KR20030003965A - Manufacturing methods of permeable pavement and block using the water-quenched blast furnace slag, pavement method using the same - Google Patents

Manufacturing methods of permeable pavement and block using the water-quenched blast furnace slag, pavement method using the same Download PDF

Info

Publication number
KR20030003965A
KR20030003965A KR1020010039839A KR20010039839A KR20030003965A KR 20030003965 A KR20030003965 A KR 20030003965A KR 1020010039839 A KR1020010039839 A KR 1020010039839A KR 20010039839 A KR20010039839 A KR 20010039839A KR 20030003965 A KR20030003965 A KR 20030003965A
Authority
KR
South Korea
Prior art keywords
water
slag
cement
permeable
permeable concrete
Prior art date
Application number
KR1020010039839A
Other languages
Korean (ko)
Inventor
박재로
Original Assignee
한국건설기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국건설기술연구원 filed Critical 한국건설기술연구원
Priority to KR1020010039839A priority Critical patent/KR20030003965A/en
Publication of KR20030003965A publication Critical patent/KR20030003965A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00284Materials permeable to liquids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

PURPOSE: Provided is a method for manufacturing concrete and pavement block with permeability and strength by using granulated slag, generated in the manufacture of blast furnace, as aggregate. CONSTITUTION: The permeable concrete and pavement block are manufactured by the following steps of: forming slag, generated after melting iron ore in the manufacture of blast furnace, into a shape of aggregate between 13-19mm; mixing slag aggregate, cement and water in a ratio of 100 : 30-70 : 15-25; and curing. The permeable concrete has compression strength of more than 180kg/cm¬2, bending strength of more than 30kg/cm¬2, and permeability coefficient of more than 0.01cm/sec. The paving method comprises the steps of: paving a filter on the road to be 5-10cm thickness; paving a permeable layer on the filter to be 10-15cm thickness; paving the above permeable concrete to be 7-10cm thickness.

Description

수재 슬러그를 이용한 투수성 콘크리트 및 투수성 보도블럭 제조방법과, 상기의 투수성 콘크리트를 이용한 도로포장방법{Manufacturing methods of permeable pavement and block using the water-quenched blast furnace slag, pavement method using the same}Manufacturing method of permeable concrete and permeable sidewalk block using handmade slug and road paving method using permeable concrete {Manufacturing methods of permeable pavement and block using the water-quenched blast furnace slag, pavement method using the same}

본 발명은 주차장, 자전거 이용시설, 보도, 공원이나 체육시설, 기타 주거시설등 경하중이 작용하는 포장구조물이나 보도용 블럭등의 제조시 고로 제철소에서의 철광석 용해 후 발생되는 수재슬러그를 대체골재로서 이용하여 투수성 콘크리트 및 투수성 보도블럭을 제조하는 방법에 관한 것이다.The present invention is a substitute aggregate for slugs generated after melting iron ore in blast furnace steelworks in the manufacture of pavement structures or sidewalk blocks, such as parking lots, bicycles, footpaths, parks, sports facilities, and other residential facilities. The present invention relates to a method for producing permeable concrete and permeable sidewalk blocks.

최근들어 도시화, 산업화의 진행에 따라 자동차용 도로, 주차장, 자전거 이용시설, 보도, 공원이나 체육시설, 기타 주거시설 등에 대한 포장 보급률이 증가하고 있으며, 그 포장재료로는 아스팔트 콘크리트 및 시멘트 콘크리트가 주종을 이루고 있다. 이러한 포장재료들은 대부분 불투수성 재료로서, 강우시 우수의 침투가 불가능하여 지중의 미생물이 서식하지 못하고, 지하수가 부족해지는 등의 문제점 외에도, 도시지역 전체의 유출계수를 증가시켜 결과적으로 하천범람의 중요한 원인으로 지적되고 있다. 또한 대규모 건설공사가 날로 증가함에 따라 국내 여러 현장에서 모래, 자갈등 건설재료의 부족현상을 포함한 각종 천연자원의 순환이용과 생태공간을 유기적으로 연계하는, 이른바 친환경적 개발기법을 도입한 환경도시의 육성시책이 활발히 진행되고 있다. 이에 부응하고자, 현재 기존 건설재료의 대체소재로서 폐자재를 재활용하고자 하는 움직임이 활발하며, 이에 따라 대체재료의 개발이나 산업부산물의 재활용에 대한 필요성이 증대되고 있다.Recently, as urbanization and industrialization progress, pavement penetration rate for automobile roads, parking lots, bicycle facilities, sidewalks, parks, sports facilities, and other residential facilities is increasing, and asphalt concrete and cement concrete are mainly used as pavement materials. Is fulfilling. Most of these paving materials are impervious materials. In addition to the problems of rainwater infiltration, rainwater microorganisms do not live, and groundwater is insufficient. It is pointed out. In addition, as large-scale construction projects increase day by day, the development of environmental cities adopting so-called eco-friendly development techniques that organically link ecological spaces with the circulation use of various natural resources, including the shortage of construction materials such as sand and gravel, at various sites in Korea Measures are actively going on. In response to this, there is an active movement to recycle waste materials as a substitute material of existing construction materials, and accordingly, the need for development of alternative materials or recycling of industrial by-products is increasing.

따라서, 본 발명은 상기의 제반문제점을 해결하기 위하여 안출된 것으로서, 제철소의 고로설비로에서 발생되는 슬래그를 굵은 골재 또는 잔골재로 형성시킨 수재슬래그; 시멘트; 물의 배합비를 최적화하여 투수성 콘크리트 및 투수성 보도블럭의 제조시 요구하는 소요 강도(일축압축강도, 휨강도)와 투수성을 확보할 수 있는 수재슬래그를 이용한 투수성 콘크리트 및 투수성 보도블럭 제조방법을 제공함에 그 목적이 있다.Therefore, the present invention is made to solve the above problems, the slag generated from the blast furnace equipment of steel mills made of coarse aggregate or fine aggregate; cement; The method of manufacturing water-permeable concrete and water-permeable sidewalk blocks using water slag that can secure the required strength (uniaxial compressive strength and flexural strength) and water permeability required for the production of water-permeable concrete and permeable sidewalk blocks by optimizing the mixing ratio of water The purpose is to provide.

또한, 본 발명은 고로설비로에서 발생된 수재 슬래그를 시멘트와 물의 적정 배합비로 하여 노반의 최상층에 소정 두께로 포장함으로서 강우시 배수를 용이하게 할 수 있는 투수성 콘크리트를 이용한 포장공법을 제공함에 다른 목적이 있다.In addition, the present invention is to provide a paving method using water-permeable concrete that can facilitate drainage during rainfall by paving the slag generated in the blast furnace facility with a suitable thickness of cement and water in a predetermined thickness on the top layer of the roadbed. There is a purpose.

도1은 일반포장공법과 투수성 포장공법의 비교를 나타낸 개략도.1 is a schematic view showing a comparison between the general packaging method and the water-permeable packaging method.

도2는 본 발명에 의한 투수성 콘크리트 포장의 일반적인 구조를 나타낸 개략도.Figure 2 is a schematic diagram showing the general structure of a water-permeable concrete pavement according to the present invention.

도3은 본 발명의 요부인 수재슬러그의 입도분포곡선을 나타낸 그래프도.Figure 3 is a graph showing the particle size distribution curve of the reclaimed slug which is the main part of the present invention.

도4는 본 발명에 의한 투수성 콘크리트에서, 시멘트 배합비에 따른 압축강도-물의 배합비 관계를 나타낸 그래프도.4 is a graph showing the compressive strength-water mixing ratio relationship according to cement mixing ratio in water-permeable concrete according to the present invention.

도5는 본 발명에 의한 투수성 콘크리트에서, 물 배합비에 따른 압축강도-물의 배합비 관계를 나타낸 그래프도.5 is a graph showing the compressive strength-water mixing ratio relationship according to water mixing ratio in water-permeable concrete according to the present invention.

도6은 본 발명에 의한 투수성 콘크리트에서, 시멘트 배합비에 따른 휨강도-물의 배합비 관계를 나타낸 그래프도.6 is a graph showing the relationship between the flexural strength-water mixing ratio according to the cement mixing ratio in water-permeable concrete according to the present invention.

도7은 본 발명에 의한 투수성 콘크리트에서, 물 배합비에 따른 휨강도-물의 배합비 관계를 나타낸 그래프도.7 is a graph showing the relationship between the flexural strength-water mixing ratio according to the water mixing ratio in water-permeable concrete according to the present invention.

도8은 투수계수-시멘트 및 물 배합비 관계를 나타낸 그래프도.8 is a graph showing the relationship between permeability-cement and water mixing ratio.

도9는 투수계수와 압축강도 및 휨강도 사이의 관계를 나타낸 그래프도.9 is a graph showing the relationship between permeability coefficient, compressive strength and flexural strength.

도10은 시멘트 배합비에 따른 휨강도, 투수계수 변화를 나타낸 그래프도.10 is a graph showing changes in bending strength and permeability coefficient according to cement mixing ratios.

상기 목적을 달성하기 위하여 본 발명은, 고로제철소에서 철광석 용해후 발생되는 수재슬래그를 소정크기의 골재로 형성하는 제1 단계; 상기 수재 슬래그 : 시멘트: 물의 배합비율은 100 : 30 ∼ 70 : 15 ∼ 25의 비율로 배합하는 제2 단계; 및 소정시간동안 양생하는 제3 단계를 포함하는 투수성 콘크리트의 제조방법을 제공한다.In order to achieve the above object, the present invention, the first step of forming the slag generated after the melting of iron ore in the blast furnace steel to a predetermined size of aggregate; A second step of mixing the ratio of said slag slag: cement: water in the ratio of 100: 30-70: 15-25; And it provides a method for producing a water-permeable concrete comprising a third step of curing for a predetermined time.

또한 본 발명은 상기 수재슬래그 : 시멘트: 물의 배합비율은 100 : 30 ∼ 70 : 15 ∼ 25의 비율로 배합하되, 일축압축강도가 37.2kg/㎠ ∼ 378.5kg/㎠ 의 범위이내이고, 휨강도가 7.47kg/㎠ ∼ 65.25kg/㎠ 의 범위이내이고 투수계수가 5.32×10-1∼ 1.80×10-2의 범위이내에 있도록 하여 제조된 투수성 콘크리트의 제조방법에 의해 얻어진 투수성 보도블럭을 제공한다.In the present invention, the mixing ratio of the above-mentioned hand slag: cement: water is blended in a ratio of 100: 30 to 70:15 to 25, but the uniaxial compressive strength is within the range of 37.2kg / cm 2 to 378.5kg / cm 2, and the bending strength is 7.47. The water permeable sidewalk block obtained by the manufacturing method of the water permeable concrete produced in the range of kg / cm <2> -65.25kg / cm <2> and a permeability coefficient within the range of 5.32 * 10 <-1> -1.80 * 10 <-2> is provided.

또한, 본 발명은 노상에 필터를 5 ∼ 10cm 두께로 포장하는 단계; 상기 필터상에 노반투수층을 10 ∼ 15cm로 포장하는 단계; 및 고로제철소에서 철광석 용해후 발생되는 수재슬래그와 시멘트 및 물의 배합비율은 100 : 30 ∼ 70 : 15 ∼ 25로 하여 제조된 투수성 콘크리트를 7 ∼ 10cm로 포장하는 단계를 포함하는 도로포장방법을 제공한다.In addition, the present invention comprises the steps of packing the filter in the hearth thickness of 5 ~ 10cm; Packing the semi-permeable layer 10-15 cm on the filter; And paving the water-permeable concrete produced by dissolving iron ore at the blast furnace steel in a ratio of 100: 30 to 70: 15 to 25, and packing permeable concrete with 7 to 10 cm. do.

이하, 첨부된 도1 이하의 도면을 참조하여 본 발명의 실시예를 상세히 설명한다.Hereinafter, with reference to the accompanying drawings of Figure 1 will be described an embodiment of the present invention;

본 발명에 의한 수재 슬러그를 이용한 투수성 콘크리트 및 투수성 보도블럭 제조방법은 고로 제철소에서 철광석의 용해후 발생되는 수재슬러그를 소정크기로 제조하고 이를 물 및 시멘트와의 적절한 배합으로 소요강도와 투수성을 확보할 수 있도록 구현한 것이다.In the method of manufacturing permeable concrete and permeable sidewalk block using the handmade slug according to the present invention, the produced slug generated after melting iron ore in the blast furnace steel mill is manufactured to a predetermined size, and the required strength and permeability are appropriately mixed with water and cement. It is implemented to secure.

즉, 본 발명에서는 고로제철소에서 얻어진 수재슬래그 : 시멘트: 물의 배합비율은 100 : 30 ∼ 70 : 15 ∼ 25의 비율로 배합하여 투수성이 양호한 콘크리트또는 보도블럭을 제조한다. 상기와 같이 배합된 콘크리트 또는 보도블럭은 일축압축강도가 37.2kg/㎠ ∼ 378.5kg/㎠ 의 범위이내이고, 휨강도가 7.47kg/㎠ ∼ 65.25kg/㎠ 의 범위이내이고 투수계수가 5.32×10-1∼ 1.80×10-2의 범위이내에 존재하게 된다.That is, in the present invention, the mixing ratio of the reclaimed slag: cement: water obtained in the blast furnace steelworks is blended in a ratio of 100: 30 to 70:15 to 25 to produce a concrete or sidewalk block having good water permeability. Concrete or press blocks formulation as described above is the unconfined compressive strength of 37.2kg / ㎠ ~ 378.5kg / it is within the range of ㎠, a bending strength within a range of from 7.47kg / ㎠ ~ 65.25kg / ㎠ and the permeability coefficient 5.32 × 10 - It exists in the range of 1-1.80 * 10 <-2> .

상기 배합비율에서 투수성 콘크리트 및 투수성 보도블럭 제조시 요구되는 소요 강도(일축압축강도, 휨강도)와 투수성을 동시에 만족시키기 위해서는 수재슬래그 : 시멘트: 물의 배합비율이 가장 중요한 인자이며, 이들 배합비율의 범위를 넘거나 미치지 못하는 경우, 강도는 만족되나 투수성이 확보되지 못하거나, 투수성은 확보되나 강도는 만족되지 못하는 결과를 초래한다. 결과적으로 강도와 투수성의 기준을 만족하지 못하는 경우, 투수성 콘크리트 및 투수성 보도블럭으로서 의미가 없기 때문에 최적 배합비율의 범위 설정이 중요하다.In order to satisfy the required strength (uniaxial compressive strength, flexural strength) and permeability simultaneously in manufacturing the permeable concrete and the permeable sidewalk block in the above mixing ratio, the mixing ratio of water slag: cement: water is the most important factor. If it exceeds or falls short of the range, the strength is satisfied but permeability is not secured, or the permeability is secured but the strength is not satisfied. As a result, if the criteria of strength and permeability are not satisfied, it is important to set the optimum mixing ratio because it is meaningless as permeable concrete and permeable sidewalk blocks.

본 실시예에서의 최적의 수재슬래그 : 시멘트: 물의 배합비율은 100 : 60∼70 : 20이다.The optimum mixing ratio of reclaimed slag: cement: water in this example is 100: 60 to 70:20.

또한, 본 발명은 상기와 같이 수재슬래그를 이용하여 제조된 콘크리트를 이용하여 도로를 포장하는데 적용될 수 있다. 이 경우에는 먼저 노상에 필터를 5 ∼ 10cm 두께로 포장하고, 상기 필터상에 노반투수층을 10 ∼ 15cm로 포장한다. 그 후에 상기 수재슬래그와 시멘트 및 물의 배합비율은 100 : 30 ∼ 70 : 15 ∼ 25로 하여 제조된 투수성 콘크리트를 7 ∼ 10cm로 포장한다.In addition, the present invention can be applied to pave the road using concrete manufactured by using the hand slag as described above. In this case, first, the filter is packed on the furnace with a thickness of 5 to 10 cm, and the roadbed permeable layer is packed on the filter with 10 to 15 cm. Thereafter, the water-permeable concrete produced with the mixture slag, cement and water in a ratio of 100: 30 to 70:15 to 25 is packed with 7 to 10 cm.

상기와 같이 수재슬래그를 이용하여 제조된 투수성 콘크리트 또는 보도블럭의 특성을 좀더 상세히 설명하면 다음과 같다.Referring to the characteristics of the water-permeable concrete or sidewalk block manufactured using the hand slag as described above in more detail as follows.

도1은 일반적인 포장공법과 투수성 포장공법을 비교해서 나타낸 것이고, 도2는 자전거 도로용 투수성 콘크리트 포장의 일반적인 구조를 나타낸 것이다.1 shows a comparison between a general paving method and a permeable paving method, and FIG. 2 shows a general structure of a water-permeable concrete pavement for a bicycle road.

도면에 도시된 바와 같이, 투수성 포장공법의 경우, 일반적으로 차량통행 여부에 따라 7∼10cm의 표층과 10∼15cm 두께의 투수성 노반, 그리고 5cm의 필터층으로 구성되어 있다. 현재 투수성 콘크리트 제조방법은 주로 기포재를 사용하거나 잔골재를 거의 사용하지 않는 방법을 이용하고 있는데, 콘크리트 내부에 배수에 필요한 연속적인 공극을 형성하는 과정에서, 재료의 분리현상, 강도와 내구성 저하 등을 해결해야 하는 문제점을 안고 있다. 투수성 포장기술은 각 공법마다 각기 다른 기준이 제시되고 있으나, 일반적으로 자전거도로용 투수성 포장의 규격(내무부, 1997)에서 제시하는 시방규정을 만족해야 한다. 이 사방규정에서는 표층재료의 휨강도가 30㎏/㎠를 기준으로 하며, 공극률 12% 이상, 투수계수는 10-2cm/sec이상이 되도록 규정하고 있다.As shown in the figure, in the case of a permeable pavement method, it is generally composed of a surface layer of 7 to 10 cm, a permeable subgrade of 10 to 15 cm thick, and a filter layer of 5 cm, depending on whether the vehicle passes. Currently, the method of manufacturing permeable concrete mainly uses foaming material or rare aggregates. In the process of forming continuous voids for drainage in concrete, material separation, reduction in strength and durability, etc. I have a problem that needs to be solved. Permeable pavement technology has different standards for each construction method, but generally meets the specification set forth in the specification of permeable pavement for bicycle roads (Ministry of Interior, 1997). In this regulation, the flexural strength of the surface material is based on 30kg / cm2, and the porosity is 12% or more and the permeability coefficient is 10 -2 cm / sec or more.

한편, 보도, 차도, 광장, 주차장등의 포장에 현재 많이 사용되는 블럭은 보도용 콘크리트판, 보차도용 콘크리트 인터로킹 블록등이며, 이들의 규격은 각각 KS F 4001, KS F 4419에 명시되어 있다. 보도용 콘크리트판은 주로 보도에 사용하기 위하여 콘크리트로 제조한 판을 의미하며, 보차도용 콘크리트 인터로킹 블록은 보도, 차도, 광장, 주차장등의 포장에 사용되는 블럭을 의미한다. 두가지 모두 굵은 골재의 최대치수는 13∼19mm를 사용하도록 규정하고 있으며, 현재의 제품들은 주로쇄석가루를 잔골재로 이용하고 있으나, 본 발명에서는 수재슬러그를 잔골재로 활용해서 투수성 보도블럭을 제조하는 점이 특징이다. 수재슬러그를 잔골재로 이용하는 투수성 보도블록 역시 기존의 보도블럭에 적용되는 입도, 흡수율, 등의 기준을 만족해야 하며, 관련규정은 KS F 4001, KS F 4419에 명시된 콘크리트판 및 보차도용 콘크리트 인터로킹 블럭의 제조에 필요한 주요 규정에 준하며, 그 내역은 <표1> 및 <표2>와 같다.On the other hand, the most widely used blocks for paving sidewalks, driveways, plazas, parking lots, etc. are sidewalk concrete boards and concrete interlocking blocks for sidewalks, and their specifications are specified in KS F 4001 and KS F 4419, respectively. The sidewalk concrete plate means a plate made of concrete mainly for use on a sidewalk, and the concrete interlocking block for sidewalks means a block used for paving a sidewalk, a roadway, a plaza, and a parking lot. In both cases, the maximum size of the coarse aggregate is prescribed to use 13 to 19mm, and the current products mainly use crushed stone as fine aggregate, but in the present invention, a permeable side block is manufactured by using sewage slug as fine aggregate. It is characteristic. Permeable sidewalk blocks that use hand-made slug as fine aggregate should also meet the criteria of particle size, water absorption, etc. applied to existing sidewalk blocks, and the relevant regulations are concrete interlocking for concrete plates and sidewalks specified in KS F 4001 and KS F 4419. It complies with the main regulations for the manufacture of blocks, the details of which are shown in <Table 1> and <Table 2>.

고로제철소에서 용선(pig iron)의 원료가 되는 철광석, 코크스, 석회석등을 고로에 투입한 후, 약 120℃의 가열공기를 불어 넣으면, 코크스의 연소에 의해 철광석은 용해되고, 고로슬래그(이하 슬래그)는 이 과정에서 부산물로 나온다. 약 1500℃의 용융성태로 배출된 슬래그는 그 처리과정에 따라 크게 서냉슬래그와 급냉슬래그로 구분된다. 즉, 고온 용융상태의 슬래그를 냉각장에서 공냉 및 적당한 양의 살수에 의한 수냉에 의해 약 2∼4일간에 걸쳐 냉각, 고화시킨 것을 서냉슬래그라 하며, 대량의 물로 살수하여 급냉시킨 것을 급냉슬래그 또는 수재슬래그라고 한다. 일반적으로 서냉슬래그는 그 형상이 괴상이며, 결정질(crystalline) 구조를 가지고 있는 반면, 수재 슬래그는 세립의 유리질(amorphous or glassy)구조를 갖는다.When iron ore, coke, limestone, etc., which are raw materials of pig iron, are introduced into the blast furnace, and then heated by heating air at about 120 ° C., iron ore is dissolved by the combustion of coke and blast furnace slag (hereinafter slag) ) Is a by-product of this process. Slag discharged at about 1500 ℃ molten state is classified into slow cooling slag and quenching slag according to the treatment process. In other words, the slag in high temperature molten state is cooled and solidified by cooling and solidifying it for about 2 to 4 days by air cooling in a cooling station and water cooling by an appropriate amount of spraying, and quenching slag sprayed with a large amount of water and quenched. It is called hand slag. In general, slow cooling slag is bulky and has a crystalline structure, while hand slag has an amorphous or glassy structure.

수재슬래그는 경량성 및 다송성 재료로서 투수성이 매우 높은 특징으로 가지고 있다. 특히 수재슬래그를 시멘트, 물과 혼합하는 경우, 시멘트의 자극 작용으로 인해 슬래그는 수경성을 발현하는 것으로 알려져 있다. 이를 수재 슬래그의 잠재수경특성이라고 하며, 이때 시멘트는 수재슬래그의 수경성 발현을 유도하는 역할을 하므로 자극제 또는 촉진제로 불리운다, 따라서, 상기 수재 슬래그와 시멘트를 혼합하여 배합하는 경우에는 시멘트 자체의 수경성뿐만 아니라, 수재슬래그의 수경성도 기대할 수 있다.Reclaimed slag is a lightweight and porous material and has a very high permeability. In particular, when the slag is mixed with cement and water, the slag is known to exhibit hydraulic properties due to the irritant action of the cement. This is called the latent hydroponic characteristics of the slag, and the cement is called a stimulant or accelerator because it plays a role in inducing the hydraulic expression of the slag. Therefore, when mixing and mixing the slag with cement, the cement as well as the hydraulic property of the cement itself In addition, the hydraulic properties of reclaimed slag can be expected.

본 발명에서는 포장구조물이나 보차도용 블럭등의 제조시 수재 슬래그를 활용성 및 작용성을 확인하기 위해서 수재슬래그의 기본 물성실험, 수재 슬래그를 잔골재로 사용한 콘크리트 모르터에 대한 일축 압축강도시험, 휨강도시험 및 투수시험을 수행하였다. 즉, 슬래그에 시멘트와 물의 배합비를 다양하게 변화시켜 이들 영향인자가 콘크리트 모르터의 일축압축강도, 휨강도, 투수계수 등에 미치는 영향을 분석하였다.In the present invention, in order to check the utilization and functionality of the handmade slag in the manufacture of pavement structure or block for block road, basic physical properties test of the slag, uniaxial compressive strength test, flexural strength test for concrete mortar using the hand slag as fine aggregate Permeability test was performed. That is, the effects of these factors on the uniaxial compressive strength, flexural strength and permeability coefficient of concrete mortar were analyzed by varying the mixing ratio of cement and water in slag.

본 발명에서 사용한 수재 슬래그는 포항제철의 고로설비로부터 발생한 슬래그 시료를 대상으로 하였으며, 콘크리트 모르터의 배합은 슬래그 : 시멘트 : 물의 중량비를 다양하게 변화시켜 총 26개 배합의 콘크리트 모르터에 대해 실시하였다. 표3은 본 고안에서 수행된 기본물성 및 역학적 특성과 관련된 시험항목을 나타낸 것이다.The wood slag used in the present invention was subjected to slag samples generated from the blast furnace facility of Pohang Steel. The concrete mortar was mixed with a total of 26 concrete mortars by varying the weight ratio of slag: cement: water. Table 3 shows the test items related to the basic and mechanical properties performed in the present invention.

본 발명에서 사용된 수재슬래그의 물성시험 결과 조립율은 3.4로서, 가는 골재의 조립율 범위인 2.3∼3.1을 약간 상회하며, 비중은 2,18, 단위중량은 1013kg/㎤로서, 경량재료에 해당한다. 또한 흡수율은 47%로 일반 잔골재에 비해 높은 것으로 나타났다. 수재슬래그의 입도는 균등한 모래입경으로, 채분석 결과 입도분포곡선은 도3과 같다.As a result of the physical property test of the handmade slag used in the present invention, the granulation rate is 3.4, slightly exceeding the range of granulation rate of fine aggregates 2.3 to 3.1, and the specific gravity is 2,18 and the unit weight is 1013 kg / cm 3, which corresponds to the lightweight material. In addition, the absorption rate was 47%, which was higher than that of general fine aggregates. The particle size of the hand slag is equal to the grain size of sand, and the particle size distribution curve is shown in FIG.

본 발명에서는 슬래그에 시멘트와 물의 배합비율을 각각 7종류, 4종류로 변화시킨 총 26가지 배합의 콘크리트 모르터를 대상으로 압축강도, 휨강도 및 정수위 투수시험에 의한 투수계수를 측정하였으며, 분석결과를 정리하면 <표4>와 같다.In the present invention, the compressive strength, flexural strength, and permeability coefficients of the permeability test were measured for 26 types of concrete mortars in which the mixing ratio of cement and water in slag was changed into 7 types and 4 types, respectively. <Table 4> is as follows.

도4 및 도5는 시멘트 및 물의 첨가량이 일축 압축강도에 미치는 영향을 보여주는 것으로, 시험공시체의 일축압축강도는 시멘트 및 물의 배합비에 따라 최대 378.5kg/㎠(공시체번호 24, <표6>참조)∼37.2kg/㎠(공시체번호1)의 범위로 나타났으며, 그 크기는 시멘트 및 물의 배합비가 많을수록 증가한다. 즉, 동일한 시멘트 배합비에서, 물 배합비가 증가할수록 일축압축강도는 증가하였으며, 동일한 물 배합비에서 시멘트 배합비가 증가할수록 일축압축강도가 증가한다. 다시말해서, 공극이 많은 투수성 콘크리트의 경우, 물-시멘트비가 클수록 내부공극이 적어서 강도가 높아진다.4 and 5 show the effect of the addition amount of cement and water on the uniaxial compressive strength, the uniaxial compressive strength of the test specimens up to 378.5kg / ㎠ according to the mixing ratio of cement and water (see specimen No. 24, <Table 6>) It appeared in the range of ˜37.2 kg / cm 2 (Sample No. 1), the size of which increased as the mixing ratio of cement and water increased. That is, in the same cement blending ratio, the uniaxial compressive strength increased as the water blending ratio increased, and as the cement blending ratio increased in the same water blending ratio, the uniaxial compressive strength increased. In other words, in the case of permeable concrete with many voids, the larger the water-cement ratio, the less the internal voids and the higher the strength.

도6 및 도7은 시멘트 및 물의 첨가량이 휨강도에 미치는 영향을 보여주는 것으로, 공시체의 휨강도는 시멘트 및 물 배합비에 따라 최대 65.3kg/㎠(공시체번호24)∼7.5kg/㎠(공시체번호1)의 범위로서 일축압축강도의 크기에 비례한다. 즉, 휨강도의 크기는 일축압축강도와 마찬가지로 시멘크 및 물의 배합비가 많을수록 증가한다. 자전거도로용 투수성 포장의 규격(내무부, 1997)애서 제시된 투수성 콘크리트의 휨강도 기준(30kg/㎠)만을 고려하면, 공시체 12, 16, 19, 20, 22, 24, 26가 요구기준을 만족한다.6 and 7 show the effect of the addition amount of cement and water on the bending strength, the bending strength of the specimen is up to 65.3kg / ㎠ (specimen No. 24) ~ 7.5kg / ㎠ (specimen No. 1) according to the cement and water mixture ratio Range is proportional to the magnitude of uniaxial compressive strength. That is, the magnitude of the flexural strength increases as the mixing ratio of seam and water increases, similar to the uniaxial compressive strength. Considering only the flexural strength criteria (30kg / ㎠) of permeable concrete presented in the specification of permeable pavement for bicycle roads (Ministry of Interior, 1997), specimens 12, 16, 19, 20, 22, 24, and 26 meet the requirements. .

도8에는 시멘트와 물의 배합비가 투수계수에 미치는 영향을 나타낸 것으로서, 정수위 투수시험 결과, 시멘트 및 물의 배합비가 증가할수록 투수계수는 저하하며, 물.슬래그비가 투수계수에 미치는 영향은 시멘트/슬래그비가 투수계수에 미치는 영향보다 다소 큰 것으로 나타났다. 이는 일축압축강도 및 휨강도가 증가할수록 투수계수는 감소하는 것을 의미한다. 따라서, 소요의 강도와 투수성을 만족하기 위해서는 적정배합비를 도출하는 것이 필수적인 저조 노하우로서, 투수계수 10-2cm/sec 이상, 물/슬래그비 25%, 30%의 경우는 모든 비합비에 대해서 허용기준을 만족하지 못한 반면, 물/슬래그비 15%, 20%인 경우는 시멘트/슬래그비 70%를 제외한 모든 배합비에서 기준을 만족하는 것으로 나타났다.Fig. 8 shows the effect of the mixing ratio of cement and water on the permeability coefficient. As a result of the water level permeation test, the permeability coefficient decreases as the mixing ratio of cement and water increases, and the effect of water and slag ratio on the permeability coefficient is that the cement / slag ratio It was found to be somewhat larger than the effect on the coefficient. This means that as the uniaxial compressive strength and flexural strength increase, the permeability coefficient decreases. Therefore, in order to satisfy the required strength and permeability, it is necessary to derive the appropriate mixing ratio, and in case of permeability coefficient of 10-2 cm / sec or more, water / slag ratio of 25% and 30%, While the acceptance criteria were not met, water / slag ratios of 15% and 20% were found to meet the standards in all blending ratios except for cement / slag ratios of 70%.

도9에는 투수계수, 일축압축강도 및 휨강도의 관계를 나타낸 것으로서, 공시체의 강도와 투수성 사이에는 상관관계가 좋지 않으며, 목표 투수계수 10-2cm/sec 이상을 만족하는 일축압축강도는 약 200kg/㎠이하, 휨강도는 약 33kg/㎠로 나타났다.Figure 9 shows the relationship between permeability coefficient, uniaxial compressive strength and flexural strength, the correlation between specimen strength and permeability is not good, and the uniaxial compressive strength that satisfies the target permeability coefficient 10 -2 cm / sec or more is about 200 kg. The flexural strength was about 33 kg / cm 2 or less.

도10은 소요강도와 투수계수를 만족하는 물과 시멘트의 적정 배랍비의 범위를 알아보기 위해 시멘트 배합비에 따른 공시체의 휨강도 및 투수계수의 변화를 나타낸 것으로서, 물/슬래그비가 25%, 30%인 경우에는 투수계수가 10-2cm/sec 보다 작아서 기준을 만족시키지 못하는 것으로 나타났다. 도10에서 시멘트/슬래그비가 증가할수록 투수계수는 감소하고, 휨강도는 증가하는 경향을 나타냈는데, 이러한 결과에서 공시체의 강도와 투수성 사이는 반비례관계가 있음을 보여준다. 결론적으로, 휨강도 기준 30kg/㎠(가는 점선으로 표시)이상을 만족하는 배합비는 물/슬래그비 20%, 시멘트/슬래그비는 60%와 70% 두가지가 가능하며, 투수계수 10-2cm/sec(굵은 점선으로 표시)이상을 만족하는 경우는 시멘트/슬래그비 70%를 제외한 모든 배합비가 해당된다. 따라서, 물/슬래그비 20%이고, 시멘트/슬래그비 60%의 경우, 강도 및 투수성 기준을 모두 만족하는 것을 알 수 있다.Figure 10 shows the change in the bending strength and permeability coefficient of the specimen according to the cement mixture ratio in order to determine the range of the appropriate barb ratio of water and cement satisfying the required strength and permeability coefficient, the water / slag ratio is 25%, 30% In this case, the permeability coefficient was less than 10 -2 cm / sec, which did not satisfy the criteria. In FIG. 10, as the cement / slag ratio was increased, the coefficient of permeability decreased and the flexural strength increased, indicating that there is an inverse relationship between the specimen strength and permeability. In conclusion, the compounding ratio that satisfies the bending strength criteria of 30kg / ㎠ (marked with a thin dotted line) can be divided into water / slag ratio of 20%, cement / slag ratio of 60% and 70%, and a permeability coefficient of 10 -2 cm / sec. If the content is satisfied (indicated by the bold dotted line), all compounding ratios except 70% of cement / slag are applicable. Accordingly, it can be seen that the water / slag ratio is 20% and the cement / slag ratio is 60%, which satisfies both the strength and water permeability standards.

상기에서 설명한 본 발명은 전술한 실시예 및 도면에 의해 한정되는 것은 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 고안이 속하는 기술분야에서 통상적인 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and drawings, and various permutations, modifications, and changes can be made without departing from the technical spirit of the present invention. It will be apparent to those who have

전술한 바와 같이 본 발명에 따르면, 고로제철소에서 얻어진 폐자재의 수재슬래그를 굴은골재나 잔골재로서 형성시킨 후, 상기 스재 슬래그를 시멘트 및 물과의 적정 비율로 배합하여 투수성 콘크리트 및 투수성 보도블록 제조시 요구되는 소요 강도(일축압축강도, 휨강도)와 투수성을 확보할 수 있을 뿐만 아니라, 상기 수재슬래그가 경량성, 잠재수경성등의 우수한 공학적 특성을 가지고 있고, 그 형상이 불규칙하고 다공성재료로 이루어져 있기 때문에, 투수성 콘크리트의 잔골재로 활용하는 경우 건설골재의 대체재로서 이용할 수 있어 자원 재활용 측면 및 건설비용을 감소시킬 수 있는 효과를 가진다.As described above, according to the present invention, after forming the slag of waste material obtained from blast furnace steel as rolled aggregate or fine aggregate, the slag slag is mixed in an appropriate ratio with cement and water to permeable concrete and permeable sidewalk In addition to securing the required strength (uniaxial compressive strength, bending strength) and permeability required for block manufacturing, the hand slag has excellent engineering characteristics such as light weight and latent hydraulic properties, and its shape is irregular and porous material. Since it is made of, as the aggregate aggregate of the permeable concrete can be used as a substitute for the construction aggregate has the effect of reducing the resource recycling aspect and construction costs.

Claims (9)

고로제철소에서 철광석 용해후 발생되는 슬래그를 소정크기의 골재로 형성하는 제1 단계;A first step of forming slag generated after melting iron ore in blast furnace steel as aggregate having a predetermined size; 상기 슬래그 골재 : 시멘트: 물의 배합비율은 100 : 30 ∼ 70 : 15 ∼ 25의 비율로 배합하는 제2 단계; 및A second step of blending the slag aggregate: cement: water in a ratio of 100: 30 to 70:15 to 25; And 소정시간동안 양생하는 제3 단계Third step of curing for a predetermined time 를 포함하는 투수성 콘크리트의 제조방법.Method of producing a permeable concrete comprising a. 제 1 항에 있어서,The method of claim 1, 상기 제2 단계의 슬래그 골재 : 시멘트 : 물의 배합비율이 100 : 60 ∼ 70 : 20으로 이루어진 투수성 콘크리트의 제조방법.The slag aggregate of the second step: cement: water mixing ratio of 100: 60 to 70: 20 method for producing a water-permeable concrete. 제 1 항에 있어서,The method of claim 1, 상기 슬래그 골재가 고온 용융상태의 슬래그를 대량의 물로 살수하여 급냉시킨 수재슬래그로 이루어진 투수성 콘크리트의 제조방법.The slag aggregate is a method of producing a water-permeable concrete consisting of a water slag quenched by spraying a slag of hot molten state with a large amount of water. 제 3 항에 있어서,The method of claim 3, wherein 상기 수재 슬래그의 최대치수가 13 ∼ 19mm범위내에 있는 투수성 콘크리트의 제조방법.A method for producing permeable concrete in which the maximum dimension of the wood slag is in the range of 13 to 19 mm. 제 1 항 내지 제 4 항중 어느 한 항에 있어서,The method according to any one of claims 1 to 4, 상기 수재슬래그 : 시멘트 : 물의 배합비에 따른 일축압축강도가 180kg/㎠ 이상의 값을 만족하는 투수성 콘크리트의 제조방법.The slag slag: Cement: Method of producing a water-permeable concrete uniaxial compressive strength according to the mixing ratio of water satisfies a value of 180kg / ㎠ or more. 제 1 항 내지 제 4 항중 어느 한 항에 있어서,The method according to any one of claims 1 to 4, 상기 수재슬래그 : 시멘트 : 물의 배합비에 따른 휨강도가 30kg/㎠ 이상의 값을 만족하는 투수성 콘크리트의 제조방법.The method of producing a water-permeable concrete that satisfies the value of 30kg / ㎠ or more according to the mixing slag: cement: water mixing ratio. 제 1 항 내지 제 4 항중 어느 한 항에 있어서,The method according to any one of claims 1 to 4, 상기 수재슬래그 : 시멘트 : 물의 배합비에 따른 투수계수가 10-2cm/sec 이상의 값을 만족하는 투수성 콘크리트의 제조방법.The slag slag: Cement: Water permeability coefficient according to the mixing ratio of the water production method of permeable concrete that satisfies the value of 10 -2 cm / sec or more. 제 1 항 내지 제 7 항에 따른 투수성 콘크리트의 제조방법에 의해 얻어진 투수성 보도블럭.A permeable sidewalk block obtained by the method for producing permeable concrete according to claim 1. 노상에 필터를 5 ∼ 10cm 두께로 포장하는 단계;Packing the filter on the furnace in a thickness of 5 to 10 cm; 상기 필터상에 노반투수층을 10 ∼ 15cm로 포장하는 단계; 및Packing the semi-permeable layer 10-15 cm on the filter; And 고로제철소에서 철광석 용해후 발생되는 수재슬래그와 시멘트 및 물의 배합비율은 100 : 30 ∼ 70 : 15 ∼ 25로 하여 제조된 투수성 콘크리트를 7 ∼ 10cm로 포장하는 단계Paving the permeable concrete produced by melting slag and cement and water in the blast furnace steelworks is 100: 30 ~ 70: 15 ~ 25 to 7 ~ 10cm 를 포함하는 도로포장방법.Road paving method comprising a.
KR1020010039839A 2001-07-04 2001-07-04 Manufacturing methods of permeable pavement and block using the water-quenched blast furnace slag, pavement method using the same KR20030003965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010039839A KR20030003965A (en) 2001-07-04 2001-07-04 Manufacturing methods of permeable pavement and block using the water-quenched blast furnace slag, pavement method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010039839A KR20030003965A (en) 2001-07-04 2001-07-04 Manufacturing methods of permeable pavement and block using the water-quenched blast furnace slag, pavement method using the same

Publications (1)

Publication Number Publication Date
KR20030003965A true KR20030003965A (en) 2003-01-14

Family

ID=27713413

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010039839A KR20030003965A (en) 2001-07-04 2001-07-04 Manufacturing methods of permeable pavement and block using the water-quenched blast furnace slag, pavement method using the same

Country Status (1)

Country Link
KR (1) KR20030003965A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100770152B1 (en) * 2006-04-15 2007-10-25 김영도 Double layered water permeability plat process and the preparation thereof
KR100972926B1 (en) * 2003-05-12 2010-07-28 한라공조주식회사 Heat Exchanger for an Air Conditioning System of a Car
KR101322911B1 (en) * 2011-03-09 2013-10-29 중원산업(주) Concrete compound using granulated slag-water cooled and manufacturing method thereof
CN103541289A (en) * 2013-11-06 2014-01-29 攀枝花环业冶金渣开发有限责任公司 Colored high-titanium heavy slag permeable pavement brick and production method thereof
CN112390599A (en) * 2020-10-29 2021-02-23 攀枝花环业冶金渣开发有限责任公司 High-titanium blast furnace slag pervious concrete and use method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR870000263A (en) * 1985-06-06 1987-02-17 닛데쓰시멘트 가부시끼가이샤 High-strength, high-durability mortar and concrete composition
JPH07300358A (en) * 1994-05-09 1995-11-14 Nittetsu Cement Co Ltd Hydraulic grout material for paving and grout
JPH07309658A (en) * 1994-05-12 1995-11-28 Nittetsu Cement Co Ltd Grout material
KR19980048042A (en) * 1996-12-17 1998-09-15 최순호 Pitched concrete
JPH1160316A (en) * 1997-08-20 1999-03-02 Sumitomo Osaka Cement Co Ltd High strength non-shrinkable mortar composition
JPH11292588A (en) * 1998-04-07 1999-10-26 Nippon Steel Corp Method for reducing water absorptivity of blast furnace slowly cooled slag
KR20010054014A (en) * 1999-12-02 2001-07-02 황익현 A thin-water permeable concrete paving method with fine aggregate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR870000263A (en) * 1985-06-06 1987-02-17 닛데쓰시멘트 가부시끼가이샤 High-strength, high-durability mortar and concrete composition
JPH07300358A (en) * 1994-05-09 1995-11-14 Nittetsu Cement Co Ltd Hydraulic grout material for paving and grout
JPH07309658A (en) * 1994-05-12 1995-11-28 Nittetsu Cement Co Ltd Grout material
KR19980048042A (en) * 1996-12-17 1998-09-15 최순호 Pitched concrete
JPH1160316A (en) * 1997-08-20 1999-03-02 Sumitomo Osaka Cement Co Ltd High strength non-shrinkable mortar composition
JPH11292588A (en) * 1998-04-07 1999-10-26 Nippon Steel Corp Method for reducing water absorptivity of blast furnace slowly cooled slag
KR20010054014A (en) * 1999-12-02 2001-07-02 황익현 A thin-water permeable concrete paving method with fine aggregate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100972926B1 (en) * 2003-05-12 2010-07-28 한라공조주식회사 Heat Exchanger for an Air Conditioning System of a Car
KR100770152B1 (en) * 2006-04-15 2007-10-25 김영도 Double layered water permeability plat process and the preparation thereof
KR101322911B1 (en) * 2011-03-09 2013-10-29 중원산업(주) Concrete compound using granulated slag-water cooled and manufacturing method thereof
CN103541289A (en) * 2013-11-06 2014-01-29 攀枝花环业冶金渣开发有限责任公司 Colored high-titanium heavy slag permeable pavement brick and production method thereof
CN112390599A (en) * 2020-10-29 2021-02-23 攀枝花环业冶金渣开发有限责任公司 High-titanium blast furnace slag pervious concrete and use method thereof

Similar Documents

Publication Publication Date Title
KR101214596B1 (en) Permeable concrete composition using cement and geopolymer binder, and bottom ash aggregate and making method of the same
Olofinnade et al. Solid waste management in developing countries: Reusing of steel slag aggregate in eco-friendly interlocking concrete paving blocks production
EP3551406B1 (en) Landscaping product and method of production thereof
Wang et al. A study of the engineering properties of CLSM with a new type of slag
KR102302127B1 (en) Eco-friendly acrylic polymer concrete water permeable pavement material composition and the polymer concrete water permeable block using the same and the water permeable pavement construction method thereof
CN106431140A (en) Novel roller compacted concrete base material and preparation method thereof
CN111056801B (en) Water permeable brick and preparation method thereof
Dimitrioglou et al. Production and characterization of concrete paving blocks containing ferronickel slag as a substitute for aggregates
JP5366369B2 (en) Soil-based solidified material and pavement method for soil-based solidified material
JP6875096B2 (en) Pavement concrete composition and pavement concrete hardened body
KR20030003965A (en) Manufacturing methods of permeable pavement and block using the water-quenched blast furnace slag, pavement method using the same
JP3446409B2 (en) Method for producing water-permeable ceramic block
KR100954341B1 (en) Composite for soil pavement and construction method of soil pavement using the composite
KR100755202B1 (en) Pavement for using first class reproduction aggregate and fabrication method thereof
KR101161420B1 (en) Composition of yellow soil and pavement method using the same
KR100414901B1 (en) A concrete composite using slag
JP4387995B2 (en) Tile paving material
JP4319312B2 (en) Concrete pavement
Shan et al. Construction use of abandoned soils
KR100901004B1 (en) Composition for wet process of construction for road
JP2017133255A (en) Construction method of drainage pavement
Shambharkar et al. Utilization of fly ash & Coir fiber in manufacturing of paver blocks
KR100532811B1 (en) Colored fine compacted concrete pavement method
KR100445126B1 (en) A water-permeable concrete composition utilizing blast furnace slag
JP2002180410A (en) Paving material and method of manufacturing its mold

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20040709

Effective date: 20050729