JP2005068900A - Water retentive pavement structure, its construction method and its water retentive function maintaining method - Google Patents

Water retentive pavement structure, its construction method and its water retentive function maintaining method Download PDF

Info

Publication number
JP2005068900A
JP2005068900A JP2003302548A JP2003302548A JP2005068900A JP 2005068900 A JP2005068900 A JP 2005068900A JP 2003302548 A JP2003302548 A JP 2003302548A JP 2003302548 A JP2003302548 A JP 2003302548A JP 2005068900 A JP2005068900 A JP 2005068900A
Authority
JP
Japan
Prior art keywords
water
retaining
pavement structure
grout
hygroscopic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003302548A
Other languages
Japanese (ja)
Other versions
JP4217133B2 (en
Inventor
Takeshi Tsujii
豪 辻井
Hiroshi Fujita
広志 藤田
Naoyuki Oguri
直幸 小栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Rotec Corp
Original Assignee
Taisei Rotec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Rotec Corp filed Critical Taisei Rotec Corp
Priority to JP2003302548A priority Critical patent/JP4217133B2/en
Publication of JP2005068900A publication Critical patent/JP2005068900A/en
Application granted granted Critical
Publication of JP4217133B2 publication Critical patent/JP4217133B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Road Paving Structures (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water retentive pavement structure capable of retaining water by absorbing moisture in outside air; a construction method of the water retentive pavement structure; and a water retentivity maintaining method of the water retentive pavement structure. <P>SOLUTION: This water retentive pavement structure 1 has an opening grain size mixture layer 5 having a continuous void inside, and a water retentive and hygroscopic filler 10 filled in this continuous void, and formed by mixing water retentive grout 11 and a hygroscopic material 12; and is characterized by retaining moisture by the water retentive grout 11, by absorbing the moisture in the outside air by the hygroscopic material 12. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、保水性舗装構造、及び保水性舗装構造の施工方法、並びに保水性舗装構造の保水機能維持方法に関するものである。   The present invention relates to a water retentive pavement structure, a construction method for a water retentive pavement structure, and a method for maintaining a water retentive function of a water retentive pavement structure.

真夏の炎天下におけるアスファルト舗装の表面温度は、アスファルトの色調が黒であるため太陽光を吸収しやすく、60℃以上に達することがある。特に、道路舗装比率の高い都市部では、ヒートアイランド現象の発生要因の一つとなっている。したがって、アスファルト舗装の表面温度を如何にして下げるかは、ヒートアイランド現象を緩和する上で重要な課題とされている。   The surface temperature of asphalt pavement under the hot summer heat is easy to absorb sunlight because the color of the asphalt is black, and may reach 60 ° C. or higher. Especially in urban areas where the road pavement ratio is high, it is one of the causes of the heat island phenomenon. Therefore, how to lower the surface temperature of asphalt pavement is an important issue in mitigating the heat island phenomenon.

従来、このような課題を解決するために、保水機能を有する保水性舗装構造が提案されている。このような保水性舗装構造によれば、外気の温度上昇または直射日光等により、表面温度が上昇すると、保水された水分が気化する。この水分の気化にともなって、保水性舗装構造の表面近傍における外気の熱または保水性舗装構造自体の熱が奪われることにより、保水性舗装構造の表面の上昇は抑制される。   Conventionally, in order to solve such a problem, a water-retaining pavement structure having a water retention function has been proposed. According to such a water-retaining pavement structure, when the surface temperature rises due to an increase in the temperature of the outside air or direct sunlight, the retained water vaporizes. As the moisture vaporizes, the heat of the outside air near the surface of the water retentive pavement structure or the heat of the water retentive pavement structure itself is deprived, thereby suppressing the rise of the surface of the water retentive pavement structure.

このような技術に関連して、本出願人により、内部の空隙に保水性及び透水性を有するシルト系充填材(保水性グラウト)が充填された有孔表層(保水性舗装構造)が提案されている(特許文献1参照)。
特許第3156151号公報(第3−14頁、第1−3図)
In connection with such a technique, the present applicant has proposed a perforated surface layer (water-retaining pavement structure) in which an internal void is filled with a silt-based filler (water-retaining grout) having water retention and water permeability. (See Patent Document 1).
Japanese Patent No. 3156151 (page 3-14, Fig. 1-3)

しかしながら、従来の保水性舗装構造では、人為的な散水、降雨等によらねば保水できないという問題があった。   However, the conventional water-retaining pavement structure has a problem that it cannot retain water unless it is caused by artificial watering, rainfall, or the like.

そこで、本発明は、外気中の水分を吸収して保水可能な保水性舗装構造、及び保水性舗装構造の施工方法、並びに保水性舗装構造の保水性維持方法を提供することを課題とする。   Then, this invention makes it a subject to provide the water retention pavement structure which can absorb and hold | maintain the water | moisture content in external air, the construction method of a water retention pavement structure, and the water retention maintenance method of a water retention pavement structure.

前記課題を解決するための手段として請求項1に係る発明は、内部に連続空隙を有する開粒度混合物層と、前記連続空隙に充填された、保水性グラウト及び吸湿材を混合してなる保水性・吸湿性充填材と、を有し、前記吸湿材により外気中の水分を吸湿させるとともに、その水分を前記保水性グラウトで保水可能としたことを特徴とする保水性舗装構造である。   As a means for solving the above-mentioned problems, the invention according to claim 1 is characterized in that an open particle size mixture layer having continuous voids therein and a water retention grout and a moisture absorbent filled in the continuous voids are mixed. A water-retaining pavement structure characterized in that it has a moisture-absorbing filler, moisture in the outside air is absorbed by the moisture-absorbing material, and the moisture can be retained by the water-retaining grout.

ここで、開粒度混合物層は、内部に連続空隙を有すれば、混合物の種類、態様は特に限定されず、例えば、開粒度アスファルト混合物層、開粒度セメント混合物層、開粒度樹脂混合物層等が挙げられる。
また、開粒度混合物層が、開粒度アスファルト混合物層である場合、骨材、アスファルトバインダ量等の配合比、空隙率、密度等はどのようであってもよい。また、開粒度アスファルト混合物層は、一回で施工されたものであってよいし、複数回で施工されたものであってもよい。さらに、複数回で施工された開粒度アスファルト混合物層の場合、この開粒度アスファルト混合物層を形成する各開粒度アスファルト混合物の種類は異なってもよい。
Here, as long as the open particle size mixture layer has continuous voids therein, the type and aspect of the mixture are not particularly limited. For example, an open particle size asphalt mixture layer, an open particle size cement mixture layer, an open particle size resin mixture layer, etc. Can be mentioned.
When the open particle size mixture layer is an open particle size asphalt mixture layer, the mixing ratio of the aggregate, the amount of asphalt binder, the porosity, the density, etc. may be any. Moreover, the open-graded asphalt mixture layer may be constructed once or may be constructed multiple times. Furthermore, in the case of an open-graded asphalt mixture layer that has been applied multiple times, the types of each open-graded asphalt mixture that forms this open-graded asphalt mixture layer may be different.

このような保水性舗装構造によれば、吸湿材は外気中の水分を吸収し、この吸収した水分は保水性グラウトで保水される。したがって、降雨等の散水によらなくても、保水性グラウトで保水可能となる。
また、吸湿材は、保水性グラウトと混合された保水性且つ吸湿性を有する保水性・吸湿性充填材として、開粒度混合物の連続空隙に充填されている。したがって、吸湿材は、保水性グラウトに固着すると共に、開粒度混合物にも固着しており、吸湿材が溶出することを、好適に防止可能である。
According to such a water-retaining pavement structure, the hygroscopic material absorbs moisture in the outside air, and the absorbed moisture is retained by the water-retaining grout. Therefore, it is possible to retain water with a water retention grout without depending on watering such as rainfall.
Further, the hygroscopic material is filled in the continuous voids of the open particle size mixture as a water-holding and hygroscopic filler having water retention and moisture absorption mixed with the water retention grout. Therefore, the hygroscopic material adheres to the water retention grout and also to the open particle size mixture, and it is possible to suitably prevent the hygroscopic material from eluting.

請求項2に係る発明は、内部に連続空隙を有する開粒度混合物層の表面から、保水性グラウト及び吸湿材を混合してなる保水性・吸湿性充填材を充填する保水性・吸湿性充填材充填工程を含むことを特徴とする保水性舗装構造の施工方法である。   The invention according to claim 2 is a water retentive / hygroscopic filler which is filled with a water retentive / hygroscopic filler formed by mixing a water retentive grout and a hygroscopic material from the surface of an open particle size mixture layer having continuous voids therein. It is the construction method of the water-retaining pavement structure characterized by including a filling process.

このような保水性舗装構造の施工方法によれば、保水性グラウト及び吸湿材を混合してなる保水性・吸湿性充填材を、開粒度混合物層の連続空隙に充填することにより(保水性・吸湿性充填材充填工程)、保水性グラウト及び吸湿材を開粒度混合物に固着することができる。したがって、吸湿材の溶出を防止可能な保水性舗装構造を施工することが可能となる。   According to the construction method of such a water retentive pavement structure, by filling a water retentive / hygroscopic filler formed by mixing a water retentive grout and a hygroscopic material into the continuous voids of the open particle size mixture layer (water retentive / Hygroscopic filler filling step), water retention grout and hygroscopic material can be fixed to the open particle size mixture. Therefore, it becomes possible to construct a water-retaining pavement structure that can prevent elution of the hygroscopic material.

請求項3に係る発明は、内部に連続空隙を有する開粒度混合物層の表面から、(a)吸湿材及び吸湿材が溶解した吸湿材溶液の少なくとも一方を散布する吸湿材散布工程と、(b)前記連続空隙に保水性グラウトを充填する保水性グラウト充填工程と、を含むことを特徴とする保水性舗装構造の施工方法である。   The invention according to claim 3 includes: (a) a hygroscopic material spraying step of spraying at least one of the hygroscopic material and the hygroscopic material solution in which the hygroscopic material is dissolved from the surface of the open particle size mixture layer having continuous voids therein; And a water retentive grout filling step of filling the continuous voids with a water retentive grout.

このような保水性舗装構造の施工方法によれば、開粒度混合物の表面から吸湿材及び吸湿材が溶解した吸湿材溶液の少なくとも一方を散布した後に(吸湿材散布工程)、保水性グラウトを充填することにより(保水性グラウト充填工程)、吸湿材及び吸湿材溶液の少なくとも一方と、保水性グラウトが混合されて保水性・吸湿性充填材が生成すると共に、この保水性・吸湿性充填材が開粒度混合物の連続空隙に充填される。したがって、吸湿材の溶出を防止可能な保水性舗装構造を施工することが可能となる。   According to the construction method of such a water-retaining pavement structure, after spraying at least one of the moisture-absorbing material and the moisture-absorbing material solution in which the moisture-absorbing material is dissolved from the surface of the open particle size mixture (moisture-absorbing material spraying step), the water-retaining grout is filled. By performing (water retention grout filling step), at least one of the moisture absorbent material and the moisture absorbent material solution is mixed with the water retention grout to produce a water retention / moisture absorption filler. The continuous voids of the open particle size mixture are filled. Therefore, it becomes possible to construct a water-retaining pavement structure that can prevent elution of the hygroscopic material.

請求項4に係る発明は、内部の連続空隙に保水性グラウトが充填された保水性舗装構造に、吸湿材及び吸湿材が溶解した吸湿材溶液の少なくとも一方を散布し、吸湿材を前記保水性グラウトに固着させる吸湿材固着工程を含み、吸湿性を回復させて、前記保水性グラウトの保水機能を維持することを特徴とする保水性舗装構造の保水機能維持方法である。   According to a fourth aspect of the present invention, at least one of a hygroscopic material and a hygroscopic material solution in which the hygroscopic material is dissolved is sprayed on a water retentive pavement structure in which a continuous water gap is filled in the internal continuous void, and the hygroscopic material is dispersed in the water retaining material. A water retention function maintaining method for a water retention pavement structure, comprising a moisture absorption material fixing step for fixing to a grout, recovering moisture absorption and maintaining the water retention function of the water retention grout.

このような保水性舗装構造の保水機能維持方法によれば、保水性グラウトが充填された保水性舗装構造に、吸湿材及び吸湿材溶液の少なくとも一方を散布することにより、吸湿材が保水性グラウトに固着する。したがって、吸湿性が回復する共に、保水性グラウトの保水機能を維持することが可能となる。   According to the water retention function maintaining method of such a water retentive pavement structure, the moisture absorbent is dispersed in the water retentive grout by spraying at least one of the moisture absorbent and the moisture absorbent solution on the water retentive pavement structure filled with the water retentive grout. It sticks to. Accordingly, the hygroscopicity is restored and the water retention function of the water retention grout can be maintained.

本発明によれば、外気中の水分を吸収して保水可能な保水性舗装構造、及び保水性舗装構造の施工方法、並びに保水性舗装構造の保水性維持方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the water retention pavement structure which can absorb the water | moisture content in external air and can retain water, the construction method of a water retention pavement structure, and the water retention maintenance method of a water retention pavement structure can be provided.

以下、本発明の実施形態について、図面を適宜参照して、詳細に説明する。
なお、各実施形態の説明において、同一の構成要素に関しては同一の符号を付し、重複した説明は省略するものとする。
Hereinafter, embodiments of the present invention will be described in detail with appropriate reference to the drawings.
In the description of each embodiment, the same constituent elements are denoted by the same reference numerals, and redundant descriptions are omitted.

[第1実施形態]
まず、第1実施形態に係る保水性舗装構造について、図1及び図2を参照して説明する。参照する図面において、図1は、第1実施形態に係る保水性舗装構造を模式的に示す側断面図である。図2は、第1実施形態に係る保水性舗装構造の施工方法を模式的に示す側断面図である。
[First Embodiment]
First, the water-retaining pavement structure according to the first embodiment will be described with reference to FIGS. 1 and 2. In the drawings to be referred to, FIG. 1 is a side sectional view schematically showing a water-retaining pavement structure according to the first embodiment. FIG. 2 is a side sectional view schematically showing a construction method of the water-retaining pavement structure according to the first embodiment.

(保水性舗装構造の構成)
図1に示すように、保水性舗装構造1は、クラッシャラン、鉄鋼スラグ、砂利あるいは砂等を含む粒状系路盤、ストレートアスファルト等で処理された瀝青安定処理路盤、セメント・石灰安定処理路盤等の路盤51の上に積層した密粒度アスファルト混合物からなる遮水層52の上に構築されており、母体となる開粒度アスファルト混合物層5(開粒度混合物層)と、開粒度アスファルト混合物層5の連続空隙6(図2参照)に充填された固化状態の保水性・吸湿性充填材10とを備えて構成されている。なお、本実施形態における保水性舗装構造1全体の空隙率は、水分の保水性及び透過性を考慮し、5%〜14%に設定している。
(Configuration of water retentive pavement structure)
As shown in FIG. 1, the water-retaining pavement structure 1 is made of crusher run, steel slag, granular roadbed containing gravel or sand, etc., bitumen stable treated roadbed treated with straight asphalt, cement / lime stabilized treated roadbed, etc. Constructed on a water-impervious layer 52 composed of a dense-graded asphalt mixture laminated on 51, a continuous gap between an open-graded asphalt mixture layer 5 (open-graded mixture layer) serving as a base and an open-graded asphalt mixture layer 5 6 (see FIG. 2) and a solidified water-retaining and hygroscopic filler 10 filled therein. In addition, the porosity of the whole water-retaining pavement structure 1 in the present embodiment is set to 5% to 14% in consideration of water retention and permeability.

開粒度アスファルト混合物層5は、骨格となる粗骨材、細骨材及びフィラー(以下、「骨材」と総称し、符号5aで示す)と、これらを結合するアスファルトバインダ5bを含んで形成されている。骨材5aの配合及び合成粒度、アスファルトバインダ5bの添加量は、締め固め後の開粒度アスファルト混合物層5が、内部に連続する連続空隙6及び施工箇所に応じた耐流動性等を有すれば、どのような配合であってもよい。   The open-graded asphalt mixture layer 5 is formed to include a coarse aggregate, a fine aggregate, and a filler (hereinafter collectively referred to as “aggregate” and denoted by reference numeral 5a) as a skeleton, and an asphalt binder 5b that couples them. ing. If the composition of the aggregate 5a and the composite particle size and the addition amount of the asphalt binder 5b are such that the open particle size asphalt mixture layer 5 after compaction has continuous continuous voids 6 in the interior and flow resistance according to the construction location, etc. Any combination may be used.

粗骨材および細骨材としては、例えば、砕石、砂利、鉄鋼スラグ、砂および再生骨材等が適宜使用可能であり、また、フィラーとしては、石灰岩やその他の岩石を粉砕した石粉、消石灰、セメント、回収ダスト、フライアッシュ等が使用可能である。
骨材5aの合成粒度は、例えば、使用する骨材5aの最大粒径が13mm(つまり、使用する最大粒径の粗骨材が6号砕石)の場合、次の表1に示す粒度範囲であると設定空隙率が15〜35%となり、保水性・吸湿性充填材10を十分に充填可能となるので好ましい。
As coarse aggregate and fine aggregate, for example, crushed stone, gravel, steel slag, sand and recycled aggregate can be used as appropriate, and as filler, stone powder obtained by pulverizing limestone and other rocks, slaked lime, Cement, recovered dust, fly ash, etc. can be used.
The composite particle size of the aggregate 5a is, for example, in the particle size range shown in the following Table 1 when the maximum particle size of the aggregate 5a to be used is 13 mm (that is, the coarse aggregate having the maximum particle size to be used is No. 6 crushed stone). If so, the set porosity is 15 to 35%, and the water-retaining / hygroscopic filler 10 can be sufficiently filled, which is preferable.

Figure 2005068900
Figure 2005068900

アスファルトバインダ5bは、水に対する剥離抵抗性、骨材5aの飛散抵抗性等を考慮し、アミン等の剥離防止剤が添加された高粘度改質アスファルトバインダであることが好ましい。   The asphalt binder 5b is preferably a high-viscosity modified asphalt binder to which an anti-peeling agent such as an amine is added in consideration of the peel resistance to water and the scattering resistance of the aggregate 5a.

固化状態の保水性・吸湿性充填材10は、吸湿性及び保水性を有しており、保水性グラウト11と吸湿材12が、所定配合で混合され、連続空隙6に充填後、硬化・乾燥されたものであり、多数の保水可能な微細空隙(図示しない)を有している。
また、第1実施形態では、保水性・吸湿性充填材10が、開粒度アスファルト混合物層5の表面付近の高さ位置まで充填されたとしたが、これに限定されず適宜変更してもよい。
The solidified water-retentive / hygroscopic filler 10 has hygroscopicity and water-retentive properties, and the water-retentive grout 11 and the moisture-absorbent 12 are mixed in a predetermined composition, filled into the continuous voids 6, and then cured / dried. And has a large number of minute voids (not shown) capable of retaining water.
In the first embodiment, the water retention / hygroscopic filler 10 is filled up to the height position near the surface of the open-graded asphalt mixture layer 5, but the present invention is not limited to this and may be changed as appropriate.

保水性グラウト11は、透水性及び保水性を有し、例えば、本願出願人による特許第3156151号公報(特許文献1)に記載された「シルト系充填材」を使用可能である。さらに説明すると、保水性グラウト11は、水、セメント系固化材、シルト系粉末、添加剤として減水剤、凝結遅延剤を所定配合で混合し、硬化・乾燥させたものである。   The water retention grout 11 has water permeability and water retention, and for example, “silt filler” described in Japanese Patent No. 3156151 (Patent Document 1) by the applicant of the present application can be used. More specifically, the water retention grout 11 is obtained by mixing water, a cement-based solidifying material, a silt-based powder, a water reducing agent and a setting retarder as additives, and curing and drying the mixture.

ここで、シルト系粉末とは、岩石をクラッキングし、集塵したものである。
また、セメント系固化材としては、超速硬性セメント、普通ポルトランドセメント、超早強セメント、早強セメント、高炉セメント等から、施工条件等を考慮し適宜選択して使用してよい。
さらに、添加剤について、減水剤としては、カルボン酸系またはメラニン系等の減水剤が適しており、凝結遅延剤としては、SBR系、アクリル系、酢酸ビニル系のポリマーエマルジョンが好適に使用可能である。
Here, the silt-based powder is obtained by cracking rocks and collecting dust.
The cement-based solidifying material may be appropriately selected from super fast-hardening cement, ordinary Portland cement, ultra-high strength cement, early strength cement, blast furnace cement and the like in consideration of construction conditions.
Further, as for the additive, a water reducing agent such as a carboxylic acid type or a melanin type is suitable as a water reducing agent, and an SBR type, acrylic type or vinyl acetate type polymer emulsion can be suitably used as a setting retarder. is there.

また、保水性グラウト11の配合は、粒径5μm〜75μmのシルト分の含有量が質量百分率で50%以上のシルト系粉末を質量百分率で20%〜60%、セメント系固化材を質量百分率で5%〜50%、水を質量百分率で25%〜50%、さらに減水剤または凝結遅延剤を質量百分率で0.1%〜5%、で混合されたものであることが好ましく、このような配合であると固化後の保水性グラウト11には、前記した微細空隙(図示しない)が好適に形成され、良好な保水性を奏することができる。   In addition, the formulation of the water-retaining grout 11 is that the silt content with a particle size of 5 μm to 75 μm is 50% or more by mass percentage, and the cement solidified material is mass percentage by mass percentage. 5% to 50%, preferably 25% to 50% by weight of water and further mixed with a water reducing agent or a setting retarder 0.1% to 5% by weight. In the case of blending, the water retention grout 11 after solidification is suitably formed with the above-mentioned fine voids (not shown), and can exhibit good water retention.

吸湿材12は、水分を吸収する吸湿性を有しており、例えば、吸湿性を有する塩化カルシウム、シリカゲル、活性アルミナ、ゼオライト等の吸湿性材料から形成されている。
また、吸湿材12は、保水性グラウト11に添着・結合すると共に、保水性グラウト11を介して開粒度アスファルト混合物層5に固着している。したがって、吸湿材12は、降雨等の散水により溶出しにくくなっている。
The hygroscopic material 12 has a hygroscopic property that absorbs moisture, and is formed of a hygroscopic material such as calcium chloride, silica gel, activated alumina, or zeolite having hygroscopic properties, for example.
Further, the moisture absorbent material 12 is attached to and bonded to the water retention grout 11 and is fixed to the open-graded asphalt mixture layer 5 via the water retention grout 11. Therefore, the hygroscopic material 12 is difficult to elute due to watering such as rain.

吸湿材12の添加量(吸湿材添加率)は、前記した保水性グラウト11を構成する水の質量と減水剤の質量の和に対し、5〜40質量%の範囲内であることが好ましい。吸湿材12の添加量が5質量%未満であると、十分な吸湿量が得られにくく、一方40質量%より高くなると、コストが高くなるにも関わらす効果的に吸湿量が増加しない傾向だからである。   It is preferable that the addition amount of the hygroscopic material 12 (hygroscopic material addition rate) is in the range of 5 to 40% by mass with respect to the sum of the mass of the water constituting the water retention grout 11 and the mass of the water reducing agent. If the amount of the hygroscopic material 12 is less than 5% by mass, it is difficult to obtain a sufficient amount of moisture absorption. On the other hand, if it exceeds 40% by mass, the hygroscopic amount does not increase effectively despite the increase in cost. It is.

また、吸湿材12は、その密度が保水性舗装構造1の表面側で高くなるように分布していることが好ましい。このように吸湿材12が分布していると、表面側の吸湿材12により、外気中の水分を、より効率的に吸湿可能となる。このような吸湿材12の分布は、例えば、吸湿材12の添加量を変化させた数種類の保水性・吸湿性充填材10を調製し、添加量の少ない保水性・吸湿性充填材10から順番に充填させることで実施可能である。   Moreover, it is preferable that the hygroscopic material 12 is distributed so that the density becomes high on the surface side of the water-retaining pavement structure 1. When the moisture absorbent material 12 is distributed in this way, moisture in the outside air can be more efficiently absorbed by the moisture absorbent material 12 on the surface side. Such a distribution of the hygroscopic material 12 is prepared, for example, by preparing several types of water-retaining and hygroscopic fillers 10 in which the amount of the hygroscopic material 12 added is changed, and in order from the water-retaining and hygroscopic filler 10 having a smaller amount of addition. It is possible to carry out by filling in.

また、吸湿材12は、その半分が保水性グラウト11に固着されると共に、残り半分が露出した状態であることが好ましい。このような状態であると、外気中の水分は、吸湿材12の露出した部分から吸湿され、吸湿された水分は、逐次保水性グラウト11で保水され易くなる。   Further, it is preferable that half of the hygroscopic material 12 is fixed to the water retaining grout 11 and the other half is exposed. In such a state, moisture in the outside air is absorbed by the exposed portion of the moisture absorbent 12, and the moisture absorbed is easily retained in the water retention grout 11.

次に、保水性舗装構造1における水の移動状況について説明する。
保水性グラウト11に水が保水されている場合、晴天等により外気温が上昇し、保水性舗装構造1の温度が上昇すると、保水性舗装構造1の表面から、保水性グラウト11に保水された水が気化する。この気化にともなう水の気化潜熱が、保水性舗装構造1及び外気中から奪われるため、保水性舗装構造1の路面温度の上昇は抑制される。
Next, the movement state of water in the water retention pavement structure 1 will be described.
When water is retained in the water retention grout 11, when the outside air temperature rises due to clear weather or the like and the temperature of the water retention pavement structure 1 rises, water is retained in the water retention grout 11 from the surface of the water retention pavement structure 1. Water vaporizes. Since the latent heat of vaporization of water accompanying this vaporization is taken away from the water retention pavement structure 1 and the outside air, an increase in the road surface temperature of the water retention pavement structure 1 is suppressed.

一方、保水性グラウト11に水が保水されておらず、且つ、外気の湿度が高い場合、吸湿材12が、外気中の水分を吸収する。そして、吸湿材12に吸収された水分は、保水性グラウト11に保水される。よって、保水性舗装構造1は、散水等によらず、自発的に保水機能を維持することができる。   On the other hand, when water is not retained in the water retention grout 11 and the humidity of the outside air is high, the hygroscopic material 12 absorbs moisture in the outside air. The moisture absorbed by the moisture absorbent 12 is retained in the water retaining grout 11. Therefore, the water retentive pavement structure 1 can spontaneously maintain the water retentive function regardless of watering or the like.

(保水性舗装構造の施工方法)
続いて、第1実施形態に係る保水性舗装構造の施工方法について、図2を参照して説明する。
保水性舗装構造1の施工方法は、母体となる開粒度アスファルト混合物層5を構築する開粒度アスファルト混合物層構築工程と、開粒度アスファルト混合物層5の連続空隙6に保水性・吸湿性充填材10を充填する保水性・吸湿性充填材充填工程を含んで構成されている。
(Construction method of water retentive pavement structure)
Then, the construction method of the water retention pavement structure which concerns on 1st Embodiment is demonstrated with reference to FIG.
The construction method of the water-retaining pavement structure 1 includes an open-graded asphalt mixture layer construction step for constructing an open-graded asphalt mixture layer 5 as a base material, and a water-retaining and hygroscopic filler 10 in the continuous voids 6 of the open-graded asphalt mixture layer 5. It is comprised including the water-retentive and hygroscopic filler filling step.

(開粒度アスファルト混合物層構築工程)
図2(a)に示すように、遮水層52の上に、アスファルトフィニッシャ等を使用して、所定配合の開粒度アスファルト混合物を敷き均した後、ロードローラ、振動ローラ、タンパ等(以下「締め固め機械」と総称する)で締め固め、所定密度、所定厚さ、所定空隙率の開粒度アスファルト混合物層5を構築する。
遮水層52及び路肩等の周辺部が、十分な遮水性を有さない場合には、開粒度アスファルト混合物を敷き均す前に、高濃度のゴム入りアスファルト乳剤を散布する等の止水処理を施すことが好ましい。
(Open grain size asphalt mixture layer construction process)
As shown in FIG. 2 (a), an asphalt finisher or the like is spread on the water-impervious layer 52, and after spreading an asphalt mixture having a predetermined composition, a road roller, a vibration roller, a tamper, etc. The open-graded asphalt mixture layer 5 having a predetermined density, a predetermined thickness, and a predetermined porosity is constructed.
If the water-impervious layer 52 and the periphery of the road shoulder, etc. do not have sufficient water-impervious properties, water-stopping treatment such as spraying a high-concentration rubber-filled asphalt emulsion before spreading the open-graded asphalt mixture It is preferable to apply.

(保水性・吸湿性充填材充填工程)
グラウトミキサ等(図示しない)の適宜な混合手段で、保水性グラウト11と吸湿材12を注入前に撹拌、混合して、流動性を有する液状の保水性・吸湿性充填材10を製造する。保水性・吸湿性充填材10の粘度は、Pロート試験で9〜15秒の流下時間であると好ましく、このような粘度であると開粒度アスファルト混合物層5の連続空隙6に好適に充填可能である。
(Water retention and hygroscopic filler filling process)
The water-retaining grout 11 and the hygroscopic material 12 are agitated and mixed before injection by an appropriate mixing means such as a grout mixer (not shown) to produce a liquid water-retaining and hygroscopic filler 10 having fluidity. The viscosity of the water-retaining and hygroscopic filler 10 is preferably 9 to 15 seconds in the P funnel test, and such a viscosity can be suitably filled into the continuous voids 6 of the open particle size asphalt mixture layer 5. It is.

その後、保水性・吸湿性充填材10を、例えば、ロート状のホッパ部を有する注入ホッパ(図示しない)を使用して、図2(b)に示すように、開粒度アスファルト混合物層5の連続空隙6に注入する。そうすると、流動性を有する保水性・吸湿性充填材10は、連続空隙6の下部から徐々に充填される。
また、保水性・吸湿性充填材10を注入しながら、振動ローラ等を使用して、振動を開粒度アスファルト混合物層5に付与すると、連続空隙6に隙間を形成せずに充填可能となるので好ましい。
Thereafter, the water-retentive / hygroscopic filler 10 is continuously formed using an injection hopper (not shown) having a funnel-like hopper, as shown in FIG. Inject into the gap 6. Then, the water-retentive / hygroscopic filler 10 having fluidity is gradually filled from the lower part of the continuous gap 6.
Further, if vibration is applied to the open-graded asphalt mixture layer 5 using a vibrating roller or the like while injecting the water-retaining and hygroscopic filler 10, the continuous gap 6 can be filled without forming a gap. preferable.

このように保水性グラウト11と吸湿材12を混合した保水性・吸湿性充填材10を注入することにより、吸湿材12を連続空隙6の全体に分散した状態で充填しやすくなる。   By injecting the water-retaining and hygroscopic filler 10 in which the water-retaining grout 11 and the hygroscopic material 12 are mixed in this way, the hygroscopic material 12 is easily filled in a state of being dispersed throughout the continuous gap 6.

保水性・吸湿性充填材10を注入後、所定時間養生した後、保水性グラウト11は、乾燥して固化状態となり、保水性舗装構造1が構築される(図2(c)参照)。   After injecting the water retentive / hygroscopic filler 10 and curing for a predetermined time, the water retentive grout 11 is dried and solidified, and the water retentive pavement structure 1 is constructed (see FIG. 2 (c)).

[第2実施形態]
続いて、本発明の第2実施形態に係る保水性舗装構造の施工方法について、図3を参照して説明する。図3は、第2実施形態に係る保水性舗装構造の施工方法を示す側断面図である。
ここで、第2実施形態に係る保水性舗装構造の施工方法により構築される保水性舗装構造1は、第1実施形態に係る保水性舗装構造1と同様であるため、その説明は省略する。
[Second Embodiment]
Then, the construction method of the water retention pavement structure which concerns on 2nd Embodiment of this invention is demonstrated with reference to FIG. FIG. 3 is a side sectional view showing a construction method of the water-retaining pavement structure according to the second embodiment.
Here, since the water retention pavement structure 1 constructed | assembled by the construction method of the water retention pavement structure which concerns on 2nd Embodiment is the same as the water retention pavement structure 1 which concerns on 1st Embodiment, the description is abbreviate | omitted.

第2実施形態に係る保水性舗装構造の施工方法は、図3に示すように、開粒度アスファルト混合物層構築工程(図3(a)参照)と、吸湿材散布工程と、保水性グラウト充填工程を含んで構成されている。   As shown in FIG. 3, the construction method of the water-retaining pavement structure according to the second embodiment includes an open-graded asphalt mixture layer construction process (see FIG. 3 (a)), a hygroscopic material spraying process, and a water-retaining grout filling process. It is comprised including.

(吸湿材散布工程)
第1実施形態と同様、開粒度アスファルト混合物層5を構築した後、図3(b)に示すように、開粒度アスファルト混合物層5の表面に適宜な手段(例えば、スコップ、竹ほうき等)を使用して、分散性を考慮し粉末状の吸湿材12を所定量散布する。散布された吸湿材12は、連続空隙6に侵入すると共に分散する。
(Hygroscopic material application process)
As in the first embodiment, after constructing the open grain size asphalt mixture layer 5, as shown in FIG. 3B, appropriate means (for example, scoop, bamboo broom, etc.) are provided on the surface of the open grain size asphalt mixture layer 5. In use, a predetermined amount of the powdered moisture absorbent 12 is dispersed in consideration of dispersibility. The sprayed hygroscopic material 12 penetrates into the continuous gap 6 and is dispersed.

(保水性グラウト充填工程)
その後、図3(c)に示すように、開粒度アスファルト混合物層5の表面から、所定量の保水性グラウト11を注入する。注入された保水性グラウト11は、連続空隙6内を流動すると共に吸湿材12と混合されて、保水性・吸湿性充填材10が生成する。そして、保水性・吸湿性充填材10は、さらに連続空隙6の下方へと流動し充填される。
(Water retention grout filling process)
Thereafter, as shown in FIG. 3 (c), a predetermined amount of water retaining grout 11 is injected from the surface of the open particle size asphalt mixture layer 5. The injected water retention grout 11 flows in the continuous void 6 and is mixed with the moisture absorbent material 12 to produce the water retention and moisture absorbent filler material 10. Then, the water-retentive / hygroscopic filler 10 is further flowed and filled below the continuous gap 6.

このように、第2実施形態では、第1実施形態と異なり、吸湿材12を別途に散布可能であるので、施工箇所に応じて、吸湿材12の量を容易に変更可能である。すなわち、例えば、施工箇所、日照条件、湿度条件(例えば、周囲に噴水がある)等に応じて、吸湿材12の散布量を変更し、吸湿性を自由に設定可能である。   As described above, in the second embodiment, unlike the first embodiment, the hygroscopic material 12 can be separately sprayed, so that the amount of the hygroscopic material 12 can be easily changed according to the construction location. That is, for example, the amount of hygroscopic material 12 can be changed according to the construction location, sunshine conditions, humidity conditions (for example, there is a fountain around), and the hygroscopicity can be set freely.

その後、所定時間養生した後、保水性・吸湿性充填材10は、乾燥して固化状態となり、保水性舗装構造1が構築される。   Thereafter, after curing for a predetermined time, the water-retentive / hygroscopic filler 10 is dried and solidified, and the water-retaining pavement structure 1 is constructed.

[第3実施形態]
次に、第3実施形態に係る保水性舗装構造の施工方法について、図4を参照して説明する。
第3実施形態に係る保水性舗装構造の施工方法は、第2実施形態における粉末状の吸湿材12を散布する吸湿材散布工程を、図4に示すように、予め吸湿材12を水に溶解した所定濃度の吸湿材溶液13を散布する吸湿材溶液散布工程に置き換えた施工方法である。
このように吸湿材溶液13を使用することにより、希薄な濃度の吸湿材溶液13であっても、広範囲で散布することができる。また、吸湿材溶液13を散布する際には、噴霧器20のノズル21等を使用することにより、さらに広範囲で散布可能となる。
[Third Embodiment]
Next, the construction method of the water retention pavement structure concerning 3rd Embodiment is demonstrated with reference to FIG.
In the construction method of the water-retaining pavement structure according to the third embodiment, the hygroscopic material spraying step for spraying the powdery hygroscopic material 12 in the second embodiment is preliminarily dissolved in water as shown in FIG. It is the construction method replaced with the hygroscopic material solution spraying step of spraying the predetermined concentration of the hygroscopic material solution 13.
By using the hygroscopic material solution 13 in this way, even the hygroscopic material solution 13 having a low concentration can be spread over a wide range. Further, when the hygroscopic material solution 13 is sprayed, it can be sprayed in a wider range by using the nozzle 21 of the sprayer 20 or the like.

[第4実施形態]
(保水性舗装構造の保水機能維持方法)
次に、第4実施形態に係る保水性舗装構造の保水機能維持方法(以下、「保水機能維持方法」と略称する)について説明する。
保水機能維持方法は、連続空隙6に保水性グラウト11または保水性・吸湿性充填材10が充填された保水性舗装構造1に、吸湿材12及び吸湿材12が水に溶解した吸湿材溶液13(図4参照)の少なくとも一方を散布し、吸湿材12を保水性グラウト11に固着させる吸湿材固着工程を含んで構成されている。
[Fourth Embodiment]
(Water retention function maintenance method of water retention pavement structure)
Next, a water retention function maintaining method (hereinafter referred to as “water retention function maintaining method”) of the water retention pavement structure according to the fourth embodiment will be described.
In the water retention function maintaining method, the moisture absorbing material solution 13 in which the moisture absorbing material 12 and the moisture absorbing material 12 are dissolved in water is added to the water retaining pavement structure 1 in which the continuous void 6 is filled with the water retaining grout 11 or the water retaining and moisture absorbing filler 10. A hygroscopic material fixing step of spraying at least one of (see FIG. 4) and fixing the hygroscopic material 12 to the water retaining grout 11 is configured.

このように吸湿材12を保水性グラウト11に固着することにより、吸湿性が回復し、保水性グラウト11の保水機能を維持することが可能となる。
また、吸湿材12及び吸湿材溶液13を散布する前に、透水性を有する液状のバインダ等を散布して、吸湿材12の保水性グラウト11への固着力を高めてもよい。
Thus, by adhering the moisture absorbent 12 to the water retaining grout 11, the hygroscopicity is restored and the water retaining function of the water retaining grout 11 can be maintained.
Moreover, before spraying the hygroscopic material 12 and the hygroscopic material solution 13, a liquid binder having water permeability may be sprayed to increase the fixing force of the hygroscopic material 12 to the water retention grout 11.

以下、実施例に基づいて、本発明をさらに具体的に説明する。   Hereinafter, based on an Example, this invention is demonstrated further more concretely.

(実施例1)
母体開粒度アスファルト混合物層として、室内的に混合した開粒度アスファルト混合物で作製した空隙率25%の直径10cm×高さ20cmの円柱状の供試体を使用した。
また、後記する表1に示す配合比で、水、セメント系固化材、シルト系充填材を混合し、さらに減水剤、凝結遅延剤を添加して混合し、保水性グラウトを調製した。
そして、この保水性グラウトに、水の質量と減水剤の質量の和に対して、吸湿材添加率が5質量%となる吸湿材((645kg+18.8kg)×0.05=33kg)を添加後、混合して、保水性・吸湿性充填材を調製した。
ここで、セメント系固化材としてはコスミックRD(R)(電気化学工業社製)、シルト系粉末としては土屋カオリン工業社製の鉱物質微粉末、減水剤としてはデンカFT−80(R)(電気化学工業社製)、凝結遅延剤としてはデンカセッターD−200(R)(電気化学工業社製)、吸湿材としては市販されている粒状の塩化カルシウムを使用した。
(Example 1)
A cylindrical specimen having a porosity of 25% and a diameter of 10 cm and a height of 20 cm was used as the matrix-open-size asphalt mixture layer.
In addition, water, a cement-based solidifying material, and a silt-based filler were mixed at a compounding ratio shown in Table 1 to be described later, and a water reducing agent and a setting retarder were further added and mixed to prepare a water retention grout.
And after adding the moisture absorbing material ((645 kg + 18.8 kg) × 0.05 = 33 kg) in which the moisture absorbing material addition rate is 5% by mass with respect to the sum of the mass of water and the mass of the water reducing agent. And mixed to prepare a water-retentive and hygroscopic filler.
Here, Cosmic RD (R) (manufactured by Denki Kagaku Kogyo Co., Ltd.) as the cement-based solidifying material, fine mineral powder from Tsuchiya Kaolin Kogyo Co., Ltd. as the silt-based powder, and Denka FT-80 (R) (as the water reducing agent) Denka Setter D-200 (R) (manufactured by Denki Kagaku Kogyo Co., Ltd.) was used as a setting retarder, and commercially available granular calcium chloride was used as a hygroscopic material.

そして、供試体の空隙に、保水性・吸湿性充填材を充填し、乾燥させた後、実施例1とした。すなわち、この工程は第1実施形態における保水性・吸湿性充填材充填工程に相当するとした。   And after filling the space | gap of a test body with a water retention and a hygroscopic filler and making it dry, it was set as Example 1. FIG. That is, this process corresponds to the water retention / hygroscopic filler filling process in the first embodiment.

(評価方法)
実施例1を、60℃の乾燥機で2日間乾燥した後、室温20℃、湿度95%の室内に静置して吸湿量の変化を測定した。吸湿量は、次の式(1)により算出した。そして、図5に吸湿量の経時変化を示す。
(Evaluation methods)
Example 1 was dried with a dryer at 60 ° C. for 2 days, and then left in a room at room temperature of 20 ° C. and a humidity of 95% to measure changes in moisture absorption. The amount of moisture absorption was calculated by the following equation (1). FIG. 5 shows a change in moisture absorption with time.

Figure 2005068900
Figure 2005068900

(実施例2〜実施例4、比較例1)
前記した吸湿材添加率が10質量%、20質量%、40質量%となるように、吸湿材を保水性グラウトに添加したものを、それぞれ、実施例2、実施例3、実施例4とした。吸湿材添加率が0質量%(吸湿材を添加しない)ものを比較例1とした。そして、実施例1と同様の評価試験を行い、図5に吸湿量の経時変化を示す。
ここで、実施例1〜4及び比較例1の配合比を、表2にまとめて示す。
(Examples 2 to 4, Comparative Example 1)
Examples in which the hygroscopic material was added to the water retaining grout so that the above-described hygroscopic material addition ratios were 10% by mass, 20% by mass, and 40% by mass were respectively Example 2, Example 3, and Example 4. . A sample having a moisture absorption material addition rate of 0 mass% (no moisture absorption material added) was defined as Comparative Example 1. And the evaluation test similar to Example 1 was done, and the time-dependent change of moisture absorption is shown in FIG.
Here, the compounding ratios of Examples 1 to 4 and Comparative Example 1 are summarized in Table 2.

Figure 2005068900
Figure 2005068900

(比較例2、比較例3)
実施例1で使用した直径10cm×高さ20cmの供試体を、2日間、60℃の乾燥機で乾燥した後、吸湿材(塩化カルシウム)を水に溶解して調製した20質量%の塩化カルシウム水溶液(吸湿材溶液)に24時間含浸した後、保水性グラウトを充填せず、そのまま乾燥したものを比較例2とした。なお、供試体を塩化カルシウム水溶液に含浸させる工程が、第3実施形態における吸湿材溶液散布工程に相当するとした。また、比較例2の作製時において、比較例2は、実施例4相当の吸湿材添加率(40質量%)を有すると仮定した。
また、塩化カルシウム水溶液(吸湿材溶液)に含浸せず、水に含浸したものを比較例3とした。
そして、比較例2及び比較例3についても、実施例1と同様の評価試験を行った。その結果を図5に示す。
(Comparative Example 2, Comparative Example 3)
A test piece having a diameter of 10 cm and a height of 20 cm used in Example 1 was dried with a dryer at 60 ° C. for 2 days, and then a 20 wt% calcium chloride prepared by dissolving a moisture absorbent (calcium chloride) in water. A comparative example 2 was obtained by impregnating an aqueous solution (hygroscopic material solution) for 24 hours and then drying it as it was without filling the water retaining grout. Note that the step of impregnating the specimen with the calcium chloride aqueous solution corresponds to the hygroscopic material solution spraying step in the third embodiment. Moreover, when producing Comparative Example 2, it was assumed that Comparative Example 2 had a moisture-absorbing material addition rate (40% by mass) corresponding to Example 4.
Further, Comparative Example 3 was obtained by impregnating with an aqueous calcium chloride solution (hygroscopic material solution) but not with water.
The same evaluation test as in Example 1 was performed for Comparative Example 2 and Comparative Example 3. The result is shown in FIG.

(評価結果)
図5より明らかなように、吸湿材を添加していない比較例1に比して、吸湿材を添加した実施例1〜実施例4は、吸湿量が大きくなることがわかった。また、吸湿材添加量が高くなるにともない、吸湿量が大きくなることがわかった。さらに、吸湿材添加率が5〜40質量%の範囲(実施例1〜実施例4)では、例えば1400分経過後に、吸湿量が3〜5.5%の範囲内となり良好であることがわかった。
(Evaluation results)
As is clear from FIG. 5, it was found that the amount of moisture absorption was higher in Examples 1 to 4 to which the hygroscopic material was added than in Comparative Example 1 in which the hygroscopic material was not added. Further, it has been found that the amount of moisture absorption increases as the amount of the hygroscopic material added increases. Furthermore, in the range where the hygroscopic material addition rate is 5 to 40% by mass (Examples 1 to 4), for example, after 1400 minutes, the moisture absorption amount is within the range of 3 to 5.5%, which is favorable. It was.

吸湿材溶液に含浸した比較例2は、水に含浸した比較例3に比して、吸湿量は高くなったが、実施例1〜4の吸湿量より低い結果となった。これは、比較例2が保水性グラウトを有しないため吸湿材が供試体に固着されず、時間の経過と共に吸湿材自体が溶出したためと思われる。   In Comparative Example 2 impregnated with the hygroscopic material solution, the amount of moisture absorption was higher than that of Comparative Example 3 impregnated in water, but the result was lower than that of Examples 1-4. This seems to be because the hygroscopic material was not fixed to the specimen because Comparative Example 2 did not have a water retention grout, and the hygroscopic material itself eluted with the passage of time.

したがって、保水性グラウトに吸湿材を添加して混合し、一旦、保水性・吸湿性充填材を調製した後、これを供試体(開粒度アスファルト混合物層)に充填して、保水性舗装構造を作製(構築)することにより、より高い吸湿性を奏すことが明らかとなった。これは、吸湿材が供試体の連続空隙の全体に亘って充填される共に保水性グラウトを介して供試体に固着したため、吸湿材が溶出にしくく、吸湿した水分が逐次保水性グラウトで保水されるためと考えられる。   Therefore, after adding a water-absorbing material to the water-holding grout, mixing it, and once preparing a water-holding and hygroscopic filler, filling it with the specimen (open grain size asphalt mixture layer), the water-holding pavement structure It has been clarified that by producing (constructing) higher hygroscopicity. This is because the hygroscopic material is filled over the entire continuous void of the specimen and fixed to the specimen through the water retaining grout, so that the hygroscopic material is difficult to elute and the moisture absorbed is successively retained in the water retaining grout. It is thought to be for this purpose.

以上、本発明の好適な実施形態について一例を説明したが、本発明は前記実施形態に限定されず、本発明の趣旨を逸脱しない範囲で、適宜変更が可能である。   As mentioned above, although an example was described about suitable embodiment of this invention, this invention is not limited to the said embodiment, In the range which does not deviate from the meaning of this invention, it can change suitably.

前記した第1実施形態では、保水性舗装構造1は、図1に示すように、保水性・吸湿性充填材10が、開粒度アスファルト混合物層5の略表面付近の高さ位置まで充填されたとしたが、その他に例えば、図6に示すように、保水性・吸湿性充填材10は、開粒度アスファルト混合物層5の略中間高さ位置まで充填されると共に、その中間高さより上方では、開粒度アスファルト混合物の表面に保水性・吸湿性充填材10の被膜が形成された保水性舗装構造2であってもよい。
すなわち、このような保水性・吸湿性充填材10が略中間高さ位置まで充填された保水性舗装構造2は、見かけ上、空隙率の大きい上層2aと空隙率の小さい下層2bを有している。このような保水性舗装構造2によれば、上層2aにおける連続空隙6aの空隙率が大きいため、車両の走行時における騒音低下機能や、降雨時における路面排水機能を有する。
また、このような保水性舗装構造2の場合、骨材5aの合成粒度及び保水性・吸湿性充填材10の充填量は、適宜変更し、例えば、上層2aの空隙率が15%〜35%の範囲内であると、好適に騒音低下機能及び路面排水機能を発揮することができる。また、下層2bの空隙率が5%〜14%の範囲内であると、さらに好適な剛性を有することとなり、保水性舗装構造2全体としての耐流動性が向上するので好ましい。
In the first embodiment described above, the water retentive pavement structure 1 is filled with the water retentive / hygroscopic filler 10 up to a height position near the approximate surface of the open-graded asphalt mixture layer 5, as shown in FIG. However, for example, as shown in FIG. 6, the water-retaining and hygroscopic filler 10 is filled up to a substantially middle height position of the open-graded asphalt mixture layer 5 and is opened above the middle height. The water-retaining pavement structure 2 in which a film of the water-retaining and hygroscopic filler 10 is formed on the surface of the particle size asphalt mixture may be used.
That is, the water retentive pavement structure 2 filled with such a water retentive / hygroscopic filler 10 up to a substantially intermediate height position has an upper layer 2a having a high porosity and a lower layer 2b having a low porosity. Yes. According to such a water-retaining pavement structure 2, since the void ratio of the continuous gap 6 a in the upper layer 2 a is large, it has a noise reduction function during traveling of the vehicle and a road surface drainage function during rainfall.
In the case of such a water-retaining pavement structure 2, the composite particle size of the aggregate 5a and the filling amount of the water-retentive / hygroscopic filler 10 are changed as appropriate, for example, the porosity of the upper layer 2a is 15% to 35%. Within the range, it is possible to suitably exhibit the noise reduction function and the road surface drainage function. Moreover, when the porosity of the lower layer 2b is in the range of 5% to 14%, it has more suitable rigidity, which is preferable because the flow resistance of the water-retaining pavement structure 2 as a whole is improved.

前記した実施形態では、開粒度混合物層は、開粒度アスファルト混合物が締め固められた開粒度アスファルト混合物層5としたが、その他に例えば、開粒度セメント混合物が硬化してなる開粒度セメント混合物層(ポーラスコンクリート)や、エポキシ樹脂、アクリル樹脂等をバインダとして形成された開粒度樹脂混合物層であってもよい。   In the above-described embodiment, the open particle size mixture layer is the open particle size asphalt mixture layer 5 in which the open particle size asphalt mixture is compacted. However, for example, an open particle size cement mixture layer obtained by hardening the open particle size cement mixture ( Porous concrete), an open particle size resin mixture layer formed using an epoxy resin, an acrylic resin, or the like as a binder may be used.

前記した実施形態では、新規に開粒度アスファルト混合物層5を構築した後、保水性・吸湿性充填材10を充填するとしたが、既存の開粒度アスファルト混合物層について、連続空隙に堆積した埃・塵などを水、空気で清掃する空隙清掃処理等を適宜行った後に、保水性・吸湿性充填材10を充填して、保水性舗装構造を構築してもよい。   In the above-described embodiment, the newly constructed open-graded asphalt mixture layer 5 is filled with the water retention / humidity-absorbing filler 10. A water-retaining pavement structure may be constructed by filling the water-retentive / hygroscopic filler 10 after appropriately performing a gap cleaning process or the like for cleaning with water or air.

第1実施形態に係る保水性舗装構造を示す側断面図である。It is a sectional side view which shows the water retention pavement structure which concerns on 1st Embodiment. (a)〜(c)ともに、第1実施形態に係る保水性舗装構造の施工方法を示す側断面図である。(A)-(c) is a sectional side view which shows the construction method of the water retention pavement structure which concerns on 1st Embodiment. (a)〜(c)ともに、第2実施形態に係る保水性舗装構造の施工方法を示す側断面図である。(A)-(c) is a sectional side view which shows the construction method of the water retention pavement structure which concerns on 2nd Embodiment. 第3実施形態に係る吸湿材溶液散布工程を示す側断面図である。It is a sectional side view which shows the moisture-absorbing material solution spraying process which concerns on 3rd Embodiment. 吸湿量の経時変化を示すグラフである。It is a graph which shows a time-dependent change of moisture absorption. 第1実施形態に係る保水性舗装構造の変形例を示す側断面図である。It is a sectional side view which shows the modification of the water retention pavement structure which concerns on 1st Embodiment.

符号の説明Explanation of symbols

1、2 保水性舗装構造
5 開粒度アスファルト混合物層(開粒度混合物層)
5a 骨材
5b アスファルトバインダ
6、6a 連続空隙
10 保水性・吸湿性充填材
11 保水性グラウト
12 吸湿材
13 吸湿材溶液
20 噴霧器
21 ノズル
1, 2 Water-retaining pavement structure 5 Open grain size asphalt mixture layer (open grain size mixture layer)
5a Aggregate 5b Asphalt binder 6, 6a Continuous void 10 Water retention / hygroscopic filler 11 Water retention grout 12 Hygroscopic material 13 Hygroscopic solution 20 Sprayer 21 Nozzle

Claims (4)

内部に連続空隙を有する開粒度混合物層と、
前記連続空隙に充填された、保水性グラウト及び吸湿材を混合してなる保水性・吸湿性充填材と、を有し、
前記吸湿材により外気中の水分を吸湿させるとともに、その水分を前記保水性グラウトで保水可能としたことを特徴とする保水性舗装構造。
An open particle size mixture layer having continuous voids therein;
A water-retaining and hygroscopic filler filled with the water-holding grout and a hygroscopic material filled in the continuous voids,
A water-retaining pavement structure characterized in that moisture in the outside air is absorbed by the moisture-absorbing material, and the water can be retained by the water-retaining grout.
内部に連続空隙を有する開粒度混合物層の表面から、
保水性グラウト及び吸湿材を混合してなる保水性・吸湿性充填材を充填する保水性・吸湿性充填材充填工程を含むことを特徴とする保水性舗装構造の施工方法。
From the surface of the open particle size mixture layer having continuous voids inside,
A construction method for a water-retaining pavement structure comprising a water-retaining and hygroscopic filler filling step of filling a water-retaining and hygroscopic filler formed by mixing a water-retaining grout and a hygroscopic material.
内部に連続空隙を有する開粒度混合物層の表面から、
(a)吸湿材及び吸湿材が溶解した吸湿材溶液の少なくとも一方を散布する吸湿材散布工程と、
(b)前記連続空隙に保水性グラウトを充填する保水性グラウト充填工程と、
を含むことを特徴とする保水性舗装構造の施工方法。
From the surface of the open particle size mixture layer having continuous voids inside,
(A) a hygroscopic material spraying step for spraying at least one of a hygroscopic material and a hygroscopic material solution in which the hygroscopic material is dissolved;
(B) a water retention grout filling step of filling the continuous voids with a water retention grout;
The construction method of the water-retaining pavement structure characterized by including.
内部の連続空隙に保水性グラウトが充填された保水性舗装構造に、
吸湿材及び吸湿材が溶解した吸湿材溶液の少なくとも一方を散布し、吸湿材を前記保水性グラウトに固着させる吸湿材固着工程を含み、
吸湿性を回復させて、前記保水性グラウトの保水機能を維持することを特徴とする保水性舗装構造の保水機能維持方法。
In the water-retaining pavement structure in which the continuous voids inside are filled with water-retaining grout,
Spraying at least one of a hygroscopic material and a hygroscopic material solution in which the hygroscopic material is dissolved, and including a hygroscopic material fixing step of fixing the hygroscopic material to the water retaining grout;
A method for maintaining a water retention function of a water retentive pavement structure, comprising recovering moisture absorption and maintaining the water retention function of the water retention grout.
JP2003302548A 2003-08-27 2003-08-27 Water retention pavement structure Expired - Lifetime JP4217133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003302548A JP4217133B2 (en) 2003-08-27 2003-08-27 Water retention pavement structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003302548A JP4217133B2 (en) 2003-08-27 2003-08-27 Water retention pavement structure

Publications (2)

Publication Number Publication Date
JP2005068900A true JP2005068900A (en) 2005-03-17
JP4217133B2 JP4217133B2 (en) 2009-01-28

Family

ID=34406791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003302548A Expired - Lifetime JP4217133B2 (en) 2003-08-27 2003-08-27 Water retention pavement structure

Country Status (1)

Country Link
JP (1) JP4217133B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342585A (en) * 2005-06-09 2006-12-21 Saitama Univ Lower structure of water retentive pavement
JP2007255103A (en) * 2006-03-24 2007-10-04 Tokyo Electric Power Co Inc:The Filling water retention material for water retention pavement
JP2008031679A (en) * 2006-07-27 2008-02-14 Yahagi Doro Kk Asphalt pavement body having road surface temperature rise restraining function, asphalt pavement road surface structure and forming method of asphalt pavement body
JP2008121223A (en) * 2006-11-09 2008-05-29 Sumitomo Osaka Cement Co Ltd Cement composition for water retentive hardened body, cement milk, water retentive hardened body and method of manufacturing water retentive hardened body
JP2010159202A (en) * 2008-12-12 2010-07-22 Kankyo Shizai Kk Concrete or mortar
JP2021092096A (en) * 2019-12-12 2021-06-17 大林道路株式会社 Method for strengthening water retentive pavement

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342585A (en) * 2005-06-09 2006-12-21 Saitama Univ Lower structure of water retentive pavement
JP4599233B2 (en) * 2005-06-09 2010-12-15 国立大学法人埼玉大学 Substructure of water retention pavement
JP2007255103A (en) * 2006-03-24 2007-10-04 Tokyo Electric Power Co Inc:The Filling water retention material for water retention pavement
JP4692830B2 (en) * 2006-03-24 2011-06-01 東京電力株式会社 Filled water retention material for water retentive pavement
JP2008031679A (en) * 2006-07-27 2008-02-14 Yahagi Doro Kk Asphalt pavement body having road surface temperature rise restraining function, asphalt pavement road surface structure and forming method of asphalt pavement body
JP2008121223A (en) * 2006-11-09 2008-05-29 Sumitomo Osaka Cement Co Ltd Cement composition for water retentive hardened body, cement milk, water retentive hardened body and method of manufacturing water retentive hardened body
JP2010159202A (en) * 2008-12-12 2010-07-22 Kankyo Shizai Kk Concrete or mortar
JP2012144432A (en) * 2008-12-12 2012-08-02 Kankyo Shizai Kk Concrete or mortar
JP2021092096A (en) * 2019-12-12 2021-06-17 大林道路株式会社 Method for strengthening water retentive pavement

Also Published As

Publication number Publication date
JP4217133B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
CN1953945A (en) Cement mortar composition and concrete composition
JP4217133B2 (en) Water retention pavement structure
JP2009155939A (en) Water-permeable and water-retentive pavement and method of constructing the same
JP4133594B2 (en) Water-retaining pavement structure and construction method
JP4255802B2 (en) Pavement
JP4517357B2 (en) Water supply type water retaining pavement structure and its construction method
JP2007063861A (en) Water retentive pavement construction method
JP5308967B2 (en) Pavement structure and pavement construction method
JP4130596B2 (en) Road surface temperature rise control pavement
JP2010120820A (en) Water retentive block
JP2007277990A (en) Paving material and paved body using it
JP4572079B2 (en) Water-retaining material composition for pavement and construction method of water-retaining pavement
JP6950991B1 (en) Fillers and pavements
JP4867501B2 (en) Water retention block and method for producing the same
JP4572437B2 (en) Impermeable paving material and paving method
JP2008008041A (en) Building or civil-engineering constructed object
WO2007023570A1 (en) Water retaining material composition for paving and method for applying water retaining paving
JP2001303504A (en) Forming method for water holding pavement body and water holding pavement body
JP2003313809A (en) Water-retentive filler for water-permeable asphalt pavement and water-permeable asphalt pavement filled with it
JP2657972B2 (en) Cement-based permeable pavement material
JP4653143B2 (en) Water retentive pavement filler and water retentive pavement using the filler
JP3828916B1 (en) Water-retaining cured body
JPH0830321B2 (en) Paving material
JP4707625B2 (en) Water-retaining cement composition and pavement structure
JP2006104012A (en) Grout-based water retention material, and construction method for water retention pavement using the mateiral

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081107

R150 Certificate of patent or registration of utility model

Ref document number: 4217133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term