JP3208537B2 - Grain preparation and stabilization method using solidified cement made from sewage sludge incineration ash - Google Patents

Grain preparation and stabilization method using solidified cement made from sewage sludge incineration ash

Info

Publication number
JP3208537B2
JP3208537B2 JP31130098A JP31130098A JP3208537B2 JP 3208537 B2 JP3208537 B2 JP 3208537B2 JP 31130098 A JP31130098 A JP 31130098A JP 31130098 A JP31130098 A JP 31130098A JP 3208537 B2 JP3208537 B2 JP 3208537B2
Authority
JP
Japan
Prior art keywords
cement
incineration ash
lime
sewage sludge
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31130098A
Other languages
Japanese (ja)
Other versions
JP2000128613A (en
Inventor
利通 白水
清 井
清隆 久野
孝芳 溝口
真宏 井
Original Assignee
株式会社エフイ石灰工業所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エフイ石灰工業所 filed Critical 株式会社エフイ石灰工業所
Priority to JP31130098A priority Critical patent/JP3208537B2/en
Publication of JP2000128613A publication Critical patent/JP2000128613A/en
Application granted granted Critical
Publication of JP3208537B2 publication Critical patent/JP3208537B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/021Agglomerated materials, e.g. artificial aggregates agglomerated by a mineral binder, e.g. cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/10Burned or pyrolised refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Road Paving Structures (AREA)
  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、都市下水の端末
処理工程で副生される汚泥焼却灰について、炭素成分が
一定量以下のものを利用し、汚泥焼却灰とセメントを混
合し固化させたセメント固化物に関するものであり、あ
る程度以上の強度を有するようにすることにより、これ
をそのまま建設資材等としたり、あるいは安定処理用の
粒状骨材として利用するものであり、また下水処理とい
う環境事業の廃棄物の再生利用法に関するものである。
The present invention relates to sludge incineration ash by-produced in the terminal treatment step of municipal sewage, which has a carbon content of a certain amount or less, and mixes and solidifies the sludge incineration ash with cement. It is related to cement solidified material, and it is used as it is as construction material or as granular aggregate for stable treatment by having a certain level of strength, and it is an environmental business called sewage treatment On waste recycling methods.

【0002】近年の下水道の普及に伴って発生する汚泥
の量も激増しており、この汚泥を大量に処理するために
建設資材への利用という面から、溶融システムによる技
術開発が進められている。すなわち、1300℃〜14
00℃の高温状態で汚泥中の無機物を溶融し、建設資材
化の容易な溶融スラグを生成するものである。
[0002] In recent years, the amount of sludge generated due to the spread of sewerage has also increased drastically, and technological development using a melting system has been promoted from the viewpoint of using this sludge as a construction material in order to treat it in large quantities. . That is, 1300 ° C.-14
It melts the inorganic substances in the sludge at a high temperature of 00 ° C. to produce a molten slag which can be easily used as construction material.

【0003】しかし、溶融スラグはその取り出し方法に
よって、その物性は大幅に異なり、単独で路盤材として
の転圧等による細粒化に耐える強度を満足するためには
保冷(温度制御によって放熱量を抑えて徐冷する)ある
いは再加熱(水冷・空冷のスラグを900℃〜1000
℃の温度範囲内で一定時間養生する)等によって結晶化
を促進する必要があった。この溶融スラグは高価であ
り、一般の道路事業等にはコスト面から使用不可能であ
るとともに、大量生産が困難なことから汚泥の大量処理
という目的にも適合しない。
However, the physical properties of the molten slag vary greatly depending on the method of taking it out, and in order to satisfy the strength to withstand the granulation due to compaction or the like as a roadbed material alone, it is necessary to keep cold (the amount of heat released by controlling the temperature). Slow cooling while suppressing) or reheating (water-cooled / air-cooled slag at 900 ° C to 1000 ° C)
It is necessary to promote crystallization by curing within a temperature range of ° C. for a certain period of time. This molten slag is expensive, cannot be used for general road business and the like in terms of cost, and is not suitable for the purpose of mass treatment of sludge because mass production is difficult.

【0004】[0004]

【従来の技術】ところで、従来から路盤等の地盤安定処
理として石灰やセメントを添加した安定処理土は広くそ
の効果が認められ採用されてきている。そして、本出願
の出願人はこの効果を更に高めた、石灰(生石灰、消石
灰及び石灰石粉末)に製鉄時に副生する酸化鉄の微粉末
を混合した土質安定材(以下「Fe石灰」と称すること
がある。)を開発し、またこれに自然土等を混合した処
理土(以下「Fe石灰処理土」と称することがある。)
でもって軟弱地盤の改良を行う研究を長年行ってきた。
2. Description of the Related Art Conventionally, a stabilized soil obtained by adding lime or cement as a ground stabilizing treatment for a roadbed or the like has been widely adopted because its effect has been recognized. The applicant of the present application has further enhanced this effect, and is a soil stabilizer (hereinafter referred to as “Fe lime”) in which lime (quick lime, slaked lime and limestone powder) is mixed with fine powder of iron oxide by-produced during iron making. ), And treated soil mixed with natural soil and the like (hereinafter sometimes referred to as “Fe lime treated soil”).
He has been conducting research on improving soft ground for many years.

【0005】そして研究の成果として、本出願の発明者
は下水汚泥焼却灰の主要成分組成が上記Fe石灰の場合
の反応機構に関する主要成分と類似(SiO2 ,Al2
O3,Fe2 O3 等が共通)していることに着目し、下
水汚泥焼却灰とFe石灰を混合した土質安定材を開発し
特許出願した(特開平8−3552号公報参照)。
As a result of the research, the inventor of the present application has found that the main component composition of the sewage sludge incineration ash is similar to the main component relating to the reaction mechanism in the case of Fe lime (SiO2, Al2).
Focusing on the fact that O3, Fe2 O3, etc. are common), we developed a soil stabilizing material in which sewage sludge incineration ash and Fe lime were mixed and applied for a patent (see Japanese Patent Application Laid-Open No. 8-3552).

【0006】上記発明においては福岡県福岡市下水処理
場において副生される下水汚泥焼却灰を使用し、該出願
に開示されているような効果が確認されている。しか
し、その後佐賀県佐賀市下水浄化センターにおいて副生
される下水汚泥焼却灰を使用したところ、表1及に示す
ように当該焼却灰(以下「佐賀市A」と称することがあ
る。)を用いると強度の増進に効果がないばかりでな
く、Fe石灰処理土の反応機構を阻害することが明らか
となった。すなわち、用土に当該焼却灰を加えて材質調
整した土に、6.5(重量)%のFe石灰安定材を添加
・混合した処理土のCBR強度は、用土に対する焼却灰
の添加量に反比例して減少する。
[0006] In the above invention, sewage sludge incineration ash by-produced in a sewage treatment plant in Fukuoka City, Fukuoka Prefecture, is used, and the effects as disclosed in the application have been confirmed. However, when sewage sludge incineration ash produced as a by-product at Saga City Saga Sewage Purification Center was used, the incineration ash (hereinafter sometimes referred to as "Saga City A") is used as shown in Table 1 and Table 1. Not only has no effect on increasing the strength, but also inhibits the reaction mechanism of the Fe-lime treated soil. That is, the CBR strength of the treated soil obtained by adding and mixing 6.5% (by weight) of Fe lime stabilizer to the soil prepared by adding the incinerated ash to the soil is inversely proportional to the amount of the incinerated ash added to the soil. Decrease.

【0007】また、表2は同様の実験をFe石灰に代え
て普通セメントを用いた場合の結果であり、セメント安
定処理土においてもFe石灰処理土と同様、当該焼却灰
(佐賀市A)を添加すると強度の増進に効果がないばか
りでなく、反応機構を阻害することが明らかとなった。
[0007] Table 2 shows the results of a similar experiment in which ordinary cement was used in place of Fe lime. In the cement stabilized soil, the incinerated ash (A, Saga City) was used similarly to the Fe lime treated soil. It has been clarified that the addition not only has no effect on increasing the strength but also inhibits the reaction mechanism.

【0008】[0008]

【発明が解決しようとする課題】そこで、佐賀市Aの下
水汚泥焼却灰と福岡市の下水焼却灰の成分を分析してこ
のような差が生じる理由について検討した。表3は佐賀
市Aの下水汚泥焼却灰の成分分析結果であり、福岡市の
下水汚泥焼却灰の成分結果(特開平8−3552号の表
1参照)と比較検討すると、最も異なる点は、不完全燃
焼によると考えられる炭素分(以下「カーボン」と称す
ることもある。)が8.5(重量)%もの高い値で含ま
れていることがわかった。
The components of the sewage sludge ash from Saga City A and the sewage ash from Fukuoka City were analyzed, and the reason for such a difference was examined. Table 3 shows the results of component analysis of sewage sludge incineration ash from Saga City A. When compared with the results of component analysis of sewage sludge incineration ash in Fukuoka City (see Table 1 in JP-A-8-3552), the most different points are as follows. It was found that the carbon content (hereinafter, also referred to as “carbon”) considered to be due to incomplete combustion was contained at a value as high as 8.5 (weight)%.

【0009】このカーボンは団粒化して焼却灰中に含ま
れているが、指先でほぐすと非常に細かい粒子で、墨の
原料になる煤の状態の有機質であることから、石灰系や
セメント系の反応機構の阻害要因であると考えられた。
なお、表4及び及び表5は、実験で使用した対象土(用
土)の物理的性質及び化学的組成を示したものである。
This carbon is agglomerated and contained in the incinerated ash. However, when it is loosened with a fingertip, the carbon is very fine particles, and since it is an organic material in the form of soot, which is used as a raw material for black ink, it is lime-based or cement-based. Was considered to be an inhibitory factor of the reaction mechanism.
Tables 4 and 5 show the physical properties and chemical composition of the target soil (land medium) used in the experiment.

【0010】そこで、佐賀市Aの下水汚泥焼却灰のカー
ボンを除去するために電気炉により炉内の設定温度を8
00℃と1200℃とし、燃焼時間を10分間,30分
間,60分間と変えて実験を行ったところ、以下のよう
な結果となった。
Therefore, in order to remove carbon from sewage sludge incineration ash of Saga City A, the set temperature in the furnace is set to 8 using an electric furnace.
Experiments were performed at 00 ° C. and 1200 ° C. and the burning time was changed to 10, 30, and 60 minutes, and the following results were obtained.

