JP4146964B2 - High-performance road structure and its construction method - Google Patents

High-performance road structure and its construction method Download PDF

Info

Publication number
JP4146964B2
JP4146964B2 JP13379699A JP13379699A JP4146964B2 JP 4146964 B2 JP4146964 B2 JP 4146964B2 JP 13379699 A JP13379699 A JP 13379699A JP 13379699 A JP13379699 A JP 13379699A JP 4146964 B2 JP4146964 B2 JP 4146964B2
Authority
JP
Japan
Prior art keywords
roadbed
water
strength
permeable
pavement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13379699A
Other languages
Japanese (ja)
Other versions
JP2000319806A (en
Inventor
護 加形
健 鶴田
修輔 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP13379699A priority Critical patent/JP4146964B2/en
Publication of JP2000319806A publication Critical patent/JP2000319806A/en
Application granted granted Critical
Publication of JP4146964B2 publication Critical patent/JP4146964B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Road Paving Structures (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水浸した状態で車両の繰り返し荷重を受けても路盤・路床が軟弱化しない高性能道路構造及びその施工方法に関し、詳しくは雨水を地盤に還元することができる透水性舗装において、しかもその雨水の浸透機能が長期間持続するものであり、さらには優れた施工性を確保でき、温度低減効果があり、騒音を低減でき、さらに美観を有する等、種々の優れた特性を有する高性能道路構造及びその施工方法に関する。
【0002】
【従来の技術】
透水性舗装は、雨水を道路表面から浸透させ、路盤、路床に浸透、保水させる構造である。このような透水性舗装では、路盤より下に雨水を浸透させることにより、植生・地中生態の改善、地下水の滋養など、本来自然が持っている水循環に近づける効用が得られる。
これに対し、普通の舗装の降雨処理は、道路勾配により舗装表面に沿って集水ますや排水溝に流す構造である。また、排水性舗装は路盤以下に水を浸透させない構造であり、排水性舗装用アスファルト混合物を表層又は表層・基層に使用し、その直下に透水しない層を設け、路肩或いは側方の排水ますや側溝に排水する構造である。したがって、これら普通の舗装や排水性舗装では、道路を作ることにより地盤の中を流れる地下水の自然な流れを阻害する、ひいては自然環境における水の循環(流れ)を妨げることとなる。
【0003】
このような透水性舗装は、荷重条件の穏やかな歩道者系道路や軽交通道路などには使用されているが、以下のような問題があり、重交通道路には実用化に至っていない。
▲1▼ 路面に降った雨水は上層路盤まで浸透し、透水係数の違いから上層路盤上面で滞留する。
▲2▼ 水を含んだ上層路盤上に車両が走行することにより、細粒分がこね返されて泥濘化する。
▲3▼ 水を含んだ細粒分が、車両の荷重で圧力を受け、表層の空隙に浸透する。
▲4▼ この繰り返しで水を含んだ細粒分が徐々に表面に達し、しみ出してくる。
▲5▼ 上層路盤の細粒分が失われればその体積分だけ舗装面は沈下し、路盤の沈下によるわだち掘れ等が発生する。
また、透水性アスファルトは、日照りによってアスファルトが流動化することにより空間率が減少して目詰まりし、透水性及び強度が低下する等の問題があった。また、コンクリート系の舗装に比べわだち掘れ等が発生し易く耐久性に劣っていた。一方、透水性コンクリートにおいては、十分な透水性と強度とを兼ね備えたものは実用化が難しく、特に地盤が軟弱な場合や、負荷がかかる使用には耐久性が良くないとされていた。そのため、雨水が舗装に浸透し飽和状態での車両による繰り返し荷重によって路盤・路床が軟弱化して支持力が低下するなどの問題があった。さらに舗装構造を構成する各層については、以下のような現状があった。
表層及び基層においては、従来の透水性コンクリートではエフロレッセンス(白華)等により空隙詰まりが発生し易く、これを解決するために空隙率を大きくすると、曲げ強度の確保が難しく耐久性が低下していた。さらに、従来の透水性コンクリートは、モルタル不足、ペースト過剰に陥り易く、層底面へペーストが集まり易く、層境界面で空隙詰まりが起き、雨水の浸透機能が短期間で消失していた。
路盤においては、従来のコンクリート舗装では、路盤に滞留した雨水によって浸食(エロージョン)が発生し、このエロージョンにより表層コンクリートが破損することが多かった。
路床においては、路床土が飽和状態で繰り返し載荷を受けると軟弱化することが多かった。
【0004】
近年、これらの問題を解決するため、種々の提案がなされている。例えば特開平4−7431号公報には、上から順に不透水性の舗装表層、下地層、土砂止め層、雨水浸透層からなり、雨水浸透層は球状成形体を層状に積み重ねた構造が記載されているが、そもそも不透水性の舗装表層からは雨水が浸透する筈もないので目的(自然の水の流れを阻害しない)から逸脱するものである。
また、特開平3−43502号公報には高強度の透水性コンクリートからなる表層が、特開平2−157301号公報には高強度の路盤又は路床が、それぞれ記載されているが、何れも部分的に解決法を提案するものに過ぎず、前述の諸問題を全て解決するものではなかった。
さらに、特開平9−105106号公報には、施工した舗装表面からポリマーエマルジョンやラテックスを撒布して浸透させる方法が提案されているが、極めて工程数が多く、施工時間がかかり、強度を向上するためのポリマーにより材料単価が高くなり、しかも表層部位以外の問題は何等解決するものではなかった。また、特開平11−1360号公報には、消石灰を混在させることにより酸性雨を中和させ、透水コンクリートの中層部に金網を敷設する方法が提案されているが、金網近傍のみで高強度であっても強度を向上するための金網により材料単価が高くなり、その効果は僅かであり、しかも表層部位外の問題は何等解決するものではなかった。
【0005】
【発明が解決しようとする課題】
そこで本発明者らは、水浸した状態で車両の繰り返し荷重を受けても路盤・路床が軟弱化することがなく、雨水を地盤に還元することができ、しかもその雨水の浸透機能が長期間持続し、さらには優れた施工性を確保でき、温度低減効果があり、騒音を低減でき、さらに美観を有する等種々の優れた特性を有する高性能道路構造を提案することを目的とする。
【0006】
【課題を解決するための手段】
本発明は上記に鑑み提案されたもので、骨材をセメントで安定処理して一軸圧縮強度5MPa以上、透水係数1×10-4cm/s以上の浸透性高強度路盤を形成し、該路盤の上に曲げ強度を4.5N/ mm 2 以上で前記路盤より透水係数が大きく、且つ透水係数1×10-4cm/s以上の浸透性コンクリートからなる基層、さらにその上に前記基層より透水係数が大きく、且つ透水係数1×10-2cm/s以上の透水性コンクリートからなる表層を転圧締固めして積層してなることを特徴とする高性能道路構造に関するものである。
また、本発明は、上記高性能道路構造の施工方法をも提案するものであり、骨材をセメントで安定処理して一軸圧縮強度5MPa以上、透水係数1×10-4cm/s以上の浸透性高強度路盤を形成し、該路盤の上に曲げ強度を4.5N/ mm 2 以上で前記路盤より透水係数が大きく、且つ透水係数1×10-4cm/s以上の浸透性コンクリートからなる基層、さらにその上に前記基層より透水係数が大きく、且つ透水係数1×10-2cm/s以上の透水性コンクリートからなる表層が積層されるようにウエットオンウエットの転圧コンクリート方式で打ち継ぐようにしたことを特徴とする。
【0007】
【発明の実施の形態】
まず、路床において、前述のように従来の透水性舗装では、路床土が飽和状態で繰り返し載荷を受けると軟弱化することが多かった。
そこで本発明では、路床土(現地盤)をセメント系の固化剤で安定処理することにより、一軸圧縮強度が0.5MPa以上を確保すると共に、透水係数は現地盤と同程度である路床改良層とすることが望ましい。
したがって、本発明における路床改良層は、浸透構造でありながら耐久的な舗装となる。尚、地盤が安定し、荷重が小さい場合には、このような路床改良層は必ずしも形成する必要がない。
【0008】
また、路盤において、前述のように従来のコンクリート舗装では、路盤に滞留した雨水によってエロージョンが発生し、このエロージョンにより表層コンクリートが破損することが多かった。
そこで本発明では、骨材をセメントで安定処理することにより、一軸圧縮強度5MPa以上、望ましくは8.8MPa程度の高強度でありながら、透水係数1×10-4cm/s以上を確保した路盤を形成し、雨水等の浸透性を持たせてエロージョンの発生を抑制し、且つ荷重伝達率も高い浸透性高強度路盤(CTB)とした。上記骨材としては、天然骨材や人工骨材、コンクリート塊等を使用できる。また、セメントとしては、各種ポルトランドセメント、混合セメント、特殊セメント等が挙げられ、特にセメントの種類については限定されない。また、セメントを原料としたセメント系固化材も好適に使用することができる。
したがって、本発明における浸透性高強度路盤は、従来の高強度CTBと異なり、雨水を滞留させることなくその下の路床改良層、路床へ浸透させるので、エロージョンの発生を抑制でき、コンクリート系舗装の耐久性を向上できる。また、このような高強度路盤は、荷重分散効果が高く、構造的に弱点となる目地部やひび割れ部での荷重伝達を確保することができ、目地部にスリップバー・タイバーなどの荷重伝達装置を用いることを省略することができる。
【0009】
さらに、表層及び基層において、前述のように従来の透水性アスファルト舗装ではコンクリート系の舗装に比べわだち掘れ等が発生し易く耐久性に劣るという問題があった。また、通常の透水性コンクリートではエフロレッセンス等により空隙詰まりが発生し易く、これを解決するために空隙率を大きくすると、曲げ強度の確保が難しく耐久性が低下し、さらに、モルタル不足、ペースト過剰に陥り易く、層底面へペーストが集まり易く、層境界面で空隙詰まりが起き、雨水の浸透機能が短期間で消失していた。
そこで本発明では、前記路盤より透水係数が大きく、且つ透水係数1×10-3〜10-4cm/s以上の浸透性コンクリートからなる基層、さらにその上に透水係数1×10-1〜10-2cm/s以上の透水性コンクリートからなる表層が積層されるようにウエットオンウエットの転圧コンクリート方式で打ち継ぐことにより、雨水の浸透性がありながら、耐久性もあるハイブリッド構造とした。これら基層と表層との間には面粗しを入れて密着を向上しても良い。
したがって、このハイブリット構造の表層では高い透水機能を有し、速やかに舗装表面(表層)から雨水を除去(浸透処理)することができ、舗装体としての支持力は、高強度の基層、望ましくは曲げ強度を4.5N/mm2 以上とした基層で受け持ち、交通荷重による曲げ引張応力に対する耐久性が高く、C交通量区分にも十分適用することができる。また、転圧コンクリートであるため、従来のコンクリート舗装より養生時間が短くでき、従来の転圧コンクリート舗装よりはやや長めに養生すればよい。また、目地に排水溝の機能を持たせることにより雨水の処理機能を持続させる。このような目地構造としては、特に限定するものではないが、透水性弾性モルタルや路面格子枠等を設け、場合によっては導水管等を設けるようにしても良い。
【0010】
これら各層の施工厚は、適用する道路の負荷(荷重)に応じて適宜に調整すればよいが、前記路床改良層は0〜120cm、浸透性高強度路盤は10〜40cm、基層は10〜25cm、表層は3〜10cmとする。
【0011】
本発明の高性能道路構造は、前記の各層構成を有するので、雨水浸透性能が高く、特に表層、基層、路盤(浸透性高強度路盤)、路床(路床改良層)と順次透水係数を減少させ、極端な透水係数の変化を避けているため、層と層との境界において空隙詰まりが発生しにくく、雨水の浸透機能が長期間持続する。
【0012】
また、本発明の高性能道路構造では、表層及び基層を転圧コンクリートとし、浸透性高強度路盤を使用しているので、ダウエルバーなどを省略して優れた施工性を有するものである。
【0013】
さらに、表層が透水性コンクリート舗装であるため蓄熱しにくく、また、基層や浸透性高強度路盤も浸透性材料で構成されているため保水効果があり、さらには保水された水が気化熱を奪うことにより、通常のアスファルト舗装と比較して表面温度で最大10℃程度温度を下げることができる。
【0014】
また、表層に透水性コンクリートを適用したので、通常のアスファルト舗装に比べて交通騒音を3〜4dB程度低減させることができる。尚、骨材として整流した骨材を利用することによりさらに交通騒音を1〜2dB程度低減するようにしても良い。
【0015】
さらに、表層は透水性コンクリートであるため、周辺環境との調和がはかれる落ち着いたテクスチャとすることができる。また、カラーセメント等を利用してアースカラーや地域色、イメージ色などを生かした色彩景観の演出を行うようにしても良い。
【0016】
尚、本発明者らの知見によると、高性能AE減水剤を過剰添加することにより高価なポリマー混和剤を添加しなくても或いは添加量が非常に少なくても高強度の透水性コンクリートが得られており、比較的安価な透水性コンクリートを構築できる。さらに、表層の目地間隔を例えば4〜5mとし排水溝の機能を持たせることにより、雨水の処理機能を向上させるようにしても良い。また、交差点など表面が飛散するおそれのある部分は、樹脂材料(エマルジョンやラテックスなど)を散布することにより表面の強化を図るようにしても良い。
【0017】
また、本発明の高性能道路構造の側端に、浸透側溝を隣接させて施工するようにしても良い。この場合、浸透側溝に、本発明の高性能道路構造中の表層、基層、浸透型高強度路盤層からそれぞれ雨水が導かれるので、縦断方向の雨水の流出量を抑制することができる。
【0018】
さらに、表層の骨材としてスラグやフライアッシュ等の産業副産物を利用してセメントから発生する遊離石灰を吸収させエフロレッセンスを抑制し、結果的に透水性能の持続を図るようにしても良い。さらに、フライアッシュを添加することでペーストの流動性を改善し、層境界面での空隙詰まりを抑制するようにしても良い。
【0019】
【実施例】
図1に示す舗装断面を有する高性能道路構造を実施した。尚、各層における配合並びに物性は以下の通りである。
【0020】
〔路床改良層〕
路床土の土質が砂質土
含水比28.9%のとき
生石灰混合比80kg/m2
路上混合方式で路床の安定処理を行い、一軸圧縮強度0.98MPa、透水係数5.6×10-5cm/sの路床改良層を得た。
【0021】
〔浸透性高強度路盤〕
再生路盤材(RC-40) 2098kg/m2
セメント 297kg/m2
水 108kg/m2
の配合にて路上混合し、一軸圧縮強度7.8MPa、透水係数2.5×10-4cm/sの浸透性高強度路盤を得た。
【0022】
〔基層〕
粗骨材;最大骨材寸法25mmの水硬性粒度調整スラグ(JIS A 5015 HMS-25)
混和材料;フライアッシュ(JIS A 6201)
水セメント比(W/C)=33%
単位セメント量=315kg/m3
単位フライアッシュ量=35kg/m3
単位粗骨材量=1330kg/m3
の配合にて転圧締め固めを行い、曲げ強度5.4MPa、透水係数3.4×10-3cm/sの基層を得た。
【0023】

Figure 0004146964
の配合にて転圧締め固めを行い、曲げ強度2.9MPa、透水係数2.1×10-2cm/sを得た。
【0024】
[結果]
得られた実施例の高性能道路構造の一体となったものの曲げ強度は5.2N/mm2 であり、4.5N/mm2 以上であった。その他の特性については以下のように測定した。
【0025】
〈現場透水試験〉
得られた実施例の高性能道路構造について、現場透水試験を実施した。この結果を表1に示した。
【表1】
Figure 0004146964
表1より明らかなように実施例の高性能道路構造では、雨水の浸透機能が長期間持続することが確認された。
【0026】
〈舗装体表面温度測定〉
得られた実施例の高性能道路構造について、その表面温度を測定した。この結果を図2に示した。尚、比較として、密粒アスコンについて同条件にて表面温度を測定し、気温と共に図2に併せて示した。
図2より明らかなように実施例の高性能道路構造では、密粒アスコンと比較して表面温度で最大10℃程度温度を下げることが確認された。
【0027】
〈騒音測定〉
得られた実施例の高性能道路構造について、タイヤ近接音、沿道騒音について騒音測定した。この結果を表2に示した。尚、比較として、密粒アスコンについて同条件にて騒音測定し、表2に併せて示した。
【表2】
Figure 0004146964
表2より明らかなように実施例の高性能道路構造では、密粒アスコンと比較して騒音を3dB程度低減させることが確認された。
【0028】
以上本発明を実施例に基づいて説明したが、本発明は前記した実施例に限定されるものではなく、特許請求の範囲に記載した構成を変更しない限りどのようにでも実施することができる。
【0029】
【発明の効果】
以上説明したように本発明の高機能道路構造は、水浸した状態で車両の繰り返し荷重を受けても路盤・路床が軟弱化することがなく雨水を地盤に還元することができる透水性舗装であって、しかもその雨水の浸透機能が長期間持続するものであり、さらには優れた施工性を確保でき、温度低減効果があり、騒音を低減でき、さらに美観を有する等、種々の優れた特性を有するものである。
また、本発明の道路構造は、前述のように施工性が良いため、施工コスト(イニシャルコスト)の上昇は少なく、コンクリート舗装破損の主原因である路盤のエロージョンを抑え、且つ目地間隔を狭めて舗装体内に発生する応力を抑えているので、浸透性といえども舗装寿命を向上できる。したがって、従来のコンクリート舗装より寿命を延ばすことができ、結果的にライフサイクルコストを低減させることができる。
さらに、本発明における浸透性コンクリート舗装は、約700m2/日程度の施工が可能であり、転圧コンクリートと同等以上の施工スピードを有する。
また、本発明の浸透性コンクリート舗装は、表層がきめ細かい凹凸を有するため、日射等の照り返しが少なく、自然なテクスチャが得られる。即ち、基本的な支持力を基層部分で受け持ち、表層には透水機能を有したポーラスな表面に仕上げられる。そのため、周辺環境との調和が図れる落ち着いたテクスチャとすることができる。
【図面の簡単な説明】
【図1】本発明の道路構造の一実施例を示す断面図である。
【図2】実施例における舗装体表面温度の測定結果を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-performance road structure and its construction method in which a roadbed and a roadbed do not weaken even when subjected to repeated load of a vehicle in a water-immersed state, and in particular, in a water-permeable pavement capable of returning rainwater to the ground, In addition, its rainwater permeation function lasts for a long period of time, and it is possible to secure excellent workability, has a temperature reduction effect, can reduce noise, and has a variety of excellent characteristics such as aesthetics. The present invention relates to a performance road structure and its construction method.
[0002]
[Prior art]
Permeable pavement is a structure in which rainwater permeates from the road surface and permeates and retains the roadbed and roadbed. In such a permeable pavement, by infiltrating rainwater below the roadbed, it is possible to obtain the effect of bringing the water circulation closer to the natural nature, such as improving vegetation and underground ecology, and groundwater nourishment.
On the other hand, ordinary pavement rainfall treatment collects water along the pavement surface or flows it into a drainage ditch due to the road gradient. In addition, drainage pavement has a structure that does not allow water to penetrate below the roadbed, use asphalt mixture for drainage pavement on the surface layer or surface layer / base layer, provide a layer that does not allow water permeation directly below it, drain the shoulder or side of the road. It is a structure that drains into the gutter. Therefore, in these ordinary pavement and drainage pavement, by creating a road, the natural flow of groundwater flowing through the ground is obstructed, and consequently the circulation (flow) of water in the natural environment is hindered.
[0003]
Such a water-permeable pavement is used for sidewalk roads and light traffic roads with mild load conditions, but has the following problems and has not been put to practical use for heavy traffic roads.
(1) Rainwater that has fallen on the road surface penetrates to the upper roadbed and stays on the upper surface of the upper roadbed due to the difference in hydraulic conductivity.
(2) When the vehicle travels on the upper roadbed containing water, the fine particles are kneaded and become mud.
(3) Fine particles containing water are subjected to pressure by the load of the vehicle and penetrate into the voids in the surface layer.
(4) By repeating this process, fine particles containing water gradually reach the surface and ooze out.
(5) If the fine particles of the upper roadbed are lost, the pavement will sink by the volume, and rutting will occur due to the roadbed sinking.
In addition, the water-permeable asphalt has problems such as clogging due to fluidization of the asphalt due to sunshine, resulting in clogging and a decrease in water permeability and strength. In addition, rutting or the like is likely to occur compared to concrete paving, which is inferior in durability. On the other hand, in the case of water-permeable concrete, those having sufficient water permeability and strength are difficult to put into practical use, and are not particularly durable when the ground is soft or when a load is applied. For this reason, there has been a problem that rainwater permeates into the pavement, and the roadbed and the roadbed are softened due to repeated loading by the vehicle in a saturated state and the bearing capacity is reduced. Furthermore, there was the following present condition about each layer which comprises a pavement structure.
In the surface layer and the base layer, the conventional water-permeable concrete is likely to be clogged with voids due to efflorescence (white flower), etc. If the porosity is increased to solve this, it is difficult to secure bending strength and the durability decreases. It was. Furthermore, the conventional water-permeable concrete easily falls into a shortage of mortar and excess paste, the paste easily collects on the bottom surface of the layer, clogging of voids occurs at the layer boundary surface, and the infiltration function of rainwater disappears in a short period of time.
In the roadbed, in the conventional concrete pavement, erosion (erosion) is generated by rainwater staying on the roadbed, and the erosion often damages the surface concrete.
In the roadbed, the roadbed soil was often softened when it was repeatedly loaded in a saturated state.
[0004]
In recent years, various proposals have been made to solve these problems. For example, Japanese Patent Application Laid-Open No. 4-7431 describes a structure in which a water-impermeable pavement surface layer, an underlayer, an earth and sand stop layer, and a rainwater permeation layer are stacked in order from the top, and the rainwater permeation layer is formed by laminating spherical shaped bodies. In the first place, rainwater does not penetrate from the impervious pavement surface layer, so it deviates from the purpose (does not obstruct natural water flow).
JP-A-3-43502 discloses a surface layer made of high-strength water-permeable concrete, and JP-A-2-157301 discloses a high-strength roadbed or roadbed. It was merely a solution to the problem, and it did not solve all the above-mentioned problems.
Furthermore, Japanese Patent Application Laid-Open No. 9-105106 proposes a method of spreading and infiltrating a polymer emulsion or latex from a pavement surface that has been constructed. However, the number of steps is extremely large, construction time is required, and the strength is improved. Therefore, the unit cost of the material is increased by the polymer for the purpose, and the problems other than the surface layer portion have not been solved at all. Japanese Patent Application Laid-Open No. 11-1360 proposes a method of neutralizing acid rain by mixing slaked lime and laying a wire mesh in the middle layer of permeable concrete, but with high strength only in the vicinity of the wire mesh. Even if it exists, the material unit price became high by the metal net | network for improving an intensity | strength, the effect was slight, and also the problem outside a surface layer site | part did not solve at all.
[0005]
[Problems to be solved by the invention]
Therefore, the present inventors have been able to return rainwater to the ground without weakening the roadbed and roadbed even when subjected to repeated load of the vehicle in the water-immersed state, and the rainwater infiltration function is long-term. The object is to propose a high-performance road structure that has various excellent characteristics such as sustainability, excellent workability, temperature reduction effect, noise reduction, and aesthetics.
[0006]
[Means for Solving the Problems]
The present invention has been proposed in view of the above. The aggregate is stably treated with cement to form a permeable high strength roadbed having a uniaxial compressive strength of 5 MPa or more and a water permeability of 1 × 10 −4 cm / s or more. permeability is greater than the roadbed flexural strength on at 4.5 N / mm 2 or more, and a base layer consisting of permeability 1 × 10 -4 cm / s or more permeable concrete, further water permeability than the base layer thereon The present invention relates to a high-performance road structure characterized in that a surface layer made of permeable concrete having a large coefficient of permeability and a permeability coefficient of 1 × 10 −2 cm / s or more is rolled and compacted .
The present invention also proposes a method for constructing the above-mentioned high-performance road structure. The aggregate is stably treated with cement, and the uniaxial compressive strength is 5 MPa or more and the permeability is 1 × 10 −4 cm / s or more. A high-strength roadbed with a bending strength of 4.5 N / mm 2 or more, a permeability coefficient greater than that of the roadbed, and a permeability coefficient of 1 × 10 −4 cm / s or more. The base layer and the surface layer made of water-permeable concrete having a water permeability coefficient larger than that of the base layer and having a water permeability coefficient of 1 × 10 -2 cm / s or more are laminated with a wet-on-wet compacted concrete method. It is characterized by doing so.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
First, as described above, in the conventional permeable pavement, the roadbed is often softened when the roadbed soil is repeatedly loaded in a saturated state.
Therefore, in the present invention, the road bed soil (on-site board) is stably treated with a cement-based solidifying agent to ensure a uniaxial compressive strength of 0.5 MPa or more and a hydraulic conductivity of the same level as that of the local board. It is desirable to use an improved layer.
Therefore, the roadbed improvement layer in the present invention is a durable pavement while having a permeation structure. In addition, when the ground is stable and the load is small, it is not always necessary to form such a road bed improvement layer.
[0008]
Moreover, in the roadbed, as described above, in the conventional concrete pavement, erosion occurs due to rainwater staying on the roadbed, and the surface concrete is often damaged by this erosion.
Therefore, in the present invention, the aggregate is stably treated with cement, so that the uniaxial compressive strength is 5 MPa or more, preferably about 8.8 MPa, and the road base has a permeability of 1 × 10 −4 cm / s or more. The permeable high-strength roadbed (CTB) having a permeability such as rainwater to suppress the occurrence of erosion and having a high load transmission rate was obtained. As the aggregate, natural aggregate, artificial aggregate, concrete block, or the like can be used. Examples of the cement include various portland cements, mixed cements, special cements, and the like, and the type of cement is not particularly limited. In addition, a cement-based solidified material using cement as a raw material can also be suitably used.
Therefore, unlike the conventional high-strength CTB, the permeable high-strength roadbed in the present invention allows rainwater to permeate into the roadbed improvement layer and the roadbed without stagnation. The durability of the pavement can be improved. In addition, such high-strength roadbed has a high load dispersion effect and can ensure load transmission at joints and cracks that are structurally weak points. Load transmission devices such as slip bars and tie bars can be installed at joints. The use of can be omitted.
[0009]
Furthermore, as described above, the conventional water-permeable asphalt pavement has a problem that rutting or the like easily occurs in the surface layer and the base layer as compared with the concrete-type pavement, and the durability is inferior. Also, in ordinary water-permeable concrete, clogging of voids is likely to occur due to efflorescence, etc. If the porosity is increased to solve this, it is difficult to secure bending strength, and durability is lowered. The paste easily collects at the bottom of the layer, clogging of the gap occurs at the boundary of the layer, and the rainwater infiltration function disappears in a short period of time.
Therefore, in the present invention, a base layer made of permeable concrete having a permeability coefficient larger than that of the roadbed and having a permeability coefficient of 1 × 10 −3 to 10 −4 cm / s or more, and further a permeability coefficient of 1 × 10 −1 to 10 By adopting a wet-on-wet rolling compaction concrete method so that the surface layer of water-permeable concrete of -2 cm / s or more is laminated, a hybrid structure with rainwater permeability and durability is obtained. A rough surface may be inserted between the base layer and the surface layer to improve adhesion.
Therefore, the surface layer of this hybrid structure has a high water permeability function, and can quickly remove rainwater (penetration treatment) from the pavement surface (surface layer), and the supporting force as a pavement is a high-strength base layer, desirably It is handled by a base layer with a bending strength of 4.5 N / mm 2 or more, has high durability against bending tensile stress due to traffic load, and can be applied well to C traffic volume classification. Moreover, since it is a rolling compaction concrete, the curing time can be shortened compared with the conventional concrete pavement, and it should just be cured a little longer than the conventional rolling concrete pavement. In addition, the rainwater treatment function is maintained by providing the joint with the function of a drain. Such a joint structure is not particularly limited, but a water-permeable elastic mortar, a road lattice frame, or the like may be provided, and a water conduit or the like may be provided in some cases.
[0010]
The construction thickness of each layer may be adjusted as appropriate according to the load (load) of the road to be applied. The roadbed improvement layer is 0 to 120 cm, the permeable high-strength roadbed is 10 to 40 cm, and the base layer is 10 to 10 cm. The thickness is 25 cm and the surface layer is 3 to 10 cm.
[0011]
Since the high-performance road structure of the present invention has the above-mentioned respective layer configurations, it has high rainwater infiltration performance. In particular, the surface layer, the base layer, the roadbed (permeable high-strength roadbed), the roadbed (roadbed improvement layer), and the water permeability coefficient in order Since it is reduced and an extreme change in water permeability is avoided, clogging of voids is unlikely to occur at the boundary between layers, and the rainwater permeation function lasts for a long time.
[0012]
In the high-performance road structure of the present invention, the surface layer and the base layer are made of compacted concrete and a permeable high-strength roadbed is used, so that the dowel bar and the like are omitted, and the workability is excellent.
[0013]
Furthermore, since the surface layer is permeable concrete pavement, it is difficult to store heat, and the base layer and permeable high-strength roadbed are also made of permeable material, so it has a water retention effect, and the retained water takes heat of vaporization. As a result, the surface temperature can be lowered by about 10 ° C. at maximum as compared with ordinary asphalt pavement.
[0014]
Moreover, since the water-permeable concrete is applied to the surface layer, traffic noise can be reduced by about 3 to 4 dB as compared with ordinary asphalt pavement. Note that traffic noise may be further reduced by about 1 to 2 dB by using rectified aggregates as aggregates.
[0015]
Furthermore, since the surface layer is permeable concrete, it is possible to provide a calm texture that is in harmony with the surrounding environment. Moreover, you may make it produce the color landscape using an earth color, a regional color, an image color, etc. using color cement.
[0016]
According to the knowledge of the present inventors, high-strength permeable concrete can be obtained by adding an excessive amount of high-performance AE water reducing agent without adding an expensive polymer admixture or adding a very small amount. It is possible to construct a relatively inexpensive permeable concrete. Further, the rainwater treatment function may be improved by setting the joint distance between the surface layers to 4 to 5 m, for example, and having the function of a drainage groove. In addition, a portion such as an intersection where the surface may be scattered may be strengthened by spraying a resin material (emulsion, latex, etc.).
[0017]
Further, the permeation side groove may be adjacent to the side end of the high-performance road structure of the present invention. In this case, since rainwater is led to the seepage side groove from the surface layer, base layer, and seepage type high-strength roadbed layer in the high-performance road structure of the present invention, the outflow amount of rainwater in the longitudinal direction can be suppressed.
[0018]
Further, industrial by-products such as slag and fly ash may be used as the surface aggregate to absorb free lime generated from cement to suppress efflorescence, and as a result, the water permeation performance may be maintained. Furthermore, the fluidity of the paste may be improved by adding fly ash to suppress void clogging at the layer boundary surface.
[0019]
【Example】
A high-performance road structure having a pavement cross section shown in FIG. 1 was implemented. In addition, the mixing | blending and physical property in each layer are as follows.
[0020]
[Subgrade improvement layer]
When the soil quality of the roadbed soil is 28.9% of the sandy soil water content, the mixture ratio of quick lime is 80kg / m 2
The stability is processing subgrade street mixing method to obtain uniaxial compressive strength 0.98 MPa, the subgrade improvement layer Permeability 5.6 × 10 -5 cm / s.
[0021]
[Penetration high strength roadbed]
Recycled roadbed material (RC-40) 2098kg / m 2
Cement 297kg / m 2
Water 108kg / m 2
The mixture was mixed on the road to obtain a permeable high-strength roadbed having a uniaxial compressive strength of 7.8 MPa and a water permeability of 2.5 × 10 −4 cm / s.
[0022]
[Base layer]
Coarse aggregate: Hydraulic particle size adjustment slag with a maximum aggregate size of 25 mm (JIS A 5015 HMS-25)
Admixture: Fly ash (JIS A 6201)
Water cement ratio (W / C) = 33%
Unit cement amount = 315kg / m 3
Unit fly ash amount = 35kg / m 3
Unit coarse aggregate amount = 1330 kg / m 3
A base layer having a bending strength of 5.4 MPa and a water permeability of 3.4 × 10 −3 cm / s was obtained.
[0023]
Figure 0004146964
The mixture was pressed and compacted to obtain a bending strength of 2.9 MPa and a water permeability of 2.1 × 10 −2 cm / s.
[0024]
[result]
Flexural strength of those together of high performance road structure obtained in Examples is 5.2 N / mm 2, it was 4.5 N / mm 2 or more. Other characteristics were measured as follows.
[0025]
<In-situ permeability test>
An on-site water permeability test was performed on the high-performance road structure of the obtained example. The results are shown in Table 1.
[Table 1]
Figure 0004146964
As is clear from Table 1, it was confirmed that the high-performance road structure of the example lasted for a long time with the function of rainwater infiltration.
[0026]
<Measurement of pavement surface temperature>
The surface temperature of the high-performance road structure of the obtained example was measured. The results are shown in FIG. For comparison, the surface temperature of dense-grained ascon was measured under the same conditions and shown together with the air temperature in FIG.
As is clear from FIG. 2, it was confirmed that the high-performance road structure of the example lowered the temperature by about 10 ° C. at the maximum in the surface temperature as compared with the dense-grained ascon.
[0027]
<Noise measurement>
About the high performance road structure of the obtained Example, noise measurement was carried out about the tire proximity sound and the roadside noise. The results are shown in Table 2. For comparison, noise measurement was performed on dense ascon under the same conditions, and the results are shown in Table 2.
[Table 2]
Figure 0004146964
As is clear from Table 2, it was confirmed that the high-performance road structure of the example reduced the noise by about 3 dB compared to the dense-grained ascon.
[0028]
The present invention has been described based on the embodiments. However, the present invention is not limited to the above-described embodiments, and can be implemented in any manner as long as the configuration described in the claims is not changed.
[0029]
【The invention's effect】
As described above, the high-performance road structure of the present invention is a water-permeable pavement that can return rainwater to the ground without softening the roadbed and roadbed even when subjected to repeated load of the vehicle in a flooded state. In addition, the rainwater permeation function lasts for a long period of time, and further excellent workability can be ensured, there is a temperature reduction effect, noise can be reduced, and there are aesthetics. It is what has.
In addition, since the road structure of the present invention has good workability as described above, there is little increase in construction cost (initial cost), the erosion of the roadbed which is the main cause of concrete pavement damage is suppressed, and the joint spacing is reduced. Since the stress generated in the pavement is suppressed, the pavement life can be improved even though it is permeable. Therefore, the life can be extended as compared with the conventional concrete pavement, and as a result, the life cycle cost can be reduced.
Furthermore, the permeable concrete pavement according to the present invention can be constructed at about 700 m 2 / day and has a construction speed equivalent to or higher than that of compacted concrete.
Further, the permeable concrete pavement of the present invention has fine irregularities on the surface layer, so that there is little reflection from solar radiation and the like, and a natural texture can be obtained. That is, the basic support force is handled by the base layer portion, and the surface layer is finished with a porous surface having a water permeability function. Therefore, it is possible to obtain a calm texture that can be harmonized with the surrounding environment.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an embodiment of a road structure according to the present invention.
FIG. 2 is a graph showing a measurement result of a pavement surface temperature in an example.

Claims (3)

骨材をセメントで安定処理して一軸圧縮強度5MPa以上、透水係数1×10-4cm/s以上の浸透性高強度路盤を形成し、該路盤の上に曲げ強度を4.5N/ mm 2 以上で前記路盤より透水係数が大きく、且つ透水係数1×10-4cm/s以上の浸透性コンクリートからなる基層、さらにその上に前記基層より透水係数が大きく、且つ透水係数1×10-2cm/s以上の透水性コンクリートからなる表層を転圧締固めして積層してなることを特徴とする高性能道路構造。Aggregate is stably treated with cement to form a permeable high-strength roadbed with a uniaxial compressive strength of 5 MPa or more and a water permeability of 1 × 10 -4 cm / s or more, and a bending strength of 4.5 N / mm 2 on the roadbed. With the above, the base layer made of permeable concrete having a permeability coefficient greater than that of the roadbed and having a permeability coefficient of 1 × 10 −4 cm / s or more, and further having a permeability coefficient greater than that of the base layer and a permeability coefficient of 1 × 10 −2 A high-performance road structure formed by rolling and compacting a surface layer made of water-permeable concrete of cm / s or more. 路床土をセメントを用いて安定処理することにより一軸圧縮強度0.5MPa以上の路床改良層を形成し、該路床改良層の上に、浸透性高強度路盤、基層、表層を積層してなることを特徴とする請求項1に記載の高性能道路構造。  A roadbed improvement layer with a uniaxial compressive strength of 0.5 MPa or more is formed by stabilizing the roadbed soil with cement, and a permeable high-strength roadbed, base layer, and surface layer are laminated on the roadbed improvement layer. The high-performance road structure according to claim 1, wherein 骨材をセメントで安定処理して一軸圧縮強度5MPa以上、透水係数1×10-4cm/s以上の浸透性高強度路盤を形成し、該路盤の上に曲げ強度を4.5N/ mm 2 以上で前記路盤より透水係数が大きく、且つ透水係数1×10-4cm/s以上の浸透性コンクリートからなる基層、さらにその上に前記基層より透水係数が大きく、且つ透水係数1×10-2cm/s以上の透水性コンクリートからなる表層が積層されるようにウエットオンウエットの転圧コンクリート方式で打ち継ぐようにしたことを特徴とする高性能道路構造の施工方法。Aggregate is stably treated with cement to form a permeable high-strength roadbed with a uniaxial compressive strength of 5 MPa or more and a water permeability of 1 × 10 -4 cm / s or more, and a bending strength of 4.5 N / mm 2 on the roadbed. With the above, the base layer made of permeable concrete having a permeability coefficient greater than that of the roadbed and having a permeability coefficient of 1 × 10 −4 cm / s or more, and further having a permeability coefficient greater than that of the base layer and a permeability coefficient of 1 × 10 −2 A construction method for a high-performance road structure characterized in that the surface layer made of water-permeable concrete of cm / s or more is laminated by a wet-on-wet rolling compaction concrete method.
JP13379699A 1999-05-14 1999-05-14 High-performance road structure and its construction method Expired - Lifetime JP4146964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13379699A JP4146964B2 (en) 1999-05-14 1999-05-14 High-performance road structure and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13379699A JP4146964B2 (en) 1999-05-14 1999-05-14 High-performance road structure and its construction method

Publications (2)

Publication Number Publication Date
JP2000319806A JP2000319806A (en) 2000-11-21
JP4146964B2 true JP4146964B2 (en) 2008-09-10

Family

ID=15113233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13379699A Expired - Lifetime JP4146964B2 (en) 1999-05-14 1999-05-14 High-performance road structure and its construction method

Country Status (1)

Country Link
JP (1) JP4146964B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6678019B2 (en) * 2015-11-30 2020-04-08 西日本高速道路エンジニアリング四国株式会社 How to prevent potholes
JP7080201B2 (en) * 2019-06-13 2022-06-03 大林道路株式会社 Pavement structure and construction method of permeable concrete pavement
CN110195400B (en) * 2019-07-04 2021-03-12 交通运输部公路科学研究所 Temperature correction method for pavement texture depth index based on equivalent temperature of asphalt surface layer
CN117867938B (en) * 2024-03-13 2024-05-28 安徽省交通规划设计研究总院股份有限公司 Image processing permeable concrete construction stability control method

Also Published As

Publication number Publication date
JP2000319806A (en) 2000-11-21

Similar Documents

Publication Publication Date Title
KR101444989B1 (en) Road surfacing, method of constructing road surfacing, and concrete form
CN102587243B (en) Urban road water permeability cement concrete pavement structure and construction process thereof
CN104878678A (en) Construction method for water-permeable and water-retaining water-permeable pavement structure
CN105887609A (en) Method for constructing ecological infiltration pavement in sponge city
CN203295913U (en) Novel ecological permeable road structure
CN107034767A (en) A kind of full pervious concrete pavement structure of regeneration aggregate and its construction method
CN210262547U (en) Wide structure is tied up to bituminous paving
CN109958018A (en) A kind of heavy rainfall urban road water-permeable pavement structure and its construction method
CN205368926U (en) Garden way supercrust structure that water permeability is strong
CN106544941A (en) A kind of porous pavement with purification function
CN114606823B (en) Cement-based permeable concrete pavement structure and paving method thereof
CN111549603A (en) Pavement considering water load coupling and construction method thereof
JP4146964B2 (en) High-performance road structure and its construction method
JP4225634B2 (en) Permeable pavement structure
CN202519561U (en) Urban road permeable cement concrete pavement structure
CN210341528U (en) Gardens brick road surface structure that permeates water
CN209338948U (en) A kind of water-permeable pavement structure
CN207793792U (en) A kind of road surface permeable pavement structure
CN105803888A (en) Sponge type road paving structure
CN206828912U (en) A kind of full pervious concrete pavement structure of regeneration aggregate
JPS59206502A (en) Production of water pervious cement concrete construction
CN108019006A (en) A kind of exterior stair structure with permeable granite pedal
CN210916845U (en) Cold region improved clay roadbed with water drainage structure added at edge of pavement cushion layer
JP5091826B2 (en) Floor or road pavement structure
JP3754693B2 (en) Water retention pavement structure

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060404

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term