JP2510399B2 - Permeable pavement structure - Google Patents

Permeable pavement structure

Info

Publication number
JP2510399B2
JP2510399B2 JP29078593A JP29078593A JP2510399B2 JP 2510399 B2 JP2510399 B2 JP 2510399B2 JP 29078593 A JP29078593 A JP 29078593A JP 29078593 A JP29078593 A JP 29078593A JP 2510399 B2 JP2510399 B2 JP 2510399B2
Authority
JP
Japan
Prior art keywords
roadbed
water
layer
weight
pavement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29078593A
Other languages
Japanese (ja)
Other versions
JPH07138905A (en
Inventor
大三 大谷
悦郎 浅見
太郎 花井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIHEI HODO KK
Navitas Co Ltd
Original Assignee
TAIHEI HODO KK
Navitas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIHEI HODO KK, Navitas Co Ltd filed Critical TAIHEI HODO KK
Priority to JP29078593A priority Critical patent/JP2510399B2/en
Publication of JPH07138905A publication Critical patent/JPH07138905A/en
Application granted granted Critical
Publication of JP2510399B2 publication Critical patent/JP2510399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は透水機能を有し、かつ車
両の重荷重に耐え得る舗装構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pavement structure having a water permeable function and capable of withstanding a heavy load of a vehicle.

【0002】[0002]

【従来の技術】従来の透水性舗装(不透水層を設けず、
表層に浸透した水を路盤、路床にまで浸透させるもの)
は車両の重荷重条件には耐えられないため歩行者系道路
の舗装にのみ使用されている。そして車道の舗装は全て
排水性舗装(表層下面に不透水層を設け、表層に浸透し
た水をそれ以下の舗装体内に浸透させず、路外に排水さ
せるもの)である。
2. Description of the Related Art Conventional water-permeable pavement (without an impermeable layer,
(The water that permeates the surface layer permeates the roadbed and roadbed)
Is used only for paving pedestrian roads because it cannot withstand the heavy load of vehicles. And the pavement of the roadway is all drainage pavement (a water impermeable layer is provided on the lower surface of the surface layer, and the water that permeates the surface layer does not permeate into the pavement below it, but is drained outside the road).

【0003】[0003]

【発明が解決しようとする課題】しかし、排水性舗装は
排水施設の設置が別に必要とされる。また排水性舗装か
らの雨水は排水施設からさらに下水道施設へと流れ込む
が、台風等による集中豪雨時には排水性舗装からの雨水
が下水道施設の能力を越える危険性が生じる。また新規
開発事業等の造成では山林や田畑であった部分が道路等
に変り、舗装される為自然環境に大きな変化が生じ、下
水道施設に流れ込む雨水量も急に増大するため上記の危
険性も大きい。そこで本発明の課題は車両の重荷重条件
に耐えられる強度を有する透水性舗装構造を提供するこ
とにある。
However, the drainage pavement requires the installation of a drainage facility separately. Rainwater from the drainage pavement further flows into the sewerage facility from the drainage facility, but there is a risk that the rainwater from the drainage pavement will exceed the capacity of the sewerage facility during a heavy rainfall due to a typhoon or the like. In addition, in the creation of new development projects, parts of forests and fields were changed to roads, etc., and the pavement would cause a great change in the natural environment, and the amount of rainwater flowing into sewer facilities would also suddenly increase. large. Then, the subject of this invention is providing the water-permeable pavement structure which has the strength which can endure the heavy load condition of a vehicle.

【0004】[0004]

【課題を解決するための手段】前記課題を解決する為、
請求項1に記載の透水性舗装構造は透水性アスファルト
混合物である表層及びこの表層の下に上層路盤を有し、
この上層路盤は単粒砕石S−13及び/又はS−20を
70〜80重量部と高炉水砕スラグ15〜30重量部と
アルカリ性刺激剤2〜4重量部及び微粒の高炉水砕スラ
グ1〜3重量部を混合してなる路盤材に基づいて形成さ
れていることを特徴とし、また、前記上層路盤の下には
下層路盤を有し、この下層路盤は高炉水砕スラグ90〜
97重量部及びアルカリ性刺激剤1.8〜6重量部及び
微粒の高炉水砕スラグ1.2〜4重量部を混合してなる
路盤材に基づいて形成されていることを特徴とする。
[Means for Solving the Problems] In order to solve the above problems,
The water-permeable pavement structure according to claim 1 has a surface layer which is a water-permeable asphalt mixture and an upper layer roadbed under the surface layer,
This upper layer roadbed contains 70-80 parts by weight of single-grain crushed stone S-13 and / or S-20, 15-30 parts by weight of granulated blast furnace slag, 2-4 parts by weight of alkaline stimulant, and 1-minute granulated blast-furnace slag. It is characterized in that it is formed on the basis of a roadbed material obtained by mixing 3 parts by weight, and has a lower roadbed under the upper roadbed, and the lower roadbed is a granulated blast furnace slag 90-
It is characterized in that it is formed on the basis of a roadbed material obtained by mixing 97 parts by weight, 1.8 to 6 parts by weight of an alkaline stimulant, and 1.2 to 4 parts by weight of granulated blast furnace granulated slag.

【0005】前記透水性アスファルト混合物とは従来の
排水性舗装の表層に使用されている市販の材料であり、
密粒アスファルトに較べ目が粗く雨水を通過させうる
上、重荷や摩減に対する強度を有している。そして前記
単粒砕石S−13及び/又はS−20とはアスファルト
舗装要綱(編集、発行所 社団法人 日本道路協会)の
砕石の粒度(JIS K50011988)のS−13
及び/又はS−20の規格の粒度の砕石を意味する。ま
た単粒砕石とは一定の綱目のふるいを通過する細かい粒
度のものは含まない砕石であることを意味する。本発明
の路盤材を使用して作成する層の厚さに応じて単粒砕石
S−13のみを又はS−20のみを使用してもよく又は
これらを混合して使用してもよい。そして単粒砕石S−
13又は単粒砕石S−20単独で70〜80重量部又は
これらを混合した合計量で70〜80重量部使用するこ
とにより優れた透水性及び強度を有する請求項1中の上
層路盤に用いられる路盤材を得ることができる。
The water-permeable asphalt mixture is a commercially available material used for the surface layer of conventional drainage pavement,
Compared to dense-grained asphalt, it has coarser mesh and can pass rainwater, and it has strength against heavy load and abrasion. The above-mentioned single-grain crushed stone S-13 and / or S-20 is the S-13 of crushed stone grain size (JIS K50011988) of the asphalt pavement summary (edited by the Japan Road Association).
And / or S-20 crushed stone. Further, single-grain crushed stone means crushed stone that does not include fine-grained particles that pass through a certain class sieve. Depending on the thickness of the layer formed using the roadbed material of the present invention, only single-grain crushed stone S-13 or S-20 may be used, or these may be mixed and used. And single grain crushed stone S-
13 or single-grain crushed stone S-20 alone 70 to 80 parts by weight or a total amount of 70 to 80 parts by weight of a mixture thereof is used to provide excellent water permeability and strength. A roadbed material can be obtained.

【0006】前記高炉水砕スラグとは高炉より発生する
溶融スラグを水で急速に冷却して製造した白い砂状のガ
ラス質の物質であり、アルカリ性刺激材及び水を混合す
ると硬化する性質を有している。この高炉水砕の化学成
分、粒度及び特性値を各々表1、表2及び表3に示す。
The granulated blast furnace slag is a white sandy vitreous substance produced by rapidly cooling molten slag generated from a blast furnace with water, and has the property of hardening when mixed with an alkaline stimulant and water. are doing. The chemical components, particle size and characteristic values of this granulated blast furnace are shown in Table 1, Table 2 and Table 3, respectively.

【0007】[0007]

【表1】 [Table 1]

【0008】[0008]

【表2】 [Table 2]

【0009】[0009]

【表3】 [Table 3]

【0010】なお高炉の原料又は高炉滓の冷却方法や冷
却速度等により得られる高炉水砕の物理的特性(粒度、
密度等)には多少の変動があり、例えば硬質と軟質とに
分類される。前記上層路盤の路盤材には硬質及び軟質の
どちらも使用可能であるが硬質の方が粒子がよりつぶれ
にくく、従って粒子間隙が狭くなりにくいのでより好ま
しい。高炉水砕スラグには前記したように物理的特性に
は多少の変動があるもののその粒径はほとんどが1.3 〜
0.3mm であり単粒度である。そして高炉水砕スラグを1
5〜30重量部使用すれば、多少の物理的特性の変動を
有するものであっても前記上層路盤の路盤材を得ること
が可能である。
The physical properties of the granulated blast furnace (particle size, particle size, obtained by the cooling method and cooling rate of the blast furnace raw material or blast furnace slag)
There are some fluctuations in (density etc.) and they are classified into hard and soft, for example. Both hard and soft roadbed materials can be used for the roadbed material of the upper layer, but harder ones are more preferable because the particles are less likely to be crushed and therefore the particle gaps are less likely to be narrowed. As described above, granulated blast furnace slag has a slight variation in physical properties, but its particle size is mostly 1.3-
It has a size of 0.3 mm and a single grain size. And 1 granulated blast furnace slag
By using 5 to 30 parts by weight, it is possible to obtain the roadbed material of the upper layer roadbed even if it has a slight variation in physical properties.

【0011】また前記アルカリ性刺激剤とは前記高炉水
砕スラグのガラス質の部分を適当な水分とともに溶解
(膨潤)し、再結晶させて硬化させる材料であり、例え
ば生石灰、消石灰及び/又は普通ポルトランド、高炉セ
メントB,C種等のセメントがある。
The alkaline stimulant is a material which dissolves (swells) the glassy portion of the granulated blast furnace slag with an appropriate water content, recrystallizes it, and hardens it. For example, quick lime, slaked lime and / or ordinary port. There are cements such as land and blast furnace cements B and C.

【0012】そして前記微粒の高炉水砕スラグとは前記
高炉水砕スラグを乾燥後粉砕し、ふるい分けて得られる
0.3mm 以下の微粒の高炉水砕スラグを意味し、0.074mm
以下の極微粒のものを使用するとさらに好ましい。
The fine granulated blast furnace slag is obtained by drying the blast furnace granulated slag after drying and sieving.
Means granulated blast furnace granulated slag of 0.3 mm or less, 0.074 mm
It is more preferable to use the following ultrafine particles.

【0013】前記アルカリ性刺激剤及び微粒の高炉水砕
スラグを各々2〜4重量部及び1〜3重量部混合するの
は、各々上記範囲量混合することにより請求項1中の上
層路盤に用いられる路盤材の効果である透水性及び強度
が生じる為である。すなわち本発明の上層路盤に用いら
れる路盤材によると一定の粒径の単粒砕石を一定量有し
ているので、この砕石の間隙が大きく、さらにこの間隙
には透水性の良好な高炉水砕スラグが存在するのでこの
路盤材は良好な透水性を有している。さらに適当量含有
されるアルカリ性刺激材が高炉水砕スラグのガラス質の
部分を溶解(膨潤)し、再結晶させて硬化させる(以
下、この性質を水硬性という)ことにより、砕石の粒子
接触面を化学的に結合する。従って構成粒子間の摩擦力
や圧縮力により強度が保持される従来の路盤材とは異な
り、本発明の上層路盤に用いられる路盤材は砕石の粒子
接触面の化学的結合により強度が保持されるので大量の
雨が砕石粒子間に浸透してもその強度は良好に保たれ得
る。また本発明の上層路盤に用いられる路盤材によると
微粒の高炉水砕スラグが適量混合されているのでアルカ
リ性刺激材の反応が促進され、硬化速度がより速くな
り、また硬度もより大きくなるので、路盤材の強度も大
きくなる。従って本発明の路盤材は交通量の多い道路に
も透水性路盤材として使用可能である。本発明の下層路
盤に用いられる路盤材は透水性の良好な高炉水砕スラグ
90−97部を使用しているので、透水性が良好であ
り、アルカリ性刺激剤1.8〜6部及び微粒の高炉水砕
スラグ1.2〜4部の存在により高炉水砕スラグの水硬
性が迅速にかつより強く生じ、化学的結合により下層路
盤の強度が生じる。従って大量の雨が本発明の下層路盤
の路盤材に浸透してもその強度は良好に保たれうる。こ
の下層路盤に用いられる路盤材は、上層路盤よりも小さ
い転圧により規定の強度が生じるので弱い路床の上に使
用することができる。またこの路盤材は前記の上層路盤
に用いられる路盤材よりも比重が小さいので弱い路床の
上に使用することができる。なお前記下層路盤に用いら
れる路盤材は前記上層路盤に用いられる路盤材よりも強
度は弱いが、優れた強度を有する上層路盤が上に存在す
るので、車両等の荷重は下層路盤には分散されて伝達さ
れる為、下層路盤の強度が弱くとも足りる。前記表層、
上層路盤及び下層路盤の厚さは路床の設計CBRと設計
交通量に応じてアスファルト舗装要綱にあるTA 法によ
り計算して目標とするTA (等値換算厚)を下回らない
ように各層の厚さを決定することができる。
The alkaline stimulant and the finely granulated granulated blast furnace slag are mixed in an amount of 2 to 4 parts by weight and 1 to 3 parts by weight, respectively, by mixing in the above range amounts to be used in the upper layer roadbed in claim 1. This is because water permeability and strength, which are the effects of the roadbed material, are generated. That is, according to the roadbed material used for the upper layer roadbed of the present invention, since a certain amount of single-grain crushed stones having a constant particle size is present, the crushed stones have a large gap, and further, this gap has good permeability to blast furnace granulation. Due to the presence of slag, this roadbed material has good water permeability. Furthermore, an appropriate amount of alkaline stimulant dissolves (swells) the glassy part of the granulated blast furnace slag, recrystallizes it and hardens it (hereinafter this property is called hydraulic), so that the particle contact surface of crushed stone Chemically bond. Therefore, unlike conventional roadbed materials that retain their strength due to the frictional force and compression force between the constituent particles, the roadbed material used in the upper layer roadbed of the present invention retains its strength due to the chemical bonding of the particle contact surface of crushed stone. Therefore, even if a large amount of rain penetrates between the crushed stone particles, its strength can be kept good. Further, according to the roadbed material used for the upper layer roadbed of the present invention, since the granulated blast furnace granulated slag is mixed in an appropriate amount, the reaction of the alkaline stimulating material is promoted, the curing speed becomes faster, and the hardness also becomes larger, The strength of the roadbed material also increases. Therefore, the roadbed material of the present invention can be used as a water-permeable roadbed material even on a road with heavy traffic. The roadbed material used for the lower layer roadbed of the present invention uses 90-97 parts of granulated blast furnace slag having good water permeability, and therefore has good water permeability, and 1.8 to 6 parts of alkaline stimulant and fine particles. The presence of 1.2 to 4 parts of granulated blast-furnace slag causes the hydraulic properties of the granulated blast-furnace slag to be rapidly and stronger, and the chemical bond causes the strength of the subgrade. Therefore, even if a large amount of rain penetrates the roadbed material of the lower layer roadbed of the present invention, its strength can be kept good. The roadbed material used for the lower layer roadbed can be used on a weak roadbed because a prescribed rolling force is generated by a smaller rolling pressure than that of the upper layer roadbed. Further, since this roadbed material has a smaller specific gravity than the roadbed material used for the upper layer roadbed, it can be used on a weak roadbed. Note that the roadbed material used for the lower layer roadbed has lower strength than the roadbed material used for the upper layer roadbed, but since the upper layer roadbed having excellent strength is present above, the load of the vehicle or the like is dispersed in the lower layer roadbed. Therefore, even if the strength of the lower roadbed is weak, it is sufficient. The surface layer,
The thickness of the upper and lower roadbeds is calculated by the T A method in the asphalt pavement guideline according to the design CBR of the roadbed and the design traffic volume, so that each layer does not fall below the target T A (equal equivalent thickness). The thickness of can be determined.

【0014】[0014]

【作用】前記構成の透水性舗装構造によると表層、上層
路盤及び下層路盤共に透水性を有するので雨はこれらの
層を通過し、路床へと移動し、地下水となる。大量の雨
が降り全ての雨が路床へ移動しきれない場合にも上下層
路盤はその各路盤材の間隙が大きい為貯水性も有してい
るので上下層路盤中に貯水されその後徐々に路床へ貯水
された雨水が移動し、地下水とされる。また表層及び上
層路盤は優れた強度を有しているので車両の荷重に耐え
ることができ、また上層路盤は車両の荷重を分散して下
層路盤に伝達する。前記下層路盤はこの分散された荷重
に耐えうる強度を有し、さらにこの下層路盤に用いられ
ている路盤材は上層路盤よりも小さい転圧で締め固める
ことができる上、比重が小さいので弱い路床の上に下層
路盤を設けることができ、この下層路盤の上により大き
い転圧で締め固める上層路盤を設けることができる。
According to the water-permeable pavement structure having the above-mentioned structure, since the surface layer, the upper roadbed and the lower roadbed have water permeability, rain passes through these layers and moves to the roadbed to become groundwater. Even if a large amount of rain falls and all the rain cannot move to the roadbed, the upper and lower roadbeds also have water storage because the gap between the roadbed materials is large. Rainwater stored in the subgrade moves to be groundwater. Further, since the surface layer and the upper layer roadbed have excellent strength, they can withstand the load of the vehicle, and the upper layer roadbed disperses the load of the vehicle and transmits it to the lower layer roadbed. The lower layer roadbed has a strength capable of withstanding the distributed load, and the roadbed material used for the lower layer roadbed can be compacted with a smaller rolling pressure than the upper layer roadbed, and the specific gravity is small, so that the roadbed is weak. A lower layer roadbed can be provided on the floor, and an upper layer roadbed that is compacted with a greater rolling pressure can be provided on the lower layer roadbed.

【0015】[0015]

【実施例】実施例1 本例1の透水性舗装の構造は図1に示される様に、上層
から順に表層1(厚さ5cm)上層路盤2(厚さ35c
m)、下層路盤3(厚さ35cm)及び路床改良部分4
(厚さ20cm)を有してなり、路床改良部分4は路床5
(約1m)の直ぐ上に設けられる。表層1の材料として
は従来の排水舗装用アスファルト混合物を使用した。表
層1は透水係数10-2cm/sec 以上を有し、空隙率は1
8%であった。表層1のすぐ下は約35cmの厚さの上層
路盤2とされ、この上層路盤2の材料としては表4に示
される材料を各配合量、パグミル式の混合プラントで混
合した透水性路盤材を使用した。この透水性路盤材の特
性値を表5に示す。
Example 1 As shown in FIG. 1, the structure of the water-permeable pavement of Example 1 is, in order from the upper layer, a surface layer 1 (thickness: 5 cm) and an upper layer roadbed 2 (thickness: 35 c).
m), lower roadbed 3 (thickness 35 cm) and roadbed improvement part 4
(Thickness 20 cm), the roadbed improvement part 4 is a roadbed 5
It is installed just above (about 1 m). As a material for the surface layer 1, a conventional asphalt mixture for drainage paving was used. Surface layer 1 has a water permeability of 10 -2 cm / sec or more and a porosity of 1
It was 8%. Immediately below the surface layer 1 is an upper layer roadbed 2 having a thickness of about 35 cm. As the material for this upper layer roadbed 2, the water-permeable roadbed material is prepared by mixing the materials shown in Table 4 in respective compounding amounts in a pug mill type mixing plant. used. Table 5 shows the characteristic values of this water-permeable roadbed material.

【0016】[0016]

【表4】 [Table 4]

【0017】[0017]

【表5】 [Table 5]

【0018】表4中、単粒度砕石は単粒砕石S−13及
び/又はS−20の単独物又は混合物である。また石灰
は3mm以下の粒径である。表5中、粒度が規準粒度範囲
内とあるのはJIS A−1120の粒度試験(ふるい
分け試験)の結果、透水性路盤材に使用した材料の各粒
径の粒子を各量づつ混合した場合に計算して得られる規
定粒度の範囲内に透水性路盤材の実測の粒度が含まれて
いたことを意味している。
In Table 4, single-grain crushed stones are single-grain crushed stones S-13 and / or S-20, either alone or as a mixture. Also, lime has a particle size of 3 mm or less. In Table 5, the particle size is within the standard particle size range as a result of the particle size test (sieving test) of JIS A-1120, when particles of each particle size of the material used for the water-permeable roadbed material are mixed in respective amounts. This means that the actually measured particle size of the water-permeable roadbed material was included in the range of the specified particle size obtained by calculation.

【0019】また表5中、一軸圧縮強度はAs舗装要綱
に準拠した方法により締め固め度95%の場合において
材令14日における値を測定した。供試体の作成方法は
モールドは内径10cm、高さ12.7cm、ランマーは重量4.
5kg 及び落下高45cmとし、突固め回数は42回/層
(3層)とした。また供試体の養生方法は気温20℃の
定温室に13日間養生後さらに水温15℃の水中に24
時間養生する方法とした。一軸圧縮強度はより詳細に
は、単粒砕石としてS−13のみを使用した場合は27.3
kg/cm2 であり、単粒砕石としてS−20を38重量部
及びS−13を37重量部使用した場合は24.4kg/cm2
であった。そして表5中、透水係数を調べる為の透水試
験JIS A 1218(定水位)としては上層路盤の
路盤材4140gを内径10.0cm、長さ12.7cm体積100
0cm3 の容器に入れ、突き固め(2.5kgh、30cm 25
回/3層)により供試体を作成しこの試料の上下より水
道水に水浸させることにより行った。また透水試験は供
試体を作成後14日間又は1年間土中に埋込したものに
ついて各々実施した。透水係数はさらに詳細には単粒砕
石としてS−13のみを使用した場合は材令14日では
9.16×10-2cm/sec であり、材令1年では1.08×10
-1cm/sec であった。また単粒砕石としてS−20を3
8重量部及びS−13を37重量部使用した場合は材令
14日では1.38×10-1であり、材令1年では1.41×1
-1であり、全て10-2以上の透水係数を有していた。
In Table 5, the uniaxial compressive strength was measured on the 14th day of the age when the compaction degree was 95% by the method based on the As pavement guideline. As for the method of making the specimen, the mold has an inner diameter of 10 cm, a height of 12.7 cm, and a rammer weighs 4.
The weight was 5 kg and the drop height was 45 cm, and the number of times of compaction was 42 times / layer (3 layers). In addition, the curing method of the specimen is as follows: curing in a constant temperature room at a temperature of 20 ° C for 13 days and then in water at a temperature of 15 ° C for 24 hours.
It was a method of curing for hours. The uniaxial compressive strength is more specifically 27.3 when only S-13 is used as single-grain crushed stone.
kg / cm 2, when the S-20 to 38 parts by weight, and S-13 as a single particle lithotripsy using 37 parts by weight 24.4 kg / cm 2
Met. And, in Table 5, as a water permeability test JIS A 1218 (constant water level) for examining the water permeability, 4140 g of base course material of the upper layer roadbed has an inner diameter of 10.0 cm, a length of 12.7 cm and a volume of 100.
Put in a 0 cm 3 container and tamper (2.5 kgh, 30 cm 25
(3 times / three layers) to prepare a test piece, and the test piece was immersed in tap water from above and below. Further, the water permeability test was carried out for each of the test specimens embedded in the soil for 14 days or one year after preparation. In more detail, the hydraulic conductivity is 14 days when only S-13 is used as crushed single grain.
9.16 × 10 -2 cm / sec, 1.08 × 10 for 1 year
It was -1 cm / sec. Moreover, S-20 is used as a single-grain crushed stone.
When 8 parts by weight and 37 parts by weight of S-13 are used, it is 1.38 × 10 −1 in 14 days and 1.41 × 1 in 1 year.
It was 0 -1 , and all had a hydraulic conductivity of 10 -2 or more.

【0020】この上層路盤2の直下の下層路盤3の材料
としては表6で示される材料を各配合量、パグミル式の
混合プラントで混合した路盤材を使用した。この路盤材
の特性値を表7に示す。
As the material of the lower layer roadbed 3 immediately below the upper layer roadbed 2, a roadbed material was used in which the materials shown in Table 6 were mixed in respective compounding amounts in a pagmill type mixing plant. Table 7 shows the characteristic values of this roadbed material.

【0021】[0021]

【表6】 [Table 6]

【0022】[0022]

【表7】 [Table 7]

【0023】表7中の各項目については表5の項目と同
様の試験を実施した。
For each item in Table 7, the same tests as those in Table 5 were conducted.

【0024】下層路盤3の直下であって路床5の直上に
は路床改良部分4が設けられ、この材料としては高炉水
砕スラグが使用され、この材料は表3に示される様に透
水係数が10-2cm/sec 秒以上である。
Immediately below the lower roadbed 3 and directly above the roadbed 5, a roadbed improvement portion 4 is provided, and granulated blast furnace slag is used as this material, and this material is permeable to water as shown in Table 3. The coefficient is 10 -2 cm / sec or more.

【0025】アスファルト舗装要綱によれば、下層路盤
に用いるクラッシャーランの等値換算係数は0.25であ
り、上層路盤に用いる瀝青安定処理は0.80である。表
5、表7の等値換算係数を比較すれば、本例の下層路盤
3の等値換算係数は0.35であり、上層路盤2の等値換算
係数は0.85である。従って本例の透水性舗装の築造工法
に用いる路盤材は、従来の路盤材より通常の状態(路盤
に水が浸透しない状態)においても、強度的に優れてい
ることが分かる。一方、同じくアスファルト舗装要綱に
よる透水機能を有する目標値は、透水係数K15が10-2
cm/sec以上となっている。よって、表5、表7の数
値から本材料は、透水機能も有していると判断できる。
According to the asphalt pavement summary, the equivalent conversion factor of crusher run used for the lower roadbed is 0.25, and the bitumen stabilization treatment used for the upper roadbed is 0.80. Comparing the equivalent conversion factors in Tables 5 and 7, the equivalent conversion factor of the lower layer roadbed 3 in this example is 0.35, and the equivalent conversion factor of the upper layer roadbed 2 is 0.85. Therefore, it can be seen that the roadbed material used in the construction method of the water-permeable pavement of this example is superior in strength to the conventional roadbed material even in a normal state (a state where water does not penetrate into the roadbed). On the other hand, the target value that has the permeability function by the asphalt paving guideline is that the permeability coefficient K 15 is 10 -2.
It is more than cm / sec. Therefore, it can be judged from the values in Tables 5 and 7 that this material also has a water permeation function.

【0026】そして下層路盤3は上層路盤2よりも小さ
い転圧で規定の強度とすることができた。従って路床5
が弱い場合にも路床5上により強い層である下層路盤3
を小さい転圧をかけることにより設けることができ、こ
のより強い下層路盤3の上により大きい転圧で締め固め
る上層路盤2を設けることが可能とされる。
The lower layer roadbed 3 was able to have a prescribed strength with a smaller rolling force than the upper layer roadbed 2. Therefore roadbed 5
Even when the road is weak, the lower roadbed 3 is a stronger layer on the roadbed 5.
Can be provided by applying a small rolling pressure, and it is possible to provide the upper layer roadbed 2 which is compacted with a larger rolling pressure on the stronger lower layer roadbed 3.

【0027】路床改良部分4は路床5の泥が下層路盤3
に混入しない為の遮断層としての役割も果している。路
床改良部分4の材料として高炉水砕スラグを使用するこ
とにより、透水係数が一定とされ、また経時により水硬
性により強度が上昇する。例えば砂を使用した場合には
透水係数も種類により不均一であるが、高炉水砕スラグ
を材料とすると、一定の透水性が得られる上、その水硬
性により経時により徐々に強度が生ずる。そして本例1
の透水性舗装構造の各層1〜4の透水係数は何れも、1
-2cm/sec以上である。これは、一時間当りに36
0mmの雨水を浸透させる機能を持つ舗装であると言い換
える事が出来る。道路土工・排水工指針によれば、『路
面排水施設などに用いる標準降雨強度』は、60mm/h
(北海道)〜130mm/h(沖縄、小笠原諸島)であ
る。予想される降雨量の約3倍〜6倍の浸透能力がある
ことになる。また表3、表5、表7に示される様に本例
の透水性舗装構造の各層1〜4は、何れも大きい空隙を
有している。従って本例1の透水性舗装構造は貯水能力
も優れていることがわかる。すなわち、各層1〜4の有
する間隙率が有効であり、自然含水比を10%と仮定す
るならば、計算によると本例の舗装構造内には1m2
り234mmの水を貯溜する能力がある。
In the roadbed improvement portion 4, the mud of the roadbed 5 is the lower roadbed 3
It also plays a role as a barrier layer so that it does not get mixed in. By using the granulated blast furnace slag as the material of the roadbed improving portion 4, the hydraulic conductivity is made constant, and the strength is increased due to the hydraulic property over time. For example, when sand is used, the permeability coefficient is also non-uniform depending on the type, but when granulated blast furnace slag is used as the material, a certain level of water permeability is obtained, and due to its hydraulic property, strength gradually increases over time. And this example 1
The water permeability of each layer 1 to 4 of the water permeable pavement structure is 1
It is 0 -2 cm / sec or more. This is 36 per hour
In other words, it is a pavement that has the function of permeating 0 mm of rainwater. According to the guidelines for road earthworks and drainage, "standard rainfall intensity used for road surface drainage facilities" is 60 mm / h.
(Hokkaido) to 130 mm / h (Okinawa, Ogasawara Islands). It will have a permeation capacity of about 3 to 6 times the expected rainfall. Further, as shown in Tables 3, 5, and 7, each of the layers 1 to 4 of the water-permeable pavement structure of this example has large voids. Therefore, it can be seen that the water-permeable pavement structure of Example 1 has an excellent water storage capacity. That is, if the porosity of each of the layers 1 to 4 is effective and the natural water content is assumed to be 10%, calculation shows that the pavement structure of this example has an ability to store 234 mm of water per 1 m 2. .

【0028】本例1の舗装構造の各層の厚さはTA 法に
より決定した。その設計条件は以下の通りである。 路床条件:設計CBR 1.5% 設計交通量:D交通 TA の目標値:45.3cm(路床設計 CBR=3%の
場合) この条件を満足する各層厚の決定は次の計算による。 表層1(排水舗装様アスファルト混合物)の層厚T1
= 5cmの等値換算厚TA1= 5×1.00=5.00cm 上層路盤2の層厚T2 =35cmの等値換算厚TA2=35×
0.85=29.75cm 下層路盤3の層厚T3 =35cmの等値換算厚TA3=35×
0.35=12.25cm 全舗装厚T=T1 +T2 +T3 = 5cm+35cm=75cm 全等値換算厚TA =TA1+TA2+TA3=5.0cm +29.75c
m +12.25cm =47cm>45.3cm 路床CBRを3%以上に改良する為の路床改良部分4
(高炉水砕スラグ)厚さを20cmとした時の CBR={(80 ×1.51/3+20×201/3 ÷100 }3 =3.1
%>3.0 % 同じ設計条件で従来の排水性舗装の断面算定を行うと次
の様になる。 表層(排水舗装用アスファルト混合物)の層厚T1
5cmの等値換算厚TA1=5×1.00=5.00cm 基層(粗粒アスファルト混合物)の層厚T2 =10cmの
等値換算厚TA1=10×1.00=10.00cm 上層路盤(瀝青安定処理)の層厚T3 =10cmの等値換
算厚TA3=10×0.80=8.00cm 上層路盤(粒度調整砕石)の層厚T4 =35cmの等値換
算厚TA4=35×0.35=12.25cm 下層路盤(クラッシャーラン)の層厚T5 =40cmの等
値換算厚TA5=45×0.25=11.25cm 全舗装厚T=T1 +T2 +T3 +T4 +T5 =5cm +10
cm+10cm+35cm+45cm=105cm 全等値換算厚TA =TA1+TA2+TA3+TA4+TA5=5.
0cm +10cm+ 8cm+12.25cm +11.25cm =46.5cm>45.3
cm 以上の計算より、本例1の透水性舗装構造は、従来の排
水性舗装構造に比べ、同設計条件(路床CBR=1.5
%,D交通)のもとで、全層厚で30cm薄くなり、層の
数も2層、少なくなることが分かる。これは、本例1の
舗装構造にて用いる路盤材が全て、高強度の為である。
The thickness of each layer of the pavement structure of Example 1 was determined by the T A method. The design conditions are as follows. Roadbed condition: Design CBR 1.5% Design traffic: D traffic T A target value: 45.3 cm (when roadbed design CBR = 3%) The following calculation is used to determine each layer thickness that satisfies this condition. . Surface layer 1 (drainage pavement-like asphalt mixture) layer thickness T 1
= Equivalent thickness T A1 of 5 cm = 5 x 1.00 = 5.00 cm Equivalent thickness T A2 of the upper roadbed 2 = 35 cm T A2 = 35 x
0.85 = 29.75cm Layer thickness of lower layer roadbed 3 T 3 = 35cm equivalent thickness T A3 = 35 ×
0.35 = 12.25 cm Total pavement thickness T = T 1 + T 2 + T 3 = 5 cm + 35 cm = 75 cm Equivalent conversion thickness T A = T A1 + T A2 + T A3 = 5.0 cm + 29.75c
m + 12.25cm = 47cm > 45.3cm Subgrade improvement part 4 to improve subgrade CBR to 3% or more
(Granulated blast furnace slag) CBR = {(80 × 1.5 1/3 + 20 × 20 1/3 ÷ 100} 3 = 3.1 when the thickness is 20 cm
%> 3.0% Cross section calculation of conventional drainage pavement under the same design conditions is as follows. Surface layer (diffusion pavement asphalt mixture) layer thickness T 1 =
Equivalent thickness of 5 cm T A1 = 5 × 1.00 = 5.00 cm Layer thickness of base layer (coarse asphalt mixture) T 2 = Equivalent thickness of 10 cm T A1 = 10 × 1.00 = 10.00 cm Upper layer roadbed (stabilizing bitumen) Layer thickness T 3 = 10 cm, equivalent thickness T A3 = 10 × 0.80 = 8.00 cm Layer thickness of upper layer roadbed (grain size adjusted crushed stone) T 4 = 35 cm, equivalent thickness T A4 = 35 × 0.35 = 12.25 cm Lower layer Layer thickness of roadbed (crusher run) T 5 = 40cm equivalent thickness T A5 = 45 × 0.25 = 11.25cm Total pavement thickness T = T 1 + T 2 + T 3 + T 4 + T 5 = 5cm +10
cm + 10cm + 35cm + 45cm = 105cm Equivalent conversion thickness T A = T A1 + T A2 + T A3 + T A4 + T A5 = 5.
0cm + 10cm + 8cm + 12.25cm + 11.25cm = 46.5cm > 45.3
From the calculation of cm or more, the permeable pavement structure of Example 1 has the same design conditions (roadbed CBR = 1.5 as compared with the conventional drainage pavement structure).
%, D traffic), the total layer thickness is reduced by 30 cm, and the number of layers is reduced by 2 layers. This is because all the roadbed materials used in the pavement structure of Example 1 have high strength.

【0029】また本例1の透水性舗装構造によると路床
5の直ぐ上に路床改良部分4(20cm)を設けており、
この路床改良部分4の材料として高炉水砕スラグを用い
ている。これにより路床5のCBRが低い場合にも路床
5のCBRが3%以上に改良することができる。
According to the water-permeable pavement structure of Example 1, the subgrade 5 (20 cm) is provided immediately above the subgrade 5.
Granulated blast furnace slag is used as the material of the subgrade for improving the subgrade. As a result, even if the CBR of the roadbed 5 is low, the CBR of the roadbed 5 can be improved to 3% or more.

【0030】なお本例1では路床5のCBRが小さい場
合を想定し路床改良部分4を設けたが、路床5のCBR
値が大きい場合には路床改良部分4は省略することがで
きる。また各層の厚さも設計条件により異なる。
In this Example 1, the roadbed improvement portion 4 was provided on the assumption that the CBR of the roadbed 5 was small.
When the value is large, the roadbed improvement portion 4 can be omitted. The thickness of each layer also varies depending on the design conditions.

【0031】実施例2 次に設計条件がB交通、路床CBR3%以上である場合
に実施例1と同様のT A 法により舗装構造の各層の厚さ
を決定した。この場合に本例2の透水性舗装構造は図2
に示される様に舗装表面から下へ表層1(5cm)上層路
盤2(25cm)及び下層路盤3(25cm)の三層とさ
れ、下層路盤3が路床4(約1m)の直ぐ上に設けられ
る。各層1〜3の各材料は実施例1の各層と同じであ
る。この場合の各層1〜3の透水係数及び貯水能力を表
8に示す。
Example 2 Next, when the design condition is B traffic and roadbed CBR 3% or more
The same T as in Example 1 AThickness of each layer of pavement structure by method
It was determined. In this case, the water-permeable pavement structure of Example 2 is shown in FIG.
As shown in Fig. 1, from the pavement surface to the bottom, surface layer 1 (5 cm) upper layer road
3 layers of board 2 (25 cm) and lower roadbed 3 (25 cm)
The lower roadbed 3 is installed just above the roadbed 4 (about 1 m).
You. Each material of each layer 1 to 3 is the same as each layer of Example 1.
You. In this case, the permeability coefficient and storage capacity of each layer 1 to 3 are shown.
8 shows.

【0032】[0032]

【表8】 [Table 8]

【0033】表8中、透水係数について、現場測定値と
は「社団法人日本道路協会編 透水性舗装ハンドブッ
ク」に定める方法で測定した値である。また貯水能力は
現場測定値の空隙率より自然含水比(10%)を差し引
き、貯水比を算定して厚さを掛けることにより求めた値
である。各層の貯水能力を求めるための計算を以下に示
す。表層1(空隙率18%)の貯水能力=50mm×0.18
=9.0mm 上層路盤2については 通常の締め固め状態で湿潤密度γt =2.15t/m3 乾燥密度γd =1.65t/m3 比重G=2.3t/m3 程度であるからγw (水の単位体積重
量)=1とすると 間隙比e=(γw /γd )×G−1=(G/γd )−1
=(2.3/1.65)−1=0.39 間隙比e=(含水比+空隙比)とすると (含水+空隙の占める%)n={e/(1+e)}×1
00=28.1% 含水比Wn =(Ww /WS )×100=10% (但し重量
比) 含水(重量)率=1−{Ww /(1+Wn )}=0.091 含水量VW =1.65×0.091 =0.151(15.1%) 空隙率VS =n−VW =28.1−15.1=13.0% 従って上層路盤2の貯水能力=250mm(上層路盤2の
厚み)×0.13=32.5mm下層路盤3(遮断層を含む)につ
いては 通常の締め固め状態で湿潤密度γt =1.56t/m3 乾燥密度γd =1.28t/m3 比重G=1.7t/m3 程度であるからγw (水の単位体積重
量)=1とすると 間隙比e=(γw /γd )×G−1=(G/γd )−1
=(1.7/1.28)−1=0.328 間隙比e=(含水比+空隙比)とすると (含水+空隙の占める%)n={e/(1+e)}*1
00=24.69% 含水比Wn =(Ww /WS )×100=10% (但し重量
比) 含水(重量)率=1−{Ww /(1+Wn )=0.091 含水量Vw =1.28×0.091 =0.116(11.6%) 空隙率Va =n−Vw =24.69 −11.6=13.1% 従って下層路盤3の貯水能力=250mm(下層路盤3の
厚み)×0.131 =32.75mm である。表8の貯水能力の結
果から本例2の舗装構造は1m2 当り74.3mmの水を貯留
する能力がある。すなわち、10,000m2 の舗装面
積に換算すると、743m 3 の貯水能力があると言え、
これは、ほぼ10m×10m×7m(高さ)の貯水槽を
地下に設置したと同等である。なお前記した本例1の舗
装構造の貯溜能力も上記と同様の計算により求めた値で
ある。
In Table 8, the hydraulic conductivity and the measured values at the site are shown.
Is the Japan Road Association's edition.
It is the value measured by the method specified in "Q". In addition, the water storage capacity
Subtract the natural water content (10%) from the porosity of the field measurement value
Value obtained by calculating the water storage ratio and multiplying it by the thickness
Is. The calculation to obtain the water storage capacity of each layer is shown below.
You. Surface layer 1 (porosity 18%) water storage capacity = 50 mm x 0.18
= 9.0mm For the upper roadbed 2, the wet density γ in the normal compacted statet= 2.15t / m3 Dry density γd= 1.65t / m3 Specific gravity G = 2.3t / m3w(Unit weight of water
If the amount) = 1, the gap ratio e = (γw/ Γd) × G-1 = (G / γd) -1
= (2.3 / 1.65) -1 = 0.39 Pore ratio e = (water content + void ratio) (water content +% occupied by voids) n = {e / (1 + e)} × 1
00 = 28.1% Moisture content Wn= (Ww/ WS) × 100 = 10% (However, weight
Ratio) Water content (weight) ratio = 1- {Ww/ (1 + Wn)} = 0.091 Water content VW= 1.65 × 0.091 = 0.151 (15.1%) Porosity VS= N-VW= 28.1-15.1 = 13.0% Therefore, the water storage capacity of the upper roadbed 2 = 250 mm (of the upper roadbed 2
(Thickness) × 0.13 = 32.5 mm for lower layer roadbed 3 (including barrier layer)
In the normal compacted state, the wet density γt= 1.56t / m3 Dry density γd= 1.28t / m3 Specific gravity G = 1.7t / m3w(Unit weight of water
If the amount) = 1, the gap ratio e = (γw/ Γd) × G-1 = (G / γd) -1
= (1.7 / 1.28) -1 = 0.328 If the void ratio e = (water content ratio + void ratio), then (water content +% occupied by voids) n = {e / (1 + e)} * 1
00 = 24.69% Water content Wn= (Ww/ WS) × 100 = 10% (However, weight
Ratio) Water content (weight) ratio = 1- {Ww/ (1 + Wn) = 0.091 Water content Vw= 1.28 × 0.091 = 0.116 (11.6%) Porosity Va= N-Vw= 24.69 -11.6 = 13.1% Therefore, the water storage capacity of the lower roadbed 3 = 250 mm (of the lower roadbed 3
Thickness) x 0.131 = 32.75 mm. Table 8 Results of water storage capacity
Pavement structure of this example 2 is 1m2Stores 74.3 mm of water
Have the ability to That is 10,000 m2Pavement surface
743m when converted to product 3Can be said to have a water storage capacity of
This is a water tank of approximately 10m x 10m x 7m (height)
It is equivalent to installing it underground. The pavement of Example 1 described above
The storage capacity of the mounting structure is also the value calculated by the same calculation as above.
is there.

【0034】また同じ設定条件で従来の標準舗装又は排
水舗装(建設省)の構成を設定すると、共に表層1の直
下に基層(粗粒アスファルト混合物)を要し、全体の層
厚も60cmとなる。従って本例2の透水性舗装構造は同
設計条件(路床CBR3%以上、B交通)のもとで全層
厚で5cm薄くなり、層の数も1層少なくなる。これは本
例の舗装構造に用いる路盤材が高強度のためである。
If the conventional standard pavement or drainage pavement (Ministry of Construction) is set under the same setting conditions, a base layer (coarse-grained asphalt mixture) is required directly under the surface layer 1 and the total layer thickness is 60 cm. . Therefore, the water-permeable pavement structure of Example 2 has a total layer thickness of 5 cm thinner and the number of layers is reduced by one layer under the same design conditions (roadbed CBR 3% or more, B traffic). This is because the roadbed material used for the pavement structure of this example has high strength.

【0035】本例1及び2の透水性舗装構造によると透
水性が良好でありかつ車両の重荷重に耐えうる強度を有
しているので車道に用いることができる。そして排水性
舗装とは異なり、本例1及び2の舗装構造は水を貯溜す
る能力を備えているので降雨量が路床5の透水能力を超
えている場合にも舗装体内に一時雨水が貯溜されその後
この雨水は徐々に路床5に浸透し、地下水に還流され
る。従って排水性舗装の様に排水施設を備える必要がな
く、従前の下水道施設に負担がかかることもない。また
従来の排水性舗装と同様に舗装面に水が溜まらないので
車道では滑り抵抗の増大、ハイドロプレーン現象の防
止、水跳ねの防止、夜間・雨天時の視認性の向上、走行
騒音の低減等の効果が生じる。
According to the water-permeable pavement structures of Examples 1 and 2, the water-permeable pavement structure has good water permeability and has a strength capable of withstanding a heavy load of the vehicle, and therefore can be used in a roadway. And unlike the drainage pavement, the pavement structures of Examples 1 and 2 have the ability to store water, so that even when the rainfall exceeds the permeability of the roadbed 5, temporary rainwater is stored in the pavement. After that, this rainwater gradually permeates the roadbed 5 and is returned to the groundwater. Therefore, unlike the drainage pavement, it is not necessary to provide a drainage facility, and the existing sewer facility is not burdened. In addition, as with conventional drainage pavement, water does not accumulate on the pavement surface, increasing slip resistance on the roadway, preventing the hydroplane phenomenon, preventing water splashing, improving visibility at night and in the rain, reducing running noise, etc. The effect of.

【0036】[0036]

【発明の効果】本発明の透水性舗装構造によると良好な
透水性を有しているので別に排水施設を設ける必要がな
く、また降雨は地下水とされるので地下水の涵養、街路
樹の活性化に資する。また新規開発事業等の造成では、
山林や田畑であった部分が工場用地、住宅用地、道路等
に変り当然、舗装も築造される。そうなると、自然環境
に大きな変化が興り、下水道施設に流れ込む雨水量も増
大する。この変化を抑制する効果が、透水性舗装には有
る。そして本発明の透水性舗装構造は車両の重荷に耐え
得る強度を有しているので車道に使用することができ
る。
According to the water-permeable pavement structure of the present invention, since it has good water permeability, it is not necessary to provide a separate drainage facility, and since rainfall is groundwater, groundwater is recharged and roadside trees are activated. Contribute to. In addition, in the creation of new development projects,
Portions that used to be forests and fields will be transformed into factory land, residential land, roads, etc. Naturally, pavement will also be built. If this happens, the natural environment will undergo major changes and the amount of rainwater flowing into sewer facilities will also increase. The water-permeable pavement has the effect of suppressing this change. Since the water-permeable pavement structure of the present invention has the strength to withstand the heavy load of the vehicle, it can be used on the roadway.

【図面の簡単な説明】[Brief description of drawings]

【図1】本例1の透水性舗装構造の断面説明図である。FIG. 1 is a cross-sectional explanatory view of a water-permeable pavement structure of Example 1.

【図2】本例2の透水性舗装構造の断面説明図である。FIG. 2 is a cross-sectional explanatory view of a water-permeable pavement structure of Example 2.

【符号の説明】[Explanation of symbols]

1 表層 2 上層路盤 3 下層路盤 4 路床改良部分 5 路床 1 Surface layer 2 Upper layer roadbed 3 Lower layer roadbed 4 Roadbed improvement part 5 Roadbed

───────────────────────────────────────────────────── フロントページの続き (72)発明者 花井 太郎 福岡県北九州市八幡東区川淵町9番27号 太平舗道株式会社内 (56)参考文献 実開 平1−79605(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Taro Hanai 9-27 Kawabuchicho, Hachimanto-ku, Kitakyushu, Fukuoka Prefecture Taihei Pavement Co., Ltd. (56) References: 1-79605 (JP, U)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 透水性アスファルト混合物である表層及
びこの表層の下に上層路盤を有し、この上層路盤は単粒
砕石S−13及び/又はS−20を70〜80重量部と
高炉水砕スラグ15〜30重量部とアルカリ性刺激剤2
〜4重量部及び微粒の高炉水砕スラグ1〜3重量部を混
合してなる路盤材に基づいて形成されていることを特徴
とし、また、前記上層路盤の下には下層路盤を有し、こ
の下層路盤は高炉水砕スラグ90〜97重量部及びアル
カリ性刺激剤1.8〜6重量部及び微粒の高炉水砕スラ
グ1.2〜4重量部を混合してなる路盤材に基づいて形
成されていることを特徴とする透水性舗装構造。
1. A surface layer which is a water-permeable asphalt mixture, and an upper layer roadbed below this surface layer, which comprises 70-80 parts by weight of single-grain crushed stone S-13 and / or S-20 and granulated blast furnace. 15-30 parts by weight of slag and alkaline stimulant 2
~ 4 parts by weight and 1 to 3 parts by weight of granulated granulated blast furnace slag are formed on the basis of a roadbed material, and a lower layer roadbed is provided under the upper layer roadbed, This lower layer roadbed is formed on the basis of a roadbed material obtained by mixing 90 to 97 parts by weight of granulated blast furnace slag, 1.8 to 6 parts by weight of alkaline stimulant, and 1.2 to 4 parts by weight of granulated blast furnace granulated slag. A permeable pavement structure characterized by
JP29078593A 1993-11-19 1993-11-19 Permeable pavement structure Expired - Fee Related JP2510399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29078593A JP2510399B2 (en) 1993-11-19 1993-11-19 Permeable pavement structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29078593A JP2510399B2 (en) 1993-11-19 1993-11-19 Permeable pavement structure

Publications (2)

Publication Number Publication Date
JPH07138905A JPH07138905A (en) 1995-05-30
JP2510399B2 true JP2510399B2 (en) 1996-06-26

Family

ID=17760482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29078593A Expired - Fee Related JP2510399B2 (en) 1993-11-19 1993-11-19 Permeable pavement structure

Country Status (1)

Country Link
JP (1) JP2510399B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4225634B2 (en) * 1999-06-29 2009-02-18 大林道路株式会社 Permeable pavement structure
JP4157650B2 (en) * 1999-06-29 2008-10-01 大林道路株式会社 Sidewalk pavement structure
JP5254050B2 (en) * 2009-01-13 2013-08-07 Jfeミネラル株式会社 Pavement repair method to prevent uplift and destruction due to roadbed expansion
JP7080201B2 (en) * 2019-06-13 2022-06-03 大林道路株式会社 Pavement structure and construction method of permeable concrete pavement

Also Published As

Publication number Publication date
JPH07138905A (en) 1995-05-30

Similar Documents

Publication Publication Date Title
Sonebi et al. Pervious concrete: Mix design, properties and applications
JP3156151B2 (en) Perforated pavement with road surface temperature rise suppression function filled with silt-based filler
WO2006042461A1 (en) Permeable construction material containing waste rubber tyres
AM et al. Development of high quality pervious concrete specifications for Maryland conditions.
KR19980027663A (en) Drainage concrete paving method
Cherrak et al. Valorization of the use of calcareous tuff and dune sand in Saharan road design
JP2510399B2 (en) Permeable pavement structure
JP2001073307A (en) Water permeable pavement structure
JP4699081B2 (en) Water retentive pavement and its pavement method
JP3909956B2 (en) Permeable soil improvement material
JP3050793B2 (en) Pavement material and pavement block using the same
JPS59206502A (en) Production of water pervious cement concrete construction
JP4380818B2 (en) Permeable asphalt pavement structure
JP4599233B2 (en) Substructure of water retention pavement
GB2142329A (en) Road-surfacing material
JPS60215565A (en) Manufacture of cement concrete product with high water permeability
JP4060497B2 (en) Roadbed material and roadbed structure with excellent strength and water permeability
Kevern et al. Temperature response in a pervious concrete system designed for stormwater treatment
GB2396379A (en) Water management system
JP4146964B2 (en) High-performance road structure and its construction method
JP3208537B2 (en) Grain preparation and stabilization method using solidified cement made from sewage sludge incineration ash
KR102536616B1 (en) Nature-friendly permeable pavement with improved permeability using shells and porous minerals and its construction method
Kulkarni et al. REVIEW OF STORMWATER MANAGEMENT USING PERVIOUS CONCRETE IN PAVEMENTS
JPH02157301A (en) Stabilization for permeable surface layer for road bed
Alam Developing Appropriate Roadbase for Bangladesh Pavements

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960213

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees