JP3641458B2 - Manufacturing method of granular construction materials mixed with natural stone particles - Google Patents

Manufacturing method of granular construction materials mixed with natural stone particles Download PDF

Info

Publication number
JP3641458B2
JP3641458B2 JP2001393116A JP2001393116A JP3641458B2 JP 3641458 B2 JP3641458 B2 JP 3641458B2 JP 2001393116 A JP2001393116 A JP 2001393116A JP 2001393116 A JP2001393116 A JP 2001393116A JP 3641458 B2 JP3641458 B2 JP 3641458B2
Authority
JP
Japan
Prior art keywords
strength
cement
sand
construction
granule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001393116A
Other languages
Japanese (ja)
Other versions
JP2003192409A (en
Inventor
雅広 川井
Original Assignee
児玉 憲三
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 児玉 憲三 filed Critical 児玉 憲三
Priority to JP2001393116A priority Critical patent/JP3641458B2/en
Publication of JP2003192409A publication Critical patent/JP2003192409A/en
Application granted granted Critical
Publication of JP3641458B2 publication Critical patent/JP3641458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/021Agglomerated materials, e.g. artificial aggregates agglomerated by a mineral binder, e.g. cement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Road Paving Structures (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は建設資材として骨材などを調達する際発生する微粒の岩石質粉体を、建設用資材として活用する方法に関するものであり、特に天然砕石と混ぜて使用する粒状建設用資材の製造方法に関するものである。
【0002】
【従来の技術】
建築や土木の分野において、コンクリートに使用する細骨材や粗骨材の調達は近年ますます難しいものとなっている。鉄筋腐蝕の問題などによって海砂の使用が大きく制限されている現在、砂やそれよりも大きな砂利などは、山などから土砂を切り崩してフルイにかけ、適宜必要な粒径のものを取り出すことによって調達されているのが現状である。
【0003】
【発明が解決しようとする課題】
土砂から砂や砂利などを取り出した場合、それよりも粒径が小さな微粒の粉のような成分が残る。実際は土砂をくだいて水で洗って砂や砂利を分別し、それよりも小さな微粒の粉体は、水中でフロック化し沈積させて泥土状とする。実際にはさらにこれをフィルタープレスで機械的に固めて水分を脱水して脱水ケーキと呼ばれる形にするもので、この脱水ケーキは資材として使用されずに廃棄物として廃棄していたのが現状である。現状では、この脱水ケーキと呼ばれるものがかなり多く産出されるため、その廃棄処理に多額の費用がかかるのが実状であった。また資源の有効利用が叫ばれる今日、脱水ケーキに含まれる微粒の岩石質粉体も再生したいという願望が日増しに高まっているという現状もある。
【0004】
天然の砂や砕石は圧縮強度が高く、天然の砂や砕石だけを使用していたのでは、必ずしも資材として適当でない場合もあった。例えば、道路路盤の上層として砕石を敷設してタコつき、タンパー、ローラーなどで締固め、かなり強度を高めて鉛直荷重の支持性能を高めるのであるが、圧縮強度が高い天然砕石のみであると充分な締め固めができない場合があった。砕石個々の強度が高いと、締め固めても石が変形せず、石の尖った部分同士がぶつかり合って、空隙の多い締め固め層ができてしまう。空隙が多いと大きな荷重支持性能を得ることができず、必ずしも個々の粒体の強度が高いことが、全体の性能を高めないと理解されている。このため、天然砕石だけでなく、これにそれよりも強度の低い粒体を混ぜることによって、天然砕石の間に紛れ込んだ強度の低い粒体が潰れ、若しくは変形することによって、砕石間の空隙が減少して密実化が進行し、より良好な締め固めが可能となる。このために、天然砕石よりも強度が低く、またその強度も施工箇所や現場状況に応じて適宜調整可能な骨材や砕石の代わりとなる粒状建設資材の開発が望まれていた。
【0005】
天然石であると施工以降はそれ以上に強度が大きくなることはない。これはすなわち天然石が硬化中の物質ではないからであり、施工以後路盤等の性能が向上することは期待できない。しかしながら、天然石の代わりに硬化中の粒状資材を使用すれば、施工以降も強度性能が向上する。例えば前記した路盤上層に施工後も硬化が進行中の材料を使用すれば、締め固めの際に強度が低くて締め固めによって層の密実化が図れ、それ以降は個々の粒体の硬化が進行して、路盤の荷重支持性能が高まって遥かに大きな強度が期待できる。このように、天然石とは全く異なる硬化進行性能を有する粒状建設用資材の開発が望まれていた。
【0006】
【課題を解決するための手段】
この発明は以上のような課題を解決するためになされたもので、土砂から砂や礫を取り除いた後の微粒の岩石質粉体をセメントなどの硬化材と混練して硬化させ、これを粉砕して製造するもので、天然砕石と混ぜ、これを突き固めることで路盤などの密実化を実現する粒状建設用資材の製造方法を提供することを目的とする。
【0007】
【発明の実施の形態】
この発明にかかる天然砕石と混ぜる粒状建設用資材の製造方法は、土砂から砂、砂利や礫を取り除いた後、それ以下の細かい粒子状の物質である岩石質粉体を、それ以上の粒径を有する粒体にして建設用資材とする方法である。粉体を取り出す前の土砂は、山や河川、丘陵地などの様々な一般的な土砂が全て使用可能で、石灰質系の土砂、火山灰系の土砂、砂岩などの堆積層の土砂、岩盤が地表近くで長年風化を受けた後に生ずる土砂など、その種類を問わない。これら土砂を砕いて、水で洗い流し、それをスクリーンにかけて砂、砂利、礫などと、大きさ別に分別する。それら分別された砂などよりも更に粒子の小さい岩石質粉体は水で洗い流されて、泥土となる。この泥土を粒径のより大きな粒体へと再生するものである。実際は、水をある程度脱水して塊状となった脱水ケーキという状態にすることが多い。
【0008】
この泥土にセメント系固化材と無機質系粒状物を主体とする補強材料と水を加えて混練する。実際は、泥土は脱水して塊状となった脱水ケーキと呼ばれる状態となっていることが多い。セメント系固化材は、通常のポルトランドセメント、早強セメント、高炉セメントなどを使用するが、これと同時にフライアッシュや鋳物灰等の産業廃棄物などもセメント系固化材として採用し、ポルトランドセメントなどに加えて、固化材の重量の中に算入する。製造する粒体の圧縮強度を高めるには、基本的にこのセメント系固化材の混合比率を高めればよく、全体重量の10〜40%程度の間で選択するのが好適である。補強材料としては、スラグや鋳物砂等の鉱さい類、陶磁器くず、がれき類などの産業廃棄物でもある無機質系粒状物を採用可能である。その他廃棄物でない天然砕石、天然砂、人工砂なども採用可能である。これによりこれら産業廃棄物の再生にも貢献することができる。補強材料はコンクリートの骨材のように、粉体の強度を高め、強度を安定させるものである。補強材料は、この発明で製造する粒体によって得られる強度よりも大きなもので、それら粒体の強度の200%以上の強度を備えていることが、製品の質を信頼性の高いものとする。
【0009】
前記したセメント系固化材、補強材料、水を加えて混練してできた混合物を、真空吸引によって脱気し、養生して硬化させる。次に示す表1は、材料の混合比率を変えて実験を行った結果を示すもので、セメント系固定材の混合比率を10〜40%までの間で選択する。また補強材料の種類も選択して、そのつど強度を測定してみた。この表1で、FAはフライアッシュ、SSはスラグ(5mm以下)、SGはスラグ(13mm以下)、ISは鋳物砂、IAは鋳物灰を示し、圧縮強度のWは何週目(week)かを示している。この実験結果で理解できるのは、セメント系固化材の混合比率を10〜40%までの範囲で増やしていくと、その圧縮強度は次第に大きくなり、しかもそれはほぼ混合比率に比例して強度が高くなっていることである。しかしながら、セメント系固化材の混合比率を高めると、それだけコストが嵩むことも事実で、本願発明の目的のひとつとして、施工現場や施工状況に応じて、必要な粒体の圧縮強度に自由に調整して、余分な固化材を使用せずに、その施工コストも必要最低限に押さえることがある。例えば、余り大きな強度が必要でない歩道用路盤に使用する粒体は、多少強度が低くても問題がなく、必要最低限の強度を有するようセメント系固化材の配合比率を押さえて製造するものである。これにより安価に施工が可能となる。
【0010】
【表1】

Figure 0003641458
【0011】
混合物は真空吸引によって脱気するものであって、これによっても粒体の圧縮強度は飛躍的に高まる。前記した表1において、圧縮強度の項目に括弧ツキで記載してあるのは真空吸引しないで養生して硬化させたものであって、真空吸引して脱気した方が強度はほぼ2.5倍近くになることが理解できる。この脱気過程の存否、及びセメント系固化材の混合比率による圧縮強度の高低の関係をグラフに表したものを図1として示す。このグラフによって理解できるのは、真空吸引による脱気をした場合は、しない場合の実験と比較して、その圧縮強度は2倍〜2.5倍の間となることが理解できる。またセメント系固化材の混合比率を高めることによって、その圧縮強度も比例して高くなっていることが理解できる。このように、セメント系固化材の混合比率を高めたり低めたりすることによって、求める圧縮強度の製品の強度が、ほぼ正確に予想できることが理解できる。つまりは、出来上がった後の製品の圧縮強度を調べて選別するのではなく、本願発明の製造方法を採用することによって、製造する粒体の圧縮強度を設計段階にて予想でき、必要最低限の材料の調達とコストで製造可能となることが理解できる。
【0012】
硬化した後の混合材料をクラッシャーによって粉砕し、粒体状の建設用資材とする。粒体の大きさに応じてクラッシャーの種類、性能、粉砕時間を適宜選択して、ある程度の大きさの粒径にそろえる。この粒体をスクリーンにかけて、粒径の大きさごとにフルイにかけて選別する。粒径の小さな粉体状のものが出れば、それをまた岩石質粉体に加えて混ぜて、再度固化、粉砕して粒体とすればよい。
【0013】
【実施例】
以下、図に示す実施例に基づきこの発明を詳細に説明する。図2に示すのは、この発明にかかる製造過程の流れを示すものであり、岩石質粉体、セメント系固化材、補強材料、水をミキサー1に入れ、これを混合・攪拌・混練して混合材料を造る。これを押出機2に入れて真空吸引して脱気する。この状態で数日から数週間ほど養生し、これをクラッシャー3にて粉砕する。粉砕された粒径のまちまちな粒体をスクリーン4にかけてフルイをかけ、粉状、砂状、砂利状、礫状という複数段階の粒径別に分けるものである。
【0014】
図3及び図4に示すのは、車道の上層路盤にこの発明にて製造した粒状建設用資材を使用した例である。車道の上層路盤は、大きな荷重を受けるものであって、比較的高い強度が要求されるものである。実施例では、セメント固化材の混合比率を29%として製造した粒体5を使用している。粒径は0〜40mmの範囲で、粒体5のみの圧縮強度は12.2N/mmであった。これに粒径が0〜40mmであって、圧縮強度150N/mmの天然石から成る砕石6と混ぜた。粒体と天然石の重量比率は、1:1であった。このような製造粒体と天然石から成る粒体を上層路盤として厚さ150mmに敷設した。このような路盤をタンパーによって締め固めたとき、その施工直後の路盤支持力係数は23kg/cmを得ることができた。天然石から成る粒体のみを、同じく厚さ150mmに敷設して締め固めたとき、18kg/cmであった。つまりは本発明によって製造した粒体と天然石からなる粒体を混ぜて施工した場合が、天然石の粒体のみの場合と比較して、より大きな荷重支持性能を得ることができることが理解できた。これは本願発明によって製造した粒体が、天然石から成る粒の間にて変形したり潰れて、粒体同士を密実化するものである。その締め固め前の状態を図3において示すが、粒体5や6の間に空隙が多く存在し、それが締め固め後の状態を示す図4であると、本願発明によって製造した粒体5の周囲の尖った部分が潰れたり、粒体自体が割れたり、変形することによって空隙がなくなり、密実化したものと理解できる。
【0015】
前記した施工例で、施工直後の路盤支持力係数は23kg/cmであったが、これが施工後4週間を経過した後測定した結果、その路盤支持力係数は28kg/cmとなっていた。つまりは施工直後よりも時間を経過した方が路盤支持力係数が高くなっていたことになる。これはつまり、天然石ならば各粒体6の強度が施工後向上することは有り得ないが、本願発明によって製造した粒体5はセメント系固化材によって硬化が進行中のもので、時間の経過とともに粒体5そのものの強度が高くなって路盤そのものの性能が向上したものと考えられる。
【0016】
歩道用路盤に本願発明による粒体を使用して実験した。歩道用路盤は車道よりも作用する荷重が低く、それほどの強度を必要としない。したがってセメント系固化材を10重量部配合して製造した粒体を使用した。粒体製造時の圧縮強度は4.5N/mmであって、粒径0〜30mmのものを、厚さ100mmに敷設した。天然石からなる粒体は使用していない。これを締め固めると路盤支持力係数は天然石5kg/cmに対し、飛躍的に向上し、8kg/cmを示した。これは粒体が締め固めによって変形したり潰れて密実化が進んだものと考えられ、その後4週間経過後に測定してみると路盤支持力係数は15kg/cmという荷重支持性能の向上を示していた。
【0017】
【発明の効果】
この発明は以上のような構成を有し、以下の効果を得ることができる。
*砂や礫などとして使用できない岩石質粉体を、セメント系固化材を使用して粒体として砂や礫などと同様に使用可能となったため、これまで廃棄していたものを残さず有効に資源化でき、廃棄処理に伴う廃棄場の問題や費用の問題を大きく改善できる。
*セメント系固化材の混合比率を変えることによって、ほぼ期待通りの強度の粒体を製造可能であり、最低限の資材とコストによって、予想できる強度の粒体を自在に調整でき、設計段階で施工条件等に合わせて製造コストを低く押さえるよう計算できる。
*セメント系固化材によって天然石から成る粒体よりも比較的低い強度の粒体を製造可能であり、この粒体を使用して天然砕石と混ぜて路盤などに使用することによって、粒体周囲の尖った部分が潰れたり、粒体自体が割れたり、変形うることによって空隙が無くなり、粒体同士が密実化したより荷重支持性能の高い路盤などが施工できる。
*セメント系固化材によって固化させるものであり、粒体の硬化は施工以後も続いており、天然石では得られない、施工後の性能の向上を期待することができる。
【図面の簡単な説明】
【図1】 セメント系固化材の混合比率と脱気による強度発現の関係を示すグラフである。
【図2】 製造過程を示す説明図である。
【図3】 本願発明によって製造した粒体と天然石を使用した締め固め前の路盤の断面図である。
【図4】 ローラーによって締め固めた後の路盤の断面図である。
【符号の説明】
1 ミキサー
2 押出し機
3 クラッシャー
4 スクリーン
5 本願発明によって製造した粒体
6 天然石粒体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for utilizing fine rock-like powder generated when procuring aggregates or the like as a construction material as a construction material, and in particular, a method for producing a granular construction material used by mixing with natural crushed stone It is about.
[0002]
[Prior art]
In the field of construction and civil engineering, the procurement of fine aggregates and coarse aggregates used in concrete has become increasingly difficult in recent years. At present, the use of sea sand is greatly restricted due to problems such as corrosion of reinforcing bars. Sand and gravel larger than that are procured by crushing soil from mountains and applying it to a sieve and taking out the appropriate grain size. This is the current situation.
[0003]
[Problems to be solved by the invention]
When sand or gravel is removed from the earth and sand, components such as fine powder having a smaller particle size remain. In fact, the soil is poured and washed with water to separate the sand and gravel, and the smaller fine powder is flocked and deposited in water to form mud. Actually, it is further solidified mechanically with a filter press to dehydrate the water into a form called a dehydrated cake. This dehydrated cake was not used as a material but was discarded as waste. is there. At present, a lot of so-called dehydrated cakes are produced, and it is actually expensive to dispose of them. In addition, today, when the effective use of resources is screamed, there is a growing desire to regenerate fine rocky powder contained in dehydrated cakes.
[0004]
Natural sand and crushed stone have high compressive strength, and using only natural sand and crushed stone is not always suitable as a material. For example, crushed stone is laid as the upper layer of the roadbed, octopus, compacted with a tamper, roller, etc., and the strength of the vertical load is enhanced by considerably increasing the strength, but only natural crushed stone with high compressive strength is sufficient In some cases, it could not be compacted. If the strength of each crushed stone is high, the stone will not deform even if it is compacted, and the sharp parts of the stone will collide with each other, resulting in a compacted layer with many voids. It is understood that a large load supporting performance cannot be obtained if there are many voids, and that the strength of the individual particles is not necessarily high, which does not increase the overall performance. For this reason, by mixing not only natural crushed stones but also low-strength granules, the low-strength granules mixed in between the natural crushed stones are crushed or deformed, resulting in voids between crushed stones. Decrease and solidification proceed, and better compaction becomes possible. For this reason, it has been desired to develop a granular construction material that is lower in strength than natural crushed stone, and whose strength can be appropriately adjusted according to the construction site and on-site conditions, instead of aggregate and crushed stone.
[0005]
If it is a natural stone, the strength will not increase any further after construction. This is because natural stone is not a curing substance, and it is not expected that the performance of roadbeds and the like will improve after construction. However, if a granular material being hardened is used instead of natural stone, the strength performance is improved after construction. For example, if a material whose curing is in progress after construction is used for the above-mentioned roadbed upper layer, the strength is low at the time of compaction, and the solidification of the layer can be achieved by compaction, and thereafter the individual particles are cured. Proceeding, the load-bearing performance of the roadbed is enhanced and a much greater strength can be expected. As described above, it has been desired to develop a granular construction material having a curing progress performance completely different from that of natural stone.
[0006]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned problems. The fine rocky powder after removing sand and gravel from the earth and sand is kneaded with a hardening material such as cement and hardened, and then pulverized. It aims at providing the manufacturing method of the granular construction material which implement | achieves solidification of a roadbed etc. by mixing with natural crushed stone and solidifying this.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The method for producing a granular construction material to be mixed with the natural crushed stone according to the present invention is to remove sand, gravel and gravel from earth and sand, and then to remove a rocky powder, which is a finer particulate material smaller than that, It is the method of using as a construction material the granule which has. Sediment before removing the powder can be used for all kinds of general sediments such as mountains, rivers, hills, and calcareous sediments, volcanic ash sediments, sedimentary sediments such as sandstone, and bedrock. Regardless of the type of soil, such as earth and sand that has been weathered for many years nearby. These earth and sand are crushed and washed with water, and they are screened and separated into sand, gravel, gravel, etc. according to size. The rock-like powder with smaller particles than the sorted sand is washed away with water and becomes mud. This mud is regenerated into particles having a larger particle size. In practice, the water is often dehydrated to a certain degree to form a dehydrated cake.
[0008]
The mud soil is kneaded by adding a reinforcing material mainly composed of a cement-based solidified material and inorganic particles and water. Actually, mud is often in a state called dewatered cake that has been dewatered to form a lump. For cement-based solidified materials, ordinary Portland cement, early-strength cement, blast furnace cement, etc. are used. At the same time, industrial wastes such as fly ash and cast ash are also used as cement-based solidified materials. In addition, it is included in the weight of the solidified material. In order to increase the compressive strength of the granules to be produced, basically, the mixing ratio of the cement-based solidified material may be increased, and it is preferable to select between about 10 to 40% of the total weight. As the reinforcing material, it is possible to employ inorganic granular materials which are also industrial wastes such as slag, foundry sand and the like, ceramic waste, and debris. Other non-waste natural crushed stones, natural sand and artificial sand can also be used. This can also contribute to the regeneration of these industrial wastes. The reinforcing material, like concrete aggregate, increases the strength of the powder and stabilizes the strength. The reinforcing material is larger than the strength obtained by the granules produced in the present invention, and having a strength of 200% or more of the strength of the granules makes the product quality highly reliable. .
[0009]
The mixture obtained by adding and kneading the cement-based solidifying material, the reinforcing material, and water is degassed by vacuum suction, cured, and cured. Table 1 below shows the results of experiments conducted by changing the mixing ratio of materials, and the mixing ratio of the cement-based fixing material is selected between 10 and 40%. We also selected the type of reinforcing material and measured its strength each time. In Table 1, FA is fly ash, SS is slag (5 mm or less), SG is slag (13 mm or less), IS is foundry sand, IA is founded ash, and W is the week of compressive strength. Is shown. It can be understood from this experimental result that when the mixing ratio of the cement-based solidified material is increased in the range of 10 to 40%, the compressive strength gradually increases, and it is high in proportion to the mixing ratio. It is that. However, increasing the mixing ratio of the cement-based solidification material also increases the cost, and one of the purposes of the present invention is to freely adjust the compressive strength of the required granules according to the construction site and construction situation. Thus, the construction cost may be kept to the minimum necessary without using extra solidification material. For example, granules used for sidewalk roadbeds that do not require too much strength can be produced by suppressing the blending ratio of the cement-based solidifying material so that there is no problem even if the strength is somewhat low. is there. As a result, construction is possible at a low cost.
[0010]
[Table 1]
Figure 0003641458
[0011]
The mixture is degassed by vacuum suction, and this also dramatically increases the compressive strength of the granules. In Table 1 described above, the items indicated in parentheses in the item of compressive strength are those cured and cured without vacuum suction, and the strength is approximately 2.5% when deaerated by vacuum suction. I can understand that it will be nearly double. FIG. 1 is a graph showing the relationship between the presence or absence of this deaeration process and the level of compressive strength depending on the mixing ratio of the cement-based solidified material. From this graph, it can be understood that when the deaeration is performed by vacuum suction, the compressive strength is between 2 and 2.5 times as compared with the experiment in the case of not performing the deaeration. It can also be understood that the compressive strength is increased proportionally by increasing the mixing ratio of the cement-based solidifying material. Thus, it can be understood that the strength of the product having the required compressive strength can be predicted almost accurately by increasing or decreasing the mixing ratio of the cement-based solidifying material. In other words, rather than investigating and selecting the compressive strength of the finished product, by adopting the manufacturing method of the present invention, the compressive strength of the granules to be manufactured can be predicted at the design stage, and the minimum necessary It can be understood that it can be manufactured by procurement of materials and costs.
[0012]
The cured mixed material is pulverized by a crusher to form a granular construction material. Depending on the size of the granule, the type, performance and pulverization time of the crusher are appropriately selected so that the particle size can be adjusted to a certain size. The granules are put on a screen and screened for each particle size. If a powder with a small particle size appears, it can be added to the rocky powder and mixed, solidified and pulverized again to form granules.
[0013]
【Example】
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings. FIG. 2 shows the flow of the manufacturing process according to the present invention, in which a rocky powder, a cement-based solidifying material, a reinforcing material, and water are put into a mixer 1 and mixed, stirred and kneaded. Build mixed materials. This is put into the extruder 2 and deaerated by vacuum suction. In this state, it is cured for several days to several weeks, and this is crushed by a crusher 3. The pulverized particles having various particle diameters are applied to a screen 4 and sieved to divide the particles into a plurality of particle sizes such as powder, sand, gravel, and gravel.
[0014]
3 and 4 show an example in which the granular construction material produced in the present invention is used for the upper roadbed of the roadway. The upper roadbed of the roadway receives a large load and requires a relatively high strength. In the Example, the granule 5 manufactured by setting the mixing ratio of the cement solidification material to 29% is used. The particle size was in the range of 0 to 40 mm, and the compressive strength of only the granules 5 was 12.2 N / mm 2 . This was mixed with crushed stone 6 made of natural stone having a particle size of 0 to 40 mm and a compressive strength of 150 N / mm 2 . The weight ratio of granules to natural stone was 1: 1. Such manufactured granules and granules made of natural stone were laid as an upper roadbed to a thickness of 150 mm. When compacted such roadbed by tamper, roadbed bearing capacity coefficient immediately construction was able to obtain 23 kg / cm 3. When only the granule made of natural stone was laid and compacted to a thickness of 150 mm, it was 18 kg / cm 3 . In other words, it was understood that a larger load supporting performance can be obtained when the granule made of the present invention and the granule made of natural stone are mixed and applied as compared with the case of only the natural stone granule. This is because the granules produced according to the present invention are deformed or crushed between the grains made of natural stone, and the grains are made dense. The state before compaction is shown in FIG. 3, and there are many voids between the granules 5 and 6, and it is FIG. 4 showing the state after compaction. It can be understood that the sharp portions around the slabs are crushed, the granules themselves are cracked, or deformed to eliminate voids and become solid.
[0015]
In the construction example described above, the roadbed bearing capacity coefficient immediately after the construction was 23 kg / cm 3. As a result of measurement after 4 weeks from the construction, the roadbed bearing capacity coefficient was 28 kg / cm 3 . . In other words, the roadbed bearing capacity coefficient was higher when time passed than immediately after construction. In other words, if it is natural stone, the strength of each granule 6 cannot be improved after construction, but the granule 5 produced by the present invention is hardened by the cement-based solidifying material, and as time passes, It is considered that the strength of the granule 5 itself is increased and the performance of the roadbed itself is improved.
[0016]
It experimented using the granule by this invention for the roadbed for sidewalks. Sidewalk roadbeds are less loaded than roadways and do not require much strength. Therefore, granules produced by blending 10 parts by weight of cement-based solidified material were used. Compressive strength during granule production is a 4.5 N / mm 2, those of particle size 0~30Mm, laid to a thickness of 100 mm. Granules made of natural stone are not used. To solidify the roadbed bearing capacity coefficient natural stone 5 kg / cm 3 tighten this dramatically improves showed 8 kg / cm 3. This is thought to be due to the fact that the granules were deformed or crushed by compaction, and the solidification progressed. After that, when measured after 4 weeks, the load bearing performance was improved to 15 kg / cm 3. Was showing.
[0017]
【The invention's effect】
The present invention has the above-described configuration and can obtain the following effects.
* Because rock-like powder that cannot be used as sand or gravel can be used in the same way as sand or gravel as a granule using cement-based solidification material, it is effective without leaving anything that has been discarded so far. It can be recycled and can greatly improve the problems of disposal sites and costs associated with disposal.
* By changing the mixing ratio of the cement-based solidification material, it is possible to produce granules with almost the expected strength, and with the minimum amount of materials and costs, it is possible to freely adjust the expected strength of the granules at the design stage. It can be calculated to keep the manufacturing cost low according to the construction conditions.
* It is possible to produce granules with relatively lower strength than granules made of natural stone with cement-based solidified material. By using these granules and mixing them with natural crushed stone, When the sharp part is crushed, the granule itself is cracked, or deformed, the void is eliminated, and a roadbed having a higher load supporting performance can be constructed than when the granule is solidified.
* It is solidified by cement-based solidifying material, and the hardening of the particles continues after construction, and it can be expected to improve the performance after construction, which cannot be obtained with natural stone.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the mixing ratio of a cement-based solidifying material and the development of strength due to deaeration.
FIG. 2 is an explanatory diagram showing a manufacturing process.
FIG. 3 is a cross-sectional view of a roadbed before compaction using granules and natural stone produced according to the present invention.
FIG. 4 is a cross-sectional view of the roadbed after being compacted by a roller.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Mixer 2 Extruder 3 Crusher 4 Screen 5 Granule manufactured by this invention 6 Natural stone granule

Claims (1)

土砂から砂や礫を取り除いた後の微粒の岩石質粉体を主体とする泥土を、全重量中の10重量部〜40重量部の間で適宜選択したセメント系固化材、及び硬化後の粒状建設用資材の200%以上の強度を有する無機質系粒状物を主体とする補強材料を、水分とともに混練し、この混合物を真空吸引によって脱気して養生して硬化させ、粉砕することによって天然石から成る粒体よりも低い強度の粒体としてなる天然石粒体と混ぜる粒状建設用資材の製造方法。  Cement-based solidified material appropriately selected between 10 parts by weight to 40 parts by weight in the total weight of mud soil mainly composed of fine rock-like powder after removing sand and gravel from earth and sand, and granular after hardening Reinforcement material mainly composed of inorganic particles having strength of 200% or more of construction materials is kneaded with moisture, and this mixture is degassed by vacuum suction, cured, ground, and crushed. The manufacturing method of the granular construction material mixed with the natural stone granule used as a granule of the intensity | strength lower than the granule comprised.
JP2001393116A 2001-12-26 2001-12-26 Manufacturing method of granular construction materials mixed with natural stone particles Expired - Fee Related JP3641458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001393116A JP3641458B2 (en) 2001-12-26 2001-12-26 Manufacturing method of granular construction materials mixed with natural stone particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001393116A JP3641458B2 (en) 2001-12-26 2001-12-26 Manufacturing method of granular construction materials mixed with natural stone particles

Publications (2)

Publication Number Publication Date
JP2003192409A JP2003192409A (en) 2003-07-09
JP3641458B2 true JP3641458B2 (en) 2005-04-20

Family

ID=27600182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001393116A Expired - Fee Related JP3641458B2 (en) 2001-12-26 2001-12-26 Manufacturing method of granular construction materials mixed with natural stone particles

Country Status (1)

Country Link
JP (1) JP3641458B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986498B1 (en) * 2005-07-29 2010-10-08 에네르기아 에코 마테리아 가부시키가이샤 Method 0f the solidification 0f soft soil
JP5326996B2 (en) * 2009-10-30 2013-10-30 新日鐵住金株式会社 Mud-containing solidified body and method for producing the same
JP5326995B2 (en) * 2009-10-30 2013-10-30 新日鐵住金株式会社 Mud-containing solidified body and method for producing the same
JP5744387B2 (en) * 2009-10-30 2015-07-08 新日鐵住金株式会社 Method for producing mud-containing solidified body
CN103485469A (en) * 2013-09-21 2014-01-01 无为县硕赢新型墙体材料有限公司 Manufacturing technology for high-intensity concrete bricks

Also Published As

Publication number Publication date
JP2003192409A (en) 2003-07-09

Similar Documents

Publication Publication Date Title
JP2007131804A (en) Soil backfilling material
JP2002511381A (en) Chemicals to improve the engineering properties of soil
JP3641458B2 (en) Manufacturing method of granular construction materials mixed with natural stone particles
CN110984065B (en) Hydraulic structure of red-bed soft rock
JP5533690B2 (en) Granular materials for civil engineering work
JP3694495B2 (en) Roadbed material or backfill filler
JP2004155636A (en) Construction or building material using slag or fly ash as main material
JP2002371588A (en) Treated soil for structure direct bearing stratum, method of manufacturing the treated soil, and structure direct bearing stratum
JP2004345885A (en) Hydraulic composition, backfill material for ground using the same, non-high strength hardened part structural material and backfill process for excavated ground
JP6260038B2 (en) Granulation and solidification method of liquid mud
JP2006233424A (en) Construction method of impervious structure making use of dewatered sludge and the impervious structure by the construction method
JP2004218337A (en) Soil-cement wall reclamation material
WO1988000260A1 (en) Method of producing artificial ground
JP7415231B2 (en) Ground covering material and its manufacturing method
JP2684353B2 (en) Water-permeable material with concrete aggregate as aggregate and method for producing the same
JP2007131805A (en) Improved ground material
JP3208537B2 (en) Grain preparation and stabilization method using solidified cement made from sewage sludge incineration ash
JP3321152B1 (en) How to recycle construction sludge
JP4625333B2 (en) Fluidized soil and fluidized method
JP7028038B2 (en) How to repair a simple pavement
JP3556155B2 (en) Granulated / hardened material of coal ash blended as supplementary material with roadbed material, method of manufacturing the same, roadbed material blended with granulated / hardened material of coal ash as supplementary material
JP2003049401A (en) Roadbed material
JP3715225B2 (en) Paving material, paving body and paving method
JP2003261962A (en) Fluidized soil and method for determining composition thereof
JPH0240010B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3641458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees