、CaO/Al2O3が1.1と低い。これらの表1比較例1、2を用いた土系固化材から作成した試験体(表3の実施例比較1,2)の圧縮強度は2N/mm2レベル代と低い。 In Example Comparison 1, the slag type F in Table 1 was used. The content of Al 2 O 3 is small, the total amount of CaO and Al 2 O 3 is as small as 46.7%, and at the same time, CaO / Al 2 O 3 is as high as 2.6. The type G slag of Example Comparative 2 although the total amount of CaO and Al 2 O 3 is greater than 74% and 70%, lower the CaO / Al 2 O 3 is 1.1. The compressive strength of the test body (Example comparison 1 and 2 of Table 3) created from the soil type solidification material using these Table 1 comparative examples 1 and 2 is as low as 2N / mm2 level cost.
カルシウムアルミネート系スラグのCaOとAl2O3の含有量の合計が70%以上、かつCaO/Al2O3が1.5〜2.0である表1の本発明例1〜5(A〜E)を用いた固化材を用い、土と混合して作成した試験体(表3の本発明例1〜5)では圧縮強度が5N/mm2以上あり本発明の優位性が明らかである。溶出試験については、カルシウムアルミネート系スラグを100質量部に対し、石膏を100質量部、硫化カルシウムを5質量部配合することで、F、Pb、Seのいずれの元素の溶出も土壌環境基準以下に抑制することができる。 Invention examples 1 to 5 in Table 1 in which the total content of CaO and Al 2 O 3 in the calcium aluminate slag is 70% or more and CaO / Al 2 O 3 is 1.5 to 2.0 (A The specimens (Examples 1 to 5 of the present invention in Table 3) prepared by mixing the solidified material using ~ E) and mixed with soil have a compressive strength of 5 N / mm 2 or more, and the superiority of the present invention is clear. . For the dissolution test, 100 parts by weight of calcium aluminate slag is mixed with 100 parts by weight of gypsum and 5 parts by weight of calcium sulfide, so that the dissolution of any element of F, Pb, and Se is below the soil environment standard. Can be suppressed.
[実施例3]
表4に土系固化材における固化材の配合を変動させた本発明例及び比較例を示す。
[Example 3]
Table 4 shows examples of the present invention and comparative examples in which the composition of the solidifying material in the earth-based solidifying material was varied.
表1の本発明例1に示す組成のカルシウムアルミネート系スラグ(A)を用いて、該カルシウムアルミネート系スラグの100質量部に対し、石膏を100質量部、硫化カルシウムを5質量部配合した固化材を真砂土100質量部に対して5質量部(表4の本発明例1)、及び20質量部(表4の本発明例2)を配合してよく混合し、水を加えて混練した後に試験体を製造した。表4の本発明例1、2では、固化材の配合量を真砂土100質量部に対して5質量部以上配合することにより試験体の圧縮強度を3N/mm2以上得ることができる。溶出試験は土壌環境基準以下に問題なく抑制できる。 Using calcium aluminate slag (A) having the composition shown in Example 1 of Table 1, 100 parts by mass of gypsum and 5 parts by mass of calcium sulfide are added to 100 parts by mass of the calcium aluminate slag. 5 parts by mass (Invention Example 1 in Table 4) and 20 parts by mass (Invention Example 2 in Table 4) are mixed with 100 parts by mass of sandy sand, and the mixture is mixed and mixed with water. After that, a test specimen was manufactured. In Invention Examples 1 and 2 in Table 4, the compressive strength of the test specimen can be 3 N / mm 2 or more by blending the blending amount of the solidifying material with 5 parts by mass or more with respect to 100 parts by mass of the sand. The dissolution test can be controlled without any problem below the soil environmental standards.
実施例比較1では固化材の配合量を真砂土100質量部に対して5質量部未満の配合では溶出は土壌環境基準を満足することができるが、圧縮強度は低く強度を確保することができない。また、実施例比較2では固化材の配合量を真砂土100質量部に対して20質量部を超えて配合すると圧縮強度は高く確保できるものの、固化材の配合量が増えることによりFの溶出が増えて土壌環境基準を超える。 In Example Comparative Example 1, when the blending amount of the solidifying material is less than 5 parts by mass with respect to 100 parts by mass of the true sand soil, elution can satisfy the soil environmental standards, but the compressive strength is low and the strength cannot be ensured. . Moreover, in Example Comparative Example 2, when the blending amount of the solidifying material exceeds 20 parts by mass with respect to 100 parts by mass of the true sandy soil, a high compressive strength can be secured, but the elution of F is increased by increasing the blending amount of the solidifying material. Increased to exceed soil environmental standards.
固化材の配合割合を真砂土100質量部に対して5〜20質量部の範囲ですることにより、固化体の強度を確保し、成分の溶出を安定して抑制することができる。 By setting the blending ratio of the solidifying material in the range of 5 to 20 parts by mass with respect to 100 parts by mass of the true sand, the strength of the solidified body can be secured and the elution of the components can be stably suppressed.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008233373A JP5561921B2 (en) | 2008-09-11 | 2008-09-11 | Earth solidified material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008233373A JP5561921B2 (en) | 2008-09-11 | 2008-09-11 | Earth solidified material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010065158A true JP2010065158A (en) | 2010-03-25 |
JP5561921B2 JP5561921B2 (en) | 2014-07-30 |
Family
ID=42191019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008233373A Active JP5561921B2 (en) | 2008-09-11 | 2008-09-11 | Earth solidified material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5561921B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012041679A (en) * | 2010-08-12 | 2012-03-01 | Shinyoo:Kk | Composition of soil solidified material manufacture and soil paving method |
JP2017082092A (en) * | 2015-10-28 | 2017-05-18 | デンカ株式会社 | Soil pavement material |
JP2017082486A (en) * | 2015-10-28 | 2017-05-18 | デンカ株式会社 | Soil pavement material and soil pavement method |
JP2017160663A (en) * | 2016-03-09 | 2017-09-14 | デンカ株式会社 | Soil pavement material and soil pavement method with it |
JP2018111785A (en) * | 2017-01-13 | 2018-07-19 | デンカ株式会社 | Soil pavement material |
JP2018145632A (en) * | 2017-03-02 | 2018-09-20 | デンカ株式会社 | Soil pavement material |
KR20210065693A (en) * | 2019-11-27 | 2021-06-04 | 한국광해관리공단 | Mercury and arsenic contaminated soil stabilizers and stabilizing method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH081358U (en) * | 1996-02-09 | 1996-09-03 | 徹 津守 | Road shoulder structure |
JPH108050A (en) * | 1996-06-28 | 1998-01-13 | Sumitomo Osaka Cement Co Ltd | Solidifying material for soil improvement |
JPH1060433A (en) * | 1996-08-14 | 1998-03-03 | Chichibu Onoda Cement Corp | Solidifying composition for vegetation |
JPH10219246A (en) * | 1997-02-06 | 1998-08-18 | Chichibu Onoda Cement Corp | Organic solidification material for poor ground |
JP2002194709A (en) * | 2000-12-27 | 2002-07-10 | Tokyo Fukko Kk | Paving material and manufacturing method for paving material |
JP2004269822A (en) * | 2003-03-12 | 2004-09-30 | Ube Ind Ltd | Process for preparing calcium sulfide-based heavy metal fixing agent |
JP2004267817A (en) * | 2003-03-05 | 2004-09-30 | Denki Kagaku Kogyo Kk | Soil improvement material |
JP2006102643A (en) * | 2004-10-05 | 2006-04-20 | Ube Ind Ltd | Calcium sulfide heavy metal solidifying agent, its production method, method for producing soil modification material and method for treating object to be treated |
JP2008014117A (en) * | 2006-07-05 | 2008-01-24 | Bloom:Kk | Soil paving material |
-
2008
- 2008-09-11 JP JP2008233373A patent/JP5561921B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH081358U (en) * | 1996-02-09 | 1996-09-03 | 徹 津守 | Road shoulder structure |
JPH108050A (en) * | 1996-06-28 | 1998-01-13 | Sumitomo Osaka Cement Co Ltd | Solidifying material for soil improvement |
JPH1060433A (en) * | 1996-08-14 | 1998-03-03 | Chichibu Onoda Cement Corp | Solidifying composition for vegetation |
JPH10219246A (en) * | 1997-02-06 | 1998-08-18 | Chichibu Onoda Cement Corp | Organic solidification material for poor ground |
JP2002194709A (en) * | 2000-12-27 | 2002-07-10 | Tokyo Fukko Kk | Paving material and manufacturing method for paving material |
JP2004267817A (en) * | 2003-03-05 | 2004-09-30 | Denki Kagaku Kogyo Kk | Soil improvement material |
JP2004269822A (en) * | 2003-03-12 | 2004-09-30 | Ube Ind Ltd | Process for preparing calcium sulfide-based heavy metal fixing agent |
JP2006102643A (en) * | 2004-10-05 | 2006-04-20 | Ube Ind Ltd | Calcium sulfide heavy metal solidifying agent, its production method, method for producing soil modification material and method for treating object to be treated |
JP2008014117A (en) * | 2006-07-05 | 2008-01-24 | Bloom:Kk | Soil paving material |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012041679A (en) * | 2010-08-12 | 2012-03-01 | Shinyoo:Kk | Composition of soil solidified material manufacture and soil paving method |
JP2017082092A (en) * | 2015-10-28 | 2017-05-18 | デンカ株式会社 | Soil pavement material |
JP2017082486A (en) * | 2015-10-28 | 2017-05-18 | デンカ株式会社 | Soil pavement material and soil pavement method |
JP2017160663A (en) * | 2016-03-09 | 2017-09-14 | デンカ株式会社 | Soil pavement material and soil pavement method with it |
JP2018111785A (en) * | 2017-01-13 | 2018-07-19 | デンカ株式会社 | Soil pavement material |
JP2018145632A (en) * | 2017-03-02 | 2018-09-20 | デンカ株式会社 | Soil pavement material |
KR20210065693A (en) * | 2019-11-27 | 2021-06-04 | 한국광해관리공단 | Mercury and arsenic contaminated soil stabilizers and stabilizing method |
KR102382286B1 (en) * | 2019-11-27 | 2022-04-04 | 한국광해광업공단 | Mercury and arsenic contaminated soil stabilizing method |
Also Published As
Publication number | Publication date |
---|---|
JP5561921B2 (en) | 2014-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5561921B2 (en) | Earth solidified material | |
JP2011038104A (en) | Chemical agent for improving engineering properties of soil | |
JP2007120184A (en) | Slag for low-cost pavement, low-cost pavement body, slag for civil engineering, and civil engineering working body | |
JPH0813413A (en) | Improvement method for poor subgrade soil | |
JP5366369B2 (en) | Soil-based solidified material and pavement method for soil-based solidified material | |
KR101847453B1 (en) | Soil surfacing method with soil improvement compounds | |
KR100252690B1 (en) | Soil bonding material for soil concrete and the soil concrete | |
JP2009270302A (en) | Pavement structure | |
JP2005180166A (en) | Pavement structure | |
JP6583022B2 (en) | Browning method for slag civil engineering materials and construction method for simple pavement | |
JP6617043B2 (en) | Construction method of drainage pavement | |
JP4387995B2 (en) | Tile paving material | |
KR20000073533A (en) | High strength pave additive composition and pave road and building constructed using the composition | |
JP3193974B2 (en) | Cement-based permeable pavement composition | |
KR100789877B1 (en) | Manufacturing methods of recyclable inorganic composities with sandy loam for light weight pavement and manufacturing method of pavement using the same | |
JP6979768B2 (en) | Soil pavement material | |
WO2006079876A1 (en) | Improved asphaltic concrete compositions that contain anhydrite as anti-stripping asphalt agents | |
JP2007270464A (en) | Cement composition, cement milk, water holding pavement, and method of constructing water holding pavement | |
JP5440832B2 (en) | Earth-based paving material | |
JP2005320190A (en) | Cement | |
US20240060246A1 (en) | Soil Paving Material and Soil Paving Method | |
JP7490532B2 (en) | Manufacturing method of paving concrete blocks | |
JP4754318B2 (en) | Soil improvement method | |
JP3115371U (en) | Paving structure | |
JP6914071B2 (en) | Weed control material and how to use it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110511 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130711 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130723 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130802 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140520 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140610 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5561921 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |