JP4692830B2 - Filled water retention material for water retentive pavement - Google Patents

Filled water retention material for water retentive pavement Download PDF

Info

Publication number
JP4692830B2
JP4692830B2 JP2006082330A JP2006082330A JP4692830B2 JP 4692830 B2 JP4692830 B2 JP 4692830B2 JP 2006082330 A JP2006082330 A JP 2006082330A JP 2006082330 A JP2006082330 A JP 2006082330A JP 4692830 B2 JP4692830 B2 JP 4692830B2
Authority
JP
Japan
Prior art keywords
water
weight
fly ash
pavement
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006082330A
Other languages
Japanese (ja)
Other versions
JP2007255103A (en
Inventor
守男 高橋
崇 眞保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2006082330A priority Critical patent/JP4692830B2/en
Publication of JP2007255103A publication Critical patent/JP2007255103A/en
Application granted granted Critical
Publication of JP4692830B2 publication Critical patent/JP4692830B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/021Agglomerated materials, e.g. artificial aggregates agglomerated by a mineral binder, e.g. cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Road Paving Structures (AREA)

Description

本発明は、雨水などの水分を舗装内に保水しておき、雨天時に保水された舗装の水分を蒸発させて気化熱を奪うことにより路面を冷却し、ヒートアイランド現象を緩和する保水性舗装のための充填保水材に関する。   The present invention is a water-retaining pavement that retains moisture such as rainwater in the pavement, evaporates the moisture of the pavement retained during rainy weather and cools the road surface by removing the heat of vaporization, and alleviates the heat island phenomenon. It is related with filling water retention material.

近年、都市部や建築物が密集している地域では、アスファルト舗装またはコンクリート建築物からの放熱、照り返しによる輻射熱、ビル等の空調による排熱などによる熱によって気温が上昇するヒートアイランド現象が問題視されている。   In recent years, heat island phenomenon in which the temperature rises due to heat from asphalt pavement or concrete buildings, radiant heat from reflection, exhaust heat from air conditioning of buildings, etc. has been seen as a problem in urban areas and densely populated areas. ing.

このヒートアイランド現象の緩和策として、近年、保水性を有する舗装によって雨水を舗装内に保水しておき、晴天時に水分が蒸発する際の気化熱によって路面の熱を奪い温度上昇を抑制する提案が種々成されている。   As measures to mitigate this heat island phenomenon, various proposals have been made in recent years to keep rainwater in the pavement by water-retaining pavement, and to take away the heat of the road surface by the heat of vaporization when moisture evaporates in fine weather and suppress the temperature rise. It is made.

上記保水性舗装の基本的構造としては、開粒度アスファルト混合物の空隙内に保水材(硬化性スラリー)を充填した構造が一般的であるが、前記充填保水材としては従来より各種のものが提案されている。   As the basic structure of the water-retaining pavement, a structure in which a water retention material (curable slurry) is filled in the voids of an open-graded asphalt mixture is generally used. Has been.

例えば、下記特許文献1では、路盤上又は基層上に位置する道路舗装体の表層部において、15〜30%の空隙を有する舗装体の空隙に水、セメント、繊維及び界面活性剤からなるセメントミルクを充填した道路舗装体が提案されている。   For example, in Patent Document 1 below, cement milk made of water, cement, fibers, and a surfactant in a pavement void having 15-30% voids in a surface layer portion of a road pavement located on a roadbed or a base layer A road pavement filled with is proposed.

また、下記特許文献2では、多孔質硬化体(開粒度アスファルト混合物)を形成した後、多孔質硬化体の連続空隙内にセメント、粘土系微粉末、水等を含むスラリー状の充填材を充填した舗装体が提案されている。   Also, in Patent Document 2 below, after forming a porous cured body (open particle size asphalt mixture), a slurry-like filler containing cement, clay-based fine powder, water, etc. is filled into the continuous voids of the porous cured body. A pavement has been proposed.

更に、下記特許文献3では、平均粒径50〜200μmに粉砕した高炉水砕スラグの30〜70重量%に、水に接してアルカリ性を呈する無機系固化材を混合してなる保水性固化体用水硬材が提案されている。   Furthermore, in the following Patent Document 3, water for water-retaining solidified body obtained by mixing 30 to 70% by weight of ground granulated blast furnace slag with an average particle size of 50 to 200 μm and an inorganic solidifying material that is alkaline in contact with water. Hardwood has been proposed.

また、下記特許文献4では、高炉スラグ部粉末を50〜70重量%と、非晶質SiOを50重量%以上含有する無機粉末を30〜50重量%と、該高炉スラグ微粉末と該無機粉末の合計100重量部に対してアルカリ刺激剤を3〜49重量部添加した混合材によって構成される保水材が提案されている。 Further, in Patent Document 4 below, 50 to 70% by weight of blast furnace slag part powder, 30 to 50% by weight of inorganic powder containing 50% by weight or more of amorphous SiO 2 , the blast furnace slag fine powder and the inorganic powder A water retention material composed of a mixed material in which 3-49 parts by weight of an alkali stimulant is added to 100 parts by weight of the powder has been proposed.

下記特許文献5では、高炉スラグ微粉末と、アルカリ刺激剤と、吸水性ポリマーとを含有し、さらに非晶質SiOを50重量%以上含有する100μm以下の無機粉末及び/又は150μm以下に粉砕した高炉水砕スラグを混合した保水性水硬固化体が提案されている。
特開2003−184014号公報 特開2003−201705号公報 特開2003−95726号公報 特開2003−129407号公報 特開2003−165760号公報
In the following Patent Document 5, a blast furnace slag fine powder, an alkali stimulant, and a water-absorbing polymer are further pulverized into an inorganic powder of 100 μm or less and / or 150 μm or less containing 50% by weight or more of amorphous SiO 2. A water-retaining hydraulic solidified product obtained by mixing blast furnace granulated slag has been proposed.
JP 2003-184014 A JP 2003-201705 A JP 2003-95726 A JP 2003-129407 A JP 2003-165760 A

しかしながら、上記特許文献1〜5記載の発明のように、前記セメント又は高炉スラグ微粉末を主体とした保水性材料を充填した舗装の場合には、吸水率及び吸水量が不足し、保水持続効果は2〜3日で消滅することが認められている。そのため、晴天が続く場合にはヒートアイランド現象の緩和策として十分な効果が得られない。   However, as in the inventions described in Patent Documents 1 to 5, in the case of pavement filled with a water retention material mainly composed of the cement or blast furnace slag fine powder, the water absorption rate and the water absorption amount are insufficient, and the water retention effect is maintained. Is allowed to disappear in 2-3 days. Therefore, when the weather continues, sufficient effects cannot be obtained as a mitigation measure for the heat island phenomenon.

また、前記保水材は開粒度アスファルト混合物の空隙に充填するものであるため、十分な流動性が要求され、通常のコンクリートよりも水分量を多くする必要があるためブリージングが生じ易いなどの問題がある。また、保水材の一部が路面に露出するため、タイヤとの摩耗によって粉塵の発生が問題となるため、所要の強度を満足する必要がある。   In addition, since the water retaining material fills the voids of the open-graded asphalt mixture, sufficient fluidity is required, and it is necessary to increase the amount of water compared to ordinary concrete, so that there is a problem such as easy to cause breathing. is there. In addition, since a part of the water retaining material is exposed on the road surface, generation of dust becomes a problem due to wear with the tire, and thus it is necessary to satisfy a required strength.

一方で、石炭による火力発電の副産物として石炭灰が多く排出されるが、この石炭灰の利用方法として従来は、セメントの粘土代替としての利用が大部分であったが、近年のセメント消費量の低下に伴い、石炭灰発生量の増大に対応できなくなっており、新たな有効利用の途が強く望まれている。   On the other hand, a lot of coal ash is emitted as a by-product of thermal power generation using coal. Conventionally, the use of this coal ash has been mostly used as a substitute for cement clay. Along with the decline, it is no longer possible to cope with the increase in the amount of coal ash generated, and there is a strong demand for new effective use.

そこで本発明の主たる目的は、フライアッシュ(石炭灰)混和物の高吸水性に着目し、フライアッシュを主原料とするとともに、特定の材料との組合せにより、流動性、低ブリージング率、強度特性、吸水性、吸い上げ性能等の諸性能を十分に満足した保水性舗装のための充填保水材を提案することにある。   Therefore, the main object of the present invention is to focus on the high water absorption of the mixture of fly ash (coal ash), and use fly ash as the main raw material, and in combination with specific materials, fluidity, low breathing rate, strength characteristics Another object is to propose a water-retaining material for water-retaining pavement that sufficiently satisfies various performances such as water absorption and suction performance.

前記課題を解決するために請求項1に係る本発明として、フライアッシュを主体とする保水性舗装のための充填保水材であって、前記充填保水材はフライアッシュ、石膏、消石灰、セメントおよび水とからなる混合物とされ、前記石膏としては85℃以上の温度で加熱処理したものをフライアッシュ100重量部に対して6重量部以上の割合で混合し、前記消石灰をフライアッシュ100重量部に対して4重量部以上の割合で混合し、前記セメントをフライアッシュ100重量部に対して6重量部以上の割合で混合し、前記フライアッシュ、石膏、消石灰及びセメントに対する水の重量百分率(水粉体比)を70〜110%の範囲で混合し、
Pロートフロー値;9〜11秒、ブリージング率(24時間);3%以下、吸水率(材齢28日);50%以上、吸上げ速さ180分以内/10cm(吸上げ速さ;φ5cm×10cmの供試体の底面(水浸深さ5mm)から吸水されて供試体が飽和するまでに要する時間)、圧縮強度;1N/mm 以上の諸性能を満足することを特徴とする保水性舗装のための充填保水材が提供される。
In order to solve the above-mentioned problem, the present invention according to claim 1 is a filled water retention material for water retention pavement mainly composed of fly ash, wherein the filled water retention material is fly ash, gypsum, slaked lime, cement and water. As the gypsum, heat-treated at a temperature of 85 ° C. or higher is mixed at a ratio of 6 parts by weight or more with respect to 100 parts by weight of fly ash, and the slaked lime is added to 100 parts by weight of fly ash. 4 parts by weight or more, and the cement is mixed at a ratio of 6 parts by weight or more with respect to 100 parts by weight of fly ash, and the weight percentage of water to the fly ash, gypsum, slaked lime and cement (water powder) Ratio) in the range of 70-110%,
P funnel flow value: 9 to 11 seconds, breathing rate (24 hours); 3% or less, water absorption rate (material age 28 days); 50% or more, sucking speed within 180 minutes / 10 cm (sucking speed; φ5 cm × 10 cm time required for the specimen is saturated from specimens of the bottom (water immersion depth 5mm) is water absorption), compressive strength; water retention that satisfies the 1N / mm 2 or more various performances Filled water retention materials for pavement are provided.

請求項2に係る本発明として、凝結遅延剤を全粉体量に対して0.05〜0.1重量%の割合で添加する請求項1記載の保水性舗装のための充填保水材が提供される。 As the present invention according to claim 2, there is provided a water-retaining material for water-retaining pavement according to claim 1 , wherein the setting retarder is added at a ratio of 0.05 to 0.1% by weight with respect to the total powder amount. Is done.

請求項3に係る本発明として、前記フライアッシュとして、JIS A6201に準じたフライアッシュII種を用いる請求項1、2いずれかに記載の保水性舗装のための充填保水材が提供される。 According to a third aspect of the present invention, there is provided a water-retaining material for water-retaining pavement according to any one of the first and second aspects , wherein fly ash type II conforming to JIS A6201 is used as the fly ash .

請求項4に係る本発明として、前記セメントとして高炉セメントを用いる請求項1、2いずれかに記載の保水性舗装のための充填保水材が提供される。 According to a fourth aspect of the present invention, there is provided a water-retaining material for water-retaining pavement according to any one of the first and second aspects , wherein a blast furnace cement is used as the cement .

請求項5に係る本発明として、前記充填保水材の40℃乾燥密度が0.8〜1g/cm である請求項1〜4いずれかに記載の保水性舗装のための充填保水材が提供される。 The 40 degreeC dry density of the said filling water holding material is 0.8-1 g / cm < 3 > as this invention which concerns on Claim 5 The filling water holding material for water retention paving in any one of Claims 1-4 is provided. Is done.

以上詳説のとおり本発明によれば、流動性、低ブリージング率、強度特性、吸水性、吸い上げ性能等の諸性能を十分に満足した保水性舗装のための充填保水材を得ることができる。   As described above in detail, according to the present invention, it is possible to obtain a filled water retention material for water retention pavement that sufficiently satisfies various performances such as fluidity, low breathing rate, strength characteristics, water absorption, and suction performance.

以下、本発明の実施の形態について図面を参照しながら詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

〔充填保水材〕
本発明に係る保水性舗装のための充填保水材は、フライアッシュを主体とする充填保水材であって、前記充填保水材はフライアッシュ、石膏、消石灰、セメントおよび水とからなる混合物とされ、前記石膏としては二水石膏又は脱硫石膏を85℃以上の温度で加熱処理したものを使用し、Pロートフロー値;9〜11秒、ブリージング率(24時間);3%以下、吸水率(材齢28日);50%以上、吸上げ速さ180分以内/10cm(吸上げ速さ;φ5cm×10cmの供試体の底面(水浸深さ5mm)から吸水されて供試体が飽和するまでに要する時間)、圧縮強度;1N/mm以上の諸性能を満足するものである。
[Filled water retention material]
The filled water retention material for water retention pavement according to the present invention is a filled water retention material mainly composed of fly ash, and the filled water retention material is a mixture composed of fly ash, gypsum, slaked lime, cement and water, As the gypsum, dihydrate gypsum or desulfurized gypsum heat-treated at a temperature of 85 ° C. or higher is used, P funnel flow value: 9 to 11 seconds, breathing rate (24 hours); 3% or less, water absorption rate (material) Age 28 days); 50% or more, suction speed within 180 minutes / 10 cm (suction speed; φ5 cm × 10 cm) until the specimen is saturated due to water absorption from the bottom surface (water immersion depth 5 mm) Time required), compressive strength; various performances of 1 N / mm 2 or more are satisfied.

より好ましくは、前記充填保水材はフライアッシュ、石膏、消石灰、セメントおよび水とからなる混合物とされ、前記石膏としては二水石膏又は脱硫石膏を85℃以上の温度で加熱処理したものをフライアッシュ100重量部に対して6重量部以上の割合で混合し、前記消石灰をフライアッシュ100重量部に対して4重量部以上の割合で混合し、前記セメントをフライアッシュ100重量部に対して6重量部以上の割合で混合し、前記フライアッシュ、石膏、消石灰及びセメントに対する水の重量百分率(水粉体比)を70〜110%の範囲で混合し、前記諸性能を満足するようにしたものである。   More preferably, the filled water retaining material is a mixture of fly ash, gypsum, slaked lime, cement and water, and the gypsum is fly ash obtained by heat-treating dihydrate gypsum or desulfurized gypsum at a temperature of 85 ° C or higher. 6 parts by weight or more with respect to 100 parts by weight, the slaked lime is mixed with 4 parts by weight or more with respect to 100 parts by weight of fly ash, and the cement is 6 parts by weight with respect to 100 parts by weight of fly ash. Mixing at a ratio of at least parts, and mixing the fly ash, gypsum, slaked lime and cement with a weight percentage of water (water powder ratio) in the range of 70 to 110% to satisfy the various performances. is there.

先ず、前記諸性能に関し、本充填保水材は、開粒度アスファルトコンクリートなどの舗装構成材料の空隙部に自然充填され、舗装の表層を構成する部材の一部となるものである。従って、空隙に対する自己充填性を確保するには、Pロートフロー値(スラリーがPロートから流下し切るまでに要する時間)が9〜11秒、好ましくは9〜10秒(水の場合で8.2秒)となるように調整する必要がある。また、舗装体としての品質確保の点からブリージング率(24時間)は3%以下、好ましくは0%とするのが望ましい。さらに、路面を走行するタイヤとの摩擦によって粉塵が発生するのを防止するため圧縮強度は1N/mm以上確保するものとする(粉塵量と圧縮強度との相関性より、試験が簡便な圧縮強度試験値で評価する)。 First, regarding the various performances, the present filled water retaining material is naturally filled in a void portion of a pavement constituent material such as open-graded asphalt concrete and becomes a part of a member constituting a surface layer of the pavement. Therefore, in order to ensure the self-filling property with respect to the gap, the P funnel flow value (the time required for the slurry to flow down from the P funnel) is 9 to 11 seconds, preferably 9 to 10 seconds (8. 2 seconds). Further, it is desirable that the breathing rate (24 hours) is 3% or less, preferably 0%, from the viewpoint of ensuring quality as a paved body. Furthermore, in order to prevent dust from being generated due to friction with the tire running on the road surface, the compressive strength shall be at least 1 N / mm 2 (compression that is easy to test due to the correlation between the amount of dust and compressive strength) (Evaluated by strength test value).

一方、最も重要な吸水特性に関しては、保水性能として吸水率を50%以上、好ましくは70%以上とし、地中水分を地表面まで吸上げて蒸発させるための性能値として、吸上げ速さを規定する。前記吸上げ速さは、φ5cm×10cmの供試体の底面(水浸深さ5mm)から吸水されて、供試体が飽和するまでに要する時間を規定したもので、180分以内/10cm、好ましくは120分以内/10cm、より好ましくは90分以内/10cmとする。   On the other hand, regarding the most important water absorption characteristics, the water absorption rate is 50% or more, preferably 70% or more as the water retention performance, and the absorption speed is defined as a performance value for absorbing and evaporating underground water to the ground surface. Stipulate. The suction speed is defined as the time required for water to be saturated from the bottom surface (water immersion depth 5 mm) of a φ5 cm × 10 cm specimen, and within 180 minutes / 10 cm, preferably Within 120 minutes / 10 cm, more preferably within 90 minutes / 10 cm.

本充填保水材はフライアッシュ、石膏、消石灰、セメントおよび水とからなる混合物である。   The filled water retaining material is a mixture of fly ash, gypsum, slaked lime, cement and water.

前記フライアッシュは、JIS A6201に準じたフライアッシュII種又はII種相当品を用いるのが望ましいが、規格外品であってもよい。又は、石炭火力発電所において採取されたフライアッシュ原粉を粒度調整(分級処理)し、或いは粒度調整することなくそのまま使用することも可能である。なお、粒度調整する場合には、平均粒径20μm程度とするのが望ましい。   The fly ash is preferably a fly ash type II or a type II equivalent product according to JIS A6201, but may be a non-standard product. Alternatively, fly ash raw powder collected in a coal-fired power plant can be used as it is without adjusting the particle size (classification treatment) or adjusting the particle size. When adjusting the particle size, the average particle size is preferably about 20 μm.

前記石膏には、脱硫石膏、二水石膏(CaSO4・2H2O)と半水石膏(CaSO4・1/2H2O)と無水石膏(CaSO4)とが存在する。前記脱硫石膏は、発電所や工場などに設けられた排脱装置から副生物として発生する石膏であり、前記二水石膏、半水石膏及び無水石膏は、結晶水の相違からの分類で、脱硫石膏又は二水石膏を120〜160℃で加熱処理することにより水分を失い半水石膏が得られ、さらに高い加熱温度(180℃前後)で加熱すると無水石膏が得られる。 The gypsum includes desulfurized gypsum, dihydrate gypsum (CaSO 4 · 2H 2 O), hemihydrate gypsum (CaSO 4 · 1 / 2H 2 O), and anhydrous gypsum (CaSO 4 ). The desulfurized gypsum is a gypsum generated as a by-product from an exhaust device installed in a power plant or factory, etc., and the dihydrate gypsum, hemihydrate gypsum, and anhydrous gypsum are classified according to the difference in crystal water. Heat treatment of gypsum or dihydrate gypsum at 120 to 160 ° C loses moisture to give hemihydrate gypsum, and heating at higher heating temperature (around 180 ° C) gives anhydrous gypsum.

本発明の充填保水材で使用される石膏は、脱硫石膏又は二水石膏を85℃以上の温度で加熱処理したものである。すなわち、分類的には半水石膏には至らない加熱温度(120℃未満)で加熱処理をした脱硫石膏又は二水石膏と、加熱温度120℃以上で処理した半水石膏と、加熱温度180℃前後で処理した無水石膏とが対象となる。
The gypsum used in the filled water retaining material of the present invention is obtained by heat-treating desulfurized gypsum or dihydrate gypsum at a temperature of 85 ° C. or higher. That is, desulfurized gypsum or dihydrate gypsum that has been heat-treated at a heating temperature (less than 120 ° C.) that does not reach half-water gypsum, hemihydrate gypsum that has been treated at a heating temperature of 120 ° C. Anhydrous gypsum treated before and after is the target.

後述する実験例で明らかなように、加熱温度85℃を境界値として、ブリージング率に顕著な差が見られるようになるため、ブリージング性能基準:3%未満を満足するには、85℃以上の温度で加熱処理した石膏を使用する必要がある。また、加熱温度の最適範囲は、後述の実験例から、吸水率と吸上げ速さに顕著な効果が見られる110〜150℃の範囲である。   As will be apparent from the experimental examples to be described later, since a remarkable difference is observed in the breathing rate with a heating temperature of 85 ° C. as a boundary value, in order to satisfy the breathing performance standard: less than 3%, it is 85 ° C. or higher. It is necessary to use gypsum heat-treated at temperature. Moreover, the optimal range of heating temperature is the range of 110-150 degreeC from which the remarkable effect is seen by the water absorption rate and the suction speed from the below-mentioned experiment example.

前記石膏の添加量は、フライアッシュ100重量部に対して6重量部以上の割合で混合する。後述の実験例で明らかなように、6重量部未満の場合は、ブリージング率が3%を超えるおそれがあるとともに、圧縮強度基準を満足出来なくなるおそれがある。更に、吸上げ速さは満足し得るが吸水率が50%未満となるおそれがある。   The addition amount of the gypsum is mixed at a ratio of 6 parts by weight or more with respect to 100 parts by weight of fly ash. As will be apparent from the experimental examples described later, when the amount is less than 6 parts by weight, the breathing rate may exceed 3% and the compression strength standard may not be satisfied. Furthermore, although the suction speed can be satisfied, the water absorption rate may be less than 50%.

前記消石灰は、生石灰と水を反応させて製造した白色の粉末であるが、フライアッシュ100重量部に対して4重量部以上の割合で混合するのが望ましい。後述の実験例で明らかように、消石灰の添加は、Pロートフロー値、ブリージング率及び吸水率にあまり影響を及ぼさないが、圧縮強度特性に関して、少量で大きな向上が見られるようになる。また、高炉セメントを使用した場合、消石灰を添加することにより、フライアッシュ中に含まれるホウ素の溶出量を顕著に低減できる効果を有する。前記消石灰の添加率を徐々に上げると、吸上げ速さが増加する傾向にあるとともに、圧縮強度も増加傾向が減少傾向に転じるようになるため10重量部以下で配合するのが望ましい。   The slaked lime is a white powder produced by reacting quick lime and water, but it is desirable that the slaked lime is mixed at a ratio of 4 parts by weight or more with respect to 100 parts by weight of fly ash. As will be apparent from the experimental examples described later, the addition of slaked lime does not significantly affect the P funnel flow value, the breathing rate, and the water absorption rate, but a great improvement can be seen in a small amount with respect to the compressive strength characteristics. In addition, when blast furnace cement is used, by adding slaked lime, there is an effect that the amount of boron dissolved in fly ash can be significantly reduced. When the slaked lime addition rate is gradually increased, the wicking rate tends to increase and the compressive strength also tends to decrease toward the decreasing trend.

前記セメントは、普通セメント、早強セメント、高炉セメントのいずれを使用することも可能であるが、これらのセメント種類の内、フライアッシュ中に含まれる重金属類(ヒ素、六価クロム、セレン、ホウ素等)の溶出を抑える意味で高炉セメントが望ましい。添加量は、フライアッシュ100重量部に対して6重量部以上の割合で混合するのが望ましい。セメント添加量は圧縮強度と強い相関性を有するが、添加率を上げると、吸水率及び吸上げ速さを下げるため、10重量部以下の割合で配合するのが望ましい。   The cement can be any of ordinary cement, early-strength cement, and blast furnace cement. Of these cement types, heavy metals contained in fly ash (arsenic, hexavalent chromium, selenium, boron) Blast furnace cement is desirable in order to suppress elution. The addition amount is desirably 6 parts by weight or more with respect to 100 parts by weight of fly ash. The amount of cement added has a strong correlation with the compressive strength. However, when the addition rate is increased, the water absorption rate and the speed of absorption are decreased, so that it is desirable to add it at a ratio of 10 parts by weight or less.

さらに、水の添加量は、前記フライアッシュ、石膏、消石灰及びセメントに対する水の重量百分率(水粉体比)を70〜110%の範囲で調整し混合するようにする。水添加率は、Pロートフロー値及びブリージング率に影響するため、これらの数値が基準内になるように、主に80〜90%の範囲で決定するのが望ましい。   Furthermore, the amount of water added is adjusted so that the weight percentage (water powder ratio) of water to the fly ash, gypsum, slaked lime and cement is in the range of 70 to 110% and mixed. Since the water addition rate affects the P funnel flow value and the breathing rate, it is desirable to determine mainly in the range of 80 to 90% so that these numerical values are within the standard.

前記フライアッシュ、石膏、消石灰及びセメントの総粉体量は、フライアッシュ100重量部に対して20〜30重量%の割合とするのが望ましい。また、前記総粉体量は、充填保水材の40℃乾燥密度が0.8〜1g/cmになるように、各材料を調整することが望ましい。 The total amount of the fly ash, gypsum, slaked lime and cement is preferably 20 to 30% by weight with respect to 100 parts by weight of fly ash. Moreover, it is desirable to adjust each material so that the said total powder amount may become 40-1 degreeC dry density of a filling water retention material 0.8-1 g / cm < 3 >.

ところで、前記充填保水材には、施工性を考慮しゲル化遅延を目的として、凝結遅延剤を添加することができる。凝結遅延剤を全粉体量の0.05〜0.1重量%添加するのが望ましい。添加量が0.1重量%を超える場合には、ブリージングが起こり易くなる。   By the way, a setting retarder can be added to the filled water retaining material for the purpose of delaying gelation in consideration of workability. It is desirable to add a setting retarder from 0.05 to 0.1% by weight of the total powder amount. If the amount added exceeds 0.1% by weight, breathing tends to occur.

本発明に係る充填保水材では、フライアッシュを主体とするが、このフライアッシュと共に、石膏、消石灰、セメントおよび水とを混合した材料であり、それぞれの最適な配合範囲を決定する必要がある。   The filled water retaining material according to the present invention is mainly fly ash, and is a material in which gypsum, slaked lime, cement and water are mixed together with this fly ash, and it is necessary to determine the optimum blending range of each.

以下、最適配合範囲を決定するために行った実験について詳述する。
(1)基本配合設定
効果的に各種材料の最適配合を決定するために、事前の予備試験を行った結果に基づき、下表1に示す基本配合を設定した。
Hereinafter, experiments conducted for determining the optimum blending range will be described in detail.
(1) Basic formulation setting In order to effectively determine the optimum formulation of various materials, the basic formulation shown in Table 1 below was set based on the results of preliminary tests.

Figure 0004692830
Figure 0004692830

(2)石膏
(2)-1 石膏の加熱処理温度(脱水処理)
市販の二水石膏(吉野石膏製のタイガーカルシー)及び各種加熱温度で脱水処理を行った各脱硫石膏を用い、充填保水材として最適な加熱処理温度を調べた。その結果を下表2に示す。
(2) Gypsum
(2) -1 Gypsum heat treatment temperature (dehydration treatment)
A commercially available dihydrate gypsum (Tiger Calcy made by Yoshino gypsum) and each desulfurized gypsum subjected to dehydration treatment at various heating temperatures were used to examine the optimum heat treatment temperature as a filling water retaining material. The results are shown in Table 2 below.

Figure 0004692830
Figure 0004692830

試験の結果、80℃以下の加熱温度で処理した場合には、ブリージング率が基準値(3%)を大きく超えることが判明した。   As a result of the test, it was found that the breathing rate greatly exceeded the reference value (3%) when the treatment was performed at a heating temperature of 80 ° C. or less.

更に、加熱温度の境界値を求めるために、70℃から110℃までの温度を5℃刻みとして、実験を行った。その結果を下表3に示す。   Furthermore, in order to obtain the boundary value of the heating temperature, an experiment was performed with the temperature from 70 ° C. to 110 ° C. being incremented by 5 ° C. The results are shown in Table 3 below.

Figure 0004692830
Figure 0004692830

表3の試験結果より、加熱温度の境界値は85℃であることが判明し、本充填保水材としては、85℃以上の温度で加熱処理した石膏を用いれば、ブリージング率を0%にできることが判明した。   From the test results shown in Table 3, it was found that the boundary value of the heating temperature was 85 ° C., and as this filled water retaining material, the breathing rate could be reduced to 0% by using gypsum heated at a temperature of 85 ° C. or higher. There was found.

(2)-2 石膏の配合量
次に、石膏の最適配合を決定するため、配合量をフライアッシュ100重量部に対して0〜16重量%の間で4重量%刻みで変化させた各ケースについて、試験を行った。その結果を下表4に示す。
(2) -2 Gypsum blend amount Next, in order to determine the optimum blend of gypsum, each case where the blend amount was changed in increments of 4% by weight between 0 and 16% by weight per 100 parts by weight of fly ash. The test was conducted. The results are shown in Table 4 below.

Figure 0004692830
Figure 0004692830

表4に示す試験結果から、フライアッシュ100重量部に対して6重量部以上の割合で混合することにより、圧縮強度が基準値(1N/mm以上)を満足できることが判明した。 From the test results shown in Table 4, it was found that the compression strength can satisfy the standard value (1 N / mm 2 or more) by mixing at a ratio of 6 parts by weight or more with respect to 100 parts by weight of fly ash.

(3)消石灰の最適配合
消石灰の最適配合を決定するため、配合量をフライアッシュ100重量部に対して0〜16重量%の間で4重量%刻みで変化させた各ケースについて、試験を行った。その結果を下表5に示す。
(3) Optimal formulation of slaked lime In order to determine the optimal formulation of slaked lime, tests were conducted on each case where the blending amount was changed in increments of 4% by weight between 0 to 16% by weight with respect to 100 parts by weight of fly ash. It was. The results are shown in Table 5 below.

Figure 0004692830
Figure 0004692830

表5に示す試験結果から、フライアッシュ100重量部に対して4重量部以上の割合で混合することにより、圧縮強度が基準値(1N/mm以上)を満足できることが判明した。なお、後述するセメントも圧縮強度増加に寄与するものであるが、消石灰は0重量%添加したケースと、4重量%添加したケースとを比較すると分かるように、少量の添加で圧縮強度を大幅に増加できることも判明した。 From the test results shown in Table 5, it was found that the compressive strength can satisfy the standard value (1 N / mm 2 or more) by mixing at a ratio of 4 parts by weight or more with respect to 100 parts by weight of fly ash. The cement described later also contributes to an increase in compressive strength. However, as can be seen from a comparison between the case where slaked lime is added at 0% by weight and the case where 4% by weight is added, the compressive strength is greatly increased by adding a small amount. It was also found that it could be increased.

(4)セメントの最適配合
セメントの最適配合を決定するため、配合量をフライアッシュ100重量部に対して2〜8重量%の間で2重量%刻みで変化させた各ケースについて、試験を行った。試験は、早強セメントと高炉セメントの2種類について行った。その結果を下表6,下表7にそれぞれ示す。
(4) Optimum blending of cement In order to determine the optimum blending of cement, a test was conducted for each case where the blending amount was changed from 2 to 8% by weight in increments of 2% by weight with respect to 100 parts by weight of fly ash. It was. The test was conducted on two types of early strong cement and blast furnace cement. The results are shown in Table 6 and Table 7, respectively.

Figure 0004692830
Figure 0004692830

Figure 0004692830
Figure 0004692830

表6及び表7に示す試験結果から、早強セメント、高炉セメントいずれの場合も、フライアッシュ100重量部に対して6重量部以上の割合で混合することにより、圧縮強度が基準値(1N/mm以上)を満足できることが判明した。 From the test results shown in Tables 6 and 7, the compressive strength of the early strength cement and the blast furnace cement was mixed at a ratio of 6 parts by weight or more with respect to 100 parts by weight of fly ash, so that the compressive strength was 1 N / mm 2 or more).

(5)重金属類の溶出
高炉セメントを使用し、各種の配合を変えたケースにおいて、ヒ素、クロム、セレン、フッ素、ホウ素の溶出量が基準値以内となるかどうかについて試験を行った。また、参考例としてフライアッシュのみの場合についても試験を行った。その結果を下表8に示す。
(5) Elution of heavy metals In cases where blast furnace cement was used and various formulations were changed, tests were conducted to determine whether the elution amounts of arsenic, chromium, selenium, fluorine and boron were within the standard values. In addition, as a reference example, a test was also conducted with only fly ash. The results are shown in Table 8 below.

Figure 0004692830
Figure 0004692830

表8より、フライアッシュのみの場合は、フッ素化合物を除き、ヒ素、クロム、セレン、ホウ素の溶出量が基準値を超える結果となった。これに対して、セメントを配合した各ケースでは、すべての重金属類が基準値以内に収まったが、石膏を添加しないNo4の場合には、セレンが他のケースよりも著しく多く含有され、消石灰を添加しないNo5の場合にはホウ素が他のケースよりも著しく多く含有される結果となった。従って、石膏及び消石灰は重金属類の溶出を制限するためにも添加することが望ましいことが判明した。   From Table 8, in the case of fly ash only, the amount of elution of arsenic, chromium, selenium, and boron exceeded the reference value except for the fluorine compound. On the other hand, in each case where cement was blended, all heavy metals were within the standard value, but in the case of No4 where no gypsum was added, selenium contained significantly more than other cases, and slaked lime was not contained. In the case of No5 which was not added, the result was that boron was contained significantly more than the other cases. Accordingly, it has been found that gypsum and slaked lime are desirably added in order to limit elution of heavy metals.

(6)乾燥密度
本充填保水材において、吸水率は硬化した保水材の内部に形成される微細孔の量と正比例的な相関があり、圧縮強度は前記微細孔の量と反比例的な相関があると思われる。すなわち、吸水率を上げるには微細孔の量(乾燥密度で評価)を多くする必要があり、圧縮強度を上げるには微細孔の量を少なくする必要がある。このような二律背反する関係を満足させるために、吸水率と乾燥密度との相関性及び圧縮強度と乾燥密度との相関性について調べた。なお、乾燥密度は40℃乾燥密度(40℃で24時間乾燥)とした。
(6) Dry density In this filled water retaining material, the water absorption rate has a directly proportional correlation with the amount of micropores formed inside the cured water retaining material, and the compressive strength has an inversely proportional correlation with the amount of micropores. It appears to be. That is, to increase the water absorption rate, it is necessary to increase the amount of fine pores (evaluated by dry density), and to increase the compressive strength, it is necessary to reduce the amount of fine pores. In order to satisfy such a contradictory relationship, the correlation between the water absorption rate and the dry density and the correlation between the compressive strength and the dry density were examined. The dry density was 40 ° C. dry density (dried at 40 ° C. for 24 hours).

図1に吸水率と乾燥密度との相関グラフを示し、図2に圧縮強度と乾燥密度との相関グラフを示す。図1に示されるように、吸水率50%以上を得るには、保水材の40℃乾燥密度が1g/cm以下にする必要がある。また、図2に示されるように、乾燥密度と圧縮強度の関係より、0.8g/cm以上にする必要がある。以上から、所定の圧縮強度と吸水率を満足するためには、保水材の40℃乾燥密度を0.8〜1.0g/cmの範囲内となるように、配合を設定することが重要である。 FIG. 1 shows a correlation graph between water absorption and dry density, and FIG. 2 shows a correlation graph between compressive strength and dry density. As shown in FIG. 1, in order to obtain a water absorption rate of 50% or more, the water retention material needs to have a 40 ° C. dry density of 1 g / cm 3 or less. Moreover, as shown in FIG. 2, it is necessary to set it to 0.8 g / cm 3 or more from the relationship between the dry density and the compressive strength. From the above, in order to satisfy the predetermined compressive strength and water absorption rate, it is important to set the formulation so that the 40 ° C. dry density of the water retaining material is within the range of 0.8 to 1.0 g / cm 3. It is.

(7)凝結遅延剤の添加
施工性を考慮して、凝結遅延剤を混入する必要性がある場合、その添加量について検討を行った。
(7) Addition of setting retarder In consideration of workability, the amount of setting retarder was examined when it was necessary to mix it.

充填保水材の配合は下表9とし、凝固遅延材(ポゾリスNo.89)の添加量を全粉体量に対して0〜0.2重量%の範囲で変化させた各ケースについて、Pロートフロー値(S)の変化を調べた。その結果を図3に示す。   The composition of the filling water retaining material is shown in Table 9 below, and for each case where the addition amount of the solidification retarding material (Pozoris No. 89) was changed in the range of 0 to 0.2% by weight with respect to the total powder amount, the P funnel The change of flow value (S) was investigated. The result is shown in FIG.

Figure 0004692830
Figure 0004692830

図3より、添加量を0.2重量%とした場合には、Pロートフロー値の上昇は見られなかったが、ブリージング率が大きく施工には不適な結果となった。従って、凝結遅延剤は0.05〜0.1重量%の範囲で添加するのが望ましいことが判明した。   From FIG. 3, when the addition amount was 0.2% by weight, no increase in the P funnel flow value was observed, but the breathing rate was large and the result was unsuitable for construction. Accordingly, it has been found that it is desirable to add the setting retarder in the range of 0.05 to 0.1% by weight.

次に、上記本発明に係る充填保水材を使用した保水性舗装の構造例について詳述することにする。   Next, the structure example of the water retention pavement using the filling water retention material according to the present invention will be described in detail.

〔保水性舗装構造〕
図4に示される保水性舗装構造は、開粒度アスファルトコンクリート3(以下、単に開粒度アスコンという。)の間隙部に、本発明に係る充填保水材4を充填させた表層を成すアスファルト保水層1と、このアスファルト保水層1の下側に位置する石炭灰固化砕石5を主体とし所定の密度に締め固められた石炭灰固化砕石貯水層2とからなる二層構造の給水型保水性舗装である。この給水型保水性舗装は、通常のアスファルト舗装又はコンクリート舗装を本発明の保水性舗装に改良する場合には、既設の表層舗装のみを撤去した後、既設路盤上に敷設するのが望ましい。
[Water retentive pavement structure]
The water-retaining pavement structure shown in FIG. 4 is an asphalt water-retaining layer 1 that forms a surface layer in which the filled water-retaining material 4 according to the present invention is filled in the gap portion of the open-graded asphalt concrete 3 (hereinafter simply referred to as open-graded asphalt concrete). And a two-layer water-retaining water-retaining pavement comprising a coal ash solidified crushed water reservoir 2 mainly composed of coal ash solidified crushed stone 5 located below the asphalt water retentive layer 1 and compacted to a predetermined density. . In the case of improving the normal asphalt pavement or the concrete pavement to the water retentive pavement of the present invention, it is desirable that this water supply type water retentive pavement is laid on the existing roadbed after removing only the existing surface pavement.

前記アスファルト保水層1の開粒度アスコン3は、粗骨材、細骨材、フィラー、アスファルトからなる加熱混合物で合成粒度における2.5mmふるい通過分が15%〜30%の範囲のものをいい、一般的に排水性舗装として用いられている舗装表層材料であり、交通荷重に対する耐荷性能を与える。   The open particle size ascon 3 of the asphalt water retention layer 1 is a heated mixture composed of coarse aggregate, fine aggregate, filler, and asphalt and has a 2.5 mm sieve passage in a synthetic particle size in the range of 15% to 30%. It is a pavement surface layer material that is generally used as drainage pavement, and provides load resistance against traffic loads.

前記開粒度アスコン3の間隙中に充填された充填保水材4は、組成中にエトリンガイト系の間隙質相が形成されていることにより、前記充填保水材の固化体は、非常に高い吸水性と保水性を有するものであることが前述のとおりであるが、前記石炭灰固化砕石貯水層2まで浸透できる流動性を有し、前記開粒度アスコン3の間隙に自己充填(自然浸透による充填)される。そして、前記アスファルト保水層1と石炭灰固化砕石貯水層2との構造間に、毛細管現象の連続性を確保する。   The filled water retaining material 4 filled in the gaps of the open particle size ascon 3 has an ettringite-based interstitial phase formed in the composition, so that the solidified body of the filled water retaining material has very high water absorption and As described above, it has water retention, but has fluidity so that it can penetrate to the coal ash solidified crushed stone reservoir 2 and is self-filled (filled by natural penetration) into the gaps of the open-graded ascon 3. The And the continuity of a capillary phenomenon is ensured between the structures of the said asphalt water retention layer 1 and the coal ash solidification crushed water reservoir 2.

一方、前記石炭灰固化砕石貯水層2を構成する石炭灰固化砕石5は、石炭灰に石灰及び石膏を添加材として加え、水で混練した後成形し、次いで混練物の養生を行った後、養生固化体を破砕して得た砕石状固化体である。なお、材料となる石炭灰は、石炭灰特性の変動などで品質がかなり変動するため、特許第3455184号公報に示されるように、上記変動に対応しながら安定品質の固化体を得るために、混練機のフルード数、混練物温度、成形体の嵩比重、養生における固化体の圧縮強度及び粒状固化体の粗粒率の制御・管理を行って製造されたものを好適に使用することができる。   On the other hand, the coal ash solidified crushed stone 5 constituting the coal ash solidified crushed water reservoir 2 is formed by adding lime and gypsum to the coal ash as additives, kneading with water, and then curing the kneaded product. It is a crushed stone-like solid body obtained by crushing a cured solid body. In addition, since the quality of the coal ash used as the material varies considerably due to fluctuations in the characteristics of the coal ash, as shown in Japanese Patent No. 3455184, in order to obtain a solidified body of stable quality while responding to the above-described fluctuations, A product produced by controlling and managing the fluid number of the kneader, the temperature of the kneaded product, the bulk specific gravity of the molded product, the compressive strength of the solidified body during curing, and the coarse particle ratio of the granular solidified body can be suitably used. .

前記石炭灰固化砕石貯水層2は、石炭灰固化砕石5をM40等(舗装材の粒度規定値)の粒度分布で調整し、所定の密度で締固めて、路盤材としての耐荷性能を確保する。   The coal ash solidified crushed water reservoir 2 adjusts the coal ash solidified crushed stone 5 with a particle size distribution of M40 or the like (pavement particle size regulation value) and compacts it with a predetermined density to ensure load resistance performance as a roadbed material. .

前記石炭灰固化砕石貯水層2は、石炭灰固化砕石5とその間隙中の自由水で構成される。石炭灰固化砕石貯水層2が湿潤状態にある場合には、石炭灰固化砕石5は表面水と内部水で保水された状態にある。石炭灰固化砕石貯水層2の自由水・表面水・内部水は、隣接する粒子配列で形成された毛細管中をアスファルト保水層1へ上昇する。石炭灰固化砕石貯水層2に蓄えられた水量の大半が、二層構造内の毛細管現象と路面での蒸発散によって、路面の温度冷却のために消費される。   The coal ash solidified crushed water reservoir 2 is composed of coal ash solidified crushed stone 5 and free water in the gaps. When the coal ash solidified crushed water reservoir 2 is in a wet state, the coal ash solidified crushed stone 5 is in a state of being retained by surface water and internal water. Free water, surface water, and internal water of the coal ash solidified crushed stone reservoir 2 rise to the asphalt water retention layer 1 through the capillaries formed by adjacent particle arrays. Most of the water stored in the coal ash solidified crushed water reservoir 2 is consumed for temperature cooling of the road surface by capillarity in the two-layer structure and evapotranspiration on the road surface.

〔保水性舗装の施工〕
前記保水性舗装は、既設路盤の上部に石炭灰固化砕石5を、冷却効果の持続性を確保するために、その層厚を5〜10cm(既設路盤を石炭灰固化砕石で完全に置き換える場合は10〜20cm)となるように締め固め、石炭灰固化砕石貯水層2を形成した後、この石炭灰固化砕石貯水層2の上面に開粒度アスコン3を好ましくは層厚5cm以上となるように敷設する。その後、充填保水材4を開粒度アスコン3の間隙に自己充填し、石炭灰固化砕石貯水層2との界面まで浸透させ、二層構造の連続性を持たせる。前記充填保水材には石膏を使用しているので、3時間以内に空気と触れる表層部は粘土状になるため、路面上に存在する粘土状の余剰スラリー固化体を清掃する。この工法によれば、前記充填保水材4の充填から約3時間で交通開放が可能で迅速に施工が可能である。
[Construction of water retentive pavement]
The water-retaining pavement has a coal ash solidified crushed stone 5 at the upper part of the existing roadbed, and a layer thickness of 5 to 10 cm (to completely replace the existing roadbed with coal ash solidified crushed stone in order to ensure the sustainability of the cooling effect. 10-20 cm), and the coal ash solidified crushed water reservoir 2 is formed. Then, an open-graded ascon 3 is laid on the upper surface of the coal ash solidified crushed water reservoir 2 so that the layer thickness is preferably 5 cm or more. To do. After that, the filled water retaining material 4 is self-filled in the gaps of the open-graded ascon 3 and penetrates to the interface with the coal ash solidified crushed stone reservoir 2 to give a continuity of a two-layer structure. Since gypsum is used for the filled water retaining material, the surface layer portion that comes into contact with air within 3 hours becomes clay-like, so that the clay-like surplus slurry solidified body present on the road surface is cleaned. According to this construction method, traffic can be opened in about 3 hours after the filling water retaining material 4 is filled, and construction can be performed quickly.

〔本給水型保水性舗装の冷却メカニズム〕
雨水時は、図5(A)に示されるように、雨水はアスファルト保水層1に保水されながら下層へ浸透するとともに、石炭灰固化砕石貯水層2に貯水され、余剰水が既設路盤へと浸透する。真夏の高温時には、図5(B)に示されるように、アスファルト保水層1の表面から水分が気化熱として奪われ、表面温度の上昇が抑制される。水分は二層構造体における毛細管現象により石炭灰固化砕石貯水層2からアスファルト保水層1へ連続的に給水され、路面温度の冷却効果が持続する。なお、路面冷却効果は、夏場の路面温度を少なくとも連続4日間40℃以下で維持できるように、前記充填保水材4の配合、アスファルト保水層1の層厚を設定するとともに、前記石炭灰固化砕石5の配合、その層厚を設定するのが望ましい。
[Cooling mechanism of this water supply type water retaining pavement]
During rainwater, as shown in Fig. 5 (A), rainwater penetrates into the lower layer while being retained in the asphalt reservoir 1 and is stored in the coal ash solidified crushed reservoir 2 and excess water penetrates into the existing roadbed. To do. When the temperature is high in midsummer, as shown in FIG. 5B, moisture is taken away from the surface of the asphalt water retention layer 1 as heat of vaporization, and the rise in the surface temperature is suppressed. The water is continuously supplied from the coal ash solidified crushed water reservoir 2 to the asphalt water retention layer 1 by the capillary phenomenon in the two-layer structure, and the cooling effect of the road surface temperature is maintained. As for the road surface cooling effect, the coal ash solidified crushed stone and the composition of the filled water retaining material 4 and the layer thickness of the asphalt water retaining layer 1 are set so that the road surface temperature in summer can be maintained at 40 ° C. or lower for at least four consecutive days. It is desirable to set the composition of 5 and its layer thickness.

保水性舗装構造は、図4に示される給水型保水性舗装とし、本発明に係る充填保水材を使用した保水性舗装のヒートアイランド抑制効果について検証した。   The water-retaining pavement structure was the water supply type water-retaining pavement shown in FIG. 4, and the heat island suppression effect of the water-retaining pavement using the filled water-retaining material according to the present invention was verified.

実験は、保水材の重量百分率の比を、フライアッシュ:脱硫石膏(110℃加熱処理):消石灰:セメント=100:8:8:8とし、水粉体比70%とした本発明に係る充填保水材を使用した前記給水型保水性舗装と、一般的な密粒度アスファルト舗装と、芝生との3ケースについて、路面温度の経時変化を測定した。なお、日射量を同グラフに併記した。   The experiment was conducted according to the present invention in which the weight percentage ratio of the water retaining material was fly ash: desulfurized gypsum (heat treatment at 110 ° C.): Slaked lime: cement = 100: 8: 8: 8, and the water powder ratio was 70%. With respect to the three cases of the water supply type water retaining pavement using the water retaining material, the general dense grained asphalt pavement, and the lawn, the change over time in the road surface temperature was measured. The amount of solar radiation is also shown in the graph.

その結果を図6に示す。同図6より、本発明に係る充填固化材を使用した前記給水型保水性舗装の場合は、一般的な密粒度アスファルト舗装に比べると、約10℃ほど路面温度を低減できることが判明した。また、冷却効果は2週間程度持続することが可能であった。   The result is shown in FIG. From FIG. 6, it was found that in the case of the water supply type water retaining pavement using the filled solidified material according to the present invention, the road surface temperature can be reduced by about 10 ° C. as compared with a general dense grained asphalt pavement. In addition, the cooling effect could last for about 2 weeks.

〔他の形態例〕
(1)上記形態例では、特に本出願人が開発した給水型保水性舗装に対して充填保水材を適用した例について述べたが、本充填保水材は従来から公知である、一層の開粒度アスファルト混合物の空隙内に保水材(硬化性スラリー)を充填した保水性舗装に対しても同様に適用が可能である。
[Other examples]
(1) In the above embodiment, the example in which the filled water retaining material is applied to the water supply type water retaining pavement developed by the present applicant has been described. The present invention can be similarly applied to a water retentive pavement in which a water retentive material (curable slurry) is filled in the voids of the asphalt mixture.

吸水率と乾燥密度との相関を示すグラフである。It is a graph which shows the correlation with a water absorption and a dry density. 圧縮強度と乾燥密度との相関を示すグラフである。It is a graph which shows the correlation of compressive strength and dry density. 凝結遅延剤添加量を変化させた場合のPロートフロー値と経過時間とのグラフである。It is a graph of P funnel flow value at the time of changing a setting retarder addition amount, and elapsed time. 本充填保水材を適用した給水型保水性舗装の構造模式図である。It is a structure schematic diagram of the water supply type water retention pavement to which this filling water retention material is applied. 給水型保水性舗装の冷却メカニズムを説明するための図であり、(A)は雨天時、(B)は晴天時を示す図である。It is a figure for demonstrating the cooling mechanism of a water supply type water-retaining pavement, (A) is the figure at the time of rainy weather, (B) is a figure which shows at the time of fine weather. 給水型保水性舗装の冷却効果検証結果を示すグラフである。It is a graph which shows the cooling effect verification result of a water supply type water retention pavement.

符号の説明Explanation of symbols

1…給水型保水層(アスファルト保水層)、2…給水型貯水層(石炭灰固化砕石貯水層)、3…開粒度アスファルトコンクリート、4…充填保水材、5…石炭灰固化砕石   DESCRIPTION OF SYMBOLS 1 ... Water supply type water retention layer (asphalt water retention layer), 2 ... Water supply type water storage layer (coal ash solidification crushed water storage layer), 3 ... Open-graded asphalt concrete, 4 ... Filled water retention material, 5 ... Coal ash solidification crushed stone

Claims (5)

フライアッシュを主体とする保水性舗装のための充填保水材であって、前記充填保水材はフライアッシュ、石膏、消石灰、セメントおよび水とからなる混合物とされ、前記石膏としては85℃以上の温度で加熱処理したものをフライアッシュ100重量部に対して6重量部以上の割合で混合し、前記消石灰をフライアッシュ100重量部に対して4重量部以上の割合で混合し、前記セメントをフライアッシュ100重量部に対して6重量部以上の割合で混合し、前記フライアッシュ、石膏、消石灰及びセメントに対する水の重量百分率(水粉体比)を70〜110%の範囲で混合し、
Pロートフロー値;9〜11秒、ブリージング率(24時間);3%以下、吸水率(材齢28日);50%以上、吸上げ速さ180分以内/10cm(吸上げ速さ;φ5cm×10cmの供試体の底面(水浸深さ5mm)から吸水されて供試体が飽和するまでに要する時間)、圧縮強度;1N/mm以上の諸性能を満足することを特徴とする保水性舗装のための充填保水材。
A water-retaining material for water-retaining pavement mainly composed of fly ash, wherein the water-retaining material is a mixture of fly ash, gypsum, slaked lime, cement and water, and the gypsum has a temperature of 85 ° C or higher. 6 parts by weight or more is mixed with 100 parts by weight of fly ash, and the slaked lime is mixed at 4 parts by weight or more with respect to 100 parts by weight of fly ash. Mixing at a ratio of 6 parts by weight or more with respect to 100 parts by weight, mixing the weight percentage of water to the fly ash, gypsum, slaked lime and cement (water powder ratio) in the range of 70 to 110%,
P funnel flow value: 9 to 11 seconds, breathing rate (24 hours); 3% or less, water absorption rate (material age 28 days); 50% or more, sucking speed within 180 minutes / 10 cm (sucking speed; φ5 cm X10cm test piece bottom surface (water immersion depth 5mm), time taken to saturate the test piece), compressive strength; 1N / mm 2 Filling water retaining material for pavement.
凝結遅延剤を全粉体量に対して0.05〜0.1重量%の割合で添加する請求項1記載の保水性舗装のための充填保水材。 Filling water retaining material for retentive pavement according to claim 1 Symbol placement adding a setting retarder in a proportion of 0.05 to 0.1% by weight relative to the total amount of powder. 前記フライアッシュとして、JIS A6201に準じたフライアッシュII種を用いる請求項1、2いずれかに記載の保水性舗装のための充填保水材。 The filled water-retaining material for water-retaining pavement according to claim 1 , wherein fly ash type II according to JIS A6201 is used as the fly ash. 前記セメントとして高炉セメントを用いる請求項1、2いずれかに記載の保水性舗装のための充填保水材。 The filled water retention material for water retention pavements according to claim 1 , wherein blast furnace cement is used as the cement. 前記充填保水材の40℃乾燥密度が0.8〜1g/cmである請求項1〜いずれかに記載の保水性舗装のための充填保水材。 The filling water retention material for water retention pavement according to any one of claims 1 to 4, wherein the filling water retention material has a 40 ° C dry density of 0.8 to 1 g / cm 3 .
JP2006082330A 2006-03-24 2006-03-24 Filled water retention material for water retentive pavement Expired - Fee Related JP4692830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082330A JP4692830B2 (en) 2006-03-24 2006-03-24 Filled water retention material for water retentive pavement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082330A JP4692830B2 (en) 2006-03-24 2006-03-24 Filled water retention material for water retentive pavement

Publications (2)

Publication Number Publication Date
JP2007255103A JP2007255103A (en) 2007-10-04
JP4692830B2 true JP4692830B2 (en) 2011-06-01

Family

ID=38629612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082330A Expired - Fee Related JP4692830B2 (en) 2006-03-24 2006-03-24 Filled water retention material for water retentive pavement

Country Status (1)

Country Link
JP (1) JP4692830B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623056A (en) * 1985-06-28 1987-01-09 水沢化学工業株式会社 Granulation for coal ash
JP2001295212A (en) * 2000-04-10 2001-10-26 Taiheiyo Cement Corp Concrete pavement
JP2002255619A (en) * 2001-02-27 2002-09-11 Taiheiyo Cement Corp Material for filling cavity
JP2003313809A (en) * 2002-04-22 2003-11-06 Kawai Sekkai Kogyo Kk Water-retentive filler for water-permeable asphalt pavement and water-permeable asphalt pavement filled with it
JP2005068900A (en) * 2003-08-27 2005-03-17 Taisei Rotec Corp Water retentive pavement structure, its construction method and its water retentive function maintaining method
JP2005068636A (en) * 2003-06-30 2005-03-17 Nichireki Co Ltd Water retaining grout material and water retaining pavement body built by using the grout material
JP2005240472A (en) * 2004-02-27 2005-09-08 Jfe Steel Kk Water retentive material composition for pavement and execution method of the water retentive pavement

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623056A (en) * 1985-06-28 1987-01-09 水沢化学工業株式会社 Granulation for coal ash
JP2001295212A (en) * 2000-04-10 2001-10-26 Taiheiyo Cement Corp Concrete pavement
JP2002255619A (en) * 2001-02-27 2002-09-11 Taiheiyo Cement Corp Material for filling cavity
JP2003313809A (en) * 2002-04-22 2003-11-06 Kawai Sekkai Kogyo Kk Water-retentive filler for water-permeable asphalt pavement and water-permeable asphalt pavement filled with it
JP2005068636A (en) * 2003-06-30 2005-03-17 Nichireki Co Ltd Water retaining grout material and water retaining pavement body built by using the grout material
JP2005068900A (en) * 2003-08-27 2005-03-17 Taisei Rotec Corp Water retentive pavement structure, its construction method and its water retentive function maintaining method
JP2005240472A (en) * 2004-02-27 2005-09-08 Jfe Steel Kk Water retentive material composition for pavement and execution method of the water retentive pavement

Also Published As

Publication number Publication date
JP2007255103A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
CN103482924B (en) Water-retaining and cooling pavement material and application thereof
JP2007145669A (en) Water-retainable block and its production method
JP4517357B2 (en) Water supply type water retaining pavement structure and its construction method
JP2008163664A (en) Water retaining pavement structure and its construction method
JP4692830B2 (en) Filled water retention material for water retentive pavement
KR101037576B1 (en) Conservatism mortar composition, pavement composition and pavement
JP4856922B2 (en) Permeable concrete pavement with water retention
KR100859065B1 (en) Ascon filler using bottom ash and ascon composition using the same
JP4255802B2 (en) Pavement
JP5308967B2 (en) Pavement structure and pavement construction method
JP2007063861A (en) Water retentive pavement construction method
JP2004197310A (en) Block for pavement
JP4599233B2 (en) Substructure of water retention pavement
KR100924765B1 (en) Road pavement composition of enhanced retentiveness and drainage, and constructing method using the composition
JP5898350B1 (en) Paving material
JP2007332700A (en) Pavement block
JP3852290B2 (en) Road pavement structure and road pavement method
JP2010120820A (en) Water retentive block
JP5004013B2 (en) Water retention block and method for producing the same
JP5206930B2 (en) Selection method of water retention roadbed material
JP2008303620A (en) Water retentive concrete block and method of producing the same
JP4572079B2 (en) Water-retaining material composition for pavement and construction method of water-retaining pavement
JP4479330B2 (en) Hydraulic material for water retentive solidified body and water retentive solidified body
JP4653143B2 (en) Water retentive pavement filler and water retentive pavement using the filler
WO2007023570A1 (en) Water retaining material composition for paving and method for applying water retaining paving

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4692830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees