JP2003192409A - Method for producing granular construction material - Google Patents

Method for producing granular construction material

Info

Publication number
JP2003192409A
JP2003192409A JP2001393116A JP2001393116A JP2003192409A JP 2003192409 A JP2003192409 A JP 2003192409A JP 2001393116 A JP2001393116 A JP 2001393116A JP 2001393116 A JP2001393116 A JP 2001393116A JP 2003192409 A JP2003192409 A JP 2003192409A
Authority
JP
Japan
Prior art keywords
strength
granules
sand
granular
construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001393116A
Other languages
Japanese (ja)
Other versions
JP3641458B2 (en
Inventor
Masahiro Kawai
雅広 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AIHARAGUMI KK
Original Assignee
AIHARAGUMI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AIHARAGUMI KK filed Critical AIHARAGUMI KK
Priority to JP2001393116A priority Critical patent/JP3641458B2/en
Publication of JP2003192409A publication Critical patent/JP2003192409A/en
Application granted granted Critical
Publication of JP3641458B2 publication Critical patent/JP3641458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/021Agglomerated materials, e.g. artificial aggregates agglomerated by a mineral binder, e.g. cement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a material which has a strength suitable for application conditions by regenerating powder after removing sand and gravel from sediment as granule having a particle size larger than the sediment. <P>SOLUTION: Cement type solidifying material, reinforcing material and water are mixed to mud of rocky powder. The mixture is deaerated by vacuum suction, is cured and is hardened. The hardened material is pulverized to granule and is classified by every size of particles. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は建設資材として骨
材などを調達する際発生する微粒の岩石質粉体を、廃棄
物として捨てるのではなく、再生資源として活用する方
法に関するものであり、特に岩石質粉体を骨材、路盤砕
石などに使用可能な程度の粒径の大きな粒体に再生する
粒状建設用資材の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of utilizing fine rocky powder generated when procuring aggregates as a construction material, not as a waste but as a recycled resource. The present invention relates to a method for producing a granular construction material in which rocky powder is regenerated into particles having a large particle size that can be used for aggregate, roadbed crushed stone, and the like.

【0002】[0002]

【従来の技術】建築や土木の分野において、コンクリー
トに使用する細骨材や粗骨材の調達は近年ますます難し
いものとなっている。鉄筋腐蝕の問題などによって海砂
の使用が大きく制限されている現在、砂やそれよりも大
きな砂利などは、山などから土砂を切り崩してフルイに
かけ、適宜必要な粒径のものを取り出すことによって調
達されているのが現状である。
2. Description of the Related Art In the fields of construction and civil engineering, it has become increasingly difficult to procure fine aggregates and coarse aggregates used for concrete in recent years. Currently, the use of sea sand is greatly restricted due to the problem of corrosion of reinforcing bars, and sand and gravel larger than that are procured by cutting down the earth and sand from a mountain etc. This is the current situation.

【0003】[0003]

【発明が解決しようとする課題】土砂から砂や砂利など
を取り出した場合、それよりも粒径が小さな微粒の粉の
ような成分が残る。実際は土砂をくだいて水で洗って砂
や砂利を分別し、それよりも小さな微粒の粉体は、水中
でフロック化し沈積させて泥土状とする。実際にはさら
にこれをフィルタープレスで機械的に固めて水分を脱水
して脱水ケーキと呼ばれる形にするもので、この脱水ケ
ーキは資材として使用されずに廃棄物として廃棄してい
たのが現状である。現状では、この脱水ケーキと呼ばれ
るものがかなり多く産出されるため、その廃棄処理に多
額の費用がかかるのが実状であった。また資源の有効利
用が叫ばれる今日、脱水ケーキに含まれる微粒の岩石質
粉体も再生したいという願望が日増しに高まっていると
いう現状もある。
When sand, gravel, or the like is taken out from the earth and sand, components such as fine particles having a smaller particle size than that remain. In reality, sand and sand are washed with water to separate the sand and gravel, and finer particles smaller than that are flocculated and deposited in water to form a mud. Actually, this is further mechanically solidified with a filter press to dehydrate the water into a form called a dehydrated cake, and this dehydrated cake was not used as a material but was discarded as waste at present. is there. At present, a large amount of this so-called dehydrated cake is produced, and the actual situation is that disposal of the cake requires a large amount of money. In addition, as the demand for effective use of resources is exclaimed, the desire to regenerate the fine rocky powder contained in the dehydrated cake is increasing day by day.

【0004】天然の砂や砕石は圧縮強度が高く、天然の
砂や砕石だけを使用していたのでは、必ずしも資材とし
て適当でない場合もあった。例えば、道路路盤の上層と
して砕石を敷設してタコつき、タンパー、ローラーなど
で締固め、かなり強度を高めて鉛直荷重の支持性能を高
めるのであるが、圧縮強度が高い天然砕石のみであると
充分な締め固めができない場合があった。砕石個々の強
度が高いと、締め固めても石が変形せず、石の尖った部
分同士がぶつかり合って、空隙の多い締め固め層ができ
てしまう。空隙が多いと大きな荷重支持性能を得ること
ができず、必ずしも個々の粒体の強度が高いことが、全
体の性能を高めないと理解されている。このため、天然
砕石だけでなく、これにそれよりも強度の低い粒体を混
ぜることによって、天然砕石の間に紛れ込んだ強度の低
い粒体が潰れ、若しくは変形することによって、砕石間
の空隙が減少して密実化が進行し、より良好な締め固め
が可能となる。このために、天然砕石よりも強度が低
く、またその強度も施工箇所や現場状況に応じて適宜調
整可能な骨材や砕石の代わりとなる粒状建設資材の開発
が望まれていた。
Natural sand and crushed stone have high compressive strength, and if only natural sand and crushed stone were used, they were not always suitable as materials. For example, crushed stone is laid as the upper layer of roadbed and octopused, compacted with tamper, roller, etc. to considerably increase the strength and support the vertical load, but only natural crushed stone with high compressive strength is sufficient. There was a case that it could not be compacted. If the strength of each crushed stone is high, the stone will not deform even when compacted, and the pointed parts of the stone will hit each other, forming a compacted layer with many voids. It is understood that a large amount of voids makes it impossible to obtain a large load bearing performance, and the high strength of individual particles does not necessarily improve the overall performance. For this reason, not only natural crushed stones but also particles with lower strength than this are mixed to crush or deform the low-strength particles that have fallen between natural crushed stones. It is reduced and the solidification progresses, and it becomes possible to perform better compaction. For this reason, it has been desired to develop a granular construction material which is lower in strength than natural crushed stone, and whose strength can be appropriately adjusted depending on the construction site or the situation at the site and which replaces crushed stone.

【0005】天然石であると施工以降はそれ以上に強度
が大きくなることはない。これはすなわち天然石が硬化
中の物質ではないからであり、施工以後路盤等の性能が
向上することは期待できない。しかしながら、天然石の
代わりに硬化中の粒状資材を使用すれば、施工以降も強
度性能が向上する。例えば前記した路盤上層に施工後も
硬化が進行中の材料を使用すれば、締め固めの際に強度
が低くて締め固めによって層の密実化が図れ、それ以降
は個々の粒体の硬化が進行して、路盤の荷重支持性能が
高まって遥かに大きな強度が期待できる。このように、
天然石とは全く異なる硬化進行性能を有する粒状建設用
資材の開発が望まれていた。
If the stone is a natural stone, the strength will not be further increased after the construction. This is because natural stone is not a substance that is being hardened, and it cannot be expected that the performance of roadbeds will be improved after construction. However, if a hardening granular material is used instead of natural stone, the strength performance is improved even after the construction. For example, if a material whose hardening is in progress is used even after being applied to the above-mentioned subbase layer, the strength is low during compaction and the compaction of the layer can be achieved by compaction, and after that, individual particles are hardened. As it progresses, the load-bearing performance of the roadbed is improved, and much greater strength can be expected. in this way,
It has been desired to develop a granular construction material having a completely different hardening progress performance from natural stone.

【0006】[0006]

【課題を解決するための手段】この発明は以上のような
課題を解決するためになされたもので、土砂から砂や礫
を取り除いた後の微粒の岩石質粉体をセメントなどの硬
化材と混練して硬化させ、これを粉砕して自在に硬化後
の強度を調整可能な、かつそれ以降も硬化が進行し、路
盤などの強度が高まる粒状建設用資材の製造方法を提供
することを目的とする。
The present invention has been made to solve the above problems, in which fine rocky powder after removing sand and gravel from earth and sand is treated with a hardening material such as cement. An object of the present invention is to provide a method for producing a granular construction material in which kneading and curing are performed, and the strength after curing can be freely adjusted by crushing this, and the curing progresses thereafter, and the strength of roadbed etc. is increased. And

【0007】[0007]

【発明の実施の形態】この発明にかかる粒状建設用資材
の製造方法は、土砂から砂、砂利や礫を取り除いた後、
それ以下の細かい粒子状の物質である岩石質粉体を、そ
れ以上の粒径を有する粒体にして建設用資材とする方法
である。粉体を取り出す前の土砂は、山や河川、丘陵地
などの様々な一般的な土砂が全て使用可能で、石灰質系
の土砂、火山灰系の土砂、砂岩などの堆積層の土砂、岩
盤が地表近くで長年風化を受けた後に生ずる土砂など、
その種類を問わない。これら土砂を砕いて、水で洗い流
し、それをスクリーンにかけて砂、砂利、礫などと、大
きさ別に分別する。それら分別された砂などよりも更に
粒子の小さい岩石質粉体は水で洗い流されて、泥土とな
る。この泥土を粒径のより大きな粒体へと再生するもの
である。実際は、水をある程度脱水して塊状となった脱
水ケーキという状態にすることが多い。
BEST MODE FOR CARRYING OUT THE INVENTION A method for manufacturing a granular construction material according to the present invention is a method in which after removing sand, gravel or gravel from earth and sand,
This is a method in which a rocky powder, which is a finer particle substance having a particle size smaller than that, is made into a particle having a particle size larger than that and used as a construction material. Before the powder is taken out, all kinds of general sediment such as mountains, rivers, and hills can be used, and calcareous sediment, volcanic ash sediment, sediment of sediment such as sandstone, and bedrock are on the surface. Earth and sand generated after being weathered nearby for many years,
It doesn't matter what kind. These soils are crushed, rinsed with water, and then screened to separate sand, gravel, gravel, etc. according to size. The rocky powder with smaller particles than the separated sand etc. is washed away with water and becomes mud. This mud is regenerated into particles with a larger particle size. In fact, water is often dehydrated to some extent to form a cake cake.

【0008】この泥土にセメント系固化材と無機質系粒
状物を主体とする補強材料と水を加えて混練する。実際
は、泥土は脱水して塊状となった脱水ケーキと呼ばれる
状態となっていることが多い。セメント系固化材は、通
常のポルトランドセメント、早強セメント、高炉セメン
トなどを使用するが、これと同時にフライアッシュや鋳
物灰等の産業廃棄物などもセメント系固化材として採用
し、ポルトランドセメントなどに加えて、固化材の重量
の中に算入する。製造する粒体の圧縮強度を高めるに
は、基本的にこのセメント系固化材の混合比率を高めれ
ばよく、全体重量の10〜40%程度の間で選択するの
が好適である。補強材料としては、スラグや鋳物砂等の
鉱さい類、陶磁器くず、がれき類などの産業廃棄物でも
ある無機質系粒状物を採用可能である。その他廃棄物で
ない天然砕石、天然砂、人工砂なども採用可能である。
これによりこれら産業廃棄物の再生にも貢献することが
できる。補強材料はコンクリートの骨材のように、粉体
の強度を高め、強度を安定させるものである。補強材料
は、この発明で製造する粒体によって得られる強度より
も大きなものが好ましく、それら粒体の強度の200%
以上の強度を備えていることが、製品の質を信頼性の高
いものとする。
A cement-based solidifying material, a reinforcing material mainly composed of inorganic particles and water are added to the mud and kneaded. In fact, mud is often in a state called dehydrated cake that is dehydrated into a lump. As the cement-based solidifying material, ordinary Portland cement, early-strength cement, blast furnace cement, etc. are used, but at the same time, industrial waste such as fly ash and foundry ash is also adopted as the cement-based solidifying material for Portland cement, etc. In addition, it is included in the weight of the solidifying material. In order to increase the compressive strength of the granules to be produced, basically, the mixing ratio of the cement-based solidifying material may be increased, and it is preferable to select it in the range of 10 to 40% of the total weight. As the reinforcing material, it is possible to employ mineral particles such as mineral waste such as slag and foundry sand, ceramic waste, and debris that are also industrial waste. Other natural waste such as crushed stone, natural sand, and artificial sand can also be used.
This can also contribute to the recycling of these industrial wastes. The reinforcing material enhances the strength of the powder and stabilizes the strength like concrete aggregate. The reinforcing material is preferably larger than the strength obtained by the granules produced by the present invention, and is 200% of the strength of the granules.
Having the above strength makes the quality of the product reliable.

【0009】前記したセメント系固化材、補強材料、水
を加えて混練してできた混合物を、真空吸引によって脱
気し、養生して硬化させる。次に示す表1は、材料の混
合比率を変えて実験を行った結果を示すもので、セメン
ト系固定材の混合比率を10〜40%までの間で選択し
てみた。また補強材料の種類も選択して、そのつど強度
を測定してみた。この表1で、FAはフライアッシュ、
SSはスラグ(5mm以下)、SGはスラグ(13mm
以下)、ISは鋳物砂、IAは鋳物灰を示し、圧縮強度
のWは何週目(week)かを示している。この実験結
果で理解できるのは、セメント系固化材の混合比率を1
0〜40%までの範囲で増やしていくと、その圧縮強度
は次第に大きくなり、しかもそれはほぼ混合比率に比例
して強度が高くなっていることである。しかしながら、
セメント系固化材の混合比率を高めると、それだけコス
トが嵩むことも事実で、本願発明の目的のひとつとし
て、施工現場や施工状況に応じて、必要な粒体の圧縮強
度に自由に調整して、余分な固化材を使用せずに、その
施工コストも必要最低限に押さえることがある。例え
ば、余り大きな強度が必要でない歩道用路盤に使用する
粒体は、多少強度が低くても問題がなく、必要最低限の
強度を有するようセメント系固化材の配合比率を押さえ
て製造するものである。これにより安価に施工が可能と
なる。これは天然石を使用するのではなくて、あえて岩
石質粉体をセメント系固化材によって硬化させることに
よって可能となるのである。
The mixture prepared by adding the cement-based solidifying material, the reinforcing material and water and kneading the mixture is deaerated by vacuum suction, cured and hardened. Table 1 shown below shows the results of experiments conducted by changing the mixing ratio of the materials, and the mixing ratio of the cement-based fixing material was selected from 10 to 40%. I also selected the type of reinforcing material and measured the strength of each. In Table 1, FA is fly ash,
SS is slag (5 mm or less), SG is slag (13 mm)
Below), IS indicates foundry sand, IA indicates foundry ash, and W of compressive strength indicates which week (week). The result of this experiment shows that the mixing ratio of cement-based solidifying material is 1
When increasing in the range of 0 to 40%, the compressive strength gradually increases, and that is, the strength increases almost in proportion to the mixing ratio. However,
It is also true that increasing the mixing ratio of the cementitious solidifying material will increase the cost, and as one of the objects of the present invention, depending on the construction site or construction situation, freely adjust the compressive strength of the required granules. , The construction cost may be kept to the minimum necessary without using extra solidifying material. For example, granules used for sidewalk subgrades that do not require too much strength do not have any problem even if the strength is a little low, and are manufactured by suppressing the mixing ratio of the cement-based solidifying material to have the necessary minimum strength. is there. This makes it possible to carry out construction at low cost. This is possible by not using natural stone, but by hardening the rocky powder with a cement-based solidifying material.

【0010】[0010]

【表1】 [Table 1]

【0011】混合物は真空吸引によって脱気するもので
あって、これによっても粒体の圧縮強度は飛躍的に高ま
る。前記した表1において、圧縮強度の項目に括弧ツキ
で記載してあるのは真空吸引しないで養生して硬化させ
たものであって、真空吸引して脱気した方が強度はほぼ
2.5倍近くになることが理解できる。この脱気過程の
存否、及びセメント系固化材の混合比率による圧縮強度
の高低の関係をグラフに表したものを図1として示す。
このグラフによって理解できるのは、真空吸引による脱
気をした場合は、しない場合の実験と比較して、その圧
縮強度は2倍〜2.5倍の間となることが理解できる。
またセメント系固化材の混合比率を高めることによっ
て、その圧縮強度も比例して高くなっていることが理解
できる。このように、セメント系固化材の混合比率を高
めたり低めたりすることによって、求める圧縮強度の製
品の強度が、ほぼ正確に予想できることが理解できる。
つまりは、出来上がった後の製品の圧縮強度を調べて選
別するのではなく、本願発明の製造方法を採用すること
によって、製造する粒体の圧縮強度を設計段階にて予想
でき、必要最低限の材料の調達とコストで製造可能とな
ることが理解できる。
The mixture is degassed by vacuum suction, which also dramatically increases the compressive strength of the granules. In Table 1 above, what is indicated in parentheses in the item of compressive strength is one that is cured and cured without vacuum suction, and the strength is approximately 2.5 when vacuumed and degassed. Understand that it will almost double. A graph showing the relationship between the presence or absence of this deaeration process and the level of compressive strength depending on the mixing ratio of the cementitious solidifying material is shown in FIG.
It can be understood from this graph that when degassing by vacuum suction is performed, the compressive strength is between 2 times and 2.5 times that of the experiment without vacuum.
Also, it can be understood that the compressive strength increases proportionally by increasing the mixing ratio of the cementitious solidifying material. Thus, it can be understood that the strength of the product having the required compressive strength can be predicted almost accurately by increasing or decreasing the mixing ratio of the cement-based solidifying material.
In other words, instead of examining and selecting the compressive strength of the finished product, by adopting the manufacturing method of the present invention, the compressive strength of the granules to be manufactured can be predicted at the design stage, and the minimum required It can be understood that it can be manufactured by procuring materials and costs.

【0012】硬化した後の混合材料をクラッシャーによ
って粉砕し、粒体状の建設用資材とする。粒体の大きさ
に応じてクラッシャーの種類、性能、粉砕時間を適宜選
択して、ある程度の大きさの粒径にそろえる。この粒体
をスクリーンにかけて、粒径の大きさごとにフルイにか
けて選別する。粒径の小さな粉体状のものが出れば、そ
れをまた岩石質粉体に加えて混ぜて、再度固化、粉砕し
て粒体とすればよい。
The hardened mixed material is crushed by a crusher to obtain a granular construction material. The crusher type, performance, and crushing time are appropriately selected according to the size of the granules, and the particle size is adjusted to a certain size. The particles are screened and screened according to the size of the particles to sort. If a powder with a small particle size appears, it can be added to rocky powder again and mixed, and then solidified and pulverized again to form a granule.

【0013】[0013]

【実施例】以下、図に示す実施例に基づきこの発明を詳
細に説明する。図2に示すのは、この発明にかかる製造
過程の流れを示すものであり、岩石質粉体、セメント系
固化材、補強材料、水をミキサー1に入れ、これを混合
・攪拌・混練して混合材料を造る。これを押出機2に入
れて真空吸引して脱気する。この状態で数日から数週間
ほど養生し、これをクラッシャー3にて粉砕する。粉砕
された粒径のまちまちな粒体をスクリーン4にかけてフ
ルイをかけ、粉状、砂状、砂利状、礫状という複数段階
の粒径別に分けるものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on the embodiments shown in the drawings. FIG. 2 shows the flow of the manufacturing process according to the present invention, in which rocky powder, cementitious solidifying material, reinforcing material and water are put in the mixer 1 and mixed, stirred and kneaded. Make a mixed material. This is put into the extruder 2 and vacuum-sucked to degas. In this state, it is aged for several days to several weeks and crushed by the crusher 3. The crushed particles having different particle diameters are screened and screened, and the particles are divided into plural particle diameters such as powder, sand, gravel, and gravel.

【0014】図3及び図4に示すのは、車道の上層路盤
にこの発明にて製造した粒状建設用資材を使用した例で
ある。車道の上層路盤は、大きな荷重を受けるものであ
って、比較的高い強度が要求されるものである。実施例
では、セメント固化材の混合比率を29%として製造し
た粒体5を使用している。粒径は0〜40mmの範囲
で、粒体5のみの圧縮強度は12.2N/mmであっ
た。これに粒径が0〜40mmであって、圧縮強度15
0N/mmの天然石から成る砕石6と混ぜた。粒体と
天然石の重量比率は、1:1であった。このような製造
粒体と天然石から成る粒体を上層路盤として厚さ150
mmに敷設した。このような路盤をタンパーによって締
め固めたとき、その施工直後の路盤支持力係数は23k
g/cmを得ることができた。天然石から成る粒体の
みを、同じく厚さ150mmに敷設して締め固めたと
き、18kg/cmであった。つまりは本発明によっ
て製造した粒体と天然石からなる粒体を混ぜて施工した
場合が、天然石の粒体のみの場合と比較して、より大き
な荷重支持性能を得ることができることが理解できた。
これは本願発明によって製造した粒体が、天然石から成
る粒の間にて変形したり潰れて、粒体同士を密実化する
ものである。その締め固め前の状態を図3において示す
が、粒体5や6の間に空隙が多く存在し、それが締め固
め後の状態を示す図4であると、本願発明によって製造
した粒体5の周囲の尖った部分が潰れたり、粒体自体が
割れたり、変形することによって空隙がなくなり、密実
化したものと理解できる。
FIGS. 3 and 4 show an example in which the granular construction material manufactured by the present invention is used for the upper roadbed of the road. The upper roadbed of a roadway receives a large load and requires relatively high strength. In the examples, the granules 5 manufactured with the mixing ratio of the cement solidifying material being 29% are used. The particle size was in the range of 0 to 40 mm, and the compressive strength of only the granules 5 was 12.2 N / mm 2 . It has a particle size of 0-40 mm and a compressive strength of 15
It was mixed with crushed stone 6 composed of 0 N / mm 2 of natural stone. The weight ratio of the granules to the natural stone was 1: 1. The granules composed of such manufactured granules and natural stones are used as the upper layer roadbed and have a thickness of 150.
laid in mm. When such a roadbed is compacted with a tamper, the roadbed support coefficient immediately after its construction is 23k.
It was possible to obtain g / cm 3 . When only granules made of natural stone were laid and compacted to a thickness of 150 mm, the mass was 18 kg / cm 3 . In other words, it can be understood that the case where the granules manufactured according to the present invention and the granules made of natural stone are mixed and applied, a larger load bearing performance can be obtained as compared with the case where only the granules of natural stone are used.
This is because the granules produced by the present invention are deformed or crushed between the granules made of natural stone, and the granules are solidified. The state before compaction is shown in FIG. 3, but there are many voids between the granules 5 and 6, and FIG. 4 showing the state after compaction shows that the granules 5 produced by the present invention are the same. It can be understood that voids disappeared due to crushing of the sharp parts around the, or cracking or deformation of the particles themselves, resulting in solidification.

【0015】前記した施工例で、施工直後の路盤支持力
係数は23kg/cmであったが、これが施工後4週
間を経過した後測定した結果、その路盤支持力係数は2
8kg/cmとなっていた。つまりは施工直後よりも
時間を経過した方が路盤支持力係数が高くなっていたこ
とになる。これはつまり、天然石ならば各粒体6の強度
が施工後向上することは有り得ないが、本願発明によっ
て製造した粒体5はセメント系固化材によって硬化が進
行中のもので、時間の経過とともに粒体5そのものの強
度が高くなって路盤そのものの性能が向上したものと考
えられる。
In the above-mentioned construction example, the roadbed bearing coefficient immediately after construction was 23 kg / cm 3 , but the result was measured after 4 weeks of construction, and the roadbed bearing coefficient was 2 kg.
It was 8 kg / cm 3 . In other words, the roadbed bearing capacity coefficient was higher after a lapse of time than immediately after construction. This means that the strength of each particle 6 cannot be improved after construction if it is a natural stone, but the particle 5 produced according to the present invention is one in which hardening is in progress due to the cement-based solidifying material, and with the passage of time. It is considered that the strength of the granules 5 themselves increased and the performance of the roadbed itself improved.

【0016】歩道用路盤に本願発明による粒体を使用し
て実験した。歩道用路盤は車道よりも作用する荷重が低
く、それほどの強度を必要としない。したがってセメン
ト系固化材を10重量部配合して製造した粒体を使用し
た。粒体製造時の圧縮強度は4.5N/mmであっ
て、粒径0〜30mmのものを、厚さ100mmに敷設
した。天然石からなる粒体は使用していない。これを締
め固めると路盤支持力係数は天然石5kg/cmに対
し、飛躍的に向上し、8kg/cmを示した。これは
粒体が締め固めによって変形したり潰れて密実化が進ん
だものと考えられ、その後4週間経過後に測定してみる
と路盤支持力係数は15kg/cmという荷重支持性
能の向上を示していた。
Experiments were carried out using the granules according to the present invention in a sidewalk subgrade. The roadbed for sidewalks has a lower load than the roadway and does not require much strength. Therefore, granules produced by mixing 10 parts by weight of the cement-based solidifying material were used. The compressive strength during the production of the granules was 4.5 N / mm 2 , and particles having a particle size of 0 to 30 mm were laid in a thickness of 100 mm. No granules made of natural stone are used. When this was compacted, the roadbed supporting force coefficient was dramatically improved from 5 kg / cm 3 of natural stone to 8 kg / cm 3 . It is considered that this is because the granules were deformed or crushed by compaction and became more solid, and when measured 4 weeks later, the roadbed bearing coefficient was 15 kg / cm 3 and the load bearing performance was improved. Was showing.

【0017】[0017]

【発明の効果】この発明は以上のような構成を有し、以
下の効果を得ることができる。 砂や礫などとして使用できない岩石質粉体を、セメン
ト系固化材を使用して粒体として砂や礫などと同様に使
用可能となったため、これまで廃棄していたものを残さ
ず有効に資源化でき、廃棄処理に伴う廃棄場の問題や費
用の問題を大きく改善できる。 セメント系固化材の混合比率を変えることによって、
ほぼ期待通りの強度の粒体を製造可能であり、最低限の
資材とコストによって、予想できる強度の粒体を自在に
調整でき、設計段階で施工条件等に合わせて製造コスト
を低く押さえるよう計算できる。 セメント系固化材によって天然石から成る粒体よりも
比較的低い強度の粒体を製造可能であり、この粒体を使
用して天然石と混ぜて路盤などに使用することによっ
て、粒体の間が密実化したより荷重支持性能の高い路盤
などが施工できる。 セメント系固化材によって固化させるものであり、粒
体の硬化は施工以後も続いており、天然石では得られな
い、施工後の性能の向上を期待することができる。
The present invention has the above-mentioned structure and can obtain the following effects. Since rocky powder that cannot be used as sand or gravel can be used as granules by using a cementitious solidifying material like sand and gravel, it is possible to effectively use resources without leaving what was previously discarded. Can be realized, and the problems of the disposal site and costs associated with the disposal can be greatly improved. By changing the mixing ratio of the cement-based solidifying material,
It is possible to manufacture granules with almost the expected strength, and it is possible to freely adjust the granules with the expected strength with the minimum materials and costs, and calculate to keep the manufacturing cost low according to the construction conditions at the design stage. it can. It is possible to manufacture granules with a relatively lower strength than granules made of natural stone by cement-based solidifying material, and by using this granule and mixing it with natural stone for use in roadbeds, etc. It is possible to construct roadbeds with a higher load-bearing performance than the actual ones. It is solidified with a cement-based solidifying material, and the hardening of the granules continues even after the construction, and it can be expected to improve the performance after construction, which cannot be obtained with natural stone.

【図面の簡単な説明】[Brief description of drawings]

【図1】セメント系固化材の混合比率と脱気による強度
発現の関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a mixing ratio of a cement-based solidifying material and strength development by deaeration.

【図2】製造過程を示す説明図である。FIG. 2 is an explanatory diagram showing a manufacturing process.

【図3】本願発明によって製造した粒体と天然石を使用
した締め固め前の路盤の断面図である。
FIG. 3 is a cross-sectional view of a roadbed before compaction using the granules and natural stone manufactured according to the present invention.

【図4】ローラーによって締め固めた後の路盤の断面図
である。
FIG. 4 is a cross-sectional view of the roadbed after being compacted by rollers.

【符号の説明】[Explanation of symbols]

1 ミキサー 2 押出し機 3 クラッシャー 4 スクリーン 5 本願発明によって製造した粒体 6 天然石粒体 1 mixer 2 extruder 3 crusher 4 screen 5 Granules produced by the present invention 6 Natural stone granules

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 土砂から砂や礫を取り除いた後の微粒の
岩石質粉体を主体とする泥土を、セメント系固化材及び
無機質系粒状物を主体とする補強材料と水分とともに混
練し、この混合物を真空吸引によって脱気して養生して
硬化させた後に、粉砕することによって粒状とする粒状
建設用資材の製造方法。
1. A mud consisting mainly of fine rocky powder after removing sand and gravel from the earth and sand is kneaded together with a cement-based solidifying material and a reinforcing material mainly consisting of inorganic particles and water. A method for producing a granular construction material in which a mixture is deaerated by vacuum suction to be cured and cured, and then pulverized to be granular.
【請求項2】 セメント系固化材の混合比率を、全重量
中の10重量部〜40重量部の間で適宜選択し、硬化後
の圧縮強度を調整することを特徴とする請求項1記載の
粒状建設用資材の製造方法。
2. The compression ratio after curing is adjusted by appropriately selecting the mixing ratio of the cementitious solidifying material from 10 parts by weight to 40 parts by weight in the total weight. Manufacturing method of granular construction materials.
【請求項3】 補強材料として、硬化後の粒状建設用資
材の200%以上の強度を有する無機質系廃棄粒状物か
ら選択することを特徴とする請求項1記載の粒状建設用
資材の製造方法。
3. The method for producing a granular construction material according to claim 1, wherein the reinforcing material is selected from an inorganic waste granular material having a strength of 200% or more of the cured construction material.
【請求項4】 補強材料として、フライアッシュ、スラ
グ、鋳物砂等の産業廃棄粒状物の中から一若しくは二以
上の材料を選択することを特徴とする請求項3記載の粒
状建設用資材の製造方法。
4. The production of granular construction material according to claim 3, wherein one or more materials are selected from the industrial waste particles such as fly ash, slag, and foundry sand as the reinforcing material. Method.
JP2001393116A 2001-12-26 2001-12-26 Manufacturing method of granular construction materials mixed with natural stone particles Expired - Fee Related JP3641458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001393116A JP3641458B2 (en) 2001-12-26 2001-12-26 Manufacturing method of granular construction materials mixed with natural stone particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001393116A JP3641458B2 (en) 2001-12-26 2001-12-26 Manufacturing method of granular construction materials mixed with natural stone particles

Publications (2)

Publication Number Publication Date
JP2003192409A true JP2003192409A (en) 2003-07-09
JP3641458B2 JP3641458B2 (en) 2005-04-20

Family

ID=27600182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001393116A Expired - Fee Related JP3641458B2 (en) 2001-12-26 2001-12-26 Manufacturing method of granular construction materials mixed with natural stone particles

Country Status (1)

Country Link
JP (1) JP3641458B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013465A1 (en) * 2005-07-29 2007-02-01 The Chugoku Electric Power Co., Inc. Method of the solidification of soft soil
JP2011093752A (en) * 2009-10-30 2011-05-12 Nippon Steel Corp Method for manufacturing mud-containing solidified matter
JP2011093751A (en) * 2009-10-30 2011-05-12 Nippon Steel Corp Mud-containing solidified matter and method for manufacturing the same
JP2011093750A (en) * 2009-10-30 2011-05-12 Nippon Steel Corp Mud-containing solidified matter and method for manufacturing the same
CN103485469A (en) * 2013-09-21 2014-01-01 无为县硕赢新型墙体材料有限公司 Manufacturing technology for high-intensity concrete bricks

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013465A1 (en) * 2005-07-29 2007-02-01 The Chugoku Electric Power Co., Inc. Method of the solidification of soft soil
KR100986498B1 (en) * 2005-07-29 2010-10-08 에네르기아 에코 마테리아 가부시키가이샤 Method 0f the solidification 0f soft soil
JP4869233B2 (en) * 2005-07-29 2012-02-08 中国電力株式会社 Solidification method for soft soil
JP2011093752A (en) * 2009-10-30 2011-05-12 Nippon Steel Corp Method for manufacturing mud-containing solidified matter
JP2011093751A (en) * 2009-10-30 2011-05-12 Nippon Steel Corp Mud-containing solidified matter and method for manufacturing the same
JP2011093750A (en) * 2009-10-30 2011-05-12 Nippon Steel Corp Mud-containing solidified matter and method for manufacturing the same
CN103485469A (en) * 2013-09-21 2014-01-01 无为县硕赢新型墙体材料有限公司 Manufacturing technology for high-intensity concrete bricks

Also Published As

Publication number Publication date
JP3641458B2 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
CN102390963B (en) Recycled aggregate medium-dry hard concrete prepared by using building waste and preparation method of recycled aggregate medium-dry hard concrete
JP2004345885A (en) Hydraulic composition, backfill material for ground using the same, non-high strength hardened part structural material and backfill process for excavated ground
CN112608079A (en) Method for recycling waste concrete
JP2007131804A (en) Soil backfilling material
JP2002511381A (en) Chemicals to improve the engineering properties of soil
KR100710514B1 (en) A road paving materials using construction waste and method for manufacturing thereof
JP3641458B2 (en) Manufacturing method of granular construction materials mixed with natural stone particles
JP2004218337A (en) Soil-cement wall reclamation material
JP4109376B2 (en) Method for producing soil mortar using lime-treated soil and embankment method using the same
WO2001004426A1 (en) Lime-improved soil mortar and method for production thereof and fluidization treatment method using the same
KR100755202B1 (en) Pavement for using first class reproduction aggregate and fabrication method thereof
JP5812623B2 (en) High-strength porous concrete composition and high-strength porous concrete cured body
JP2004155636A (en) Construction or building material using slag or fly ash as main material
JP3694495B2 (en) Roadbed material or backfill filler
JP2001200537A (en) Soil improving method and support pile for soil improvement
JP4913193B2 (en) Recycled ground material and manufacturing method thereof
JP4082508B2 (en) Method for producing coal ash concrete and method for producing pavement structure using coal ash
JP2006176387A (en) Recyclable aggregate for interlocking block and method for manufacturing recyclable interlocking block as well as recyclable interlocking block
JP2764645B2 (en) Effective use of construction surplus soil
JP3321152B1 (en) How to recycle construction sludge
JP3208537B2 (en) Grain preparation and stabilization method using solidified cement made from sewage sludge incineration ash
JP2002146707A (en) Leveling substratum for concrete block pavement, paving construction and paving construction method
JP2003002725A (en) Construction material using site generated rock material
CN110984065B (en) Hydraulic structure of red-bed soft rock
JP3642050B2 (en) Waste disposal site and construction method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3641458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees