JP5326995B2 - Mud-containing solidified body and method for producing the same - Google Patents

Mud-containing solidified body and method for producing the same Download PDF

Info

Publication number
JP5326995B2
JP5326995B2 JP2009250577A JP2009250577A JP5326995B2 JP 5326995 B2 JP5326995 B2 JP 5326995B2 JP 2009250577 A JP2009250577 A JP 2009250577A JP 2009250577 A JP2009250577 A JP 2009250577A JP 5326995 B2 JP5326995 B2 JP 5326995B2
Authority
JP
Japan
Prior art keywords
vol
mud
cement
mass
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009250577A
Other languages
Japanese (ja)
Other versions
JP2011093750A (en
Inventor
典央 伊勢
良広 高野
有三 赤司
諭 西島
雅夫 中川
義規 椛山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009250577A priority Critical patent/JP5326995B2/en
Publication of JP2011093750A publication Critical patent/JP2011093750A/en
Application granted granted Critical
Publication of JP5326995B2 publication Critical patent/JP5326995B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mud-containing solidified matter capable of expressing a sufficient compressive strength within a short time so that it can be pulverized during curing, and a method for manufacturing the same. <P>SOLUTION: The mud-containing solidified matter is obtained by kneading a raw material mixture having adjusted moisture content and subsequently curing and hardening the same, provided that the raw material mixture comprises: (B) mud having a moisture content of 70-250% based on mass; and (A2) cement, or alternatively comprises: (B) mud having a moisture content of 70-250% based on mass; one or both of (A1) blast furnace slag fine powder and (A2) cement; and (C) steelmaking slag. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

この発明は、泥土を利用して得た固化体及びその製造方法に関し、さらには、泥土に鉄鋼スラグ等を混ぜて得た泥土含有固化体及びその製造方法に関する。   The present invention relates to a solidified body obtained by using mud and a method for producing the same, and further relates to a mud-containing solidified body obtained by mixing steel slag and the like with mud and a method for producing the same.

鉄鋼製造において、高炉で溶融された鉄鉱石の鉄以外の成分は、副原料の石灰石やコークス中の灰分と共に高炉スラグとなり、また、高炉で製造された銑鉄から鋼片をつくりだす製鋼工程では、製鋼スラグが生成し、このうち、前者の高炉スラグは銑鉄1tあたり約300kg発生し、後者の製鋼スラグは鉄1tあたり約120kg発生することから、これらを有効に利用する方法が種々検討されている。代表的には、溶融状態の高炉スラグに加圧水を噴射して急激に冷却させて得た高炉水砕スラグを粉砕し、普通ポルトランドセメント等を混ぜて高炉セメントにする方法があり、この高炉セメントは、石灰石や粘土等を焼成し、石膏を混ぜて、更に粉砕して得る、いわゆる普通セメントに比べて、焼成工程から得られるクリンカーの使用量を少なくすることができることから、省エネルギー等の観点からも、広く利用されている。   In iron and steel production, components other than iron in iron ore melted in a blast furnace become blast furnace slag along with limestone as a secondary raw material and coke, and in steelmaking processes that produce slabs from pig iron produced in the blast furnace, Slag is generated. Of this, the former blast furnace slag is generated about 300 kg per ton of pig iron, and the latter steelmaking slag is generated about 120 kg per ton of iron. Therefore, various methods for effectively using these are being studied. Typically, there is a method of pulverizing blast furnace granulated slag obtained by injecting pressurized water into molten blast furnace slag and rapidly cooling it, and mixing it with ordinary Portland cement to make blast furnace cement. Compared with so-called ordinary cement obtained by firing limestone, clay, etc., mixing with gypsum, and further pulverizing, the amount of clinker obtained from the firing process can be reduced. Widely used.

また、製鋼スラグは、遊離石灰(フリーライム:f-CaO)を含むことから、その水和反応によりスラグ自体が膨張し、崩壊してしまうため、高炉スラグに比べて、これまでその利用が制限されていたが、製鋼スラグと高炉水砕スラグに、高炉スラグを微粉砕した高炉スラグ微粉末等を混合し、水を加えて混練することで、養生させてコンクリート等のような水和固化体を得る方法が提案されている(特許文献1参照)。これによれば、製鋼スラグが有するアルカリ成分を利用して、高炉水砕スラグの水硬反応性を向上させるため、製鋼スラグの膨張を抑えることにもなる。   Also, steelmaking slag contains free lime (free lime: f-CaO), so the slag itself expands and collapses due to its hydration reaction, so its use has been limited so far compared to blast furnace slag. However, the steel slag and granulated blast furnace slag were mixed with blast furnace slag fine powder obtained by finely pulverizing blast furnace slag, kneaded with water, and then cured and hydrated solidified like concrete. Has been proposed (see Patent Document 1). According to this, since the hydraulic reactivity of blast furnace granulated slag is improved using the alkaline component which steelmaking slag has, expansion of steelmaking slag will also be suppressed.

一方で、高炉スラグや製鋼スラグのような鉄鋼スラグと同様に、近時、その再利用法の検討がなされているものに浚渫土や建設排土等の泥土がある。例えば航路、泊地、河川等の浚渫により生ずる浚渫土は、埋立て資材等に使用されているものの、その高い含水比が問題になり、リサイクル技術の確立が望まれている。そこで、所定のフリーライムを含有した製鋼スラグ等を用いて、泥土に混ぜることで、泥土の強度を改質する方法が提案されている(特許文献2参照)。強度が改良された泥土は、干潟や浅場造成用のマウンド材や、河床の深掘れ部分の埋め戻し材等に利用することができ、河川や海域の自然再生事業に適用することも可能である。なお、この泥土を改質する技術は、上記のようなマウンド材や埋め戻し材として利用するのに必要なレベルの強度改良であり、例えば上記特許文献2の実施例に示されるように、高々0.1〜0.5N/mm2程度の圧縮強度を得るものである。 On the other hand, in the same way as steel slag such as blast furnace slag and steelmaking slag, mud soil such as dredged soil and construction waste has been studied recently. For example, dredged soil caused by dredging such as navigation routes, anchorages, and rivers is used for landfill materials, but its high water content becomes a problem, and establishment of recycling technology is desired. Therefore, a method has been proposed in which the strength of the mud is improved by mixing it with mud using a steelmaking slag containing predetermined free lime (see Patent Document 2). The mud with improved strength can be used for mounds for tidal flats and shallow ground construction, and backfill materials for deep digging of river beds, and can also be applied to nature restoration projects in rivers and sea areas. . The technique for modifying the mud is a level of strength improvement required for use as a mound material or a backfill material as described above. For example, as shown in the example of Patent Document 2 above, A compressive strength of about 0.1 to 0.5 N / mm 2 is obtained.

特開2003−2726号公報JP 2003-2726 A 特開2009−121167号公報JP 2009-121167 A

ところで、上述した鉄鋼スラグを用いた水和固化体では、準硬石として利用するのに必要な9.8N/mm2の強度を発現するのに、少なくとも7日前後の養生日数が掛かってしまう(「鉄鋼スラグ水和固化体技術マニュアル(改訂版)〜製鋼スラグの有効利用技術」財団法人:沿岸技術研究センター;H20年2月発行)。この様に、必要な強度を発現するのに時間が掛かると、その間、製造ヤードを占有してしまうため、トータルコストの面では不経済になる。 By the way, in the hydrated solidified body using the steel slag described above, it takes a curing period of at least about 7 days to develop the strength of 9.8 N / mm 2 necessary for use as semi-hard stone. (“Iron and Steel Slag Hydrated Solid Technology Manual (Revised Version)-Effective Utilization Technology of Steelmaking Slag” Foundation: Coastal Technology Research Center; issued in February 2008). In this way, if it takes time to develop the required strength, the manufacturing yard is occupied during that time, which is uneconomical in terms of total cost.

そこで、例えば準硬石に必要な9.8N/mm2以上の強度を発現するまで養生する際、途中で破砕して製造ヤードに積んだ状態で養生することができれば、矩形のようなブロック状態で養生する場合に比べて、同一体積分の固化体をより狭いスペースで養生することができ、ヤードを有効に活用してより多くの固化体を製造できるようになる。ところが、養生の途中で破砕する場合、少なくとも5.0N/mm2程度の圧縮強度を有していないと、細かく粉砕され過ぎてしまい、目的とする最終製品として使用できなくなってしまう。 Therefore, for example, when curing is performed until the strength of 9.8 N / mm 2 or more necessary for semi-hard stone is developed, if it can be cured in the state of being crushed in the middle and loaded in the production yard, a block state like a rectangle Compared with the case of curing by the method, the solidified body of the same volume can be cured in a narrower space, and more solidified bodies can be produced by effectively utilizing the yard. However, when crushing in the middle of curing, if it does not have a compressive strength of at least about 5.0 N / mm 2 , it will be finely crushed and cannot be used as the intended final product.

このような状況のもと、本発明者等は、鉄鋼スラグを用いた水和固化体の更なる技術改良をすべく鋭意検討した結果、鉄鋼スラグを用いて水和固化体を得る際、混合原料に泥土を加えて所定の配合にすることで、粉砕しても固化体としての形状を維持できる圧縮強度(5.0N/mm2程度)を発現するまでの期間を、同じ水和固化体の混合原料で泥土を使用しない場合と比べて短縮できることを見出し、本発明を完成するに至った。 Under such circumstances, the present inventors have intensively studied to further improve the hydrated solidified product using steel slag, and as a result, when obtaining the hydrated solidified product using steel slag, By adding mud to the raw material and making it into the prescribed composition, the period until the compression strength (about 5.0 N / mm 2 ) that can maintain the shape as a solidified body even after pulverization is developed is the same as that of the same hydrated solidified body. The present inventors have found that the mixed raw material can be shortened compared with the case where mud is not used, and the present invention has been completed.

したがって、本発明の目的は、養生初期における強度の増加速度を高めることができるようにした泥土含有固化体を提供することにある。また、本発明の別の目的は、このような泥土含有固化体を製造する方法を提供することにある。   Accordingly, an object of the present invention is to provide a mud-containing solidified body that can increase the rate of increase in strength at the initial stage of curing. Another object of the present invention is to provide a method for producing such a mud-containing solidified body.

すなわち、本発明の要旨は、以下のとおりである。
(1)(A1)高炉スラグ微粉末又は(A2)セメントのいずれか一方又は両方を15vol%以上60vol%以下、(B)含水比が質量ベースで70〜250%の泥土を20vol%以上50vol%以下、及び(C)製鋼スラグを10vol%以上50vol%以下含み、水分量が30vol%以上60vol%以下となるように調整した混合原料を、混練後に、養生して硬化させて得られたことを特徴とする泥土含有固化体。
)下記式(1)で表わされる強度指数が1.0以上の混合原料を用いることを特徴とする上記(1)項に記載の泥土含有固化体。
強度指数=〔(1×高炉スラグ微粉末質量+2×ポルトランドセメント質量+α×混合セメント質量)/水質量〕・・・(1)
〔但し、α=1×(混合セメント中の高炉スラグ微粉末の質量比)+2×(混合セメント中のポルトランドセメント質量比)+0.35×(混合セメント中のフライアッシュの質量比)〕
)(A1)高炉スラグ微粉末又は(A2)セメントのいずれか一方又は両方を15vol%以上60vol%以下、(B)含水比が質量ベースで70〜250%の泥土を20vol%以上50vol%以下、及び(C)製鋼スラグを10vol%以上50vol%以下含み、水分量が30vol%以上60vol%以下となるように調整した混合原料を、混練後に、養生して硬化させることを特徴とする泥土含有固化体の製造方法。
)下記式(1)で表わされる強度指数が1.0以上の混合原料を用いることを特徴とする上記(3)項に記載の泥土含有固化体の製造方法。
強度指数=〔(1×高炉スラグ微粉末質量+2×ポルトランドセメント質量+α×混合セメント質量)/水質量〕・・・(1)
〔但し、α=1×(混合セメント中の高炉スラグ微粉末の質量比)+2×(混合セメント中のポルトランドセメント質量比)+0.35×(混合セメント中のフライアッシュの質量比)〕
That is, the gist of the present invention is as follows.
(1) Either (A1) fine powder of blast furnace slag or (A2) cement, or both, 15 vol% or more and 60 vol% or less, (B) 20 vol% or more and 50 vol% of mud with a moisture content of 70 to 250% on a mass basis And (C) a steelmaking slag containing 10 vol% or more and 50 vol% or less, and the mixed raw material adjusted so that the water content is 30 vol% or more and 60 vol% or less was obtained by curing and curing after kneading. Characterized mud-containing solidified body.
( 2 ) The mud-containing solidified body according to (1) above, wherein a mixed raw material having a strength index represented by the following formula (1) of 1.0 or more is used.
Strength Index = [(1 × Blast Furnace Slag Fine Powder Mass + 2 × Portland Cement Mass + α × Mixed Cement Mass) / Water Mass] (1)
[However, α = 1 × (mass ratio of blast furnace slag fine powder in mixed cement) + 2 × (mass ratio of Portland cement in mixed cement) + 0.35 × (mass ratio of fly ash in mixed cement)]
( 3 ) 15% or more and 60% or less by volume of (A1) ground granulated blast furnace slag or (A2) cement, and (B) 20% or more and 50% by volume of mud with a moisture content of 70 to 250% on a mass basis. And (C) mud clay containing steelmaking slag containing 10 vol% or more and 50 vol% or less, and curing and curing the mixed raw material adjusted so that the water content is 30 vol% or more and 60 vol% or less. Manufacturing method of containing solidified body.
( 4 ) The method for producing a mud-containing solidified material as described in (3) above, wherein a mixed raw material having a strength index represented by the following formula (1) of 1.0 or more is used.
Strength Index = [(1 × Blast Furnace Slag Fine Powder Mass + 2 × Portland Cement Mass + α × Mixed Cement Mass) / Water Mass] (1)
[However, α = 1 × (mass ratio of blast furnace slag fine powder in mixed cement) + 2 × (mass ratio of Portland cement in mixed cement) + 0.35 × (mass ratio of fly ash in mixed cement)]

本発明のような泥土を含んだ混合原料によれば、養生初期における強度の増加速度を速めることができ、粉砕に必要な5.0N/mm2程度の圧縮強度を発現するまでの期間を短くすることができる。そのため、例えば準硬石として利用するのに必要な9.8N/mm2の圧縮強度に到達させる途中、早期に粉砕して製造ヤードに堆積させることができ、より狭いスペースで養生できるため、製造ヤードを有効に利用しながら、固化体を得ることができるようになる。しかも、本発明では、高炉スラグや製鋼スラグと共に、浚渫土や建設排土等の泥土を利用するため、これらの再利用の観点からも有益である。 According to the mixed raw material containing mud as in the present invention, the rate of increase in strength at the initial stage of curing can be increased, and the period until compressive strength of about 5.0 N / mm 2 necessary for pulverization is shortened. can do. Therefore, for example, it can be crushed early and accumulated in the production yard during the course of reaching the compressive strength of 9.8 N / mm 2 necessary for use as semi-hard stone, and can be cured in a narrower space. A solidified body can be obtained while effectively using the yard. Moreover, in the present invention, mud soil such as dredged soil and construction soil is used together with blast furnace slag and steelmaking slag, which is advantageous from the viewpoint of reuse.

図1は、養生温度と養生日数を掛けた積算温度と、一軸圧縮強度との関係性を示すグラフである。FIG. 1 is a graph showing the relationship between the integrated temperature multiplied by the curing temperature and the number of curing days, and the uniaxial compressive strength.

以下、本発明について詳細に説明する。
先ず、本発明では、i)「(A1)高炉スラグ微粉末を15vol%以上60vol%以下、(B)含水比が質量ベースで70〜250%の泥土を20vol%以上50vol%以下、及び(C)製鋼スラグを10vol%以上50vol%以下含み、水分量が30vol%以上60vol%以下となるように調整した混合原料」か、ii)「(A2)セメントを15vol%以上60vol%以下、(B)含水比が質量ベースで70〜250%の泥土を20vol%以上50vol%以下、及び(C)製鋼スラグを10vol%以上50vol%以下含み、水分量が30vol%以上60vol%以下となるように調整した混合原料」か、iii)「(A1)高炉スラグ微粉末及び(A2)セメントを合計で15vol%以上60vol%以下、(B)含水比が質量ベースで70〜250%の泥土を20vol%以上50vol%以下、及び(C)製鋼スラグを10vol%以上50vol%以下含み、水分量が30vol%以上60vol%以下となるように調整した混合原料」を用いる。
Hereinafter, the present invention will be described in detail.
First, in the present invention, i) "(A1) 15 to 60 vol% of blast furnace slag fine powder, (B) 20 to 50 vol% of mud with a moisture content of 70 to 250% on a mass basis, and (C ) Mixed raw material containing steelmaking slag containing 10 vol% or more and 50 vol% or less and having a moisture content adjusted to 30 vol% or more and 60 vol% or less "or ii)" (A2) 15 vol% or more and 60 vol% or less of cement, (B) The water content was adjusted so as to contain 20 vol% to 50 vol% of mud with 70 to 250% on a mass basis, and (C) steelmaking slag to 10 vol% to 50 vol%, and the moisture content was 30 vol% to 60 vol%. Mixed raw material "or iii)" (A1) ground granulated blast furnace slag and (A2) cement in total 15 vol% to 60 vol%, (B) 20 to 50 vol% of mud with a moisture content of 70-250% on a mass basis % And below, and (C) A mixed raw material containing 10% by volume or more and 50% by volume or less of steelmaking slag and having a moisture content of 30% by volume or more and 60% by volume or less is used.

このうち、(A1)高炉スラグ微粉末又は(A2)セメント(以下、これらをまとめて「(A)成分」と言う場合がある)は、主に結合材として機能するものであり、これら(A)成分の合計含有量が、混合原料における体積比で15vol%より少ないと、得られる固化体の圧縮強度を十分確保することが困難になり、反対に60vol%を超えて含有されると、(B)成分や(C)成分の配合割合が少なくなり過ぎて、本発明が目的とする養生初期の強度増加を十分に達成することができなくなる。本発明の効果をより確実に発現せしめるために、これら(A)成分の含有量は20vol%以上40vol%以下であるのが好ましい。   Among these, (A1) blast furnace slag fine powder or (A2) cement (hereinafter, these may be collectively referred to as “component (A)”) mainly function as a binder, and these (A ) When the total content of the components is less than 15 vol% in the volume ratio in the mixed raw material, it becomes difficult to sufficiently secure the compressive strength of the obtained solidified body. On the contrary, when the content exceeds 60 vol%, The blending ratio of the component (B) and the component (C) becomes too small to sufficiently achieve the increase in strength at the initial stage of curing as intended by the present invention. In order to express the effect of the present invention more reliably, the content of these components (A) is preferably 20 vol% or more and 40 vol% or less.

また、(C)成分の製鋼スラグは、骨材として機能するほか、(A1)高炉スラグ微粉末に対するアルカリ刺激材にもなるが、製鋼スラグの含有量が、混合原料における体積比で10vol%に満たないと、固化しても強度不足になるおそれがあり、反対に、製鋼スラグの含有量が50vol%を超えると、(A)成分や(B)成分の配合割合が少なくなり過ぎて、本発明が目的とする養生初期の強度増加を十分に達成することができなくなる。本発明の効果をより確実に発現せしめるために、製鋼スラグの含有量は25vol%以上45vol%以下であるのが好ましい。   In addition, the steelmaking slag of component (C) functions as an aggregate, and (A1) also serves as an alkali stimulant for blast furnace slag fine powder, but the steelmaking slag content is 10 vol% by volume in the mixed raw material. If not, the strength may be insufficient even if solidified. Conversely, if the steelmaking slag content exceeds 50 vol%, the blending ratio of the component (A) and the component (B) becomes too small. The strength increase at the initial stage of curing as the object of the invention cannot be sufficiently achieved. In order to express the effect of the present invention more reliably, the steelmaking slag content is preferably 25 vol% or more and 45 vol% or less.

更に、(B)成分の泥土について、本発明者等は、固化体の養生初期における強度増加を促進する作用をもたらすことを見出したが、混合原料における体積比で20vol%に満たないと、例えば材齢3日を目安とした養生初期における強度促進の効果が十分に認められないことがあり、反対に50vol%を超えると、(A)成分や(C)成分の配合割合が少なくなり過ぎて、本発明が目的とする養生初期の強度増加を十分に達成することができなくなる。本発明の効果をより確実に発現せしめるために、泥土の含有量は30vol%以上40vol%以下であるのが好ましい。   Furthermore, about the mud of the component (B), the present inventors have found that the effect of promoting the strength increase in the initial stage of curing of the solidified body is brought about, but when the volume ratio in the mixed raw material is less than 20 vol%, for example, The effect of strength promotion at the initial stage of curing with the age of 3 days as a standard may not be sufficiently observed. On the other hand, when it exceeds 50 vol%, the blending ratio of the component (A) and the component (C) becomes too small. Therefore, the increase in strength at the initial stage of curing, which is the object of the present invention, cannot be sufficiently achieved. In order to express the effect of the present invention more reliably, the content of the mud is preferably 30 vol% or more and 40 vol% or less.

混合原料中の水分量については、混合原料における体積比で30vol%未満であると、混練作業が困難になるおそれがあり、反対に、60vol%を超えると、所定の原料(A)〜(C)成分の配合量が十分確保できずに、本発明が目的とする効果が十分に得られなくなる。本発明の効果をより確実に発現せしめるために、混合原料中の水分量は40vol%以上50vol%以下であるのが好ましい。この水分量は、混合原料に含まれる水分量のことを意味し、(A)〜(C)成分を配合して、別途水を添加しない場合は、(B)成分の泥土中の水分量のみを表し、(A)〜(C)成分の他に水を添加する場合は、(B)成分の泥土中の水分量と添加した水分量との合計量を表す。なお、(B)成分の泥土中の水分量が多すぎて水を除去した場合には、除去して調整した後の泥土中の水分量を表す。   As for the amount of water in the mixed raw material, if the volume ratio in the mixed raw material is less than 30 vol%, the kneading operation may become difficult. ) The compounding amount of the component cannot be secured sufficiently, and the intended effect of the present invention cannot be obtained sufficiently. In order to express the effect of the present invention more reliably, the water content in the mixed raw material is preferably 40 vol% or more and 50 vol% or less. This amount of water means the amount of water contained in the mixed raw material. When the components (A) to (C) are blended and water is not added separately, only the amount of water in the mud of component (B) In the case where water is added in addition to the components (A) to (C), the total amount of the water content in the mud of component (B) and the added water content is expressed. In addition, when there is too much water content in the mud of the (B) component and water is removed, the water content in the mud after removing and adjusting is represented.

また、本発明では、(A2)セメントの水硬性を利用して、(C)成分の製鋼スラグを使用せずに、混合原料を形成することもできる。すなわち、iv)「(A2)セメントを15vol%以上60vol%以下、及び(B)含水比が質量ベースで70〜250%の泥土を20vol%以上80vol%以下含み、水分量が30vol%以上70vol%以下となるように調整した混合原料」であれば、養生初期の強度増加を促進して、養生途中での粉砕時に必要となる5.0N/mm2程度の圧縮強度を早期に発現できるようになる。このうち、(A2)成分を20vol%以上40vol%以下、及び(B)成分を40vol%以上60vol%以下含み、水分量が40vol%以上60vol%以下となるように調整すれば、本発明が目的とする効果をより確実に発現せしめることができる。 In the present invention, the mixed raw material can be formed without using the steelmaking slag of the component (C) by utilizing the hydraulic property of the (A2) cement. That is, iv) “(A2) 15 vol% or more and 60 vol% or less of (C2) cement, and (B) 20 to 80 vol% or less of mud soil having a moisture content of 70 to 250% on a mass basis, and a moisture content of 30 vol% or more and 70 vol% If it is a “mixed raw material adjusted to be as follows”, the strength increase at the initial stage of curing is promoted so that the compressive strength of about 5.0 N / mm 2 required at the time of pulverization during curing can be expressed at an early stage. Become. Of these, the present invention is intended to include the component (A2) from 20 vol% to 40 vol% and the component (B) from 40 vol% to 60 vol%, and adjusting the water content to be 40 vol% to 60 vol%. The effect can be expressed more reliably.

混合原料に用いる各成分のうち、(A1)高炉スラグ微粉末は、銑鉄を製造する高炉で溶融された鉄鉱石のうち、鉄以外の成分を副原料の石灰石やコークス中の灰分と一緒に分離回収した高炉スラグを微粉砕したものであり、詳しくは、溶融状態のスラグに加圧水を噴射するなどして急激に冷却した水砕スラグを微粉砕したものを使用することができる。水砕スラグの微粉砕の程度は、一般に、3000〜8000cm2/g程度である。 Among the components used in the mixed raw material, (A1) blast furnace slag fine powder separates components other than iron from the iron ore melted in the blast furnace that produces pig iron together with the lime in the auxiliary raw material and ash in coke. The recovered blast furnace slag is finely pulverized, and specifically, finely pulverized granulated slag that has been rapidly cooled by spraying pressurized water onto the molten slag can be used. The degree of fine pulverization of the granulated slag is generally about 3000 to 8000 cm 2 / g.

また、(A2)セメントは、ポルトランドセメントと混合セメントとに分類でき、このうち、ポルトランドセメントは、普通ポルトランドセメント、早強ポルトランドセメントに分類され、また、混合セメントは、主に高炉セメント、フライアッシュセメントに分類される。なかでも、高炉セメントは、一般に、高炉水砕スラグを粉砕して普通ポルトランドセメントを混ぜたものであり、高炉スラグの分量によりA〜C種の3種類に分類(JIS R 5211)される。本発明では、これらのセメントのいずれを用いてもよい。また、先に記した(A1)高炉スラグ微粉末を含めて、本発明では、(A)成分として、(A1)高炉スラグ微粉末と(A2)セメントのいずれか一方を使用してもよく、2種類を混合して使用してもよい。   In addition, (A2) cement can be classified into Portland cement and mixed cement. Of these, Portland cement is classified into ordinary Portland cement and early strong Portland cement, and mixed cement is mainly blast furnace cement and fly ash. Classified as cement. Among them, blast furnace cement is generally obtained by pulverizing blast furnace granulated slag and mixing ordinary Portland cement, and is classified into three types A to C according to the amount of blast furnace slag (JIS R 5211). In the present invention, any of these cements may be used. Moreover, in the present invention, including (A1) blast furnace slag fine powder described above, either (A1) blast furnace slag fine powder or (A2) cement may be used as the component (A). Two types may be mixed and used.

また、(C)成分の製鋼スラグは、高炉で製造された銑鉄から、不要な成分を除去して、靭性・加工性のある鋼にする製鋼工程で生じる石灰分を主体としたものであり、転炉スラグ、予備処理スラグ、脱炭スラグ、脱燐スラグ、脱硫スラグ、脱珪スラグ、電気炉還元スラグ、電気炉酸化スラグ、二次精錬スラグ、造塊スラグ等のいずれか1種又は2種以上を混合したものを用いることができる。   In addition, the steelmaking slag of component (C) is mainly composed of lime generated in the steelmaking process to remove unnecessary components from pig iron produced in a blast furnace to make steel having toughness and workability. Converter slag, pretreatment slag, decarburization slag, dephosphorization slag, desulfurization slag, desiliconization slag, electric furnace reduction slag, electric furnace oxidation slag, secondary refining slag, ingot slag, etc. What mixed the above can be used.

ところで、この(C)成分の製鋼スラグについては、含有する遊離石灰(フリーライム:f-CaO)の水和反応により膨張するおそれがあり、得られる固化体の用途によっては、その表面にひび割れ等が発生するのを嫌う場合がある。そのため、目的とする泥土含有固化体にひび割れが生じるのを防ぐ必要がある場合には、望ましくは、いわゆる自然エージングや蒸気エージング等のエージング処理を施した製鋼スラグを用いるのが良い。詳しくは、以下の方法で求められる粉化率が2.5%以下となるようなエージング処理後の製鋼スラグを用いるのが良い。なお、粉化率は質量ベースの値である。   By the way, about the steelmaking slag of this (C) component, there exists a possibility of expansion | swelling by the hydration reaction of the contained free lime (free lime: f-CaO), and the surface etc. are cracked depending on the use of the solidified body obtained. May hate to occur. Therefore, when it is necessary to prevent the target mud-containing solidified body from being cracked, it is desirable to use a steelmaking slag that has been subjected to aging treatment such as so-called natural aging or steam aging. In detail, it is good to use the steelmaking slag after an aging process in which the powdering rate calculated | required with the following method becomes 2.5% or less. The powdering rate is a value based on mass.

すなわち、エージング処理した一定量の製鋼スラグ(S0)を第1の篩い目(例えばJIS Z8801-1に規定された4.75mmの篩い目)で分級し、更にこの篩い下を第1の篩い目よりももう1段小さな第2の篩い目(上記の例であればJIS Z8801-1に規定されたもう1段小さな篩い目である2mmの篩い目)を使って分級し、未崩壊の比較的大きなスラグ粒を除去して、篩い下としてエージング処理後の製鋼スラグの細粒分を得る(S1)。そして、{(第2の篩い目の篩い下のスラグ質量=S1}/(分級前のエージング処理後スラグ質量=S0))×100(%)}を粉化率とし、この粉化率が2.5%以下の製鋼スラグを用いれば、得られる固化体に発生するひび割れを抑えることができる。また、製鋼スラグは、破砕後に篩い分けして5mm以下の粒径を有したものを用いることが推奨される。このような粒径の製鋼スラグであれば、エージング処理を行っていないものを含めて、膨張抑制効果が得られる。 That is, a certain amount of steelmaking slag (S 0 ) subjected to aging treatment is classified by a first sieve (for example, a 4.75 mm sieve specified in JIS Z8801-1), and further, the first sieve is passed under this sieve. Classify using a second sieve screen that is one step smaller than the 2nd screen (in the above example, the 2 mm sieve screen that is one step smaller in accordance with JIS Z8801-1) Large slag grains are removed, and fine particles of steelmaking slag after aging treatment are obtained as a sieve (S 1 ). And {(the slag mass under the sieve of the second sieve = S 1 } / (slag mass after aging treatment before classification = S 0 )) × 100 (%)} is defined as the pulverization rate, and this pulverization rate If the steelmaking slag of 2.5% or less is used, cracks generated in the obtained solidified body can be suppressed. Moreover, it is recommended to use a steelmaking slag having a particle size of 5 mm or less after sieving. If it is steelmaking slag of such a particle size, the expansion suppression effect will be acquired including what has not performed the aging process.

また、(B)成分として用いる含水比が70〜250%の泥土としては、例えば浚渫土や建設排土等を挙げることができる。このうち、浚渫土は、港湾、河川、運河等の航路や泊地を拡げる目的や、河川、湖沼、ダム等の水底や海底の汚泥・底質汚染を除去する目的等を含めて、総じて浚渫により生じた土粒子と水とを含んだものである。また、建設排土は、掘削等の建設工事で排出される土粒子と水とを含んだものである。これらはいずれも、その高い含水比により、ダンプトラック等に山積みして搬送するのが困難であったり、その上を人が歩けない程度のものであり、本発明ではこのような泥土を、固化体を得るための混合原料に用いる。なお、泥土の含水比は、泥土に含まれる水と土粒子の質量比率(水/土粒子)から求めたものである。   Moreover, examples of the mud having a water content ratio of 70 to 250% used as the component (B) include dredged soil and construction soil. Of these, dredged soil is generally collected by dredging, including the purpose of expanding the routes and anchorage of ports, rivers, canals, etc., and the purpose of removing sludge and sediment from the bottom of the river, lakes, dams, etc. It contains the generated soil particles and water. Moreover, the construction soil discharge includes soil particles and water discharged by construction work such as excavation. All of these are difficult to transport in a pile on a dump truck or the like due to their high water content ratio, and are incapable of walking on them.In the present invention, such mud is solidified. Used as a mixed raw material for obtaining a body. The water content ratio of the mud is determined from the mass ratio of water and soil particles (water / soil particles) contained in the mud.

本発明では、用いる混合原料について、強度指数=〔(1×高炉スラグ微粉末質量+2×ポルトランドセメント質量+α×混合セメント質量)/水質量〕が1.0以上となるようにして、混練し、養生して固化体を得るようにするのが好ましい。ここで、各成分に乗じた係数について、「『鉄鋼スラグ水和固化体技術マニュアル(改訂版)〜製鋼スラグの有効利用技術』財団法人:沿岸技術研究センター;H20.2月発行」の記載によれば、高炉スラグ微粉末が1であり、普通ポルトランドセメントが2である。また、混合セメントに乗じる係数αについては、フライアシュセメントの係数が0.35であるため、高炉スラグ微粉末と普通ポルトランドセメントとの混合物である高炉セメントの場合、あるいはフライアッシュと普通ポルトランドセメントの混合物であるフライアッシュセメントの場合は次の式により求められる。
α=1×(混合セメント中の高炉スラグ微粉末の質量比)+2×(混合セメント中のポルトランドセメント質量比)+0.35×(混合セメント中のフライアッシュの質量比)
In the present invention, the mixed raw material used is kneaded so that the strength index = [(1 × blast furnace slag fine powder mass + 2 × Portland cement mass + α × mixed cement mass) / water mass] is 1.0 or more. It is preferable to cure to obtain a solidified body. Here, the coefficient multiplied by each component is described in “Iron and Steel Slag Hydrated Solid Technology Manual (Revised)-Effective Utilization Technology of Steelmaking Slag” Foundation: Coastal Technology Research Center; According to this, blast furnace slag fine powder is 1, and normal Portland cement is 2. As for the coefficient α multiplied by the mixed cement, the coefficient of fly ash cement is 0.35. Therefore, in the case of blast furnace cement, which is a mixture of blast furnace slag fine powder and ordinary Portland cement, or fly ash and ordinary Portland cement. In the case of fly ash cement which is a mixture, it is obtained by the following formula.
α = 1 × (mass ratio of ground granulated blast furnace slag in mixed cement) + 2 × (mass ratio of Portland cement in mixed cement) + 0.35 × (mass ratio of fly ash in mixed cement)

例えば、混合セメントとして高炉セメントB種を用いる場合、普通ポルトランドセメントの含有量が質量比45%であり、高炉スラグ微粉末の含有量が質量比55%の場合は、α=1×0.55+2×0.45=1.45となる。また、先の強度指数を求める式における「水質量」は混合原料中の水分量であり、(B)成分の泥土に含まれる含水分のほか、別途水を添加した場合には、その添加水を含めた水分量であり、別途水を添加しない場合は、(B)成分の泥土中の水分量のみを表す。なお、(B)成分の泥土から水を一部取り除いた場合には、調整後の泥土に含まれる水分量である。   For example, when blast furnace cement type B is used as the mixed cement, when the content of ordinary Portland cement is 45% by mass and the content of blast furnace slag fine powder is 55% by mass, α = 1 × 0.55 + 2 X0.45 = 1.45. In addition, the “water mass” in the above formula for calculating the strength index is the amount of water in the mixed raw material. In addition to the water content contained in the mud of component (B), if additional water is added, the added water In the case where water is not added separately, only the amount of water in the mud of component (B) is represented. In addition, when a part of water is removed from the mud of component (B), it is the amount of water contained in the mud after adjustment.

上記の強度指数が1.0以上の混合原料を用いれば、養生初期における強度増加をより確実にでき、例えば湿潤条件下での養生において、養生開始後3日間(72時間経過後)で粉砕に必要な5.0N/mm2程度の圧縮強度を発現せしめることができるため好ましい。この強度指数は、養生初期における強度増加をより一層顕著なものとするために、好ましくは1.5以上であるのが良く、より好ましくは1.7以上であるのが良い。 By using a mixed raw material having the above strength index of 1.0 or more, it is possible to more reliably increase the strength in the initial stage of curing. For example, in curing under humid conditions, the grinding can be performed in 3 days (after 72 hours). The necessary compressive strength of about 5.0 N / mm 2 can be expressed, which is preferable. This strength index is preferably 1.5 or more, and more preferably 1.7 or more, in order to make the strength increase in the initial stage of curing more remarkable.

本発明において、混合原料を混練する具体的手段については特に制限されず、公知の混練手段を用いることができる。また、混練後の養生方法については、気中養生、水中養生、常圧蒸気養生など、通常の水和固化体を得るための方法を用いることができる。いずれの養生方法を採用しても、本発明では、養生初期における強度増加が促進されて、同一成分系の混合原料のうち泥土を含まないものと比べて短期間に5.0N/mm2程度の圧縮強度を発現し、すなわち上述したi)〜iv)の各配合のなかで、同程度の強度指数を有しながらも泥土を含まないものと比べて、粉砕に必要な圧縮強度をより短期間に発現できる。そのため、養生の途中での粉砕がより早期に可能となり、製造ヤードのスペースを有効に利用できるようになる。また、本発明では、目的とする固化体の用途等に応じて、混練後、即時脱型成型して養生するようにしてもよく、養生後は、所定の大きさに粉砕して、天然石に代わる人工石材としても利用することができるほか、その用途に制限はない。 In the present invention, the specific means for kneading the mixed raw material is not particularly limited, and known kneading means can be used. Moreover, about the curing method after kneading | mixing, the method for obtaining normal hydration solidified bodies, such as air curing, underwater curing, and normal pressure steam curing, can be used. Regardless of which curing method is adopted, in the present invention, the strength increase in the initial curing stage is promoted, and it is about 5.0 N / mm 2 in a short period of time compared with the mixed raw material of the same component system that does not contain mud. The compressive strength required for pulverization is shorter than those of the above-mentioned formulations i) to iv), which have the same strength index but do not contain mud. It can be expressed in between. Therefore, grinding during the curing can be performed earlier, and the space in the production yard can be used effectively. In the present invention, depending on the intended use of the solidified body, etc., after kneading, it may be immediately demolded and cured, and after curing, it is crushed to a predetermined size and made into natural stone. It can be used as an alternative artificial stone and there are no restrictions on its use.

以下、実施例に基づき、本発明を更に詳細に説明する。なお、本発明は、以下の実施例に制限されるものではない。   Hereinafter, based on an Example, this invention is demonstrated still in detail. In addition, this invention is not restrict | limited to a following example.

高炉スラグ微粉末として、JIS A 6206に規定されたコンクリート用高炉スラグ微粉末4000(比表面積4000cm2/g)を用い、高炉セメントとして、JIS R 5211に規定された高炉セメントB種(比表面積3200〜3300cm2/g)を用い、製鋼スラグとして、製鐵所で回収した製鋼スラグであり、密度2.88g/cm3、粒径5mm以下のものを用い、浚渫土としては、東京湾第一航路の浚渫により回収された浚渫土(含水比159%、湿潤密度1.32g/cm3)を用いて、これらを表1及び表2に示したとおりに混合し、所定量の水を加えた混合原料を2軸強制練りミキサーを用いて2分間混練した。その後、得られた混練材をモールドに詰めて成形し、これを温度20℃の湿潤条件下で28日間養生させて、φ50mm×高さ100mmの試験用固化体(試験No.1〜16)を得た。また、高炉セメントにかえて、普通ポルトランドセメントを用い、表3に示したとおりに混合し、上記と同様にして試験用固化体(試験No.17及び18)を得た。 Blast furnace slag fine powder 4000 (specific surface area 4000 cm 2 / g) for concrete specified in JIS A 6206 is used as the blast furnace slag fine powder, and blast furnace cement type B (specific surface area 3200 specified in JIS R 5211) is used as the blast furnace cement. ~3300cm 2 / g) used as a steel slag, a steel slag recovered in SeiTetsusho density 2.88 g / cm 3, with the following particle size 5 mm, as the dredged soil, Tokyo Bay first Using dredged soil (water content ratio 159%, wet density 1.32 g / cm 3 ) collected by dredging in the channel, mix them as shown in Table 1 and Table 2, and add a predetermined amount of water. The raw materials were kneaded for 2 minutes using a biaxial forced kneading mixer. Thereafter, the obtained kneaded material is packed in a mold and molded, and this is cured for 28 days under a wet condition at a temperature of 20 ° C. to obtain a test solidified body (test Nos. 1 to 16) of φ50 mm × height 100 mm. Obtained. Further, instead of blast furnace cement, ordinary Portland cement was used and mixed as shown in Table 3, and test solidified bodies (test Nos. 17 and 18) were obtained in the same manner as described above.

試験用固化体については、養生開始から72時間(3日間)、168時間(7日間)、及び672時間(28日間)経過した各試験用固化体について、1000kN耐圧圧縮試験機を用いて一軸圧縮強度を測定し、表1〜3に結果を示した。また、表1〜3において、強度指数は下記式(1)から求めた。すなわち、試験No.1〜16の混合原料では、〔(B1)+1.55×(B2)〕/〔(W1)+(W2)〕から求められる値であり、試験No.17及び18の混合原料では、〔(B1)+2×(B3)〕/〔(W1)+(W2)〕から求められる値である。
強度指数=〔(1×高炉スラグ微粉末質量+2×ポルトランドセメント質量+α×混合セメント質量)/水質量〕・・・(1)
〔但し、α=1×(混合セメント中の高炉スラグ微粉末の質量比)+2×(混合セメント中のポルトランドセメント質量比)+0.35×(混合セメント中のフライアッシュの質量比)〕
For the test solidified bodies, uniaxial compression was performed on each test solidified body after 72 hours (3 days), 168 hours (7 days), and 672 hours (28 days) using a 1000 kN pressure compression tester. The strength was measured, and the results are shown in Tables 1-3. In Tables 1 to 3, the strength index was determined from the following formula (1). That is, test no. For the mixed raw materials 1 to 16, the value is obtained from [(B1) + 1.55 × (B2)] / [(W1) + (W2)]. For the mixed raw materials 17 and 18, the value is obtained from [(B1) + 2 × (B3)] / [(W1) + (W2)].
Strength Index = [(1 × Blast Furnace Slag Fine Powder Mass + 2 × Portland Cement Mass + α × Mixed Cement Mass) / Water Mass] (1)
[However, α = 1 × (mass ratio of blast furnace slag fine powder in mixed cement) + 2 × (mass ratio of Portland cement in mixed cement) + 0.35 × (mass ratio of fly ash in mixed cement)]

Figure 0005326995
Figure 0005326995

Figure 0005326995
Figure 0005326995

Figure 0005326995
Figure 0005326995

上記で得られた試験用固化体について、試験用固化体を養生した際の温度に養生日数を掛けて算出した積算温度(℃×日)と、一軸圧縮強度の測定結果との関係を調べた。図1は、そのうち試験No.4、5、9及び10の試験用固化体における関係性を示すグラフである。試験No.4(実施例1)と試験No.5(比較例4)の試験用固化体は、ともに強度指数が同じ混合原料を使用するものであるが、積算温度100まで圧縮強度は、泥土含有固化体である試験No.4の方が優れることが分る。同様に、強度指数が同じ混合原料を使用した試験No.9(比較例6)と試験No.10(実施例4)の場合でも、泥土含有固化体である試験No.10の方が優れることが分る。   About the test solidified body obtained above, the relationship between the integrated temperature (° C. × day) calculated by multiplying the temperature when curing the test solidified body by the number of curing days and the measurement result of uniaxial compressive strength was examined. . FIG. It is a graph which shows the relationship in the solidified body for a test of 4, 5, 9, and 10. FIG. Test No. 4 (Example 1) and test no. 5 (Comparative Example 4) both use a mixed raw material having the same strength index, but the compressive strength up to an integrated temperature of 100 is Test No. which is a mud-containing solidified body. It can be seen that 4 is better. Similarly, Test No. using a mixed raw material having the same strength index. 9 (Comparative Example 6) and Test No. 10 (Example 4), test no. It can be seen that 10 is better.

以上の実施例の結果から、強度指数が比較的近い混合原料を使用した試験結果を比べればその効果が明白であるように、本発明の泥土含有固化体は、養生初期の強度増加が顕著であり、また、本発明の泥土含有固化体は、いずれも材齢28日の圧縮強度は9.8N/mm2を超えた。 From the results of the above Examples, the mud-containing solidified body of the present invention has a remarkable increase in strength at the initial stage of curing, as the effect is obvious when comparing the test results using mixed raw materials having relatively close strength indexes. In addition, all of the mud-containing solidified bodies of the present invention had a compressive strength of 28 days of age exceeding 9.8 N / mm 2 .

Claims (4)

(A1)高炉スラグ微粉末又は(A2)セメントのいずれか一方又は両方を15vol%以上60vol%以下、(B)含水比が質量ベースで70〜250%の泥土を20vol%以上50vol%以下、及び(C)製鋼スラグを10vol%以上50vol%以下含み、水分量が30vol%以上60vol%以下となるように調整した混合原料を、混練後に、養生して硬化させて得られたことを特徴とする泥土含有固化体。   (A1) 15 vol% or more and 60 vol% or less of blast furnace slag fine powder or (A2) cement, (B) 20 vol% or more and 50 vol% or less of mud with a moisture content of 70 to 250% on a mass basis, and (C) It is characterized by being obtained by curing and curing a mixed raw material containing 10 vol% or more and 50 vol% or less of steelmaking slag and adjusting the water content to be 30 vol% or more and 60 vol% or less after kneading. Mud-containing solidified body. 下記式(1)で表わされる強度指数が1.0以上の混合原料を用いることを特徴とする請求項に記載の泥土含有固化体。
強度指数=〔(1×高炉スラグ微粉末質量+2×ポルトランドセメント質量+α×混合セメント質量)/水質量〕・・・(1)
〔但し、α=1×(混合セメント中の高炉スラグ微粉末の質量比)+2×(混合セメント中のポルトランドセメント質量比)+0.35×(混合セメント中のフライアッシュの質量比)〕
The mud-containing solidified body according to claim 1 , wherein a mixed raw material having a strength index represented by the following formula (1) of 1.0 or more is used.
Strength Index = [(1 × Blast Furnace Slag Fine Powder Mass + 2 × Portland Cement Mass + α × Mixed Cement Mass) / Water Mass] (1)
[However, α = 1 × (mass ratio of blast furnace slag fine powder in mixed cement) + 2 × (mass ratio of Portland cement in mixed cement) + 0.35 × (mass ratio of fly ash in mixed cement)]
(A1)高炉スラグ微粉末又は(A2)セメントのいずれか一方又は両方を15vol%以上60vol%以下、(B)含水比が質量ベースで70〜250%の泥土を20vol%以上50vol%以下、及び(C)製鋼スラグを10vol%以上50vol%以下含み、水分量が30vol%以上60vol%以下となるように調整した混合原料を、混練後に、養生して硬化させることを特徴とする泥土含有固化体の製造方法。   (A1) 15 vol% or more and 60 vol% or less of blast furnace slag fine powder or (A2) cement, (B) 20 vol% or more and 50 vol% or less of mud with a moisture content of 70 to 250% on a mass basis, and (C) A mud-containing solidified body comprising a mixed raw material containing 10 vol% or more and 50 vol% or less of steelmaking slag, and being cured and cured after kneading a mixed raw material adjusted to have a moisture content of 30 vol% or more and 60 vol% or less. Manufacturing method. 下記式(1)で表わされる強度指数が1.0以上の混合原料を用いることを特徴とする請求項に記載の泥土含有固化体の製造方法。
強度指数=〔(1×高炉スラグ微粉末質量+2×ポルトランドセメント質量+α×混合セメント質量)/水質量〕・・・(1)
〔但し、α=1×(混合セメント中の高炉スラグ微粉末の質量比)+2×(混合セメント中のポルトランドセメント質量比)+0.35×(混合セメント中のフライアッシュの質量比)〕
The method for producing a mud-containing solidified body according to claim 3 , wherein a mixed raw material having a strength index represented by the following formula (1) of 1.0 or more is used.
Strength Index = [(1 × Blast Furnace Slag Fine Powder Mass + 2 × Portland Cement Mass + α × Mixed Cement Mass) / Water Mass] (1)
[However, α = 1 × (mass ratio of blast furnace slag fine powder in mixed cement) + 2 × (mass ratio of Portland cement in mixed cement) + 0.35 × (mass ratio of fly ash in mixed cement)]
JP2009250577A 2009-10-30 2009-10-30 Mud-containing solidified body and method for producing the same Active JP5326995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009250577A JP5326995B2 (en) 2009-10-30 2009-10-30 Mud-containing solidified body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009250577A JP5326995B2 (en) 2009-10-30 2009-10-30 Mud-containing solidified body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011093750A JP2011093750A (en) 2011-05-12
JP5326995B2 true JP5326995B2 (en) 2013-10-30

Family

ID=44111115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009250577A Active JP5326995B2 (en) 2009-10-30 2009-10-30 Mud-containing solidified body and method for producing the same

Country Status (1)

Country Link
JP (1) JP5326995B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136395A1 (en) * 2010-04-30 2011-11-03 Jfeスチール株式会社 Method for producing artificial stone material
JP5799585B2 (en) * 2010-05-31 2015-10-28 Jfeスチール株式会社 Manufacturing method of artificial stone
JP6020990B2 (en) * 2012-06-26 2016-11-02 五洋建設株式会社 Quality control method for clay and steelmaking slag mixed material
JP6032013B2 (en) * 2013-01-08 2016-11-24 新日鐵住金株式会社 Soft soil improvement material, soft soil improvement method using the same, and soft ground improvement method
JP6662046B2 (en) * 2016-01-08 2020-03-11 日本製鉄株式会社 Method for producing solidified body containing mud
JP6773580B2 (en) * 2017-02-06 2020-10-21 五洋建設株式会社 Manufacturing method of artificial stone
CN111439987A (en) * 2020-05-18 2020-07-24 中交上海航道勘察设计研究院有限公司 Mud flat sludge curing agent
JP7145910B2 (en) * 2020-05-20 2022-10-03 日本製鉄株式会社 Method for manufacturing artificial stone, method for conveying artificial stone, and artificial stone

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5064315A (en) * 1973-10-09 1975-05-31
JP2890389B2 (en) * 1993-10-07 1999-05-10 株式会社大林組 Filler and manufacturing method thereof
JP3641458B2 (en) * 2001-12-26 2005-04-20 児玉 憲三 Manufacturing method of granular construction materials mixed with natural stone particles
JP2008263928A (en) * 2007-04-25 2008-11-06 Japan Science & Technology Agency Dredged soil block for installing beach bedrock

Also Published As

Publication number Publication date
JP2011093750A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
JP5326995B2 (en) Mud-containing solidified body and method for producing the same
JP5853399B2 (en) Manufacturing method of artificial stone
JP6662046B2 (en) Method for producing solidified body containing mud
JP5744387B2 (en) Method for producing mud-containing solidified body
JP4560887B2 (en) Underwater hardened body made from steelmaking slag
KR101839661B1 (en) Method for producing hydrated solidified body, and hydrated solidified body
JP2010285465A (en) Ground-improving slurry composition using blast furnace cement composition and method for preparing soil cement slurry using the same
JP5907246B2 (en) Manufacturing method of solidified body
JP5896057B2 (en) Manufacturing method of artificial stone
JP5696569B2 (en) Sand drain material and sand compaction pile material using steel slag
JP6682920B2 (en) Manufacturing method of artificial stone
KR101115721B1 (en) Cement composition containing blast furnance air-cooled slag and method for manufacturing the same
JP6020677B2 (en) Artificial stone
KR20130026438A (en) Method for producing artificial stone material
JP5326996B2 (en) Mud-containing solidified body and method for producing the same
JP6642506B2 (en) Manufacturing method of solidified body
JP7465052B2 (en) Manufacturing method for improved soil with high water content
JP5668634B2 (en) Expanded controlled steel slag hydrated solid artificial stone and method for producing the same
JP6292257B2 (en) Hydrated solidified product using desulfurized slag
WO2011136395A1 (en) Method for producing artificial stone material
JP4979186B2 (en) Method for producing granulated material
JP6292409B2 (en) Method for producing hydrated solid body
JP4350967B2 (en) Method for producing hardened slag
JP2022123565A (en) Pressure feeding method for steel slag hydration solidified body
JP6160833B2 (en) Manufacturing method of artificial stone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R151 Written notification of patent or utility model registration

Ref document number: 5326995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350