【0011】設定温度を800℃とした場合は、10分
間燃焼では室温に戻ると大部分のカーボンはそのままで
全体の色も殆ど変わらず黒色であったが、30分間燃焼
では大部分のカーボンは燃焼して室温に戻ると褐色と黒
色の粒子が混ざりあった状態となった。また60分間燃
焼では、カーボンは殆ど燃焼して室温に戻っても全体と
しては比較例として用いた福岡市の焼却灰と同じ淡褐色
を呈し、ごく少量の黒色の粒子が混ざる状態となった。
When the set temperature is set to 800 ° C., most of the carbon remains black as it is when the temperature returns to room temperature after burning for 10 minutes, but most of the carbon remains unchanged after burning for 30 minutes. After burning and returning to room temperature, brown and black particles were mixed. In addition, in the case of burning for 60 minutes, even if carbon almost burned and returned to room temperature, the carbon as a whole exhibited the same light brown color as the incineration ash of Fukuoka City used as a comparative example, and a very small amount of black particles was mixed.

【0012】設定温度を1200℃とした場合は、10
分間燃焼では室温に戻るとカーボンの大部分はそのまま
の黒い色で残ったままで、容器の底部に溶融状態で溜っ
た状態となり、30分間燃焼では溶融化が一段と進行し
一部ガラス化が進んで容器の底部と融合して付着した。
また60分間燃焼では、溶融化,ガラス化が更に進行し
て室温に戻ると容器と融合して破損してしまう状況であ
った。
When the set temperature is 1200 ° C., 10
In the case of burning for 30 minutes, when returning to room temperature, most of the carbon remains in the black state as it is and remains in the molten state at the bottom of the container, and in the case of burning for 30 minutes, the melting progresses further and some vitrification progresses Fused with and adhered to the bottom of the container.
Further, in the case of combustion for 60 minutes, melting and vitrification further proceeded, and when the temperature returned to room temperature, it was fused with the container and damaged.

【0013】以上の目視の結果より設定温度800℃で
燃焼時間60分間のものが最もカーボンが除去されてい
ると思われたのでこれの成分分析を行ったところ、表6
に示す通り炭素分(カーボン)は0.07(重量)%で
あり表3と比較すると他の成分は大きな変化はないが炭
素分が極めて減少していることが確認された。
From the results of the above visual observations, it was considered that carbon was the most removed at a set temperature of 800 ° C. for a burning time of 60 minutes.
As shown in Table 2, the carbon content (carbon) was 0.07 (weight)%, and it was confirmed that the other components did not change significantly but the carbon content was extremely reduced as compared with Table 3.

【0014】次にこの電気炉で燃焼処理した焼却灰を用
土に混合して材質調整した場合のFe石灰処理土のCB
R強度に及ぼす影響に関する実験を行った。その結果を
表7に示すが、下水汚泥焼却灰に含有するカーボンを燃
焼処理して除去することによって、Fe石灰処理土の安
定材として利用できることが確認できた。
Next, the CB of the Fe-lime treated soil obtained by mixing the incinerated ash burned in the electric furnace with the soil and adjusting the material quality is described.
An experiment on the effect on R intensity was performed. The results are shown in Table 7, and it was confirmed that the carbon contained in the sewage sludge incineration ash can be used as a stabilizer for Fe-lime-treated soil by removing the carbon by burning.

【0015】次に、佐賀市下水浄化センターの現有施設
において運転方法を改善して炭素分(カーボン)を減少
させることを目的として各種実験を行った。表8はこの
結果得られた下水汚泥焼却灰(以下「佐賀市B」と称す
ることがある。)成分分析結果を示すものであるが、炭
素分(カーボン)は2.28(重量)%で上記電気炉8
00℃,60分間燃焼の場合の0.07(重量)%を比
べると格段に多いが従来の佐賀市Aの焼却灰を比べると
約4分の1に減少している。
Next, various experiments were conducted with the aim of improving the operation method and reducing the carbon content (carbon) at the existing facility of the Saga Sewage Purification Center. Table 8 shows the results of component analysis of the sewage sludge incineration ash (hereinafter sometimes referred to as “Saga city B”) obtained as a result. The carbon content (carbon) was 2.28 (weight)%. The electric furnace 8
Compared to 0.07% (weight)% in the case of burning at 00 ° C for 60 minutes, it is much larger than that of the conventional incinerated ash of Saga City A.

【0016】この佐賀市Bの下水汚泥焼却灰を用土に混
合して材質調整した場合のFe石灰処理土のCBR強度
に及ぼす影響に関する実験を行った。その結果を表9に
示すが、この佐賀市Bの焼却灰をFe石灰処理土の用土
の材質調整材等として利用することによる処理土の補強
効果はなく、むしろ反応機構の阻害要因となるとがわか
った。よって、この程度(2%強)のカーボン含有量の
汚泥焼却灰をそのままFe石灰と混合して使用すること
は非実用的であることがわかった。
An experiment was conducted on the effect of the sewage sludge incineration ash from Saga City B on the CBR strength of the Fe-lime treated soil when the material was adjusted by mixing it with the soil. The results are shown in Table 9, which shows that the use of the incinerated ash of Saga City B as a material adjuster for the soil of Fe-lime treated soil does not have a reinforcing effect on the treated soil, but rather is a hindrance to the reaction mechanism. all right. Therefore, it has been found that it is impractical to use sludge incineration ash having this level of carbon content (more than 2%) by mixing it with Fe lime as it is.

【0017】そこで、佐賀市下水浄化センターにおい
て、更にポリ塩化鉄等の凝集剤を使用して脱水ケーキの
含水比を下げて燃焼効率を上げて含有カーボンの燃焼除
去を行う実験を行った。表10はこの結果得られた下水
汚泥焼却灰(以下「佐賀市C」と称することがある。)
の成分分析結果を示すものであるが、炭素分(カーボ
ン)は0.21(重量)%で表3に示す上記電気炉80
0℃,60分間燃焼の場合の0.07(重量)%に相当
近づくものが得られた。
Therefore, an experiment was conducted at the Saga Sewage Purification Center to further reduce the water content of the dewatered cake by using a coagulant such as polyiron chloride to increase the combustion efficiency and burn off the carbon contained. Table 10 shows the resulting sewage sludge incineration ash (hereinafter sometimes referred to as "Saga City C").
3 shows the results of component analysis of the electric furnace 80 shown in Table 3 with the carbon content (carbon) being 0.21 (weight)%.
A product considerably approaching 0.07% by weight in the case of burning at 0 ° C. for 60 minutes was obtained.

【0018】上記実験により現有施設においてもカーボ
ン含有量を相当減少させることが可能であることがわか
ったが、施設における実際の稼働状態等を考慮すると、
佐賀市Cの状態までカーボンを減少させることは現時点
においては実際上不可能に近く、佐賀市B程度の状態を
めどに稼働させることが実際的である。
From the above experiment, it was found that the carbon content can be considerably reduced even in the existing facilities, but in consideration of the actual operation state and the like in the facilities,
Nearly practically impossible at present is to reduce the carbon to a state of Saga C, it is the practical to run it plans a state of about Saga B.

【0019】[0019]

【課題を解決するための手段】そこで、佐賀市B程度の
カーボン含有量(2%強)の汚泥焼却灰をそのままFe
石灰と混合して使用することの代わりに、この焼却灰を
セメントで固化したものが粒状骨材やその他の建設資材
として使用できるのではないかとの前提で各種実験を行
い、以下に詳述するようにその実用性を確認して本発明
を完成した。
Accordingly, sludge incineration ash having a carbon content of about B (more than 2%) of Saga city is directly converted to Fe
Instead of mixing with lime, various experiments were conducted on the premise that solidified cement with this incinerated ash could be used as granular aggregates and other construction materials, and will be described in detail below. Thus, the present invention was completed after confirming its practicality.

【0020】すなわち、この発明で使用する下水汚泥焼
却灰を原料とするセメント固化物(以下「本発明のセメ
ント固化物」又は「本発明の下水汚泥焼却灰を原料とす
るセメント固化物」と称する場合もある。)は下水汚泥
焼却灰の炭素分が3(重量)%以下となるようにし、こ
の下水汚泥焼却灰とセメントを、重量比で焼却灰:セメ
ントを1:1〜1:3の割合で混合し適量の水を加えて
固化させ、一軸圧縮強度を100〜200kgf/cm
2 (材令28日)としたものである。
That is, cement solidified from sewage sludge incineration ash used in the present invention (hereinafter referred to as “the cement of the present invention”)
Solidified matter ”or“ sewage sludge incineration ash of the present invention
Solidified cement ". ) Is to adjust the carbon content of the sewage sludge incineration ash to 3% by weight or less, and to mix the sewage sludge incineration ash and cement in a weight ratio of incineration ash: cement of 1: 1 to 1: 3. An appropriate amount of water is added to solidify, and the uniaxial compressive strength is 100 to 200 kgf / cm.
2 (March 28th).

【0021】そして、この発明に係る下水汚泥焼却灰を
原料とするセメント固化物を利用した粒調処理材は上記
セメント固化物を破砕した粒状骨材と自然土の混合物
に、酸化鉄の微粉末及び消石灰からなるFe石灰系安定
材を混合したものである。
[0021] Then, the sewage sludge incinerated ash according to the present invention
The grain preparation material using the solidified cement as a raw material is a mixture of a granular aggregate obtained by crushing the solidified cement and a natural soil, and a fine powder of iron oxide and an Fe lime-based stabilizer made of slaked lime. is there.

【0022】一方、この発明に係る安定処理法は上記粒
調処理材で路盤を敷設し、また転圧後において個々の粒
状骨材はFe石灰系処理土のマトリックスで包埋された
状態となるようにしたものである。
On the other hand, in the stabilization method according to the present invention, a roadbed is laid with the above-mentioned grain-conditioned material, and after the compaction, individual granular aggregates are embedded in a matrix of Fe-lime-based treated soil. It is like that.

【0023】[0023]

【作用】炭素(カーボン)を一定量以下に抑えた下水汚
泥焼却灰は、Fe石灰に近い化学反応をし、これをセメ
ントと混合して固化させると、比較的低強度の軽量多孔
質のセメント固化物となる。
[Function] Sewage sludge incineration ash, in which carbon (carbon) is suppressed to a certain amount or less, undergoes a chemical reaction similar to Fe lime, and when this is mixed with cement and solidified, relatively low-strength lightweight porous cement is obtained. It becomes a solid.

【0024】そしてこれを破砕した粒状骨材をFe石灰
と自然土に混合して使用すると、粒状骨材をFe石灰処
理土のマトリックスで包埋し粒状骨材の表面とマトリッ
クスとの接触面にFe石灰系安定材による水和物が生成
され、接触面における結合力と摩擦抵抗の増加によって
安定処理路盤の強度が増進することになる。
When the crushed granular aggregate is used by mixing it with Fe lime and natural soil, the granular aggregate is embedded in the matrix of the Fe lime treated soil and the contact surface between the surface of the granular aggregate and the matrix is formed. Hydrates are produced by the Fe-lime-based stabilizer, and the strength of the stabilized base is increased by the increase in the bonding force and the frictional resistance at the contact surface.

【0025】[0025]

【発明の実施の態様】本発明のセメント固化物は、粒状
骨材としては単独で粒状路盤材として用いる場合のよう
な高い強度は必要としない。しかし、その粒状骨材の強
度及び粒状骨材を製造するためのセメント固化物の強度
は不明であるので、このことを明らかにするために下記
の各種実験を行うとともに、出願人の過去の各種経験に
基づき実用上使用可能なセメント固化物や粒状骨材の強
度等を決定した。
BEST MODE FOR CARRYING OUT THE INVENTION The solidified cement of the present invention does not require a high strength as a granular aggregate alone as in the case of using it alone as a granular roadbed material. However, since the strength of the granular aggregate and the strength of the solidified cement for producing the granular aggregate are unknown, the following various experiments were conducted to clarify this, and the applicant's past various Based on experience, the strength of cement solids and granular aggregates that can be used practically were determined.

【0026】まず、焼却灰を主原料とするセメント固化
物の配合設定に関する実験を行い、次いでこの配合設定
に基づいて数種類のセメント固化物を機械破砕した粒状
骨材を混合したFe石灰系安定処理路盤材(以下「粒調
Fe処理材」と称すことがある。)の配合設定に関する
実験を行った。
First, an experiment was conducted on the setting of a cement solidified material containing incinerated ash as a main raw material. Based on the compounding setting, several types of cement solidified materials were mechanically crushed and mixed with a granular aggregate to mix Fe-lime-based stable treatment. An experiment was conducted on the setting of the roadbed material (hereinafter sometimes referred to as “grain-finished Fe-treated material”).

【0027】なお、本出願でいうFe石灰工法は、軟弱
な路床上に現位置または現場付近で入手可能な砂質ロー
ムないし砂質粘土等の自然土(北部九州ではマサ土、南
九州ではシラス等)に表11に示すようなFe石灰安定
材を添加・混合した安定処理層(不透水性の拘束層)を
図1に示すように構築することを標準としている。
The Fe lime method referred to in the present application is based on natural soil such as sandy loam or sandy clay which can be obtained on a soft subgrade at the present position or near the site (masa soil in northern Kyushu, white sand in southern Kyushu). The standard is to construct a stabilizing layer (impervious constrained layer) to which Fe lime stabilizers are added and mixed as shown in Table 11 as shown in Table 11 as shown in FIG.

【0028】この標準タイプの粒状路盤の疲労による耐
久性を改善することを目的として粒調Fe処理材を路盤
に適用することとしてきている。これは耐水性や振動減
衰性等に優れ、且つ単独の粒状路盤材としては細粒化が
懸念されるような建設廃材等による粒状骨材が40〜5
0(重量)%の高率で活用されることから、図2に示す
ように立体交差の地下道部や道路が冠水状態となるよう
な低平地の耐水性舗装、あるいは市街化地域の長寿命化
舗装の路盤に適用されている。本発明の下水汚泥焼却灰
を原料とするセメント固化物を破砕した粒状骨材を粒調
Fe処理材の補強材として利用する方法は、この長年の
経験的な技術をベースとして研究開発したものである。
In order to improve the durability of this standard type granular roadbed due to fatigue, a grain-finished Fe-treated material has been applied to the roadbed. This is excellent in water resistance and vibration damping properties, and as a single granular roadbed material, 40 to 5 granular aggregates due to construction waste materials or the like, for which fine graining is a concern.
As it is used at a high rate of 0 (weight)%, as shown in Fig. 2, water-resistant pavement on low-lying terrain where underpasses and roads at graded intersections are flooded, or longevity in urbanized areas Applied to pavement subbase. The method of using the granular aggregate obtained by crushing the solidified cement made from sewage sludge incineration ash as a raw material of the present invention as a reinforcing material for the grain-treated Fe-treated material has been researched and developed based on this long-standing empirical technology. is there.

【0029】まず、カーボン含有量約2.3(重量)%
の佐賀市Bの汚泥焼却灰とカーボン含有量約0.2(重
量)%の佐賀市Cの汚泥焼却灰を使用し、焼却灰とセメ
ントの混合比を変えてセメント固化物を作成した。ま
た、粒状骨材の表面の粗さを増すことによって、締め固
め後のマトリックスと骨材表面における摩擦抵抗の増大
による粒調Fe処理層の強度の増進を期待して、焼却灰
に天然山砕のスクリーニングス(SC)を乾燥重量比で
5:2の割合で混合したものについてもセメント固化物
を作成した。その両者の結果を表12〜表15に表す。
また図3及び図4にに単位セメント量と一軸圧縮強さ
(材令28日)の関係を示す。
First, a carbon content of about 2.3 (weight)%
Using sludge incineration ash of Saga City B and sludge incineration ash of Saga City C having a carbon content of about 0.2 (weight)%, a cement solidified product was prepared by changing the mixing ratio of incineration ash and cement. In addition, by increasing the roughness of the surface of the granular aggregate, it is expected that the strength of the grain-like Fe treated layer will increase due to the increase in frictional resistance between the compacted matrix and the surface of the aggregate. A solidified cement was also prepared from a mixture of the above screenings (SC) at a dry weight ratio of 5: 2. Tables 12 to 15 show the results of both.
3 and 4 show the relationship between the unit cement amount and the unconfined compressive strength (age of 28 days).

【0030】表12及び表14から明らかなように、焼
却灰とセメントを1:1の割合で混合すれば、いずれの
焼却灰を使用しても一軸圧縮強さ100kgf/cm2
程度のセメント固化物を作成することが可能であること
がわかる。そして、セメントの量を増やせばそれにつれ
て一軸圧縮強さも上昇する。また、図3及び図4から明
らかなように、焼却灰単体と焼却灰に天然山砕のスクリ
ーニングスを5:2の割合で混合した場合も、強度増進
の面ではあまり大きな差はない。高い強度のセメント固
化物を得ようとすると天然山砕のスクリーニングスが有
効であるが、本発明の目的からするとあまり高い強度は
必要でなく、それよりもより多くの焼却灰を活用するこ
との方が有効である。
As is clear from Tables 12 and 14, if the incinerated ash and the cement are mixed at a ratio of 1: 1, the uniaxial compressive strength is 100 kgf / cm 2 regardless of which incinerated ash is used.
It can be seen that it is possible to produce a degree of solidified cement. And, as the amount of cement increases, the uniaxial compressive strength increases accordingly. Also, as is clear from FIGS. 3 and 4, there is no significant difference in strength improvement when the incineration ash alone and the incineration ash are mixed with natural mountain crushing screenings at a ratio of 5: 2. Screening of natural mountain crushing is effective in order to obtain high-strength cement solidified material.However, for the purpose of the present invention, high strength is not required, and it is necessary to utilize more incineration ash. Is more effective.

【0031】したがって、次の粒調Fe処理材の配合設
定に関する実験に用いるセメント固化物については、強
度の面からは焼却灰単体で材令28日の一軸圧縮強さが
50・100・150・200kgf/cm2 の4種類
を、また骨材表面の粗さを増すことによる摩擦抵抗の増
進の面から焼却灰と天然山砕のスクリーニングスを5:
2の割合で混合したもので材令28日の一軸圧縮強さが
100kgf/cm2となる1種の合計5種類で実験を
行った。
Therefore, from the viewpoint of strength, the incinerated ash alone had a uniaxial compressive strength of 50, 100, 150. Screening of incinerated ash and natural crushed stones from the four types of 200 kgf / cm2 and from the viewpoint of increasing the frictional resistance by increasing the surface roughness of the aggregate:
The experiment was conducted with a total of five types of materials mixed at a ratio of 2 and having a uniaxial compressive strength of 100 kgf / cm 2 on the 28th day of the material.

【0032】ここでの実験的研究の目的は概略次のよう
に要約できる。すなわち、締め固め後の粒調Fe処理材
において、混入した単独では路盤材に適用できない位の
低強度の粒状骨材がFe石灰系処理材のマトリックスで
完全に包埋されることにより細粒化が防止され、10-7
以下の透水係数(cm/s)を確保されるような骨材粒
度範囲及び基本配合率を求めることである。
The purpose of this experimental study can be summarized as follows. That is, in the grain-finished Fe-treated material after compaction, the low-strength granular aggregate that cannot be applied to the roadbed material by itself when mixed is completely embedded in the matrix of the Fe-lime-based treated material, thereby reducing the grain size. Is prevented and 10-7
The purpose is to determine an aggregate particle size range and a basic compounding ratio that ensure the following water permeability (cm / s).

【0033】より具体的には次の通りである。 用土に4種類の強度の異なる焼却灰セメント固化物に
よる粒状骨材を混合した粒調Fe処理材について、粒状
骨材の強度とCBR強度の関係を各材令について求め、
セメント固化物の最適強度を求める。 焼却灰に天然山砕のスクリーニングスを5:2(乾燥
重量)の割合で混合したセメント固化物(材令28日の
一軸圧縮強さ100kgf/cm2 )の粒状骨材を混合
した粒調Fe処理材についての値を上記の関係図に表示
して、天然山砕のスクリーニングスに関する評価を行
う。 上記のセメント固化物による粒状骨材の代わりに比較
例として、天然山砕を適用した場合、及び用土単体にF
e石灰安定材を添加した場合について各材令におけるC
BR強度を求めて、本発明による場合と比較検討を行
う。 本発明においては、突固め直後ないしその初期にセメ
ント固化物による粒状骨材の表面にFe石灰系安定材の
イオン交換反応に基づく凝集化作用によって骨材粒度は
粗粒化することを確認する。これを検証するために、突
固め直後及び材令4日の供試体について、骨材のふるい
分け試験を行うことによって、セメント固化物の強度の
違い、あるいは天然山砕を適用した場合、あるいはFe
石灰安定材を添加しない場合との比較検討を行う。 また、ふるい分け試験における試料破砕調整方法つい
て比較実験を行うとともに、分散剤(ヘキサメタリン酸
ナトリウム)を用いて団粒化を分散した場合の粒度試験
を行って、本発明の効果の検証を行う。
More specifically, it is as follows. Regarding the grain-treated Fe-treated material in which four types of incinerated ash cement solidified materials with different strengths were mixed in the soil, the relationship between the strength of the granular aggregate and the CBR strength was obtained for each material age,
Calculate the optimum strength of cement solidified material. Granulated Fe treatment mixed with cement aggregate (uniaxial compressive strength of 100 kgf / cm @ 2 on 28 days old) obtained by mixing incineration ash with natural mountain crushing screenings at a ratio of 5: 2 (dry weight) The values for the timber are displayed in the above relationship diagram to evaluate the screenings of natural mountain crushing. As a comparative example, when natural mountain crushing is applied in place of the above-mentioned granular aggregate made of cement solidified material, and F
e When lime stabilizer is added C in each material age
BR intensity is obtained and compared with the case according to the present invention. In the present invention, it is confirmed that the particle size of the aggregate is coarsened immediately after the compaction or at an early stage by the agglomeration action based on the ion exchange reaction of the Fe-lime-based stabilizer on the surface of the granular aggregate by the solidified cement. To verify this, the specimens immediately after compaction and 4 days of age were subjected to an aggregate sieving test to determine the difference in the strength of the solidified cement, or the case where natural mountain crushing was applied, or
A comparative study is made with the case where no lime stabilizer is added. In addition, a comparative experiment is performed on a sample crushing adjustment method in a sieving test, and a particle size test in a case where agglomeration is dispersed using a dispersant (sodium hexametaphosphate) is performed to verify the effect of the present invention.

【0034】そして予備試験として、粒調Fe処理材の
粒度範囲と基本配合率を求めるために、表4及び表5の
マサ土に表16に示す天然山砕による粒状骨材(表17
に示すM−25の粒度範囲の中央値を結ぶ曲線)を、
0,20,40,60,80,100(乾燥重量)%で
混入した混合物に対し、6.0(乾燥重量)%の標準F
e石灰を添加して、処理土の突固め試験、CBR試験及
び透水試験を行った。
As a preliminary test, in order to determine the particle size range and the basic compounding ratio of the grain-finished Fe-treated material, the granular aggregate (Table 17) obtained by natural crushing shown in Table 16 was applied to the masa soil shown in Tables 4 and 5.
The curve connecting the median of the particle size range of M-25 shown in
6.0 (dry weight)% standard F relative to the mixture spiked at 0, 20, 40, 60, 80, 100 (dry weight)%.
e) Lime was added, and the compacted test, CBR test and water permeability test of the treated soil were performed.

【0035】なお、この試験で粒状骨材として本発明の
対象である下水汚泥焼却灰を原料とするセメント固化物
ではなく標準山砕を用いたのは次の2点の理由による。 マサ土と標準山砕による粒状骨材の比重差が0.2以
下であることから乾燥密度の差が主としてマトリックス
としてのマサ土の締め固め度を表すことになり結果の確
認が容易である。 粒状骨材の混入量が増大して突固めによる衝撃荷重を
粒状骨材が直接受けても、標準山砕であれば細粒化がな
いので解析が容易であるからである。
In this test, the standard aggregate was used as the granular aggregate instead of the solidified cement made from sewage sludge incineration ash, which is the subject of the present invention, for the following two reasons. Since the difference in specific gravity between the masa soil and the granular aggregate by the standard mountain crushing is 0.2 or less, the difference in dry density mainly indicates the degree of compaction of the masa soil as a matrix, and it is easy to confirm the result. This is because even if the aggregate amount of the granular aggregate increases and the granular aggregate is directly subjected to the impact load due to the compaction, the analysis is easy because there is no fine graining in the case of the standard mountain crushing.

【0036】表18と表19は、マサ土と標準山砕によ
る粒調Fe処理材の混入率と合成粒度の計算表である
が、ここでは安定材(Fe石灰)によるイオン交換反応
による凝集作用や水和化合物の生成が骨材粒度に影響を
及ぼす(表20〜表22及び図5〜図7)ことから、F
e石灰を加えて計算を行っている。
Tables 18 and 19 are calculation tables of the mixing ratio of the grain-treated Fe-treated material and the synthetic particle size of the masa soil and the standard crushing. Here, the coagulation action by the ion exchange reaction by the stabilizer (Fe lime) is shown. And hydrated compounds affect the aggregate particle size (Tables 20 to 22 and FIGS. 5 to 7).
eCalculation is performed by adding lime.

【0037】表23及び図8〜図10の結果から次のこ
とがわかる。 粒状骨材の混入率と突固め乾燥密度(ただし突固め回
数は各層67回×3層)の関係では、混入率50%位ま
では粒状骨材の混入率につれて密度は直線的に増大する
が、60%以上ではあまり密度が増大しないか低下す
る。マサ土と骨材にあまり比重差がないので、これはは
じめ骨材によってマトリックスの締め固め度が上昇する
が、骨材混入率60%以上になると骨材と骨材が接触
し、マトリックスの締め固めが阻害されるためと思われ
る。 混入率とCBRの関係(突固め後4日間水浸)では、
混入率0%でも反応機構によって比較的高い強度を示す
が、混入率20%では更に約2割程度高くなり、混入率
40%では強度は少し低くなるが混入率0%よりは約1
割ほどは高い値を示す。しかし、混入率40%以上では
混入率の増加によって強度は直線的に低下し、混入率1
00%(標準山砕94%+Fe石灰6%)では、粒状骨
材単独の場合よりも低い値を示す。 混入率と透水関係では、混入率0%(マサ土94%+
Fe石灰6%)で5.5×10-7という値を示し、混入
率20%では更にやや低い値を示すが、混入率40%で
は8.4×10-7という値を示し、それ以上混入率が増
加すると直線的に透水係数は増大する。しかし混入率1
00%(標準山砕94%+Fe石灰6%)では8.0×
10-5という値を示し、Fe石灰安定材を添加しない粒
状骨材単独の場合の透水係数より非常に低い値となる。
The following can be understood from the results shown in Table 23 and FIGS. In the relationship between the mixing ratio of the granular aggregate and the compacted dry density (however, the compaction frequency is 67 times for each layer × 3 layers), the density increases linearly with the mixing ratio of the granular aggregate up to the mixing ratio of about 50%. , 60% or more, the density does not increase or decrease so much. Since there is not much difference in specific gravity between the masa soil and the aggregate, the degree of compaction of the matrix is increased by the aggregate at first, but when the aggregate mixing ratio exceeds 60%, the aggregate and the aggregate come into contact and the matrix is tightened. This is probably due to the inhibition of compaction. The relationship between the mixing ratio and CBR (4 days after tamping)
Even when the mixing ratio is 0%, the strength is relatively high due to the reaction mechanism. However, when the mixing ratio is 20%, the strength is further increased by about 20%.
A relatively high value is shown. However, at a mixing ratio of 40% or more, the strength decreases linearly with an increase in the mixing ratio, and the mixing ratio 1
In the case of 00% (standard mountain crushing 94% + Fe lime 6%), the value is lower than that in the case of the granular aggregate alone. In relation to the mixing ratio and water permeability, the mixing ratio is 0% (masa soil 94% +
Fe lime 6%) shows a value of 5.5 × 10 -7, and the mixture ratio of 20% shows a slightly lower value, but a mixture ratio of 40% shows a value of 8.4 × 10 -7. As the mixing ratio increases, the hydraulic conductivity increases linearly. However, mixing ratio 1
8.0% for 00% (standard crushed rock 94% + Fe lime 6%)
It shows a value of 10 @ -5, which is much lower than the water permeability of the granular aggregate alone without the addition of Fe lime stabilizer.

【0038】上記予備試験の結果から、本発明における
望ましい粒度範囲と基本配合率は次の通りであると考え
られる。 本発明における望ましい粒度範囲の下限は図11の骨
材混入率60%の粒度曲線となり、上限は同様に骨材混
入率0%の粒度曲線となる。 基本配合率は、表18に示す合成粒度40%の配合、
すなわち[マサ土56.4%+粒状骨材37.6%+F
e石灰6.0%]となる。 したがって以下に述べる試験ではこれらの粒度範囲と基
本配合率を基準として行った。試験手順及び結果は次の
通りである。ただし、上記図8〜図10の結果から見
て、骨材混入率20%〜60%では実用可能であり、2
5%〜45%位では最良の結果が得られると思われる。
From the results of the above preliminary test, it is considered that the desirable particle size range and the basic compounding ratio in the present invention are as follows. The lower limit of the desirable particle size range in the present invention is a particle size curve with an aggregate mixing ratio of 60% in FIG. 11, and the upper limit is similarly a particle size curve with an aggregate mixing ratio of 0%. The basic blending ratio is the blending of the synthetic particle size of 40% shown in Table 18,
That is, [mass earth 56.4% + granular aggregate 37.6% + F
e-lime 6.0%]. Therefore, in the tests described below, the particle size range and the basic compounding ratio were used as a reference. The test procedure and results are as follows. However, from the results of FIGS. 8 to 10 described above, it is practically feasible at an aggregate mixing ratio of 20% to 60%.
It seems that the best results are obtained at around 5% to 45%.

【0039】1)比重と吸水量による調整 1−1)比重補正による容積比の調整 本発明の下水汚泥焼却灰を原料とするセメント固化物を
機械破砕した粒状骨材は、表24に示すように天然山砕
等の通常の骨材に比べて比重が非常に小さく、吸水量は
非常に大きい。これを粒状骨材として用いた粒調Fe処
理路盤では、表25に示すように使用骨材の比重による
配合率の補正を行って、締め固めた粒調Fe処理層全体
の容積に対する各材料の容積を管理することが重要であ
る。なお、これはアスファルト混合物の基本的な性状が
使用材料の容積によって大きく影響を受けることと類似
であることから、比重補正による容積比の調整方法はア
スファルト舗装要綱に準じている。
1) Adjustment by Specific Gravity and Water Absorption 1-1) Adjustment of Volume Ratio by Correction of Specific Gravity The granular aggregate obtained by mechanically crushing the cement solidified material from sewage sludge incineration ash of the present invention is shown in Table 24. The specific gravity is very small and the water absorption is very large as compared with ordinary aggregate such as natural mountain crushing. In the grain-base Fe-treated roadbed using this as a granular aggregate, the mixing ratio is corrected according to the specific gravity of the aggregate used as shown in Table 25, and the volume of each material with respect to the total volume of the compacted grain-base Fe-treated layer is corrected. It is important to control the volume. Since this is similar to the fact that the basic properties of the asphalt mixture are greatly affected by the volume of the material used, the method of adjusting the volume ratio by the specific gravity correction conforms to the asphalt pavement outline.

【0040】1−2)吸水量に対する調整 ここでのセメント固化物による粒状骨材は、表24に示
すように吸水量が非常に高いことから、本発明の粒調F
e処理材の製造に当たっては予め粒状骨材は十分な吸水
を行って表面乾燥飽和状態で混合する。それは単に締め
固め含水比の調整と言う目的だけでなく、前述の粒状骨
材の表面とマトリックスの接触面におけるFe石灰系安
定材によるイオン交換反応による凝集作用の促進に不可
欠な水分の補給という重要な目的があるからである。た
だし、ここでは基本的な配合は全て乾燥重量百分率
(%)で行うことから、処理材の製造にあたっては土の
含水量の定義に基づいて、乾燥重量を湿潤重量に換算計
量する。
1-2) Adjustment to Water Absorption As shown in Table 24, the granular aggregate made of cement solid has a very high water absorption.
In the production of the e-treated material, the granular aggregate is sufficiently mixed with water in advance and mixed in a dry state on the surface. Not only for the purpose of adjusting the compaction water content ratio, but also for the replenishment of water essential for promoting the coagulation action by the ion exchange reaction by the Fe-lime-based stabilizer at the contact surface between the surface of the above-mentioned granular aggregate and the matrix. Because it has a purpose. However, since the basic blending is performed in all dry weight percentages (%), the dry weight is converted to the wet weight based on the definition of the water content of the soil in the production of the treatment material.

【0041】2)粒調Fe処理材の試験方法 表4と表5に示すマサ土(ただし表18の粒度に調整し
たもの)と、図3と図4及び表12〜表15から求めた
目標一軸圧縮強さ(材令28日:kgf/cm2 )5
0,100,150,200の焼却灰を骨材とするセメ
ント固化物、ならびに焼却灰に天然山砕スクリーニング
スを5:2の割合で混合したものを骨材とする目標一軸
圧縮強さが100kgf/cm2 (ただし表17のM−
25の粒度に調整したもの)とを混合したものに表11
に示す標準Fe石灰を添加・混合する。また、これらの
セメント固化物による粒状骨材の比較例として、表16
に示す天然山砕(M−25)及び表26に示すコンクリ
ート再生骨材(RM−25)を用いて粒調Fe処理材の
試験を行った。
2) Test method for grain-treated Fe-treated material Masasa soil shown in Tables 4 and 5 (however, adjusted to the grain size shown in Table 18) and the target obtained from FIGS. 3 and 4 and Tables 12 to 15 Uniaxial compressive strength (March 28th: kgf / cm2) 5
A target unconfined compressive strength of 100 kgf is obtained by using as an aggregate a cement solidified material using 0,100,150,200 incinerated ash as an aggregate, and a mixture of incinerated ash mixed with natural mountain crushing screenings at a ratio of 5: 2. / Cm2 (however, M-
25 adjusted to a particle size of 25) and Table 11
The standard Fe lime shown in (1) is added and mixed. Table 16 shows comparative examples of granular aggregates using these cement solids.
A natural Fe-crushed material was tested using natural mountain crushing (M-25) shown in Table 2 and recycled concrete aggregate (RM-25) shown in Table 26.

【0042】2−1)CBR試験 粒調Fe処理材のCBR試験は、舗装試験法便覧(社団
法人日本道路協会発行)の安定処理混合物のCBR試験
にほぼ準拠しているが、供試体の作成だけは現位置また
は現場付近で入手できる用土を用い、軟弱路床上のFe
石灰処理土により拘束層上に施工するという前提から、
次のとおりとした。 突固め回数は各層67回で、3層に分けて突固め、F
e石灰安定材の添加量は6.0(乾燥重量)%とした。
突固め含水比は、自然含水比の状態(地山)の用土に
表面乾燥飽和状態の粗骨材を混合したものに所定量のF
e石灰安定材を添加したときの含水比によることとし
た。 供試体の養生は、突固め直後非浸水及び突固め直後か
ら連続して水浸して、材令4日、材令7日、材令14
日、材令28日を標準とした。
2-1) CBR test The CBR test of the grain-treated Fe-treated material is almost in conformity with the CBR test of the stabilized mixture of the pavement test method handbook (published by the Japan Road Association). Only use the soil available at the current location or near the site, and use Fe on a soft subgrade.
On the premise that it is constructed on a constrained layer with lime-treated soil,
It was as follows. The number of times of compaction is 67 for each layer.
e The amount of lime stabilizer added was 6.0 (dry weight)%.
The compacted water content is determined by adding a predetermined amount of F
(e) It depends on the water content when the lime stabilizer is added. The specimens were cured immediately after compaction without water infiltration and continuously immersed immediately after compaction.
The standard date is 28 days.

【0043】2−2)締め固め試体のふるい分け試験 一般に粒状路盤工法や粒度調整工法に粒状骨材を適用す
る場合は、締め固め等による細粒化による強度低下が懸
念されることから、CBR試験における突固め後の供試
体ふるい分け試験が行われる。そこで、本発明では締め
固め直後ないしその初期に粒状骨材の表面にイオン交換
反応による凝集作用で骨材粒度が粗粒化することを確認
するため、次のような方法によって骨材のふるい分け試
験を行った。 突固め直後非浸水及び材令4日のCBR貫入試験後の
供試体をときほぐし、約1kgをビニール袋に入れ、ひ
もで縛ったあと1.5mの高さからコンクリートの床面
に30回落下させた後、ときほぐした試料を100℃の
恒温乾燥で一定質量となるまで炉乾燥した試料を、標準
網ふるい75μmの上で水洗いして細粒分を洗い流した
後、炉乾燥してふるい分け試験を行う。 同様に、1.5mの高さから落下させてときほぐした
炉乾燥試料約1kgを採取して、土質工学会基準(JS
F T 131−1990)土の粒度試験法に準拠し
て、ヘキサメタリン酸ナトリウムの飽和溶液を分散剤と
して分散装置で分散処理した後、水洗い後乾燥し、ふる
い分け試験を行った。
2-2) Screening test of compacted specimens In general, when granular aggregate is applied to the granular roadbed method or the grain size adjusting method, there is a concern that the strength may be reduced due to the reduction in grain size due to compaction or the like. The test specimen sieving test after compaction is performed. Therefore, in the present invention, an aggregate sieving test is carried out by the following method in order to confirm that the aggregate particle size is coarsened by the agglomeration effect of the ion exchange reaction on the surface of the granular aggregate immediately after compaction or in the initial stage. Was done. Immediately after compaction, loosen the specimen after non-flooding and CBR penetration test of 4 days of age, put about 1 kg in a plastic bag, tie it with a string, and drop it 30 times onto a concrete floor from a height of 1.5 m. After that, the loosened sample is oven-dried at a constant temperature of 100 ° C. to a constant mass, and the sample is rinsed with water on a standard mesh sieve 75 μm to wash out fine particles, and then oven-dried to conduct a sieving test. . Similarly, about 1 kg of a furnace-dried sample dropped from a height of 1.5 m and loosened was sampled, and collected by the Japan Society of Soil Engineers (JS
FT 131-1990) According to the soil particle size test method, a saturated solution of sodium hexametaphosphate was used as a dispersant in a dispersing apparatus, followed by washing with water, drying, and a sieving test.

【0044】3)粒調Fe処理材の試験結果と考察 3−1)粒調Fe処理材の材令とCBRに関する試験 表27及び表28に下水汚泥焼却灰(佐賀市B)及び同
(佐賀市C)の単体並びに焼却灰にスクリーニングスを
5:2の割合で混合したセメント固化物による粒状骨材
を補強材とする粒調Fe処理材の材令0日、4日、7
日、14日、28日のCBR試験結果の一覧表を示す。
また、これらのセメント固化物による粒状骨材の比較例
として表29に天然山砕(M−25)及びコンクリート
再生骨材(RM−25)をもちいた場合、並びにマサ土
単体の場合のCBR試験結果一覧表を示す。ただし、比
較例の実験では材令7日については割愛した。
3) Test Results and Consideration of Grain-Fe Treated Material 3-1) Test on Material Age and CBR of Grain-Fe Treated Material Tables 27 and 28 show sewage sludge incineration ash (Saga B) and the same (Saga) Age 0, 4 and 7 of grain-like Fe-treated material with reinforcing cement granulated aggregate obtained by mixing screenings at a ratio of 5: 2 with simple substance of city C) and incineration ash
A list of CBR test results on days 14, 14 and 28 is shown.
In addition, as a comparative example of the granular aggregates using these cement solidified products, CBR tests using natural crushed rocks (M-25) and recycled concrete aggregates (RM-25) as shown in Table 29, and the case of using masa earth alone. The result list is shown. However, in the experiment of the comparative example, material age 7 days was omitted.

【0045】表27〜表29の結果より次のことがわか
る。 焼却灰のセメント固化物は、図3と図4及び表12〜
表15から目標強度ごとに示方配合を求めて製造した
が、大略目標強度に一致したものができた。 天然山砕を用いた処理材は突固め含水比は最も低く
8.2%、突固め乾燥密度は最も高く約2.07g/c
m3 であり、焼却灰のセメント固化物による粒状骨材を
用いた処理材では、最も高い突固め含水比は約23%、
突固め乾燥密度は約1.59g/cm3 であった。それ
にもかかわらず水浸による含水比の上昇は、28日水浸
において最大でも約3.5%であった。このことは、混
合した粒状骨材がFe石灰処理土で完全に包埋されて不
透水層の状態であることを表していると考えられる。 また、比較例として実施した粗骨材を添加しない標準
ふるい13.2mm通過部分のマサ土単体の処理材は高
い強度を示しているが、これはここで用いた用土が表4
に示すように塑性指数は約12と細粒部分は風化が進ん
でいるにもかかわらず、粒度の面では2mm以上の粗骨
材分を約25%と比較的多く含んでいるからである。
The following can be seen from the results of Tables 27 to 29. The solidified cement of incinerated ash is shown in FIGS.
From Table 15, the indicated composition was determined for each of the target strengths, and was manufactured. The treated material using natural mountain crushing has the lowest compaction water content of 8.2% and the highest compacted dry density of about 2.07 g / c.
m3, and the highest tamped water content is about 23% in the treated material using the granular aggregate by the cement solidified incineration ash.
The compacted dry density was about 1.59 g / cm3. Nevertheless, the increase in water content due to immersion was at most about 3.5% in the 28-day immersion. This is considered to indicate that the mixed granular aggregate is completely embedded in the Fe-lime treated soil and is in an impermeable layer. In addition, the treated material of masa earth alone in the portion passing through the standard sieve 13.2 mm without the addition of the coarse aggregate performed as a comparative example shows high strength.
As shown in Fig. 5, the plasticity index is about 12, and the fine-grained portion is relatively weathered, but contains a relatively large amount of coarse aggregate of 2 mm or more, about 25%, in terms of grain size.

【0046】図12は、下水汚泥焼却灰(佐賀市B)と
同(佐賀市C)について、焼却灰単体及び焼却灰にスク
リーニングスを5:2の割合で混合したセメント固化物
による粒状骨材を補強材とする粒調Fe処理材CBR試
験から、各材令におけるCBR強度と補強材の目標強度
の関係を示したものであり、結果から次のことがわか
る。 焼却灰のセメント固化物の強度によって補強効果は異
なり、処理材の材令の進行によってその差は拡大する。 処理材の材令の進行に伴って、混合するセメント固化
物の強度に比例して処理材のCBR強度が増進する。す
なわち、図12から明らかなように、混合するセメント
固化物の強度と処理材のCBR強度の関係を表す曲線の
勾配が材令の進行に伴って急になってくる。 全体的な傾向として、処理材の材令が進行するとセメ
ント固化物の一軸圧縮強さ(材令28日:kgf/cm
2 )が100以下であるか、100以上であるかによっ
てその勾配が変わる。 したがって、粒調Fe処理材の補強材としての焼却灰
セメント固化物の目標強度は100kgf/cm2 以上
で大きいほど望ましいが、焼却灰の使用料を最大限増や
すとことと経済的な面から材令28日の一軸圧縮強さは
100kgf/cm2 〜150kgf/cm2 程度あれ
ば十分である。 また、下水汚泥焼却灰(佐賀市B)と同(佐賀市C)
ではあまり大きな差はない。したがって炭素分(カーボ
ン)が3.0(重量)%以下であればカーボンを完全除
去しなくても十分実用に耐え得るといえる。 天然山砕のスクリーニングスについては、処理材の強
度の増進に一応の効果は認められるが、天然山砕を混入
しなくても必要な強度は得られるとともに、下水汚泥焼
却灰を再資源化して利用するという本発明の目的から
も、天然山砕のスクリーニングスは基本的には使用する
必要はない。
FIG. 12 shows granular aggregates of cement sewage sludge incineration ash (Saga City B) and the same (Saga City C) in which screenings are mixed with incineration ash alone and incineration ash at a ratio of 5: 2. Shows the relationship between the CBR strength at each material age and the target strength of the reinforcing material from the grain-tone Fe-treated material CBR test using as a reinforcing material, and the following can be seen from the results. The reinforcing effect differs depending on the strength of the solidified cement of incineration ash, and the difference increases with the progress of the age of the treated material. As the age of the treated material advances, the CBR strength of the treated material increases in proportion to the strength of the cement solidified material to be mixed. That is, as is apparent from FIG. 12, the slope of the curve representing the relationship between the strength of the cement solid to be mixed and the CBR strength of the treated material becomes steeper as the material age advances. As an overall tendency, as the age of the treated material progresses, the unconfined compressive strength of the cement solidified material (age 28 days: kgf / cm
The gradient changes depending on whether 2) is 100 or less or 100 or more. Therefore, the target strength of the solidified incinerated ash cement as a reinforcing material for the grain-finished Fe-treated material is preferably as large as 100 kgf / cm 2 or more. It is sufficient if the unconfined compressive strength on the 28th is about 100 kgf / cm2 to 150 kgf / cm2. In addition, same as sewage sludge incineration ash (Saga City B) (Saga City C)
So there is not much difference. Therefore, it can be said that if the carbon content (carbon) is 3.0 (weight)% or less, it can sufficiently withstand practical use without completely removing carbon. As for natural mountain crushing screenings, a tentative effect is recognized in increasing the strength of the treated material, but the required strength can be obtained without mixing natural mountain crushing, and the sewage sludge incineration ash can be recycled. For the purpose of the present invention to utilize, it is not necessary to basically use natural mountain crushing screenings.

【0047】3−2)粒調Fe処理材の粗粒化に関する
試験 表20は下水汚泥焼却灰(佐賀市B)を用いたセメント
固化物粒調Fe処理材突固め直後及び材令4日の突固め
供試体のふるい分け試験の一覧表である。また表21は
下水汚泥焼却灰(佐賀市C)のものの同様の結果であ
り、表22は比較例として実施した天然山砕及びセメン
トコンクリート再生骨材を用いたものの同様に結果であ
る。この結果より次のことがわかる。 粒調Fe処理材に混合した焼却灰セメント固化物によ
る粒状骨材は、一軸圧縮強さ(材令28日)が50kg
f/cm2 という小さな強度であっても、CBR突固め
による破砕・細粒化は起きていない。 ここでは逆に、混合突固め直後ないしその極めて初期
に粒状骨材の表面とFe石灰処理土をマトリックスとす
る接触面にFe石灰安定材のイオン交換反応による凝集
作用が発生して、団粒化(粗粒化)が起きている。
3-2) Test on Coarse Graining of Grain-Fed Treated Material Table 20 shows the cement solidified product using sewage sludge incineration ash (B, Saga City) immediately after compaction of the grain-treated Fe-treated material and on the 4th day of material age. It is a list of the sieving test of the compacted specimen. Table 21 shows the same results for sewage sludge incineration ash (C, Saga City), and Table 22 shows the same results for those using natural mountain crushing and cement concrete recycled aggregates performed as comparative examples. The following can be seen from the results. Granular aggregate made of solidified incineration ash cement mixed with grain-like Fe treated material has a uniaxial compressive strength (28 days old) of 50 kg.
Even with a strength as low as f / cm 2, no crushing and fine graining due to CBR compaction has occurred. Conversely, immediately after the mixing and compacting, or very early, agglomeration occurs due to the ion exchange reaction of the Fe lime stabilizer on the surface of the granular aggregate and the contact surface using the Fe lime-treated soil as a matrix, resulting in agglomeration. (Coarsening) has occurred.

【0048】図5に下水汚泥焼却灰のセメント固化物に
よる粒状骨材を用いた粒調Fe処理材のCBR突固め直
後及び突固め後材令4日の粒度曲線を、また図6に天然
山砕をもちいた場合、更に図7にコンクリート再生骨材
をもちいた場合の粒調Fe処理材について比較として粒
度曲線を示した。これより次のことがわかる。 下水汚泥焼却灰(佐賀市B)及び同(佐賀市C)のセ
メント固化物による粒状骨材を用いた場合の突固め後の
粒度においては両者にほとんど差がない。 しかし従来の天然山砕やコンクリート再生骨材と比べ
ると、全体として凝集作用による団粒化が大きく、試験
前の粒度と材令4日の粒度の差を標準ふるい2.36m
mの通過率で比べると、比較例は約18%、焼却灰のセ
メント固化物(目標一軸圧縮強さ50kgf/cm2 )
では約30%で2倍弱の差がある。 また、本発明の場合は、細粒部分の凝集作用による団
粒化に大きな違いがあるのが特徴である。特に標準ふる
い0.075mmでは、天然山砕及びコンクリートの粒
状骨材がほとんど試験前と変わらないか少々増大して1
0〜13%であるのに対して、焼却灰セメント固化物に
よる粒状骨材では2〜4%でありイオン交換反応による
凝集作用に大きな差がある。 この凝集作用の差は焼却灰セメント固化物による粒調
Fe処理材への保水効果ではないかと考えることができ
る。すなわち焼却灰セメント固化物による粒状骨材は、
表24に示すように35〜50%という高い吸水量でこ
れに飽和状態の水を含んだ状態(表面乾燥飽和状態)で
粒調Fe処理材を混合・製造しているからである。 これに対して、比較例の天然山砕の吸水率は表16に
示すように0.82%であり、表26に示すコンクリー
ト再生骨材の吸水量もせいぜい7.38%である。しか
も、セメント固化物の単位セメント量(kg/m3 )は
表12〜表15に示すように目標一軸圧縮強さ(材令2
8日:qu=kgf/cm2 )qu50で310〜34
0、qu100で410〜450、qu150で520
〜560、qu200で600〜650で決して小さく
ない。したがって、その含有水分はイオン交換反応に不
可欠な水の供給源であるとともにその水は遊離石灰など
の反応性成分を含んでおり、以降のFe石灰の反応機構
にかかわるものであることが考えられる。
FIG. 5 shows the grain size curves immediately after and 4 days after CBR compaction of the grain-treated Fe-treated material using granular aggregates made of cement solidified sewage sludge incineration ash, and FIG. FIG. 7 shows a grain size curve as a comparison for the grain-finished Fe-treated material in the case where crushing was used and in the case where recycled concrete aggregate was used. From this, the following can be understood. There is almost no difference in the particle size after compaction when using granular aggregates of solidified cement of sewage sludge incineration ash (Saga City B) and the same (Saga City C). However, compared with conventional natural mountain crushing and recycled concrete aggregate, aggregates due to agglomeration are large as a whole, and the difference between the particle size before the test and the particle size of 4 days old is a standard sieve of 2.36 m.
Approximately 18% in the comparative example, and cement solidified incineration ash (target uniaxial compressive strength 50 kgf / cm 2)
There is a difference of less than twice at about 30%. Further, the present invention is characterized in that there is a great difference in agglomeration due to the agglomeration action of fine particles. In particular, with a standard sieve of 0.075 mm, the granular aggregate of natural crushing and concrete is almost the same as before the test or slightly increased to 1
In contrast to 0 to 13%, the granular aggregate made from the solidified incinerated ash cement has 2 to 4%, and there is a large difference in the coagulation action due to the ion exchange reaction. It can be considered that this difference in the agglomeration action is the water retention effect of the solidified incinerated ash cement on the grain-like Fe-treated material. In other words, granular aggregates from incinerated ash cement solidified
This is because, as shown in Table 24, the grain-finished Fe-treated material is mixed and manufactured with a high water absorption amount of 35 to 50% and a state of containing water in a saturated state (surface dry saturated state). On the other hand, the water absorption of the natural mountain crushing of the comparative example is 0.82% as shown in Table 16, and the water absorption of the recycled concrete aggregate shown in Table 26 is at most 7.38%. In addition, the unitary cement amount (kg / m3) of the cement solidified product is the target uniaxial compressive strength (material age 2) as shown in Tables 12 to 15.
8th: qu = kgf / cm2) 310-34 at qu50
0, qu100 = 410-450, qu150 = 520
It is not small at 200560, qu200 and 600-650 at qu200. Therefore, the water content is a source of water indispensable for the ion exchange reaction, and the water contains reactive components such as free lime, which may be involved in the reaction mechanism of the subsequent Fe lime. .

【0049】以上の結果より、単独では路盤材料として
は適用できない程度の低強度の下水汚泥焼却灰を原料と
するセメント固化物による粒状骨材を補強材として、粒
調Fe処理材の反応機構を促進させることが確認できた
のである。また、本発明のセメント固化物は多孔質であ
ることを利用してこれ自体でも各種用途に利用できると
ともに、粒状骨材として利用した場合はこれをFe石灰
処理土をマトリックスとして完全に包埋することにより
透水係数を極めて小さくできることが確認できた。
From the above results, the reaction mechanism of the grain-treated Fe-treated material is considered as a reinforcing material using a granular aggregate made of cement solidified from sewage sludge incineration ash having a low strength that cannot be used alone as a roadbed material. It was confirmed that it was promoted. In addition, the solidified cement of the present invention can be used for various purposes by itself because it is porous, and when it is used as a granular aggregate, it is completely embedded in Fe-lime-treated soil as a matrix. Thus, it was confirmed that the hydraulic conductivity can be extremely reduced.

【0050】[0050]

【実施例】次に本発明の実施例について説明する。 [実施例1] 下水汚泥焼却灰を原料とするセメント固
化物の製造方法 佐賀市下水浄化センターにおいて発生した下水汚泥を含
水比約490%まで脱水し、これを佐賀市下水浄化セン
ターの焼却施設を使用して焼却温度820℃で3秒間滞
留させた後熱風乾燥を行い、集塵装置により炭素分(カ
ーボン)約2%で直径約0.7mm程度の顆粒状の焼却
灰を回収した。そして、回収した焼却灰とセメントと水
をほぼ同重量ずつ混ぜ固化させセメント固化物を製造し
た。
Next, an embodiment of the present invention will be described. [Example 1] Method for producing cement solidified product using sewage sludge incineration ash as raw material Sewage sludge generated at Saga City Sewage Purification Center is dewatered to a water content of about 490%, and this is incinerated at Saga City Sewage Purification Center. After being kept at an incineration temperature of 820 ° C. for 3 seconds, hot air drying was performed, and granular incineration ash having a carbon content (carbon) of about 2% and a diameter of about 0.7 mm was collected by a dust collector. Then, the recovered incineration ash, cement and water were mixed and solidified by almost the same weight to produce a solidified cement.

【0051】このセメント固化物の一軸圧縮強さを材令
28日で測定したところ約110kgf/cm2 であっ
た。このセメント固化物は比重約1.6で吸水率約47
%であり、天然山砕やコンクリート再生骨材と比べると
比重は約2/3と軽く、また吸水率は約7〜50倍と極
めて大きいものである。したがって、このセメント固化
物は下記の粒調処理材の原料となるほか、この軽量と保
水性の高さを利用して火山礫等の代用となり、グランド
や競技場に使用すると水はけのよいグランド等を提供す
ることができる。
The unconfined compressive strength of the cement solid measured on 28 days of age was about 110 kgf / cm 2. The solidified cement has a specific gravity of about 1.6 and a water absorption of about 47.
%, The specific gravity is about 2/3 that of natural aggregate and recycled concrete aggregate, and the water absorption is about 7 to 50 times, which is extremely large. Therefore, this cement solidified material can be used as a raw material for the following grain preparation materials, and can also be used as a substitute for volcanic debris, etc. by utilizing its light weight and high water retention, and when used for a ground or athletic field, a well drained ground, etc. Can be provided.

【0052】[実施例2] 粒調処理材の製造方法 上記実施例1で製造したセメント固化物を機械破砕し粒
状骨材とする。なお、この粒状骨材の粒度範囲を表17
の粗骨材(M−25)の範囲となるように粒度調整をす
る。そして、この粒状骨材と消石灰と製鉄時に副生する
酸化鉄の微粉末を乾燥重量比で5:5:3の割合で混合
し粒調処理材を得た。この粒調処理材は粒状骨材が既に
混合されており、後は適量の自然土と混合して路盤材等
に使用することができる。
Example 2 Method for Producing Grain-Treated Material The solidified cement produced in Example 1 was mechanically crushed into granular aggregate. Table 17 shows the particle size range of this granular aggregate.
The particle size is adjusted so as to be in the range of the coarse aggregate (M-25). Then, the granular aggregate, slaked lime and fine powder of iron oxide by-produced during iron making were mixed at a dry weight ratio of 5: 5: 3 to obtain a grain-treated material. This granular material has already been mixed with a granular aggregate, and can be used as a roadbed material or the like after being mixed with an appropriate amount of natural soil.

【0053】[実施例3] 安定処理法の施工方法 実施例2で製造した粒調処理材とマサ土を乾燥重量比
6:4の割合で混合する。そして、安定処理層の出来高
1m3 当たり焼却灰の使用量が約170kg(乾燥重
量)となるように転圧して締め固め安定処理路盤とし
た。この安定処理路盤のCBR値を測定したところ4日
で約260%,28日で約570%であった。なお、比
重は1.6前後であった。
[Example 3] Method of applying the stabilization treatment method The granulated material produced in Example 2 and masa earth are mixed at a dry weight ratio of 6: 4. The incinerated ash was rolled so as to be about 170 kg (dry weight) per 1 m <3> of the processed volume of the stabilized layer, and the compacted and stabilized ground was obtained. The CBR value of this stabilized roadbed was measured to be about 260% on 4 days and about 570% on 28 days. The specific gravity was around 1.6.

【0054】[0054]

【発明の効果】以上述べたように、この発明で使用する
下水汚泥焼却灰を原料とするセメント固化物は下水汚泥
焼却灰の炭素分が3(重量)%以下となるようにし、こ
の下水汚泥焼却灰とセメントを、重量比で焼却灰:セメ
ントを1:1〜1:3の割合で混合し適量の水を加えて
固化させ、一軸圧縮強度を100〜200kgf/cm
2 (材令28日)としたので、通常の下水処理場の汚泥
焼却灰を特殊処理をせずに簡単に下記のような用途に
資源化できる。
As described above, the cement solidified from sewage sludge incineration ash used in the present invention has a carbon content of the sewage sludge incineration ash of 3 (weight)% or less. The sewage sludge incineration ash and cement are mixed at a weight ratio of incineration ash: cement in a ratio of 1: 1 to 1: 3, an appropriate amount of water is added thereto, and the mixture is solidified to have a uniaxial compressive strength of 100 to 200 kgf / cm.
2 (March 28th), the sludge incineration ash of a normal sewage treatment plant can be easily recycled for the following uses without special treatment.

【0055】そして、この発明に係る下水汚泥焼却灰を
原料とするセメント固化物を利用した粒調処理材は上記
セメント固化物を破砕した粒状骨材と自然土の混合物
に、酸化鉄の微粉末及び消石灰からなるFe石灰系安定
材を混合したので、下水汚泥焼却灰を大量に利用するこ
とができる。
[0055] Then, the sewage sludge incinerated ash according to the present invention
Since the grain preparation material using the cement solidified material as a raw material is a mixture of the granular aggregate and the natural soil obtained by crushing the cement solidified material, a fine powder of iron oxide and an Fe lime-based stabilizer made of slaked lime are mixed. Sewage sludge incineration ash can be used in large quantities.

【0056】さらに、この発明に係るの発明に係る安定
処理法によれば、上記粒調処理材で路盤を敷設し、転圧
後において個々の粒状骨材はFe石灰系処理土で包埋さ
れた状態となるようにしたので、粒状骨材としてはそれ
ほど高強度のものでなくても路盤材としての使用が可能
となり、しかも処理層の遮水性及び緩衝性を損なうこと
なく、その強度(特に初期強度)を大幅に増進すること
ができる。
Further, according to the stabilization method according to the invention of the present invention, a roadbed is laid with the above-mentioned grain-conditioned material, and after the compaction, the individual granular aggregates are embedded in Fe-lime-based treated soil. As a result, the granular aggregate can be used as a roadbed material even if the strength is not so high, and the strength (particularly, the strength (particularly, Initial strength) can be greatly increased.

【0057】[0057]

【表1】 [Table 1]

【0058】[0058]

【表2】 [Table 2]

【0059】[0059]

【表3】 [Table 3]

【0060】[0060]

【表4】 [Table 4]

【0061】[0061]

【表5】 [Table 5]

【0062】[0062]

【表6】 [Table 6]

【0063】[0063]

【表7】 [Table 7]

【0064】[0064]

【表8】 [Table 8]

【0065】[0065]

【表9】 [Table 9]

【0066】[0066]

【表10】 [Table 10]

【0067】[0067]

【表11】 [Table 11]

【0068】[0068]

【表12】 [Table 12]

【0069】[0069]

【表13】 [Table 13]

【0070】[0070]

【表14】 [Table 14]

【0071】[0071]

【表15】 [Table 15]

【0072】[0072]

【表16】 [Table 16]

【0073】[0073]

【表17】 [Table 17]

【0074】[0074]

【表18】 [Table 18]

【0075】[0075]

【表19】 [Table 19]

【0076】[0076]

【表20】 [Table 20]

【0077】[0077]

【表21】 [Table 21]

【0078】[0078]

【表22】 [Table 22]

【0079】[0079]

【表23】 [Table 23]

【0080】[0080]

【表24】 [Table 24]

【0081】[0081]

【表25】 [Table 25]

【0082】[0082]

【表26】 [Table 26]

【0083】[0083]

【表27】 [Table 27]

【0084】[0084]

【表28】 [Table 28]

【0085】[0085]

【表29】 [Table 29]

【図面の簡単な説明】[Brief description of the drawings]

【図1】Fe石灰工法の標準的な舗装構成の例を示す断
面図である。
FIG. 1 is a cross-sectional view showing an example of a standard pavement structure of the Fe lime method.

【図2】粒調Fe処理材を路盤に適用する舗装構成の例
を示す断面図である。
FIG. 2 is a cross-sectional view showing an example of a pavement configuration in which a grain Fe-treated material is applied to a roadbed.

【図3】佐賀市Bの下水汚泥焼却灰のセメント固化物の
単位セメント量と一軸圧縮強さの関係を示すグラフであ
る。
FIG. 3 is a graph showing the relationship between the unit cement amount of cement solidified sewage sludge incineration ash of Saga City B and the uniaxial compressive strength.

【図4】佐賀市Cの下水汚泥焼却灰のセメント固化物の
単位セメント量と一軸圧縮強さの関係を示すグラフであ
る。
FIG. 4 is a graph showing the relationship between unit cement amount of cement solidified sewage sludge incineration ash of Saga City C and unconfined compressive strength.

【図5】下水汚泥焼却灰のセメント固化物(目標一軸圧
縮強さ=50kgf/cm2 、材令日)の粒状骨材を用
いた粒調Fe処理材の粒度変化を示すグラフである。
FIG. 5 is a graph showing a change in the particle size of a grain-treated Fe-treated material using a granular aggregate of a solidified cement of sewage sludge incineration ash (target unconfined compressive strength = 50 kgf / cm 2, material age).

【図6】天然山砕(M−25)を用いた粒調Fe処理材
の粒度変化を示すグラフである。
FIG. 6 is a graph showing a change in particle size of a grain-like Fe-treated material using natural mountain crushing (M-25).

【図7】コンクリート再生骨材(RM−25)を用いた
粒調Fe処理材の粒度変化を示すグラフである。
FIG. 7 is a graph showing a change in particle size of a grain-like Fe-treated material using recycled concrete aggregate (RM-25).

【図8】粒状骨材混入率と締め固め密度の関係を示すグ
ラフである。
FIG. 8 is a graph showing a relationship between a granular aggregate mixing ratio and a compaction density.

【図9】粒状骨材混入率とCBRの関係を示すグラフで
ある。
FIG. 9 is a graph showing a relationship between a granular aggregate mixing ratio and CBR.

【図10】粒状骨材混入率と透水係数の関係を示すグラ
フである。
FIG. 10 is a graph showing a relationship between a granular aggregate mixing ratio and a hydraulic conductivity.

【図11】マサ土と標準山砕による粒調Fe処理材にお
ける粒状骨材の混入率と合成粒度曲線を示すグラフであ
る。
FIG. 11 is a graph showing the mixing ratio of granular aggregates and the composite particle size curve in the grain-treated Fe-treated material by masa soil and standard mountain crushing.

【図12】下水汚泥焼却灰のセメント固化物による粒状
骨材を補強材とする粒調Fe処理材のCBR試験結果を
示すグラフである。
FIG. 12 is a graph showing CBR test results of a grain-like Fe-treated material in which granular aggregate made of cement solidified sewage sludge incineration ash is used as a reinforcing material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C09K 17/02 C09K 17/06 P 17/06 17/10 P 17/10 E01C 5/06 E01C 5/06 E02D 3/02 103 E02D 3/02 103 3/12 102 3/12 102 (C04B 28/02 //(C04B 28/02 18:10 Z 18:10 14:10 Z 14:10 22:06) Z 22:06) 111:40 111:40 C09K 103:00 C09K 103:00 B09B 3/00 ZAB (56)参考文献 特開 平9−47741(JP,A) 特開 平8−3552(JP,A) 特開 平9−235151(JP,A) 特開 平9−301750(JP,A) 特開 平11−322401(JP,A) 特開 平10−226556(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 18/10 C09K 17/02 C09K 17/06 C09K 17/10 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI C09K 17/02 C09K 17/06 P 17/06 17/10 P 17/10 E01C 5/06 E01C 5/06 E02D 3/02 103 E02D 3/02 103 3/12 102 3/12 102 (C04B 28/02 // (C04B 28/02 18:10 Z 18:10 14:10 Z 14:10 22:06) Z 22:06) 111: 40 111: 40 C09K 103: 00 C09K 103: 00 B09B 3/00 ZAB (56) Reference JP 9-47741 (JP, A) JP 8-3552 (JP, A) JP 9-235151 (JP, A) JP-A-9-301750 (JP, A) JP-A-11-322401 (JP, A) JP-A-10-226556 (JP, A) (58) Fields investigated (Int. Cl. 7) , DB name) C04B 18/10 C09K 17/02 C09K 17/06 C09K 17/10

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下水汚泥焼却灰の炭素分が3(重量)%
以下となるようにし、この下水汚泥焼却灰とセメント
を、重量比で焼却灰:セメントを1:1〜1:3の割合
で混合し適量の水を加えて固化させ、一軸圧縮強度を1
00〜200kgf/cm2 (材令28日)としたセメ
ント固化物を破砕した粒状骨材と自然土の混合物に、酸
化鉄の微粉末及び消石灰からなるFe石灰系安定材を混
したことを特徴とする下水汚泥焼却灰を原料とするセ
メント固化物を利用した粒調処理材
1. The sewage sludge incineration ash has a carbon content of 3% by weight.
The sewage sludge incineration ash and the cement are mixed in a ratio of 1: 1 to 1: 3 by weight of the incineration ash: cement, and an appropriate amount of water is added to solidify the ash and the uniaxial compressive strength to 1
Seme was a 00~200kgf / cm2 (wood age 28 days)
Acid mixture into a mixture of granular aggregates
Fe-lime-based stabilizer consisting of fine powder of iron fossil and slaked lime
Grain halftone processing material sewage sludge incineration ash using cement solidified product as a raw material, characterized in that the engagement.
【請求項2】請求項の粒調処理材で路盤を敷設し、転
圧後において個々の粒状骨材はFe石灰系処理土のマト
リックスで包埋された状態となることを特徴とする安定
処理法。
2. A stable base characterized by laying a roadbed with the grain-conditioned material according to claim 1 , and after rolling, each granular aggregate is embedded in a matrix of Fe-lime-based treated soil. Processing method.
JP31130098A 1998-10-30 1998-10-30 Grain preparation and stabilization method using solidified cement made from sewage sludge incineration ash Expired - Fee Related JP3208537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31130098A JP3208537B2 (en) 1998-10-30 1998-10-30 Grain preparation and stabilization method using solidified cement made from sewage sludge incineration ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31130098A JP3208537B2 (en) 1998-10-30 1998-10-30 Grain preparation and stabilization method using solidified cement made from sewage sludge incineration ash

Publications (2)

Publication Number Publication Date
JP2000128613A JP2000128613A (en) 2000-05-09
JP3208537B2 true JP3208537B2 (en) 2001-09-17

Family

ID=18015483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31130098A Expired - Fee Related JP3208537B2 (en) 1998-10-30 1998-10-30 Grain preparation and stabilization method using solidified cement made from sewage sludge incineration ash

Country Status (1)

Country Link
JP (1) JP3208537B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020017572A (en) * 2000-08-31 2002-03-07 최학열 A footpath block, a brick, a tile, a cement stone, a cement footpath block, a median strip, a boundary stone, which is unchanging after shaping made from wastewater sludge heated by kiln
JP4204543B2 (en) * 2002-05-14 2009-01-07 敏夫 細岡 Civil engineering materials and construction methods
JP4498784B2 (en) * 2004-03-18 2010-07-07 株式会社エフイ石灰技術研究所 Utilization of chicken dung ash and soil stabilization material containing chicken dung ash as raw material

Also Published As

Publication number Publication date
JP2000128613A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
Oluwatuyi et al. Ameliorating effect of milled eggshell on cement stabilized lateritic soil for highway construction
Hainin et al. Steel slag as a road construction material
Taha et al. An overview of waste materials recycling in the Sultanate of Oman
Tay et al. Engineering properties of incinerator residue
JP2011038104A (en) Chemical agent for improving engineering properties of soil
Dahale et al. Utilization of solid waste for soil stabilization: a review
Mishra et al. A study on use of industrial wastes in rural road construction
JP3208537B2 (en) Grain preparation and stabilization method using solidified cement made from sewage sludge incineration ash
Iqbal et al. Compaction characteristics and CBR of sludge blended with recycled clay bricks for road subgrade application
Kumar et al. Waste Materials-An Alternative to Conventional Materials in Rural Road Construction
JP3909956B2 (en) Permeable soil improvement material
BAV Performance evaluation of sustainable materials in roller compacted concrete pavements: A state of art review
JP4848043B1 (en) Roadbed material
KR100874496B1 (en) Road paving material formation having steel making slag and method for paving of road using that
JP3636767B2 (en) Solidification method of Otani stone chips
JP2005320190A (en) Cement
Edeh et al. Groundnut shell ash stabilized reclaimed asphalt pavement, as pavement material
JP7415231B2 (en) Ground covering material and its manufacturing method
Khan et al. Soil Stabilisation Using Pond Ash And Alcofine
Saidu Performance Evaluation of Full Depth Reclaimed Surface-Dressed Pavement Treated with Cement and Calcium Carbide Residue as Road Base
JP2003192409A (en) Method for producing granular construction material
Mary Kuruvila et al. Mechanical And Infiltration Characteristics Of Pervious Concrete Pavement Incorporating Reclaimed Asphalt Pavement Aggregates: A Review
JP4608137B2 (en) Water-proof high-strength roadbed material and soil covering material using granulated blast furnace slag
JPH02157301A (en) Stabilization for permeable surface layer for road bed
sen Gupta Stabilization of soil Using Flyash and Groundgrannulated blast Furnace Slag

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010515

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees