WO2011136395A1 - Method for producing artificial stone material - Google Patents

Method for producing artificial stone material Download PDF

Info

Publication number
WO2011136395A1
WO2011136395A1 PCT/JP2011/060801 JP2011060801W WO2011136395A1 WO 2011136395 A1 WO2011136395 A1 WO 2011136395A1 JP 2011060801 W JP2011060801 W JP 2011060801W WO 2011136395 A1 WO2011136395 A1 WO 2011136395A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
blast furnace
binder
mud
furnace slag
Prior art date
Application number
PCT/JP2011/060801
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 克則
渡辺 圭児
薮田 和哉
本田 秀樹
林 正宏
松本 剛
操 鈴木
靖史 林堂
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011036555A external-priority patent/JP5712668B2/en
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020127029319A priority Critical patent/KR101379095B1/en
Priority to CN201180021777.0A priority patent/CN102869634B/en
Publication of WO2011136395A1 publication Critical patent/WO2011136395A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/008Sludge treatment by fixation or solidification
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/54Substitutes for natural stone, artistic materials or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a method for producing artificial stone by solidifying mud such as clay with a binder.
  • Soft mud represented by dredged soil, is generated with the construction of channel dredging and various civil engineering works. Among them, those useful as civil engineering materials such as sand can be used as they are for the construction of shallow fields and backfilling. However, mud with a high ratio of silt is often in a water-containing state, and since it can hardly be expected to have strength as soil, it often becomes waste.
  • Various techniques have been proposed and implemented for effective use of mud. The most representative one is a technique for improving the characteristics of soil and using it in the same way as high-quality soil. For example, “Stable treatment method for soft ground with lime” by the Japan Lime Association (Kashima Publishing Co., Ltd.) shows various techniques for improving the properties of the ground by adding cement and lime to mud.
  • Patent Document 1 discloses a technique for improving strength by mixing steel slag with clay.
  • the strength of the clay is improved mainly by a pozzolanic reaction between the CaO content of the steel slag and Si, Al, etc. of the clay.
  • Patent Document 2 discloses a technique for performing solidification treatment (improvement of strength) by adding converter slag containing free CaO and blast furnace cement to soft soil.
  • these methods are improvement of characteristics as a soil material, and although the strength of the soil material level is expressed, it is limited to the use as soil.
  • Patent Document 3 discloses a method of obtaining a block material (solidified body) by mixing a solidified material such as cement with clay and solidifying it.
  • the strength of the block material obtained by the method of Patent Document 3 is on average at a 6N / mm 2 approximately, only about 8N / mm 2 at most.
  • strength (9.8 N / mm 2 or more) higher than the semi-hard stone specified in JIS-A-5006: 1995 (split stone) is required.
  • the strength of the block material obtained in Patent Document 3 is the lowest quality soft stone level (less than 9.8 N / mm 2 ).
  • the level of soft stone is considerably higher than the improvement level of soil materials, it is not strong enough to be used for various purposes as an alternative to stone and concrete materials.
  • a large amount of mud having a high silt content (75 ⁇ m or less), which is often seen in soft dredged soil, is used, it is easily expected that securing strength becomes more difficult.
  • the object of the present invention is to solve the above-mentioned problems of the prior art, use a large amount of mud such as dredged soil, and have a strength higher than that of semi-hard stone, especially a safety factor (+3 N / mm 2 ).
  • An object of the present invention is to provide a production method capable of stably producing an artificial stone material that sufficiently satisfies the characteristics of quasi-hard stone even when considered.
  • Strength index (mass of ground granulated blast furnace slag + mass of slaked lime + 2 ⁇ mass of ordinary Portland cement + 0.35 ⁇ mass of fly ash) / water as an index representing the degree of strength development of hydrated solidified steel slag Mass is used.
  • kneading is performed when the strength index exceeds 2 in order to develop a stable strength. Since it was thought that securing strength was important even when using clay as in the present invention, the ratio of water and binder contained in the clay was set and kneaded so as to satisfy the strength index according to the above. Carried out.
  • the present inventors adjust the water content by further adding water to the clay originally holding water, while reducing the ratio of the binder and water to some extent.
  • the conditions for kneading were examined. As a result, depending on the conditions, the strength may be exhibited in some cases, but it was also found that sufficient strength may not be obtained even with a relatively close blending.
  • mud soil typified by dredged soil may inhibit the pozzolanic reaction due to surface adsorption of the soil particles, and when trying to use a large amount of dredged soil, It was found that the inhibition of pozzolanic reaction by surface adsorption had a great influence on the strength development.
  • FIGS. 1 (a) and 1 (b) show examples of changes in the concentration of Ca and pH when a calcium hydroxide solution is permeated through dredged soil collected from the Tamagawa River and dredged soil collected from Tokyo Bay.
  • 2 g of clay was filled in a permeation tube with filter paper on the bottom, and a calcium hydroxide aqueous solution adjusted to pH 12 was added dropwise at 1 mL / min to recover the leached solution.
  • the Ca concentration and OH ⁇ concentration were measured. According to FIG.
  • Ca 2+ and OH ⁇ concentration (pH) of the solution change greatly only by permeating the clay.
  • Ca 2+ and OH ⁇ are main components of a reaction product (CaO—SiO 2 —H 2 O gel) at the time of hydration solidification represented by cement. It is considered that Ca 2+ and OH ⁇ are adsorbed on the soil particles of the clay and the concentration is lowered, so that the solidification is inhibited.
  • Such an adsorption action of Ca 2+ and OH ⁇ is peculiar when mud such as dredged soil is used, and was not conscious at all in a normal steel slag hydrated solid body containing no mud as a material. .
  • the mass ratio of the binder to the soil particles in the mud is set to a predetermined value or more, and the water / binder ratio is a conventional technology for producing hydrated solidified steel slag. It was found that a solidified body (stone) having a stable strength can be obtained by using a large amount of mud such as dredged soil by optimizing it in a different range.
  • A) Contains 40 volume% or more of mud.
  • the binder comprises at least one selected from blast furnace slag fine powder, blast furnace slag fine powder to which an alkali stimulant is added, blast furnace cement, and ordinary Portland cement.
  • the amount of the binder is 1.7 times or more by mass ratio with respect to the soil particles (solid content) in the mud and satisfies the following formula.
  • the binder contains 80 to 95% by mass of blast furnace slag fine powder, and the balance is one or more selected from ordinary Portland cement, lime powder, slaked lime, and blast furnace cement.
  • D Containing 40 volume% or more of mud with respect to 100 volume% of mixed materials.
  • the binder comprises at least one selected from blast furnace slag fine powder, blast furnace slag fine powder to which an alkali stimulant is added, blast furnace cement, and ordinary Portland cement, and fly ash.
  • the amount of the binder is 1.7 times or more by mass ratio with respect to the soil particles (solid content) in the mud and satisfies the following formula. (Mass of blast furnace slag fine powder + Mass of lime powder + Mass of slaked lime + Mass of ordinary Portland cement ⁇ 2 + Mass of fly ash ⁇ 0.35) / (Mass of water in mixed material) ⁇ 1.5
  • the binder contains 70 to 85% by mass of blast furnace slag fine powder, and fly ash is contained in an amount of 10 to 30% by mass relative to the mass of the blast furnace slag fine powder.
  • a method for producing an artificial stone wherein the balance is at least one selected from ordinary Portland cement, lime powder, slaked lime, and blast furnace cement.
  • the aggregate is steel slag.
  • [7] The method for producing an artificial stone material according to [6], wherein the blending amount of the steelmaking slag per unit volume in the mixed material is 700 kg / m 3 or more.
  • [8] The method for producing an artificial stone material according to any one of the above [1] to [7], wherein the mud contains 65% by volume or more of particles having a particle size of 0.075 mm or less.
  • the mud is dredged material generated by dredging work, and the dredged material is temporarily stored in the dredging yard and stored in the dredging yard.
  • a method for producing an artificial stone material comprising producing an artificial stone material using mud clay.
  • an artificial stone material having a strength equal to or higher than that of semi-hard stone can be stably produced by using a large amount of mud such as clay.
  • FIG. 1 is a graph showing an example of changes in solution Ca concentration and pH when a calcium hydroxide solution is permeated through the clay.
  • Fig. 2 shows the mass ratio of the binder compounded in the mixed material and the soil particles (solid content) in the mud [binding material / soil particles in the mud] and the strength of the solidified body (uniaxial compressive strength after 28 days of curing) It is a graph which shows the relationship.
  • FIG. 4 is a graph showing the relationship between the curing period and the strength of the solidified body (uniaxial compressive strength).
  • FIG. 5 is a diagram for explaining an embodiment of the present invention using a dredging site.
  • the present invention is a method for producing an artificial stone material by kneading a mixed material containing mud and a binder, more preferably an aggregate, and hydrating and hardening (solidifying the binder by a hydration reaction). Satisfies the following conditions (a) to (c).
  • (A) Contains 40 volume% or more of mud.
  • the binder comprises at least one selected from blast furnace slag fine powder, blast furnace slag fine powder to which an alkali stimulant is added, blast furnace cement, and ordinary Portland cement.
  • the amount of the binder is 1.7 times or more by mass ratio with respect to the soil particles (solid content) in the mud and satisfies the following formula. (Mass of blast furnace slag fine powder + Mass of lime powder + Mass of slaked lime + Mass of ordinary Portland cement ⁇ 2) / (Mass of water in mixed material) ⁇ 2.0
  • fly ash can be further blended as the binder, and in this case, the mixed material satisfies the following conditions (d) to (f).
  • D) Contains 40% by volume or more of mud.
  • the binder comprises at least one selected from blast furnace slag fine powder, blast furnace slag fine powder to which an alkali stimulant is added, blast furnace cement, and ordinary Portland cement, and fly ash.
  • the amount of the binder is 1.7 times or more by mass ratio with respect to the soil particles (solid content) in the mud and satisfies the following formula. (Mass of blast furnace slag fine powder + Mass of lime powder + Mass of slaked lime + Mass of ordinary Portland cement ⁇ 2 + Mass of fly ash ⁇ 0.35) / (Mass of water in mixed material) ⁇ 1.5
  • the mud used in the present invention is typically dredged, but other examples include mud generated from excavation work and construction sludge.
  • the muddy soil generally refers to a material that cannot be piled up and exhibits fluidity that prevents people from walking on it.
  • the cone index defined by JIS-A-1228: 2009 (cone index test method for compacted soil) is 200 N / mm 2 or less.
  • the production method according to the present invention is particularly useful because mud soil typified by dredged material has a higher ion adsorption effect as the silt content is larger, and it becomes difficult to obtain a solidified body having an appropriate strength with the conventional technology.
  • the present invention is particularly useful when a mud soil containing 65 volume% or more of soil particles (silt content) having a particle size of 0.075 mm or less is targeted.
  • soil of mud refers to soil particles having a particle size of 0.075 mm or less.
  • the purpose of the present invention is to effectively utilize mud represented by dredged soil, and therefore it is preferable that the proportion of mud in the mixed material is as large as possible. Therefore, the proportion of mud in the mixed material (originally mud The ratio of the water content contained in is 40% by volume or more.
  • the upper limit of the proportion of mud is not particularly limited, but if the proportion of dredged soil is 60% by volume or less, the relative amount of steelmaking slag becomes an appropriate amount, and the specific gravity of the solidified body greatly increases to 2.0. None fall below. If the specific gravity is not significantly lower than 2.0, it has utility as a stone substitute. Therefore, the proportion of mud in the mixed material is desirably 60% by volume or less.
  • the binder examples include blast furnace slag fine powder, blast furnace slag fine powder to which an alkali stimulant is added, blast furnace cement, and ordinary Portland cement, and one or more of these can be used. From the viewpoint of reducing the environmental load without using natural materials as much as possible, and from the viewpoint of securing the strength of the artificial stone material (hereinafter sometimes referred to as “solidified body”) and the manufacturing cost, What added the alkali stimulant to the blast furnace slag fine powder is desirable.
  • an alkali stimulator together with the blast furnace slag fine powder as a binder an alkaline environment can be created, and thereby the hydraulic properties of the blast furnace slag fine powder can be exhibited. That is, the hydration reaction of the blast furnace slag fine powder can be promoted, and the strength of the solidified body can be ensured.
  • the alkali stimulating agent for example, one or more kinds of lime powder, slaked lime, ordinary Portland cement, blast furnace cement and the like can be used. In this case, it is preferable that 80 to 95% by mass of blast furnace slag fine powder is contained, and the balance is one or more selected from lime powder, slaked lime, ordinary Portland cement, and blast furnace cement.
  • an alkali stimulant is used together with the blast furnace slag fine powder as a binder, if the proportion of the blast furnace slag fine powder is 80% by mass or more, an excess alkali component does not remain in the solidified body. For this reason, when using a solidified body in the sea etc., the load of the alkali with respect to seawater environment is small. It is also economically advantageous.
  • the ratio of the amount of binder in the mixed material to water is (mass of blast furnace slag fine powder + mass of lime powder + mass of slaked lime + mass of ordinary Portland cement ⁇ 2) / (mass of water in the mixed material) ) ⁇ 2.0.
  • FIG. 2 it can be seen that in order to ensure the strength of the solidified body, a certain amount or more of binding material is necessary with respect to the amount of mud soil particles.
  • the strength of the solidified body there is no essential problem as long as it can clear the required strength level of quasi-hard stone of 9.8 N / mm 2 or more.
  • it is necessary for ensuring the quality that the target strength has a strength margin of about 3 N / mm 2 as in the case of ready-mixed concrete.
  • the uniaxial compressive strength after curing for 28 days can be about 15 N / mm 2 with a strength margin.
  • the amount of the binder in the mixed material is 1.7 times or more by mass ratio with respect to the soil particles (solid content) in the mud.
  • the mass ratio is 2.2 times or more because stable strength can be expected even if the clay is uneven.
  • the strength index according to the strength index used in the steel slag hydrated solidified body that is, (mass of blast furnace slag fine powder + mass of lime powder + slaked lime Mass + normal Portland cement mass x 2) / (mass of water in the mixed material).
  • blast furnace cement is a mixture of blast furnace slag fine powder and ordinary Portland cement
  • the mass corresponding to the mixing ratio of the blast furnace slag fine powder of the blast furnace cement is referred to as “mass of blast furnace slag fine powder”
  • ordinary Portland cement of blast furnace cement is used. The above formula is applied with the mass corresponding to the mixing ratio of the particles as “mass of ordinary Portland cement”.
  • Table 1 shows the results of examining the relationship between the strength index of the mixed material kneaded under sufficient water conditions and the strength of the obtained solidified body (uniaxial compressive strength after 28-day curing). According to this, although the strength increases as the strength index increases (that is, the ratio of the binder to water increases), it reaches a peak at about 1.95, and the kneading failure occurs under a condition exceeding 2.3.
  • the amount of the binder is less than 2.0 (mass of blast furnace slag fine powder + mass of lime powder + mass of slaked lime + mass of ordinary Portland cement ⁇ 2) / (mass of water in the mixed material). , Preferably 1.95 or less.
  • fly ash can be further blended.
  • the binder fly ash can be further blended.
  • the clay is mainly composed of SiO 2 , it can be stabilized by a hydration reaction with excess alkali.
  • the mineral phase that constitutes the solid particles of dredged soil varies depending on dredged areas and occurrence history, so the reactivity may not be stable.
  • the fly ash is blended as a part of the binder, that is, selected from blast furnace slag fine powder, blast furnace slag fine powder added with an alkali stimulant, blast furnace cement, and ordinary Portland cement. It is desirable to use fly ash in combination with more than seeds.
  • fly ash Since the composition of fly ash is mainly composed of amorphous SiO 2 and Al 2 O 3 , it can be expected that a pozzolanic reaction will occur more quickly than the crystalline material when an excessive alkali content is generated. . However, when fly ash is added excessively, the amount of Ca in the binder becomes too small, and the stability of the reaction, which is the original role, may be impaired. From this point of view, when fly ash is blended, it is a ratio to the total of one or more selected from blast furnace slag fine powder, blast furnace slag fine powder added with an alkali stimulant, blast furnace cement, and ordinary Portland cement. It is preferable that the upper limit is about 40% by mass.
  • the binder added to the mixed material is particularly preferably a blast furnace slag fine powder added with an alkali stimulant.
  • the blast furnace slag fine powder is contained in an amount of 70 to 85% by mass and the fly ash is contained in an amount of 10 to 30% by mass with respect to the mass of the blast furnace slag fine powder.
  • the balance is preferably at least one selected from ordinary Portland cement, lime powder, slaked lime, and blast furnace cement.
  • the reason why the blast furnace slag fine powder is blended in the above range is basically the same as the reason described above. However, since fly ash is used in combination, the blending ratio of the blast furnace slag fine powder is relatively reduced.
  • the blending amount of fly ash is preferably about 30% by mass with respect to the mass of the blast furnace slag fine powder.
  • the lower limit is preferably about 10% by mass with respect to the mass of the blast furnace slag fine powder.
  • the ratio of water and binder in the mixed material is a strength index according to the strength index used in the steel slag hydrated solidified body, that is, It was found that (mass of blast furnace slag fine powder + mass of lime powder + mass of slaked lime + mass of ordinary Portland cement ⁇ 2 + mass of fly ash ⁇ 0.35) / (mass of water in the mixed material). Since blast furnace cement is a mixture of blast furnace slag fine powder and ordinary Portland cement, the mass corresponding to the mixing ratio of the blast furnace slag fine powder of the blast furnace cement is referred to as “mass of blast furnace slag fine powder”, and ordinary Portland cement of blast furnace cement is used. The above formula is applied with the mass corresponding to the mixing ratio of the particles as “mass of ordinary Portland cement”.
  • clay with a silt content of 92% by volume was used as mud
  • blast furnace slag fine powder was mainly used as a binder
  • slaked lime and ordinary Portland cement were used as alkali stimulants
  • fly ash was further blended.
  • the strength index when the strength index is up to 1.5, the slump value is 3 cm or more and an appropriate kneading state is obtained, but when the strength index exceeds 1.5, the slump value is greatly reduced. In addition, the tendency to start kneading failure was also confirmed visually. For this reason, if the strength index exceeds 1.5, the strength itself reaches the peak, but if the strength index further increases, the strength decreases. Therefore, when fly ash is blended as a part of the binder, the strength index is desirably 1.5 or less.
  • the amount of water in the mixed material is determined by the moisture content, volume ratio and strength index of the clay. Generally, the volume ratio in the mixed material is about 30 to 50%.
  • Aggregates can be blended into the mixed material in the same manner as concrete and the like, and it is desirable to blend aggregates in terms of characteristics such as volume stability.
  • As the aggregate natural sand and natural crushed stone can be used in the same manner as ordinary concrete. However, from the viewpoint of obtaining a high strength material containing as little natural resources as possible, it is desirable to use steel slag. Moreover, since steelmaking slag is heavier (larger specific gravity) than natural crushed stone, the weight (high specific gravity) of a solidified body can be ensured by using this as an aggregate.
  • the steelmaking slag examples include hot metal pretreatment slag (dephosphorization slag, desiliconization slag, desulfurization slag, etc.), converter decarburization slag, electric furnace slag, and the like, and one or more of these can be used.
  • the steelmaking slag preferably has a maximum particle size of 25 mm or less. About 15 to 50% of the aggregate is appropriate as the volume ratio in the mixed material.
  • the amount of steelmaking slag in a mixed material is 700 kg / m ⁇ 3 > or more from a viewpoint of the weight ensuring as a solidified body, and volume stability.
  • mud, a binder, and more preferably an aggregate are blended, a mixed material to which water is added as necessary is kneaded, and the kneaded material is solidified by a hydration reaction of the binder to produce artificial material. Get stone. Remove mud such as dredged material with a sieve if necessary.
  • a normal fresh concrete kneading facility may be used, but it may be carried out in a yard such as outdoors using a heavy machine for civil engineering work such as an excavator.
  • the kneaded material may be poured into an appropriate mold and solidified and cured (hydration hardening), or it may be cast in a layer on the yard such as outdoors to solidify and cure (hydration hardening). You may let them. In particular, when a large amount of stone is produced, it is preferable to place the yard in layers.
  • the results of examining the relationship between the curing period and the strength of the solidified body are shown in FIG.
  • clay with a silt content of 60% by volume was used as mud
  • blast furnace slag fine powder was mainly used as a binder
  • slaked lime and ordinary Portland cement were used as alkali stimulants.
  • the ratio of the amount of binder in the mixed material to water is (mass of blast furnace slag fine powder + mass of lime powder + mass of slaked lime + mass of ordinary Portland cement ⁇ 2) / (mass of water in the mixed material) ) ⁇ 2.0.
  • the curing period is a period until a target compressive strength is obtained. Generally, about 7 days or more is appropriate as shown in FIG.
  • the obtained stone is crushed to an appropriate size as necessary.
  • This crushing treatment may be performed using a crusher, and when the kneaded material is placed in layers in the yard as described above, the solidified body of the yard is roughly crushed with a breaker, and then crushed. You may crush with a machine.
  • the solidified body (lumps) subjected to the crushing process is classified with a sieve to obtain a chunk of a predetermined size. For example, when used as a submerged dike material, a lump having a size of about 150 to 500 mm is obtained.
  • the stone material has a uniaxial compressive strength after curing on the 28th of 9.8 N / mm 2 (the hardness of semi-hard stone specified in JIS-A-5006: 1995) or more, preferably 15 N / mm 2 or more.
  • a stone having such strength can be easily manufactured.
  • solidified bodies manufactured using steelmaking slag as aggregate especially solidified manufactured using steelmaking slag as aggregate and blast furnace slag fine powder and alkaline stimulant (eg ordinary Portland cement) as binder.
  • the body can ensure sufficient strength and weight (high specific gravity).
  • the dredged soil generated by dredging works varies in moisture content depending on dredging location.
  • marine products such as seaweed and oysters
  • the dredging of seawater due to dredging work may affect the marine products. Rather, there is a limit on the construction period (ie seasonality).
  • the dredged soil generated by dredging work is temporarily stored in the dredging yard, and a solidified body is produced using the dredged soil stored in the dredging yard. Is preferred.
  • FIG. 5 is an explanatory view showing an embodiment of the present invention using a dredging site.
  • the dredged soil generated during dredging work is temporarily stored in the dredging yard.
  • the form and structure of the dredging yard is arbitrary, for example, it may be a thing that piles earth and sand, slag, etc. in a yard to form an annular bank and stores dredged mud inside.
  • the dredged soil generated during dredging work is transported to the dredging yard and stored, regardless of its water content and other properties.
  • the above-mentioned binder, more preferably aggregate, is mixed into the clay supplied from this dredging site, and a mixed material to which water is added as necessary is kneaded. To obtain artificial stone.
  • Example 1 Table 2 and blended materials in compounding conditions shown in Table 3 (mixed for 5 minutes at 0.75 m 3 kneading plant, discharged after a predetermined time has elapsed) kneading, diameter 100 mm ⁇ a kneaded product of this mixed material
  • a solid body artificial stone material
  • the dredged soil used was 90% by volume of silt collected from the bottom of Tokyo Bay. Water was adjusted as necessary by adding water.
  • converter slag particle size 0-25 mm
  • Example 2 By mixing the materials with the blending conditions shown in Table 4 (mixed for 5 minutes at 0.75 m 3 kneading plant, discharged after a predetermined time has elapsed) kneading, the kneaded product a diameter 100 mm ⁇ height 200mm of this mixed material A solid body (artificial stone) was manufactured by molding into a mold of the size. The dredged soil used was 92% by volume of silt collected from the bottom of the Seto Inland Sea, and water was adjusted as necessary by adding water. Moreover, converter slag (particle size 0-25 mm) was used as the steelmaking slag, which is an aggregate. The uniaxial compression strength of the solidified body after curing for 28 days was measured by a compression test (JIS-A-1108: 2006). The results are also shown in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Treatment Of Sludge (AREA)

Abstract

Disclosed is a method for stably producing an artificial stone material having a strength equal to or higher than a semi-hard stone using large amounts of mud such as dredged spoil. When producing the artificial stone material by hydration hardening of a mixed material containing mud and a binder, the mixed material satisfies the following conditions (a)-(c). (a) The mixed material contains 40 percent by volume or more of mud per 100 percent by volume of the mixed material. (b) The binder is composed of at least one component selected from a group consisting of blast furnace slag micropowder, blast furnace slag micropowder added with an alkaline stimulant, portland blast furnace slag cement, and ordinary portland cement. (c) The amount of the binder has a mass ratio of 1.7 times or more relative to soil particles (solid content) in the mud, and satisfies (mass of the blast furnace slag micropowder + mass of lime powder + mass of hydrated lime + mass of ordinary portland cement ×2)/(mass of water in the mixed material)<2.0, and when further blending fly ash as a part of the binder, satisfies (mass of the blast furnace slag micropowder + mass of lime powder + mass of hydrated lime + mass of ordinary portland cement ×2 + mass of fly ash ×0.35)/(mass of water in the mixed material)≤1.5.

Description

人工石材の製造方法Manufacturing method of artificial stone
 本発明は、浚渫土などの泥土を結合材で固化させて人工石材を製造する方法に関するものである。 The present invention relates to a method for producing artificial stone by solidifying mud such as clay with a binder.
 浚渫土に代表される軟弱な泥土は、航路浚渫や各種土木建設に伴って発生する。そのなかで、砂質のように土木資材として有用なものは、浅場造成や埋め戻しなどにそのまま利用することが可能である。しかし、シルト分の比率が高い泥土は含水状態のものが多く、また、土としての強度もほとんど期待できないため、廃棄物になることが多い。
 泥土を有効利用するために、従来から様々な技術が提案、実施されている。その最も代表的なものが、土としての特性を改善し、良質な土と同じように利用するための技術である。例えば、日本石灰協会による「石灰による軟弱地盤の安定処理工法」(鹿島出版会)では、セメントや石灰を泥土に添加して、地盤としての特性を改善する様々な技術が示されている。
Soft mud, represented by dredged soil, is generated with the construction of channel dredging and various civil engineering works. Among them, those useful as civil engineering materials such as sand can be used as they are for the construction of shallow fields and backfilling. However, mud with a high ratio of silt is often in a water-containing state, and since it can hardly be expected to have strength as soil, it often becomes waste.
Various techniques have been proposed and implemented for effective use of mud. The most representative one is a technique for improving the characteristics of soil and using it in the same way as high-quality soil. For example, “Stable treatment method for soft ground with lime” by the Japan Lime Association (Kashima Publishing Co., Ltd.) shows various techniques for improving the properties of the ground by adding cement and lime to mud.
 また、特許文献1には、浚渫土に鉄鋼スラグを混合して強度の改善を行う技術が示されている。この技術では、主に鉄鋼スラグのCaO分と浚渫土のSi、Al等とのポゾラン反応により、浚渫土の強度改質を行うものである。また、特許文献2には、軟弱土に遊離CaOを含有する転炉スラグと高炉セメントを添加して固化処理(強度の改善)を行う技術が開示されている。
 しかしながら、これらの方法は土質材料としての特性改善であり、土質材料レベルの強度が発現するとはいえ、あくまでも土としての用途に限定されるものである。
 これに対して、特許文献3には、浚渫土にセメントなどの固化材を混合し、固化させてブロック材(固化体)を得る方法が示されている。
Patent Document 1 discloses a technique for improving strength by mixing steel slag with clay. In this technique, the strength of the clay is improved mainly by a pozzolanic reaction between the CaO content of the steel slag and Si, Al, etc. of the clay. Patent Document 2 discloses a technique for performing solidification treatment (improvement of strength) by adding converter slag containing free CaO and blast furnace cement to soft soil.
However, these methods are improvement of characteristics as a soil material, and although the strength of the soil material level is expressed, it is limited to the use as soil.
On the other hand, Patent Document 3 discloses a method of obtaining a block material (solidified body) by mixing a solidified material such as cement with clay and solidifying it.
特開2009−121167号公報JP 2009-121167 A 特開2006−231208号公報Japanese Patent Laid-Open No. 2006-231208 特開2008−182898号公報JP 2008-182898 A
 しかしながら、特許文献3の方法で得られるブロック材の強度は、平均で6N/mm程度であり、最大でも8N/mm程度に過ぎない。ここで、石材やコンクリート材の代替として利用するには、JIS−A−5006:1995(割ぐり石)に規定される準硬石以上の強度(9.8N/mm以上)が必要である。特許文献3で得られるブロック材の強度は、最も低品質の軟石のレベル(9.8N/mm未満)である。この軟石のレベルは、土質材料の改善レベルに比べると相当程度高いものの、石材やコンクリート材の代替として様々な用途に利用するためには、十分な強度ではない。また、軟弱浚渫土に多く見られるような、シルト分(75μm以下)の比率が高い泥土を多量に使用する場合、強度の確保がより困難になることが容易に予想される。 However, the strength of the block material obtained by the method of Patent Document 3 is on average at a 6N / mm 2 approximately, only about 8N / mm 2 at most. Here, in order to use it as a substitute for stone or concrete material, strength (9.8 N / mm 2 or more) higher than the semi-hard stone specified in JIS-A-5006: 1995 (split stone) is required. . The strength of the block material obtained in Patent Document 3 is the lowest quality soft stone level (less than 9.8 N / mm 2 ). Although the level of soft stone is considerably higher than the improvement level of soil materials, it is not strong enough to be used for various purposes as an alternative to stone and concrete materials. Further, when a large amount of mud having a high silt content (75 μm or less), which is often seen in soft dredged soil, is used, it is easily expected that securing strength becomes more difficult.
 したがって本発明の目的は、以上のような従来技術の課題を解決し、浚渫土などの泥土を多量に使用して、準硬石以上の強度を有する、特に安全係数(+3N/mm)を考慮しても準硬石の特性を十分に満たす人工石材を、安定して製造することができる製造方法を提供することにある。 Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, use a large amount of mud such as dredged soil, and have a strength higher than that of semi-hard stone, especially a safety factor (+3 N / mm 2 ). An object of the present invention is to provide a production method capable of stably producing an artificial stone material that sufficiently satisfies the characteristics of quasi-hard stone even when considered.
 従来、鉄鋼スラグを主原料とした鉄鋼スラグ水和固化体の製造技術が知られている(例えば、「鉄鋼スラグ水和固化体技術マニュアル」,(財)沿岸技術研究センター)。この技術は、骨材に製鋼スラグを、結合材に高炉スラグ微粉末とアルカリ刺激剤をそれぞれ用いて、水和固化体を製造するものである。本発明者らは、このような鉄鋼スラグ水和固化体の製造技術をベースに、鉄鋼スラグ水和固化体の材料を浚渫土で置換した固化体の製造実験を実施した。 Conventionally, manufacturing technology of steel slag hydrated solidified body using steel slag as a main raw material is known (for example, “Steel Slag Hydrated Solidified Body Technical Manual”, Coastal Technology Research Center). In this technique, a steel slag is used as an aggregate, and a blast furnace slag fine powder and an alkali stimulant are used as a binder, and a hydrated solid body is produced. The inventors of the present invention conducted a production experiment of a solidified body in which the material of the hydrated solidified body of steel slag was replaced with clay based on the production technology of the hydrated solidified body of steel slag.
 鉄鋼スラグ水和固化体の強度発現性の度合いを表す指標として、強度指数=(高炉スラグ微粉末の質量+消石灰の質量+2×普通ポルトランドセメントの質量+0.35×フライアッシュの質量)/水の質量、が用いられている。鉄鋼スラグ水和固化体の製造では、安定した強度を発現させるために、この強度指数が2を超えるところで混練がなされている。本発明のように浚渫土を用いる場合でも強度確保が重要であると考えられたため、上記に準じた強度指数を満足するように、浚渫土に含まれる水と結合材の比率を設定して混練を実施した。ところが、この試験では混練物の流動性が急激に低下し、その結果、打設時に鬆(す)が入り、水和固化体が脆くなったり、強度が十分発現しなかったりすることが判った。すなわち、浚渫土を混合することによって、強度が発現しにくくなると考えられたため、結合材と水の比率を従来の知見レベル(鉄鋼スラグ水和固化体の製造技術)に維持したものの、適切な混練・打設ができず、従来の知見に沿った製造技術では浚渫土を原料とする人工工石材やブロックを製造することは困難であることが判った。 Strength index = (mass of ground granulated blast furnace slag + mass of slaked lime + 2 × mass of ordinary Portland cement + 0.35 × mass of fly ash) / water as an index representing the degree of strength development of hydrated solidified steel slag Mass is used. In the production of a hydrated and solidified steel slag, kneading is performed when the strength index exceeds 2 in order to develop a stable strength. Since it was thought that securing strength was important even when using clay as in the present invention, the ratio of water and binder contained in the clay was set and kneaded so as to satisfy the strength index according to the above. Carried out. However, in this test, it was found that the fluidity of the kneaded material was drastically reduced, and as a result, voids entered during casting, the hydrated solidified body became brittle, and the strength was not sufficiently developed. . That is, it was thought that the strength would be difficult to develop by mixing the clay, so the ratio of the binder and water was maintained at the conventional level of knowledge (production technology for hydrated solidified steel slag), but appropriate kneading・ It was found that it was difficult to manufacture artificial stones and blocks made of clay as raw materials with conventional manufacturing techniques that could not be placed.
 そこで本発明者らは、混練物の流動性を改善するために、元々水を保有する浚渫土に対してさらに水を添加することで水分調整し、結合材と水の比をある程度低下させながら混練できる条件について検討を行った。その結果、条件によっては強度が発現するケースもあるが、それに比較的近い配合であっても十分な強度が出ない場合があることも判った。この原因について、さらに検討した結果、浚渫土に代表される泥土は、土粒子の表面吸着などによってポゾラン反応を阻害することがあり、多量の浚渫土を利用しようとする場合には、土粒子の表面吸着によるポゾラン反応の阻害が強度発現に大きな影響を与えていることが判った。 Therefore, in order to improve the fluidity of the kneaded material, the present inventors adjust the water content by further adding water to the clay originally holding water, while reducing the ratio of the binder and water to some extent. The conditions for kneading were examined. As a result, depending on the conditions, the strength may be exhibited in some cases, but it was also found that sufficient strength may not be obtained even with a relatively close blending. As a result of further examination of this cause, mud soil typified by dredged soil may inhibit the pozzolanic reaction due to surface adsorption of the soil particles, and when trying to use a large amount of dredged soil, It was found that the inhibition of pozzolanic reaction by surface adsorption had a great influence on the strength development.
 浚渫土には、土の種類によって程度は異なるものの、Ca2+やOHを吸着する作用があることが判った。図1(a),(b)に、多摩川から採取した浚渫土と東京湾から採取した浚渫土に水酸化カルシウム溶液を透過させた際の溶液Ca濃度とpHの変化の例を示す。この試験では、底面にろ紙を敷いた浸透管に浚渫土2gを充填し、その上からpH12になるように調整した水酸化カルシウム水溶液を1mL/分で滴下し、浸出してくる溶液を回収してそのCa濃度とOH濃度を測定した。図1によれば、溶液のCa濃度やOH濃度(pH)が浚渫土を透過するだけで大きく変化していることが判る。Ca2+やOHは、セメントに代表される水和固化時の反応生成物(CaO−SiO−HOゲル)の主要構成成分である。Ca2+やOHが浚渫土の土粒子に吸着され、濃度低下するために固化が阻害されるものと考えられる。このようなCa2+やOHの吸着作用は、浚渫土などの泥土を用いた場合に特有のものであり、材料として泥土を含まない通常の鉄鋼スラグ水和固化体では全く意識されていなかった。このような問題を解決すべく検討を重ねた結果、結合材と泥土中の土粒子との質量比を所定値以上とし、且つ水・結合材比を従来の鉄鋼スラグ水和固化体の製造技術とは異なる範囲に最適化することにより、浚渫土などの泥土を多量に使用し、かつ安定した強度を有する固化体(石材)が得られることを見出した。 It was found that dredged soil has an action of adsorbing Ca 2+ and OH , although the degree varies depending on the type of soil. FIGS. 1 (a) and 1 (b) show examples of changes in the concentration of Ca and pH when a calcium hydroxide solution is permeated through dredged soil collected from the Tamagawa River and dredged soil collected from Tokyo Bay. In this test, 2 g of clay was filled in a permeation tube with filter paper on the bottom, and a calcium hydroxide aqueous solution adjusted to pH 12 was added dropwise at 1 mL / min to recover the leached solution. The Ca concentration and OH concentration were measured. According to FIG. 1, it can be seen that the Ca concentration and OH concentration (pH) of the solution change greatly only by permeating the clay. Ca 2+ and OH are main components of a reaction product (CaO—SiO 2 —H 2 O gel) at the time of hydration solidification represented by cement. It is considered that Ca 2+ and OH are adsorbed on the soil particles of the clay and the concentration is lowered, so that the solidification is inhibited. Such an adsorption action of Ca 2+ and OH is peculiar when mud such as dredged soil is used, and was not conscious at all in a normal steel slag hydrated solid body containing no mud as a material. . As a result of repeated studies to solve such problems, the mass ratio of the binder to the soil particles in the mud is set to a predetermined value or more, and the water / binder ratio is a conventional technology for producing hydrated solidified steel slag. It was found that a solidified body (stone) having a stable strength can be obtained by using a large amount of mud such as dredged soil by optimizing it in a different range.
 本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
[1]泥土と結合材を含む混合材料を水和硬化させて人工石材を製造する方法であって、混合材料が下記条件(a)~(c)を満足することを特徴とする人工石材の製造方法。
 (a)泥土を40容積%以上含む。
 (b)混合材料100容積%に対して、結合材が、高炉スラグ微粉末、アルカリ刺激剤を添加した高炉スラグ微粉末、高炉セメント、普通ポルトランドセメントの中から選ばれる1種以上からなる。
 (c)結合材量が、泥土中の土粒子(固形分)に対して質量比で1.7倍以上であり、且つ下式を満足する。
 (高炉スラグ微粉末の質量+石灰粉の質量+消石灰の質量+普通ポルトランドセメントの質量×2)/(混合材料中の水の質量)<2.0
[2]上記[1]の製造方法において、結合材が、高炉スラグ微粉末を80~95質量%含有し、残部が普通ポルトランドセメント、石灰粉、消石灰、高炉セメントの中から選ばれる1種以上であることを特徴とする人工石材の製造方法。
The present invention has been made on the basis of such findings and has the following gist.
[1] A method for producing an artificial stone material by hydrating and hardening a mixed material containing mud and a binder, wherein the mixed material satisfies the following conditions (a) to (c): Production method.
(A) Contains 40 volume% or more of mud.
(B) For 100% by volume of the mixed material, the binder comprises at least one selected from blast furnace slag fine powder, blast furnace slag fine powder to which an alkali stimulant is added, blast furnace cement, and ordinary Portland cement.
(C) The amount of the binder is 1.7 times or more by mass ratio with respect to the soil particles (solid content) in the mud and satisfies the following formula.
(Mass of blast furnace slag fine powder + Mass of lime powder + Mass of slaked lime + Mass of ordinary Portland cement × 2) / (Mass of water in mixed material) <2.0
[2] In the production method of [1], the binder contains 80 to 95% by mass of blast furnace slag fine powder, and the balance is one or more selected from ordinary Portland cement, lime powder, slaked lime, and blast furnace cement. A method for producing an artificial stone, characterized in that
[3]泥土と結合材を含む混合材料を水和硬化させて人工石材を製造する方法であって、混合材料が下記条件(d)~(f)を満足することを特徴とする人工石材の製造方法。
 (d)混合材料100容積%に対して、泥土を40容積%以上含む。
 (e)結合材が、高炉スラグ微粉末、アルカリ刺激剤を添加した高炉スラグ微粉末、高炉セメント、普通ポルトランドセメントの中から選ばれる1種以上とフライアッシュとからなる。
 (f)結合材量が、泥土中の土粒子(固形分)に対して質量比で1.7倍以上であり、且つ下式を満足する。
 (高炉スラグ微粉末の質量+石灰粉の質量+消石灰の質量+普通ポルトランドセメントの質量×2+フライアッシュの質量×0.35)/(混合材料中の水の質量)≦1.5
[3] A method for producing an artificial stone material by hydrating and hardening a mixed material containing mud and a binder, wherein the mixed material satisfies the following conditions (d) to (f): Production method.
(D) Containing 40 volume% or more of mud with respect to 100 volume% of mixed materials.
(E) The binder comprises at least one selected from blast furnace slag fine powder, blast furnace slag fine powder to which an alkali stimulant is added, blast furnace cement, and ordinary Portland cement, and fly ash.
(F) The amount of the binder is 1.7 times or more by mass ratio with respect to the soil particles (solid content) in the mud and satisfies the following formula.
(Mass of blast furnace slag fine powder + Mass of lime powder + Mass of slaked lime + Mass of ordinary Portland cement × 2 + Mass of fly ash × 0.35) / (Mass of water in mixed material) ≦ 1.5
[4]上記[3]の製造方法において、結合材が、高炉スラグ微粉末を70~85質量%含有するとともに、フライアッシュを高炉スラグ微粉末の質量に対する割合で10~30質量%含有し、残部が普通ポルトランドセメント、石灰粉、消石灰、高炉セメントの中から選ばれる1種以上であることを特徴とする人工石材の製造方法。
[5]上記[1]~[4]のいずれかの製造方法において、混合材料が、さらに骨材を含むことを特徴とする人工石材の製造方法。
[6]上記[5]の製造方法において、骨材が製鋼スラグであることを特徴とする人工石材の製造方法。
[7]上記[6]の製造方法において、混合材料中の単位容積当たりの製鋼スラグの配合量が700kg/m以上であることを特徴とする人工石材の製造方法。
[8]上記[1]~[7]のいずれかの製造方法において、泥土が粒径0.075mm以下の粒子を65容積%以上含有することを特徴とする人工石材の製造方法。
[9]上記[1]~[8]のいずれかの製造方法において、泥土が浚渫工事で発生した浚渫土であり、該浚渫土を一旦浚渫土置場に貯泥し、該浚渫土置場に貯泥された浚渫土を用いて人工石材を製造することを特徴とする人工石材の製造方法。
[4] In the production method of [3], the binder contains 70 to 85% by mass of blast furnace slag fine powder, and fly ash is contained in an amount of 10 to 30% by mass relative to the mass of the blast furnace slag fine powder. A method for producing an artificial stone, wherein the balance is at least one selected from ordinary Portland cement, lime powder, slaked lime, and blast furnace cement.
[5] The method for producing an artificial stone material according to any one of the above [1] to [4], wherein the mixed material further contains an aggregate.
[6] The method for producing an artificial stone material according to [5], wherein the aggregate is steel slag.
[7] The method for producing an artificial stone material according to [6], wherein the blending amount of the steelmaking slag per unit volume in the mixed material is 700 kg / m 3 or more.
[8] The method for producing an artificial stone material according to any one of the above [1] to [7], wherein the mud contains 65% by volume or more of particles having a particle size of 0.075 mm or less.
[9] In the manufacturing method according to any one of [1] to [8] above, the mud is dredged material generated by dredging work, and the dredged material is temporarily stored in the dredging yard and stored in the dredging yard. A method for producing an artificial stone material comprising producing an artificial stone material using mud clay.
 本発明によれば、浚渫土などの泥土を多量に使用して、準硬石以上の強度を有する人工石材を安定して製造することができる。 According to the present invention, an artificial stone material having a strength equal to or higher than that of semi-hard stone can be stably produced by using a large amount of mud such as clay.
図1は、浚渫土に水酸化カルシウム溶液を透過させた際の溶液Ca濃度とpHの変化の例を示すグラフである。FIG. 1 is a graph showing an example of changes in solution Ca concentration and pH when a calcium hydroxide solution is permeated through the clay. 図2は、混合材料に配合される結合材と泥土中の土粒子(固形分)の質量比[結合材/泥土中の土粒子]と固化体の強度(28日養生後の一軸圧縮強度)との関係を示すグラフである。Fig. 2 shows the mass ratio of the binder compounded in the mixed material and the soil particles (solid content) in the mud [binding material / soil particles in the mud] and the strength of the solidified body (uniaxial compressive strength after 28 days of curing) It is a graph which shows the relationship. 図3は、結合材の一部としてフライアッシュを配合した混合材料の強度指数B/水(=[高炉スラグ微粉末の質量+石灰粉の質量+消石灰の質量+普通ポルトランドセメントの質量×2+フライアッシュの質量×0.35]/[混合材料中の水の質量])とスランプ値との関係を示すグラフである。FIG. 3 shows the strength index B / water (= [mass of blast furnace slag fine powder + mass of lime powder + mass of slaked lime) + mass of ordinary Portland cement × 2 + fry of the mixed material containing fly ash as a part of the binder. It is a graph which shows the relationship between the mass of ash x 0.35] / [the mass of water in the mixed material]) and the slump value. 図4は、養生期間と固化体の強度(一軸圧縮強度)との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the curing period and the strength of the solidified body (uniaxial compressive strength). 図5は、浚渫土置場を利用した本発明の一実施形態を説明する図である。FIG. 5 is a diagram for explaining an embodiment of the present invention using a dredging site.
 本発明は、泥土と結合材を含み、さらに好ましくは骨材を含む混合材料を混練し、水和硬化(結合材の水和反応による固化)させて人工石材を製造する方法であり、混合材料が下記条件(a)~(c)を満足するものである。
 (a)泥土を40容積%以上含む。
 (b)結合材が、高炉スラグ微粉末、アルカリ刺激剤を添加した高炉スラグ微粉末、高炉セメント、普通ポルトランドセメントの中から選ばれる1種以上からなる。
 (c)結合材量が、泥土中の土粒子(固形分)に対して質量比で1.7倍以上であり、且つ下式を満足する。
 (高炉スラグ微粉末の質量+石灰粉の質量+消石灰の質量+普通ポルトランドセメントの質量×2)/(混合材料中の水の質量)<2.0
The present invention is a method for producing an artificial stone material by kneading a mixed material containing mud and a binder, more preferably an aggregate, and hydrating and hardening (solidifying the binder by a hydration reaction). Satisfies the following conditions (a) to (c).
(A) Contains 40 volume% or more of mud.
(B) The binder comprises at least one selected from blast furnace slag fine powder, blast furnace slag fine powder to which an alkali stimulant is added, blast furnace cement, and ordinary Portland cement.
(C) The amount of the binder is 1.7 times or more by mass ratio with respect to the soil particles (solid content) in the mud and satisfies the following formula.
(Mass of blast furnace slag fine powder + Mass of lime powder + Mass of slaked lime + Mass of ordinary Portland cement × 2) / (Mass of water in mixed material) <2.0
 また、結合材として、さらにフライアッシュを配合することができ、この場合には、混合材料が下記条件(d)~(f)を満足するものである。
 (d)泥土を40容積%以上含む。
 (e)結合材が、高炉スラグ微粉末、アルカリ刺激剤を添加した高炉スラグ微粉末、高炉セメント、普通ポルトランドセメントの中から選ばれる1種以上とフライアッシュとからなる。
 (f)結合材量が、泥土中の土粒子(固形分)に対して質量比で1.7倍以上であり、且つ下式を満足する。
 (高炉スラグ微粉末の質量+石灰粉の質量+消石灰の質量+普通ポルトランドセメントの質量×2+フライアッシュの質量×0.35)/(混合材料中の水の質量)≦1.5
Further, fly ash can be further blended as the binder, and in this case, the mixed material satisfies the following conditions (d) to (f).
(D) Contains 40% by volume or more of mud.
(E) The binder comprises at least one selected from blast furnace slag fine powder, blast furnace slag fine powder to which an alkali stimulant is added, blast furnace cement, and ordinary Portland cement, and fly ash.
(F) The amount of the binder is 1.7 times or more by mass ratio with respect to the soil particles (solid content) in the mud and satisfies the following formula.
(Mass of blast furnace slag fine powder + Mass of lime powder + Mass of slaked lime + Mass of ordinary Portland cement × 2 + Mass of fly ash × 0.35) / (Mass of water in mixed material) ≦ 1.5
 本発明で用いられる泥土は、浚渫土が代表的なものであるが、それ以外に、例えば、掘削工事から生じる泥、建設汚泥などが挙げられる。ここで、泥土とは、一般的には山積みができず、その上を人が歩けないような流動性を示すものを言う。おおよその強度としては、JIS−A−1228:2009(締固めた土のコーン指数試験方法)で規定されるコーン指数が200N/mm以下のものである。
 浚渫土に代表される泥土は、シルト分が多いほどそのイオン吸着効果が大きくなり、従来技術では適正な強度の固化体が得られにくくなるため、本発明による製造方法が特に有用である。具体的には、本発明は、粒径0.075mm以下の土粒子(シルト分)を65容積%以上含有するような泥土を対象とする場合に、特に有用であると言える。
 なお、以下の説明において泥土の「シルト分」という場合には、粒径0.075mm以下の土粒子を指すものとする。
The mud used in the present invention is typically dredged, but other examples include mud generated from excavation work and construction sludge. Here, the muddy soil generally refers to a material that cannot be piled up and exhibits fluidity that prevents people from walking on it. As an approximate strength, the cone index defined by JIS-A-1228: 2009 (cone index test method for compacted soil) is 200 N / mm 2 or less.
The production method according to the present invention is particularly useful because mud soil typified by dredged material has a higher ion adsorption effect as the silt content is larger, and it becomes difficult to obtain a solidified body having an appropriate strength with the conventional technology. Specifically, it can be said that the present invention is particularly useful when a mud soil containing 65 volume% or more of soil particles (silt content) having a particle size of 0.075 mm or less is targeted.
In the following description, the term “silt” of mud refers to soil particles having a particle size of 0.075 mm or less.
 本発明は、浚渫土に代表される泥土を有効利用することが目的であるので、混合材料中の泥土の割合が可能な限り多いことが好ましく、このため混合材料中の泥土の割合(元々泥土に含まれている水分を含む割合)を40容積%以上とする。なお、泥土の割合の上限は特に限定するものではないが、浚渫土の割合が60容積%以下であれば、相対的な製鋼スラグ量が適量となり、固化体の比重が2.0を大幅に下回ることがない。比重が2.0を大幅に下回らなければ石代替としての有用性を有する。したがって、混合材料中の泥土の割合は60容積%以下が望ましい。 The purpose of the present invention is to effectively utilize mud represented by dredged soil, and therefore it is preferable that the proportion of mud in the mixed material is as large as possible. Therefore, the proportion of mud in the mixed material (originally mud The ratio of the water content contained in is 40% by volume or more. The upper limit of the proportion of mud is not particularly limited, but if the proportion of dredged soil is 60% by volume or less, the relative amount of steelmaking slag becomes an appropriate amount, and the specific gravity of the solidified body greatly increases to 2.0. Never fall below. If the specific gravity is not significantly lower than 2.0, it has utility as a stone substitute. Therefore, the proportion of mud in the mixed material is desirably 60% by volume or less.
 結合材としては、高炉スラグ微粉末、アルカリ刺激剤を添加した高炉スラグ微粉末、高炉セメント、普通ポルトランドセメントが挙げられ、これらの1種以上を用いることができる。
 また、天然資材をできるだけ使用せずに環境負荷を軽減するという観点、さらには人工石材(以下、「固化体」という場合がある。)の強度確保および製造コストの観点からは、結合材として、高炉スラグ微粉末にアルカリ刺激剤を添加したものが望ましい。結合材として、高炉スラグ微粉末とともにアルカリ刺激剤を用いることにより、アルカリ環境を作り出し、これにより、高炉スラグ微粉末の水硬性を発揮させることができる。つまり、高炉スラグ微粉末の水和反応を促進し、固化体の強度を確保することができる。
Examples of the binder include blast furnace slag fine powder, blast furnace slag fine powder to which an alkali stimulant is added, blast furnace cement, and ordinary Portland cement, and one or more of these can be used.
From the viewpoint of reducing the environmental load without using natural materials as much as possible, and from the viewpoint of securing the strength of the artificial stone material (hereinafter sometimes referred to as “solidified body”) and the manufacturing cost, What added the alkali stimulant to the blast furnace slag fine powder is desirable. By using an alkali stimulator together with the blast furnace slag fine powder as a binder, an alkaline environment can be created, and thereby the hydraulic properties of the blast furnace slag fine powder can be exhibited. That is, the hydration reaction of the blast furnace slag fine powder can be promoted, and the strength of the solidified body can be ensured.
 アルカリ刺激剤としては、例えば、石灰粉、消石灰、普通ポルトランドセメント、高炉セメントなどの1種以上を用いることができる。この場合、高炉スラグ微粉末を80~95質量%含有し、残部が石灰粉、消石灰、普通ポルトランドセメント、高炉セメントの中から選ばれる1種以上であることが好ましい。結合材として高炉スラグ微粉末とともにアルカリ刺激剤を用いる場合、高炉スラグ微粉末の割合が80質量%以上であれば、余剰のアルカリ成分が固化体中に残存することがない。このため、固化体を海中などで使用する際に、海水環境に対するアルカリの負荷が小さい。また、経済的にも有利となる。一方、高炉スラグ微粉末の割合が95質量%を超えても混練・固化させることは可能である。しかし、95質量%以下であれば安定して分散させることが容易であること、浚渫土のアルカリ抑制効果のために刺激剤の効果が小さくなることなどから、高炉スラグ微粉末を添加する効果が高く、多様な原料を使用する必要がなく、設備負荷とならないため、経済的な妥当性を有する。 As the alkali stimulating agent, for example, one or more kinds of lime powder, slaked lime, ordinary Portland cement, blast furnace cement and the like can be used. In this case, it is preferable that 80 to 95% by mass of blast furnace slag fine powder is contained, and the balance is one or more selected from lime powder, slaked lime, ordinary Portland cement, and blast furnace cement. When an alkali stimulant is used together with the blast furnace slag fine powder as a binder, if the proportion of the blast furnace slag fine powder is 80% by mass or more, an excess alkali component does not remain in the solidified body. For this reason, when using a solidified body in the sea etc., the load of the alkali with respect to seawater environment is small. It is also economically advantageous. On the other hand, it is possible to knead and solidify even if the ratio of the blast furnace slag fine powder exceeds 95% by mass. However, if it is 95% by mass or less, it is easy to stably disperse, and since the effect of the stimulant is reduced due to the alkali suppression effect of the clay, the effect of adding blast furnace slag fine powder is effective. It is expensive and does not require the use of various raw materials and does not impose equipment load, so it has economic validity.
 浚渫土などの泥土は、図1に示すようにCa2+やOHの吸着作用があるため、その土粒子の量がCa2+やOHの吸着量に大きく影響を与える可能性があること、及び、セメントのようなゲル化による固化の場合には、ゲルのネットワークを形成することが重要であると考えた。そのため、浚渫土と結合材のバランスを変えながら、強度発現に関与する因子を検討した。その結果、結合材量と浚渫土に含まれる土粒子の比率が強度に対して極めて影響が大きいことが判った。
 混合材料に配合される結合材と泥土中の土粒子(固形分)の質量比[結合材/泥土中の土粒子]と固化体の強度(28日養生後の一軸圧縮強度)との関係を調べた結果を図2に示す。この試験では、泥土としてシルト分が90容積%の浚渫土を用い、結合材として高炉スラグ微粉末を主体とし、アルカリ刺激剤として消石灰、普通ポルトランドセメントを用いた。また、混合材料中の結合材量と水との比は、(高炉スラグ微粉末の質量+石灰粉の質量+消石灰の質量+普通ポルトランドセメントの質量×2)/(混合材料中の水の質量)<2.0とした。
Since mud such as dredged soil has an adsorption action of Ca 2+ and OH as shown in FIG. 1, the amount of the soil particles may greatly affect the adsorption amount of Ca 2+ and OH . In the case of solidification by gelation such as cement, it was considered important to form a gel network. Therefore, the factors involved in strength development were examined while changing the balance between the clay and the binder. As a result, it was found that the amount of the binder and the ratio of the soil particles contained in the dredged material have a great influence on the strength.
The relationship between the mass ratio of the binder compounded in the mixed material and the soil particles (solid content) in the mud [the binder / soil particles in the mud] and the strength of the solidified body (uniaxial compressive strength after 28 days of curing) The result of the examination is shown in FIG. In this test, clay with a silt content of 90% by volume was used as mud, blast furnace slag fine powder was mainly used as a binder, and slaked lime and ordinary Portland cement were used as alkali stimulants. The ratio of the amount of binder in the mixed material to water is (mass of blast furnace slag fine powder + mass of lime powder + mass of slaked lime + mass of ordinary Portland cement × 2) / (mass of water in the mixed material) ) <2.0.
 図2によれば、固化体の強度を確保するには、泥土の土粒子の量に対して一定量以上の結合材が必要であることが判る。固化体の強度としては、準硬石の必要強度レベルである9.8N/mm以上をクリアできれば本質的な問題はない。しかし、浚渫土のバラツキや製造上のバラツキを考慮した場合、生コンクリートのように目標強度は3N/mm程度の強度余裕を持つことが品質確保のために必要となる。具体的には、[結合材/泥土中の土粒子]≧1.7であれば、28日養生後の一軸圧縮強度を、強度余裕をもたせた15N/mm程度にできることが判る。このため混合材料中の結合材量は、泥土中の土粒子(固形分)に対して質量比で1.7倍以上とする。また、その質量比が2.2倍以上であれば、浚渫土のバラツキがあっても安定した強度発現が期待できるため、より好ましい。 According to FIG. 2, it can be seen that in order to ensure the strength of the solidified body, a certain amount or more of binding material is necessary with respect to the amount of mud soil particles. As the strength of the solidified body, there is no essential problem as long as it can clear the required strength level of quasi-hard stone of 9.8 N / mm 2 or more. However, in consideration of variations in dredged soil and manufacturing variations, it is necessary for ensuring the quality that the target strength has a strength margin of about 3 N / mm 2 as in the case of ready-mixed concrete. Specifically, if [binding material / soil particles in mud] ≧ 1.7, it can be seen that the uniaxial compressive strength after curing for 28 days can be about 15 N / mm 2 with a strength margin. For this reason, the amount of the binder in the mixed material is 1.7 times or more by mass ratio with respect to the soil particles (solid content) in the mud. Moreover, it is more preferable that the mass ratio is 2.2 times or more because stable strength can be expected even if the clay is uneven.
 一方、結合材の量を単純に増加させると、水に対して結合材が多すぎる状態となり、却って強度低下や充填不良が発生しやすくなる。混合材料中での水と結合材との割合については、鉄鋼スラグ水和固化体で使用されている強度指数に準じた強度指数、すなわち、(高炉スラグ微粉末の質量+石灰粉の質量+消石灰の質量+普通ポルトランドセメントの質量×2)/(混合材料中の水の質量)で整理できることが判った。なお、高炉セメントは、高炉スラグ微粉末と普通ポルトランドセメントの混合物であるので、高炉セメントの高炉スラグ微粉末の混合比に応じた質量を「高炉スラグ微粉末の質量」とし、高炉セメントの普通ポルトランドセメントの混合比に応じた質量を「普通ポルトランドセメントの質量」として上記式を適用する。 On the other hand, when the amount of the binding material is simply increased, the amount of the binding material becomes too much with respect to water, and on the contrary, strength reduction and poor filling are likely to occur. About the ratio of the water and the binder in the mixed material, the strength index according to the strength index used in the steel slag hydrated solidified body, that is, (mass of blast furnace slag fine powder + mass of lime powder + slaked lime Mass + normal Portland cement mass x 2) / (mass of water in the mixed material). Since blast furnace cement is a mixture of blast furnace slag fine powder and ordinary Portland cement, the mass corresponding to the mixing ratio of the blast furnace slag fine powder of the blast furnace cement is referred to as “mass of blast furnace slag fine powder”, and ordinary Portland cement of blast furnace cement is used. The above formula is applied with the mass corresponding to the mixing ratio of the particles as “mass of ordinary Portland cement”.
 鉄鋼スラグ水和固化体の場合には、強度指数が1.5以上となるように結合材と水の配合比率が設計されており、2.0を超える条件が一般的である(「鉄鋼スラグ水和固化体技術マニュアル」参照)。これに対して浚渫土を使用する場合には、全く異なる条件が必要であることが判った。浚渫土の含水比220%(含水比=([浚渫土の水分量(質量%)]/[浚渫土の固形分量(質量%)])×100)、浚渫土の容積率50%という比較的水が十分ある条件で混練した混合材料の強度指数と、得られた固化体の強度(28日養生後の一軸圧縮強度)との関係を調べた結果を表1に示す。これによると、強度指数が高くなる(すなわち、水に対する結合材の比率が増加する)ほど強度は高まるものの1.95程度で頭打ちとなり、2.3を超えた条件では混練不良となる。以上の結果から、結合材量は、(高炉スラグ微粉末の質量+石灰粉の質量+消石灰の質量+普通ポルトランドセメントの質量×2)/(混合材料中の水の質量)を2.0未満、好ましくは1.95以下とする。 In the case of steel slag hydrated solidified material, the mixing ratio of the binder and water is designed so that the strength index is 1.5 or more, and the condition exceeding 2.0 is general (“steel slag See "Hydro-solidified technical manual"). On the other hand, it was found that completely different conditions were necessary when using clay. Water content ratio of dredged soil 220% (water content ratio = ([moisture content of dredged soil (mass%)] / [solid content of dredged soil (mass%)]) × 100), relative volume ratio of dredged soil 50% Table 1 shows the results of examining the relationship between the strength index of the mixed material kneaded under sufficient water conditions and the strength of the obtained solidified body (uniaxial compressive strength after 28-day curing). According to this, although the strength increases as the strength index increases (that is, the ratio of the binder to water increases), it reaches a peak at about 1.95, and the kneading failure occurs under a condition exceeding 2.3. From the above results, the amount of the binder is less than 2.0 (mass of blast furnace slag fine powder + mass of lime powder + mass of slaked lime + mass of ordinary Portland cement × 2) / (mass of water in the mixed material). , Preferably 1.95 or less.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 結合材としては、さらにフライアッシュを配合することができる。例えば、後述するように混合材料に骨材として製鋼スラグを配合する場合、製鋼スラグ中にはCaが多量に含まれるため、アルカリ分が過剰になる場合がある。浚渫土はSiOが主成分であるため、過剰のアルカリ分と水和反応して安定化させることが可能である。しかし、浚渫土の固体粒子を構成する鉱物相は、浚渫地域や発生履歴によって異なるため、反応性が安定しない場合がある。そのような場合には、結合材の一部としてフライアッシュを配合すること、すなわち、高炉スラグ微粉末、アルカリ刺激剤を添加した高炉スラグ微粉末、高炉セメント、普通ポルトランドセメントの中から選ばれる1種以上に対して、フライアッシュを併用することが望ましい。 As the binder, fly ash can be further blended. For example, as described later, when steelmaking slag is blended in the mixed material as an aggregate, a large amount of Ca may be contained in the steelmaking slag, so that the alkali content may be excessive. Since the clay is mainly composed of SiO 2 , it can be stabilized by a hydration reaction with excess alkali. However, the mineral phase that constitutes the solid particles of dredged soil varies depending on dredged areas and occurrence history, so the reactivity may not be stable. In such a case, the fly ash is blended as a part of the binder, that is, selected from blast furnace slag fine powder, blast furnace slag fine powder added with an alkali stimulant, blast furnace cement, and ordinary Portland cement. It is desirable to use fly ash in combination with more than seeds.
 フライアッシュの組成は非晶質のSiO、Alが中心であるため、過剰のアルカリ分が発生した場合には、結晶質の材料に較べて速やかにポゾラン反応が起こることが期待できる。但し、フライアッシュを過剰に配合すると、結合材中のCa量が少なくなり過ぎ、本来の役割である反応の安定性が損なわれるおそれもある。このような観点から、フライアッシュを配合する場合には、高炉スラグ微粉末、アルカリ刺激剤を添加した高炉スラグ微粉末、高炉セメント、普通ポルトランドセメントの中から選ばれる1種以上の合計に対する割合で概ね40質量%程度を上限とすることが好ましい。 Since the composition of fly ash is mainly composed of amorphous SiO 2 and Al 2 O 3 , it can be expected that a pozzolanic reaction will occur more quickly than the crystalline material when an excessive alkali content is generated. . However, when fly ash is added excessively, the amount of Ca in the binder becomes too small, and the stability of the reaction, which is the original role, may be impaired. From this point of view, when fly ash is blended, it is a ratio to the total of one or more selected from blast furnace slag fine powder, blast furnace slag fine powder added with an alkali stimulant, blast furnace cement, and ordinary Portland cement. It is preferable that the upper limit is about 40% by mass.
 また、さきに述べたように、混合材料に配合する結合材としては、特に、高炉スラグ微粉末にアルカリ刺激剤を添加したものが望ましい。このような結合材に対してフライアッシュを併用する場合には、高炉スラグ微粉末を70~85質量%含有するとともに、フライアッシュを高炉スラグ微粉末の質量に対する割合で10~30質量%含有し、残部が普通ポルトランドセメント、石灰粉、消石灰、高炉セメントの中から選ばれる1種以上であることが好ましい。高炉スラグ微粉末を上記の範囲で配合する理由は、さきに述べた理由と基本的に同じである。但し、フライアッシュを併用するので、高炉スラグ微粉末の配合割合は相対的に少なくなる。また、さきに述べたように、フライアッシュを過剰に配合すると結合材中のCa量が少なくなり過ぎ、本来の役割である反応の安定性が損なわれるおそれもある。そのため、フライアッシュの配合量は、高炉スラグ微粉末の質量に対する割合で30質量%程度を上限とすることが好ましい。一方、フライアッシュを配合することによる効果を得るには、高炉スラグ微粉末の質量に対する割合で10質量%程度を下限とすることが好ましい。 Also, as mentioned above, the binder added to the mixed material is particularly preferably a blast furnace slag fine powder added with an alkali stimulant. When fly ash is used in combination with such a binder, the blast furnace slag fine powder is contained in an amount of 70 to 85% by mass and the fly ash is contained in an amount of 10 to 30% by mass with respect to the mass of the blast furnace slag fine powder. The balance is preferably at least one selected from ordinary Portland cement, lime powder, slaked lime, and blast furnace cement. The reason why the blast furnace slag fine powder is blended in the above range is basically the same as the reason described above. However, since fly ash is used in combination, the blending ratio of the blast furnace slag fine powder is relatively reduced. Further, as described above, when fly ash is added excessively, the amount of Ca in the binder becomes too small, and the stability of the reaction, which is the original role, may be impaired. For this reason, the blending amount of fly ash is preferably about 30% by mass with respect to the mass of the blast furnace slag fine powder. On the other hand, in order to obtain the effect of blending fly ash, the lower limit is preferably about 10% by mass with respect to the mass of the blast furnace slag fine powder.
 また、結合材の一部としてフライアッシュを配合した場合、混合材料中での水と結合材との割合は、鉄鋼スラグ水和固化体で使用されている強度指数に準じた強度指数、すなわち、(高炉スラグ微粉末の質量+石灰粉の質量+消石灰の質量+普通ポルトランドセメントの質量×2+フライアッシュの質量×0.35)/(混合材料中の水の質量)で整理できることが判った。なお、高炉セメントは、高炉スラグ微粉末と普通ポルトランドセメントの混合物であるので、高炉セメントの高炉スラグ微粉末の混合比に応じた質量を「高炉スラグ微粉末の質量」とし、高炉セメントの普通ポルトランドセメントの混合比に応じた質量を「普通ポルトランドセメントの質量」として上記式を適用する。 Further, when fly ash is blended as a part of the binder, the ratio of water and binder in the mixed material is a strength index according to the strength index used in the steel slag hydrated solidified body, that is, It was found that (mass of blast furnace slag fine powder + mass of lime powder + mass of slaked lime + mass of ordinary Portland cement × 2 + mass of fly ash × 0.35) / (mass of water in the mixed material). Since blast furnace cement is a mixture of blast furnace slag fine powder and ordinary Portland cement, the mass corresponding to the mixing ratio of the blast furnace slag fine powder of the blast furnace cement is referred to as “mass of blast furnace slag fine powder”, and ordinary Portland cement of blast furnace cement is used. The above formula is applied with the mass corresponding to the mixing ratio of the particles as “mass of ordinary Portland cement”.
 さきに述べたように、結合材としてフライアッシュを配合しない場合の固化体の強度は、強度指数1.95で頭打ちとなり、2.3では混練不良になるが、フライアッシュを配合すると混合材料中の粉の量がさらに増加するため、より混練不良になりやすくなる。これについて、フライアッシュを高炉スラグ微粉末の質量に対する割合で25質量%配合した条件で、上記強度指数と混合材料のスランプ値の関係を調査した結果を図3に示す。この試験では、泥土としてシルト分が92容積%の浚渫土を用い、結合材として高炉スラグ微粉末を主体とし、アルカリ刺激剤として消石灰、普通ポルトランドセメントを用い、さらにフライアッシュを配合した。 As described above, the strength of the solidified body when fly ash is not blended as a binder is peaked at a strength index of 1.95, and kneading is poor at 2.3. However, when fly ash is blended, Since the amount of the powder further increases, kneading failure tends to occur. About this, the result of having investigated the relationship between the said strength index and the slump value of a mixed material on the conditions which mix | blended fly ash 25 mass% in the ratio with respect to the mass of blast furnace slag fine powder is shown in FIG. In this test, clay with a silt content of 92% by volume was used as mud, blast furnace slag fine powder was mainly used as a binder, slaked lime and ordinary Portland cement were used as alkali stimulants, and fly ash was further blended.
 図3によれば、強度指数が1.5までは、スランプ値が3cm以上確保できており、適切な混練状態が得られているが、強度指数が1.5を超えるとスランプ値が大きく低下し、目視でも混練不良になり始める傾向が確認された。このため、強度指数が1.5を超えると強度そのものは得られるものの頭打ちとなり、さらに強度指数が大きくなると強度低下を生じることになる。したがって、結合材の一部としてフライアッシュを配合した場合には、強度指数は1.5以下とすることが望ましい。 According to FIG. 3, when the strength index is up to 1.5, the slump value is 3 cm or more and an appropriate kneading state is obtained, but when the strength index exceeds 1.5, the slump value is greatly reduced. In addition, the tendency to start kneading failure was also confirmed visually. For this reason, if the strength index exceeds 1.5, the strength itself reaches the peak, but if the strength index further increases, the strength decreases. Therefore, when fly ash is blended as a part of the binder, the strength index is desirably 1.5 or less.
 混合材料中の水分量は、浚渫土の含水比、容積比率および強度指数によって決定される。一般には、混合材料中の容積率で30~50%程度である。
 混合材料には、コンクリートなどと同様に骨材を配合することができ、容積安定性などの特性面からは、骨材を配合することが望ましい。骨材としては、通常のコンクリートと同様に天然砂、天然砕石を用いることができるが、天然資源をできるだけ含まないで高強度のものを得るという観点からは、製鋼スラグを用いることが望ましい。また、製鋼スラグは、天然砕石と比較して重い(比重が大きい)ため、これを骨材として用いることにより、固化体の重さ(高比重)を確保することができる。
The amount of water in the mixed material is determined by the moisture content, volume ratio and strength index of the clay. Generally, the volume ratio in the mixed material is about 30 to 50%.
Aggregates can be blended into the mixed material in the same manner as concrete and the like, and it is desirable to blend aggregates in terms of characteristics such as volume stability. As the aggregate, natural sand and natural crushed stone can be used in the same manner as ordinary concrete. However, from the viewpoint of obtaining a high strength material containing as little natural resources as possible, it is desirable to use steel slag. Moreover, since steelmaking slag is heavier (larger specific gravity) than natural crushed stone, the weight (high specific gravity) of a solidified body can be ensured by using this as an aggregate.
 製鋼スラグとしては、溶銑予備処理スラグ(脱燐スラグ、脱珪スラグ、脱硫スラグなど)、転炉脱炭スラグ、電気炉スラグなどが挙げられ、これらの1種以上を用いることができる。製鋼スラグは、最大粒径が25mm以下の粒度のものが好ましい。
 混合材料中の容積率で、骨材は15~50%程度が適当である。また、骨材として製鋼スラグを用いる場合、固化体としての重量確保、容積安定性の観点から、混合材料中の製鋼スラグ量は700kg/m以上であることが好ましい。
Examples of the steelmaking slag include hot metal pretreatment slag (dephosphorization slag, desiliconization slag, desulfurization slag, etc.), converter decarburization slag, electric furnace slag, and the like, and one or more of these can be used. The steelmaking slag preferably has a maximum particle size of 25 mm or less.
About 15 to 50% of the aggregate is appropriate as the volume ratio in the mixed material. Moreover, when using steelmaking slag as an aggregate, it is preferable that the amount of steelmaking slag in a mixed material is 700 kg / m < 3 > or more from a viewpoint of the weight ensuring as a solidified body, and volume stability.
 本発明の製造方法では、泥土、結合材、さらに好ましくは骨材を配合し、必要に応じて水を添加した混合材料を混練し、この混練物を結合材の水和反応により固化させて人工石材を得る。
 浚渫土などの泥土は、必要に応じて、篩などにより異物を除去する。混合材料の混練手段としては、例えば、通常のフレッシュコンクリート用の混練設備を利用してもよいが、ショベルなどの土木工事用の重機を用いて屋外などのヤードで行ってもよい。
 混練物を固化させるには、例えば、適当な型枠に流し込んで固化・養生(水和硬化)させてもよいし、屋外などのヤードに層状に打設して固化・養生(水和硬化)させてもよい。特に、石材を大量に製造する場合には、ヤードに層状に打設することが好ましい。
In the production method of the present invention, mud, a binder, and more preferably an aggregate are blended, a mixed material to which water is added as necessary is kneaded, and the kneaded material is solidified by a hydration reaction of the binder to produce artificial material. Get stone.
Remove mud such as dredged material with a sieve if necessary. As a means for kneading the mixed material, for example, a normal fresh concrete kneading facility may be used, but it may be carried out in a yard such as outdoors using a heavy machine for civil engineering work such as an excavator.
In order to solidify the kneaded material, for example, it may be poured into an appropriate mold and solidified and cured (hydration hardening), or it may be cast in a layer on the yard such as outdoors to solidify and cure (hydration hardening). You may let them. In particular, when a large amount of stone is produced, it is preferable to place the yard in layers.
 養生期間と固化体の強度(28日養生後の一軸圧縮強度)との関係を調べた結果を図4に示す。この試験では、泥土としてシルト分が60容積%の浚渫土を用い、結合材として、高炉スラグ微粉末を主体とし、これにアルカリ刺激剤として消石灰、普通ポルトランドセメントを用いた。また、混合材料中の結合材量と水との比は、(高炉スラグ微粉末の質量+石灰粉の質量+消石灰の質量+普通ポルトランドセメントの質量×2)/(混合材料中の水の質量)<2.0とした。養生の期間は、目標とする圧縮強度が得られるまでの期間であり、一般には、図4に示すように7日程度以上が適当である。 The results of examining the relationship between the curing period and the strength of the solidified body (uniaxial compressive strength after 28 days of curing) are shown in FIG. In this test, clay with a silt content of 60% by volume was used as mud, blast furnace slag fine powder was mainly used as a binder, and slaked lime and ordinary Portland cement were used as alkali stimulants. The ratio of the amount of binder in the mixed material to water is (mass of blast furnace slag fine powder + mass of lime powder + mass of slaked lime + mass of ordinary Portland cement × 2) / (mass of water in the mixed material) ) <2.0. The curing period is a period until a target compressive strength is obtained. Generally, about 7 days or more is appropriate as shown in FIG.
 得られた石材は、必要に応じて適当な大きさに破砕処理する。この破砕処理は、破砕機を用いて行ってもよいし、また、上記のように混練物をヤードに層状に打設した場合には、ヤードの固化体をブレーカーで粗破砕し、次いで、破砕機で破砕処理してもよい。また、通常は、破砕処理された固化体(塊状物)を篩で分級し、所定のサイズの塊状物を得る。例えば、潜堤材などとして用いる場合には、150~500mm程度の大きさの塊状物を得る。 The obtained stone is crushed to an appropriate size as necessary. This crushing treatment may be performed using a crusher, and when the kneaded material is placed in layers in the yard as described above, the solidified body of the yard is roughly crushed with a breaker, and then crushed. You may crush with a machine. Moreover, normally, the solidified body (lumps) subjected to the crushing process is classified with a sieve to obtain a chunk of a predetermined size. For example, when used as a submerged dike material, a lump having a size of about 150 to 500 mm is obtained.
 石材は、28日養生後の一軸圧縮強度で9.8N/mm(JIS−A−5006:1995で規定する準硬石の硬度)以上、望ましくは15N/mm以上の強度を有することが好ましいが、本発明の製造方法によれば、そのような強度の石材を容易に製造することができる。特に、骨材として製鋼スラグを用いて製造された固化体、とりわけ骨材として製鋼スラグを用い且つ結合材として高炉スラグ微粉末とアルカリ刺激剤(例えば、普通ポルトランドセメント)を用いて製造された固化体は、十分な強度と重さ(高比重)を確保することができる。 The stone material has a uniaxial compressive strength after curing on the 28th of 9.8 N / mm 2 (the hardness of semi-hard stone specified in JIS-A-5006: 1995) or more, preferably 15 N / mm 2 or more. Although preferable, according to the manufacturing method of the present invention, a stone having such strength can be easily manufactured. In particular, solidified bodies manufactured using steelmaking slag as aggregate, especially solidified manufactured using steelmaking slag as aggregate and blast furnace slag fine powder and alkaline stimulant (eg ordinary Portland cement) as binder. The body can ensure sufficient strength and weight (high specific gravity).
 次に、浚渫工事で発生した浚渫土を一旦浚渫土置場に貯泥し、浚渫土置場に貯泥されたその浚渫土を泥土として用いて人工石材を製造する方法について、以下、説明する。 Next, a method for manufacturing the artificial stone material using the dredged soil stored in the dredging yard once stored in the dredging yard is described below.
 浚渫工事で発生する浚渫土は、浚渫場所などによって含水比にバラツキがある。また、浚渫工事を行う付近において水産物(海苔、牡蠣など)の養殖などを行っている場合には、浚渫工事による海水の汚濁が水産物に影響を与える恐れがあるので、浚渫工事は年間を通じて行える訳ではなく、工事時期に制限がある(すなわち、季節性がある)。このような状況において本発明を実施する場合、浚渫工事で発生した浚渫土を、一旦浚渫土置場に貯泥し、この浚渫土置場に貯泥された浚渫土を用いて固化体を製造することが好ましい。これにより、(i)浚渫場所などによって浚渫土の含水比にバラツキある場合でも、一旦浚渫土置場に貯泥することにより、浚渫土の含水比を平均化することができる、(ii)浚渫の工事時期に制限があり、年間で浚渫土を採取できない時期があるような場合でも、浚渫土置場に貯泥しておくことにより、浚渫土を固化体製造プロセスに安定供給することができる、(iii)浚渫土を浚渫土置場に貯泥することにより、含水比の評価、管理・調整を容易に行うことができる、などの効果が得られる。 浚 渫 The dredged soil generated by dredging works varies in moisture content depending on dredging location. In addition, when marine products (such as seaweed and oysters) are cultivated in the vicinity of dredging work, the dredging of seawater due to dredging work may affect the marine products. Rather, there is a limit on the construction period (ie seasonality). When carrying out the present invention in such a situation, the dredged soil generated by dredging work is temporarily stored in the dredging yard, and a solidified body is produced using the dredged soil stored in the dredging yard. Is preferred. This makes it possible to average the moisture content of the dredged soil by storing it in the dredging yard once (i) even if the moisture content of the dredged soil varies depending on the dredging location, etc. Even when the construction period is limited and there is a period when dredging can not be collected annually, it is possible to stably supply dredged soil to the solidified body manufacturing process by storing mud in the dredging yard. iii) By storing the dredged soil in the dredging yard, the water content ratio can be easily evaluated, managed and adjusted, and the like can be obtained.
 図5は、浚渫土置場を利用した本発明の一実施形態を示す説明図である。浚渫工事で発生した浚渫土は、一旦浚渫土置場に貯泥される。浚渫土置場の形態や構造は任意であって、例えば、ヤードに土砂やスラグなどを積み上げて環状の土手を作り、その内側に浚渫土を貯泥するようなものでもよい。浚渫工事で発生した浚渫土は、その含水比やその他の性状を問わず、浚渫土置場に運び込まれて貯泥される。この浚渫土置場から供給された浚渫土に、上述した結合材、さらに好ましくは骨材を配合し、必要に応じて水を添加した混合材料を混練し、この混練物を結合材の水和反応により固化させて人工石材を得る。 FIG. 5 is an explanatory view showing an embodiment of the present invention using a dredging site. The dredged soil generated during dredging work is temporarily stored in the dredging yard. The form and structure of the dredging yard is arbitrary, for example, it may be a thing that piles earth and sand, slag, etc. in a yard to form an annular bank and stores dredged mud inside. The dredged soil generated during dredging work is transported to the dredging yard and stored, regardless of its water content and other properties. The above-mentioned binder, more preferably aggregate, is mixed into the clay supplied from this dredging site, and a mixed material to which water is added as necessary is kneaded. To obtain artificial stone.
[実施例1]
 表2および表3に示すような配合条件で材料を配合して混練(0.75m練りのプラントで5分間混合し、所定時間経過後に排出)し、この混合材料の混練物を直径100mm×高さ200mmのサイズのモールドに成型して固化させ、固化体(人工石材)を製造した。浚渫土は、東京湾の水底から採取したシルト分が90容積%のものを用い、必要に応じて水を加えて水分調整を行った。また、骨材である製鋼スラグとしては、転炉スラグ(粒径0−25mm)を用いた。28日間養生後の固化体の一軸圧縮強度を、圧縮試験(JIS−A−1108:2006)により測定した。その結果を表2および表3に併せて示す。
[Example 1]
Table 2 and blended materials in compounding conditions shown in Table 3 (mixed for 5 minutes at 0.75 m 3 kneading plant, discharged after a predetermined time has elapsed) kneading, diameter 100 mm × a kneaded product of this mixed material A solid body (artificial stone material) was produced by molding into a mold having a height of 200 mm and solidifying. The dredged soil used was 90% by volume of silt collected from the bottom of Tokyo Bay. Water was adjusted as necessary by adding water. Moreover, converter slag (particle size 0-25 mm) was used as the steelmaking slag, which is an aggregate. The uniaxial compression strength of the solidified body after curing for 28 days was measured by a compression test (JIS-A-1108: 2006). The results are also shown in Table 2 and Table 3.
 表2および表3によれば、本発明例では、安全係数(+3N/mm)を考慮しても準硬石の特性を十分に満たす安定した強度の固化体(石材)が得られている。これに対して比較例では、9.8N/mm以上の強度となり、特許文献3に比べれば高い強度を有しているが、上記安全係数を考慮すると十分な強度の固化体が得られていない。 According to Table 2 and Table 3, in the example of the present invention, a solidified body (stone material) having a stable strength that sufficiently satisfies the characteristics of the quasi-hard stone even when the safety factor (+3 N / mm 2 ) is taken into consideration. . On the other hand, in the comparative example, the strength is 9.8 N / mm 2 or more, which is higher than that of Patent Document 3, but a solidified body having sufficient strength is obtained in consideration of the safety factor. Absent.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[実施例2]
 表4に示すような配合条件で材料を配合して混練(0.75m練りのプラントで5分間混合し、所定時間経過後に排出)し、この混合材料の混練物を直径100mm×高さ200mmのサイズのモールドに成型して固化させ、固化体(人工石材)を製造した。浚渫土は、瀬戸内海の水底から採取したシルト分が92容積%のものを用い、必要に応じて水を加えて水分調整を行った。また、骨材である製鋼スラグとしては、転炉スラグ(粒径0−25mm)を用いた。28日間養生後の固化体の一軸圧縮強度を、圧縮試験(JIS−A−1108:2006)により測定した。その結果を表4に併せて示す。
[Example 2]
By mixing the materials with the blending conditions shown in Table 4 (mixed for 5 minutes at 0.75 m 3 kneading plant, discharged after a predetermined time has elapsed) kneading, the kneaded product a diameter 100 mm × height 200mm of this mixed material A solid body (artificial stone) was manufactured by molding into a mold of the size. The dredged soil used was 92% by volume of silt collected from the bottom of the Seto Inland Sea, and water was adjusted as necessary by adding water. Moreover, converter slag (particle size 0-25 mm) was used as the steelmaking slag, which is an aggregate. The uniaxial compression strength of the solidified body after curing for 28 days was measured by a compression test (JIS-A-1108: 2006). The results are also shown in Table 4.
 表4によれば、本発明例では、安全係数(+3N/mm)を考慮しても準硬石の特性を十分に満たす安定した強度の固化体(石材)が得られている。これに対して比較例では、9.8N/mm以上の強度となり、特許文献3に比べれば高い強度を有しているが、上記安全係数を考慮すると十分な強度の固化体が得られていない。 According to Table 4, in the example of the present invention, a solidified body (stone material) having a stable strength that sufficiently satisfies the characteristics of the semi-hard stone even when the safety factor (+3 N / mm 2 ) is taken into consideration. On the other hand, in the comparative example, the strength is 9.8 N / mm 2 or more, which is higher than that of Patent Document 3, but a solidified body having sufficient strength is obtained in consideration of the safety factor. Absent.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (9)

  1.  泥土と結合材を含む混合材料を水和硬化させて人工石材を製造する方法であって、混合材料が下記条件(a)~(c)を満足することを特徴とする人工石材の製造方法。
     (a)混合材料100容積%に対して、泥土を40容積%以上含む。
     (b)結合材が、高炉スラグ微粉末、アルカリ刺激剤を添加した高炉スラグ微粉末、高炉セメント、普通ポルトランドセメントの中から選ばれる1種以上からなる。
     (c)結合材量が、泥土中の土粒子(固形分)に対して質量比で1.7倍以上であり、且つ下式を満足する。
     (高炉スラグ微粉末の質量+石灰粉の質量+消石灰の質量+普通ポルトランドセメントの質量×2)/(混合材料中の水の質量)<2.0
    A method for producing an artificial stone material by hydrating and hardening a mixed material containing mud and a binder, wherein the mixed material satisfies the following conditions (a) to (c).
    (A) Containing 40 vol% or more of mud with respect to 100 vol% of the mixed material.
    (B) The binder comprises at least one selected from blast furnace slag fine powder, blast furnace slag fine powder to which an alkali stimulant is added, blast furnace cement, and ordinary Portland cement.
    (C) The amount of the binder is 1.7 times or more by mass ratio with respect to the soil particles (solid content) in the mud and satisfies the following formula.
    (Mass of blast furnace slag fine powder + Mass of lime powder + Mass of slaked lime + Mass of ordinary Portland cement × 2) / (Mass of water in mixed material) <2.0
  2.  結合材が、高炉スラグ微粉末を80~95質量%含有し、残部が普通ポルトランドセメント、石灰粉、消石灰、高炉セメントの中から選ばれる1種以上であることを特徴とする請求項1に記載の人工石材の製造方法。 2. The binder according to claim 1, wherein the binder contains 80 to 95% by mass of blast furnace slag fine powder, and the balance is at least one selected from ordinary Portland cement, lime powder, slaked lime, and blast furnace cement. Manufacturing method for artificial stone.
  3.  泥土と結合材を含む混合材料を水和硬化させて人工石材を製造する方法であって、混合材料が下記条件(d)~(f)を満足することを特徴とする人工石材の製造方法。
     (d)混合材料100容積%に対して、泥土を40容積%以上含む。
     (e)結合材が、高炉スラグ微粉末、アルカリ刺激剤を添加した高炉スラグ微粉末、高炉セメント、普通ポルトランドセメントの中から選ばれる1種以上とフライアッシュとからなる。
     (f)結合材量が、泥土中の土粒子(固形分)に対して質量比で1.7倍以上であり、且つ下式を満足する。
     (高炉スラグ微粉末の質量+石灰粉の質量+消石灰の質量+普通ポルトランドセメントの質量×2+フライアッシュの質量×0.35)/(混合材料中の水の質量)≦1.5
    A method for producing an artificial stone material by hydrating and hardening a mixed material containing mud and a binder, wherein the mixed material satisfies the following conditions (d) to (f).
    (D) Containing 40 volume% or more of mud with respect to 100 volume% of mixed materials.
    (E) The binder comprises at least one selected from blast furnace slag fine powder, blast furnace slag fine powder to which an alkali stimulant is added, blast furnace cement, and ordinary Portland cement, and fly ash.
    (F) The amount of the binder is 1.7 times or more by mass ratio with respect to the soil particles (solid content) in the mud and satisfies the following formula.
    (Mass of blast furnace slag fine powder + Mass of lime powder + Mass of slaked lime + Mass of ordinary Portland cement × 2 + Mass of fly ash × 0.35) / (Mass of water in mixed material) ≦ 1.5
  4.  結合材が、高炉スラグ微粉末を70~85質量%含有するとともに、フライアッシュを高炉スラグ微粉末の質量に対する割合で10~30質量%含有し、残部が普通ポルトランドセメント、石灰粉、消石灰、高炉セメントの中から選ばれる1種以上であることを特徴とする請求項3に記載の人工石材の製造方法。 The binder contains 70 to 85% by mass of ground granulated blast furnace slag and 10 to 30% by mass of fly ash in proportion to the mass of ground granulated blast furnace slag, with the balance being ordinary Portland cement, lime powder, slaked lime, blast furnace The method for producing an artificial stone material according to claim 3, wherein the method is one or more selected from cement.
  5.  混合材料が、さらに骨材を含むことを特徴とする請求項1~4のいずれか一項に記載の人工石材の製造方法。 The method for producing an artificial stone material according to any one of claims 1 to 4, wherein the mixed material further contains an aggregate.
  6.  骨材が製鋼スラグであることを特徴とする請求項5に記載の人工石材の製造方法。 The method for producing an artificial stone according to claim 5, wherein the aggregate is steel slag.
  7.  混合材料中の単位容積当たりの製鋼スラグの配合量が700kg/m以上であることを特徴とする請求項6に記載の人工石材の製造方法。 The method for producing an artificial stone material according to claim 6, wherein the compounding amount of the steelmaking slag per unit volume in the mixed material is 700 kg / m 3 or more.
  8.  泥土が粒径0.075mm以下の粒子を65容積%以上含有することを特徴とする請求項1~7のいずれか一項に記載の人工石材の製造方法。 The method for producing an artificial stone material according to any one of claims 1 to 7, wherein the mud contains 65 vol% or more of particles having a particle size of 0.075 mm or less.
  9.  泥土が浚渫工事で発生した浚渫土であり、該浚渫土を一旦浚渫土置場に貯泥し、該浚渫土置場に貯泥された浚渫土を用いて人工石材を製造することを特徴とする請求項1~8のいずれか一項に記載の人工石材の製造方法。 The mud is a dredged material generated by dredging work, and the dredged material is temporarily stored in a dredging yard, and artificial stone is produced using the dredged material stored in the dredging yard. Item 9. The method for producing an artificial stone material according to any one of Items 1 to 8.
PCT/JP2011/060801 2010-04-30 2011-04-28 Method for producing artificial stone material WO2011136395A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127029319A KR101379095B1 (en) 2010-04-30 2011-04-28 Method of manufacturing artificial stone
CN201180021777.0A CN102869634B (en) 2010-04-30 2011-04-28 Method for producing artificial stone material

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010-104844 2010-04-30
JP2010104844 2010-04-30
JP2010-123994 2010-05-31
JP2010123994 2010-05-31
JP2010294458 2010-12-29
JP2010-294458 2010-12-29
JP2011036555A JP5712668B2 (en) 2010-04-30 2011-02-23 Manufacturing method of solidified body
JP2011-036555 2011-02-23

Publications (1)

Publication Number Publication Date
WO2011136395A1 true WO2011136395A1 (en) 2011-11-03

Family

ID=44861676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060801 WO2011136395A1 (en) 2010-04-30 2011-04-28 Method for producing artificial stone material

Country Status (1)

Country Link
WO (1) WO2011136395A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105272108A (en) * 2015-10-13 2016-01-27 浙江大学 Modularization-building-foundation-soil rapid chemical curing agent and application thereof
JP2018172245A (en) * 2017-03-31 2018-11-08 Jfeスチール株式会社 Method for producing solidified body
CN115110390A (en) * 2022-07-13 2022-09-27 中铁第四勘察设计院集团有限公司 Construction method suitable for rapid backfill of local excavation groove of municipal road

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063167A (en) * 1998-08-11 2000-02-29 Yoshikazu Fuji Blocked material produced by using soil as raw material
JP2001191095A (en) * 2000-01-14 2001-07-17 Higo Kimuragumi Kk Treating method of ready mixed concrete sludge, treated material thereof, producing method of secondary product for architecture using ready mixed concretes sludge, and secondary product for architecture
JP2008182898A (en) * 2007-01-26 2008-08-14 Fujiki:Kk Method for constructing block from dredged soil
JP2008263928A (en) * 2007-04-25 2008-11-06 Japan Science & Technology Agency Dredged soil block for installing beach bedrock
JP2011093750A (en) * 2009-10-30 2011-05-12 Nippon Steel Corp Mud-containing solidified matter and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063167A (en) * 1998-08-11 2000-02-29 Yoshikazu Fuji Blocked material produced by using soil as raw material
JP2001191095A (en) * 2000-01-14 2001-07-17 Higo Kimuragumi Kk Treating method of ready mixed concrete sludge, treated material thereof, producing method of secondary product for architecture using ready mixed concretes sludge, and secondary product for architecture
JP2008182898A (en) * 2007-01-26 2008-08-14 Fujiki:Kk Method for constructing block from dredged soil
JP2008263928A (en) * 2007-04-25 2008-11-06 Japan Science & Technology Agency Dredged soil block for installing beach bedrock
JP2011093750A (en) * 2009-10-30 2011-05-12 Nippon Steel Corp Mud-containing solidified matter and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105272108A (en) * 2015-10-13 2016-01-27 浙江大学 Modularization-building-foundation-soil rapid chemical curing agent and application thereof
JP2018172245A (en) * 2017-03-31 2018-11-08 Jfeスチール株式会社 Method for producing solidified body
CN115110390A (en) * 2022-07-13 2022-09-27 中铁第四勘察设计院集团有限公司 Construction method suitable for rapid backfill of local excavation groove of municipal road
CN115110390B (en) * 2022-07-13 2023-08-29 中铁第四勘察设计院集团有限公司 Construction method suitable for rapid backfilling of partially excavated groove of municipal road

Similar Documents

Publication Publication Date Title
JP5853399B2 (en) Manufacturing method of artificial stone
JP5896057B2 (en) Manufacturing method of artificial stone
JP5326995B2 (en) Mud-containing solidified body and method for producing the same
JP6662046B2 (en) Method for producing solidified body containing mud
KR101379095B1 (en) Method of manufacturing artificial stone
JP5907246B2 (en) Manufacturing method of solidified body
JP2011093752A (en) Method for manufacturing mud-containing solidified matter
JP6020677B2 (en) Artificial stone
WO2011136395A1 (en) Method for producing artificial stone material
JP5696569B2 (en) Sand drain material and sand compaction pile material using steel slag
JP6682920B2 (en) Manufacturing method of artificial stone
JP6642506B2 (en) Manufacturing method of solidified body
JP7465052B2 (en) Manufacturing method for improved soil with high water content
JP5002368B2 (en) Backfilling and backfilling material for underwater construction using granulated blast furnace slag and its manufacturing method
WO2009058011A1 (en) Method for preparing a structure in a body of water
JP2004292244A (en) Concrete-like colored solid body and its manufacture method
JP6260038B2 (en) Granulation and solidification method of liquid mud
JP4991489B2 (en) Artificial stone made of steel slag hydrated solidified for landfill, rubble or backfill
JP2015059350A (en) Liquefaction countermeasure method of ground
JP2011093751A (en) Mud-containing solidified matter and method for manufacturing the same
JP2005314156A (en) Granule and its manufacturing process
KR102141776B1 (en) High specific gravity concrete composition for marine concrete structures
JP4150135B2 (en) NORO REDUCING AGENT AND METHOD FOR PRODUCING CENTRAL FORCE MOLDED PRODUCT USING THE SAME
JP2004278045A (en) Improved soil and its manufacturing method
JP2015055118A (en) Liquefaction countermeasure construction method of foundation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180021777.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11775168

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2980/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12012502013

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127029319

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11775168

Country of ref document: EP

Kind code of ref document: A1