JPS623056A - Granulation for coal ash - Google Patents

Granulation for coal ash

Info

Publication number
JPS623056A
JPS623056A JP14024785A JP14024785A JPS623056A JP S623056 A JPS623056 A JP S623056A JP 14024785 A JP14024785 A JP 14024785A JP 14024785 A JP14024785 A JP 14024785A JP S623056 A JPS623056 A JP S623056A
Authority
JP
Japan
Prior art keywords
coal ash
water
granulation
lime
clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14024785A
Other languages
Japanese (ja)
Other versions
JPH068198B2 (en
Inventor
薄井 耕一
潔 高井
本間 利男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizusawa Industrial Chemicals Ltd
Original Assignee
Mizusawa Industrial Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizusawa Industrial Chemicals Ltd filed Critical Mizusawa Industrial Chemicals Ltd
Priority to JP14024785A priority Critical patent/JPH068198B2/en
Publication of JPS623056A publication Critical patent/JPS623056A/en
Publication of JPH068198B2 publication Critical patent/JPH068198B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/021Agglomerated materials, e.g. artificial aggregates agglomerated by a mineral binder, e.g. cement

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Road Paving Structures (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、石炭灰の粒状化法に関するもので、より詳細
には、形成される粒状物に対して透水性を付与すること
によって、埋立地の泥状化を防止し得ると共に、石炭灰
の塩基度を低いレベルに抑制された石炭灰の粒状化物を
得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for granulating coal ash, and more particularly, it improves the granulation of coal ash by imparting water permeability to the granules formed. The present invention relates to a method for obtaining granulated coal ash that can prevent sludge formation and suppress the basicity of coal ash to a low level.

本発明は更に、石炭灰の粒状化を迅速に且つ低コストで
行うための改良に関する。
The invention further relates to an improvement for rapid and low cost granulation of coal ash.

従来の技術及び発明の技術的課題 石炭火力発電所からは極めて多量の石炭灰が排出され、
その廃棄処理が重要な問題となっている。
Technical Problems of Prior Art and Invention Coal-fired power plants emit extremely large amounts of coal ash.
Its disposal has become an important issue.

石炭灰を埋立処理する場合には、竜業廃棄物として管理
型処分場に埋立するように規定されている。
If coal ash is to be disposed of in a landfill, it is stipulated that it must be disposed of in a managed disposal site as industrial waste.

即ち、石炭灰、特にフライアッシュは、大部分の粒子が
球状をなし、ガラス質(5AL、O,−2SiO,)の
形態で平均粒径が約20乃至30μm程度の微細粉末で
あるため、その積層系は、極めて水抜けが悪く、いわい
る透水性に欠けており、例えばこれを埋立に使用すると
、多量の雨水等を包蔵して泥流化するという問題があり
、またこのものは塩基度が極めて高く、埋立地からの浸
出液などは排水基準を超える高いpHを有しその浸出液
による環境への悪影響もある。
In other words, most of the particles of coal ash, especially fly ash, are spherical, in the form of glass (5AL, O, -2SiO,), and are fine powders with an average particle size of about 20 to 30 μm. Laminated systems have extremely poor water drainage and lack so-called water permeability. For example, if they are used in landfills, there is a problem that they contain large amounts of rainwater and turn into mudslides, and they also have high basicity. Leachate from landfills has a high pH that exceeds wastewater standards, and the leachate has a negative impact on the environment.

従来、石炭灰を、その廃棄処理が容易なように固形化す
ることについても多くの提案が認められる。その代表的
なものは、石炭灰に、セメント、石灰、石こうの1種又
は2種以上を混合1−1これに水を加えて自然硬化させ
るものであるが、得られる硬化生成物はpHが11以上
と高く、高度に塩基性であるという欠点があり、また硬
化に長い日数を必要とし、配合する添加成分の量が多く
、処理コストも高いという問題がある。
Conventionally, many proposals have been made regarding solidifying coal ash so that it can be easily disposed of. A typical method is to mix coal ash with one or more of cement, lime, and gypsum (1-1), add water, and let it harden naturally. It has the disadvantage of being highly basic, with a high value of 11 or more, and also requires a long period of time for curing, requires a large amount of additive components, and has high processing costs.

発明□の目的 従って、本発明の目的は、屑終粒状物に透水性を付与し
得ると共に、その水性分散体pgを比較的低いレベルに
抑制することが可能な石炭灰の粒状化法を提供するにあ
る。
OBJECT OF INVENTION □ Accordingly, an object of the present invention is to provide a method for granulating coal ash that can impart water permeability to waste granules and suppress the aqueous dispersion pg to a relatively low level. There is something to do.

本発明の他の目的は、石炭灰の粒状固化を迅速に且つ比
較的低コストで容易に行い得る方法を提供するにある。
Another object of the present invention is to provide a method by which coal ash can be solidified into granules quickly and easily at relatively low cost.

本発明の更に他の目的は、石炭灰を、土木材料としての
用途に使用可能な形態とし得る石炭灰の粒状化法を提供
するにある。
Still another object of the present invention is to provide a method for granulating coal ash, which can make coal ash usable as a civil engineering material.

発明の構成 本発明によれば、石炭灰に、粘土鉱物の硫酸処理により
副生ずる廃酸、石灰又は消石灰及び粘土類を配合し、こ
の配合組成物を造粒することを特徴とする石炭灰の粒状
化法が提供される。
Structure of the Invention According to the present invention, there is provided a method of producing coal ash, which is characterized in that waste acid, lime or slaked lime, and clay, which are by-produced by the sulfuric acid treatment of clay minerals, are blended into coal ash, and the blended composition is granulated. A granulation method is provided.

上述した各成分の配合量は、得られる粒状化物の用途に
よっても相違するが、石炭灰に対し、固形分重量基準(
以下、特記しない限り、チ及び部は重量基準とする)で
、廃酸15乃至60チ、石灰又は消石灰2乃至8俤、及
び粘土類5乃至40チとするのがよい。
The blending amount of each component mentioned above differs depending on the use of the obtained granules, but it is based on solid content weight (based on coal ash).
Unless otherwise specified, parts and parts are based on weight), preferably 15 to 60 grams of waste acid, 2 to 8 grams of lime or slaked lime, and 5 to 40 grams of clay.

本発明を以下に詳細に説明する。The present invention will be explained in detail below.

石炭燃焼時には、石炭使用量の10乃至20%の石炭灰
が発生することが知られており、火力発電所等で使用さ
れる微粉炭燃焼ボイラーでは、石炭灰の大部分は所謂フ
ライアッシュで占められる。
It is known that when coal is burned, 10 to 20% of the amount of coal used is generated as coal ash, and in pulverized coal combustion boilers used in thermal power plants, most of the coal ash is so-called fly ash. It will be done.

石炭灰は、その化学組成からみて、トエポゾラン材料に
属するものであり、水の存在下で水酸化カルシウムと化
合して水不溶性のシリカ系化合物(CaO−5iO,−
Al2O,−nH,0)を生成する。更に、石膏或いは
セメント等と反応して、エトリンジヤイト(3CaO−
A40s ・5Ca S04・52 ”t o ) と
呼ばれる水不溶性の水和生成物を生成する。
Judging from its chemical composition, coal ash belongs to the toepozolan material, and it combines with calcium hydroxide in the presence of water to form a water-insoluble silica-based compound (CaO-5iO,-
Al2O,-nH,0) is produced. Furthermore, it reacts with gypsum or cement to form ettringite (3CaO-
It produces a water-insoluble hydration product called A40s .5Ca S04.52 ``t o ).

従来、石炭灰の硬化に使用する反応は上述したポゾラン
硬化、エトリンジヤイト硬化を利用した4のであり、本
発明においても、これらのポゾラン硬化、石膏硬化及び
エトリンジヤイト硬化を利用するものであるが、本発明
は石炭灰との間に上記硬化反応を行わせるための原料と
して、粘土鉱物の硫酸処理により副生ずる廃酸、石灰又
は消石灰及び粘土類の組合せを用いる点に特徴を有する
ものであるが、勿論必要あれば、上記の廃酸の代りに工
業用硫酸を用いたり、石灰の代りにセメント等のケイ酸
カルシウム組成物を用いてもよい。
Conventionally, the reaction used for curing coal ash is the above-mentioned pozzolan curing and ettringite curing, and the present invention also utilizes these pozzolan curing, gypsum curing, and ettringite curing, but the present invention The method is characterized in that it uses a combination of waste acid, lime or slaked lime, and clay, which are by-products of the sulfuric acid treatment of clay minerals, as raw materials for carrying out the above-mentioned curing reaction with coal ash. If necessary, industrial sulfuric acid may be used instead of the above-mentioned waste acid, and a calcium silicate composition such as cement may be used instead of lime.

本発明に使用する廃酸とは、酸性白土、ベントナイト等
の粘土鉱物を硫酸で処理し、活性白土、ノーカーボン紙
用顕色剤、シリカ等を製造する工程で得られるものであ
り、遊離の硫酸に加えて、可溶性硫酸塩類、例えば硫酸
アルミニウム、硫酸鉄、硫酸マグネシウム等を含有して
いる。下記表はこのような廃酸の代表的組成を示すもの
である。
The waste acids used in the present invention are those obtained in the process of producing activated clay, color developer for carbonless paper, silica, etc. by treating clay minerals such as acid clay and bentonite with sulfuric acid, and are free acids. In addition to sulfuric acid, it contains soluble sulfates such as aluminum sulfate, iron sulfate, magnesium sulfate, etc. The table below shows typical compositions of such waste acids.

遊離硫酸      0 乃至  57/を硫酸アルミ
ニウム 10 乃至 25 ?/を硫酸鉄      
 1 乃至 10 ?/を硫酸マグネシウム  0.1
乃至  19/を他の硫酸塩     0.1乃至  
57/を固形分濃度    12 乃至 40 チ本発
明に使用する上記廃酸は、このように遊離の硫酸及び溶
液の形の硫酸アルミニウムを含有することが顕著な特徴
であり、組合せで使用される石灰又は生石灰との間に迅
速に反応j−で、エトリンジヤイト型の硬化を行いしか
も反応後の粒状物のpHを比較的低い範囲に抑制すると
いう特徴を有するものである。
Free sulfuric acid 0 to 57/aluminum sulfate 10 to 25? / iron sulfate
1 to 10? / magnesium sulfate 0.1
Other sulfates 0.1 to 19/
The waste acid used in the present invention is characterized by containing free sulfuric acid and aluminum sulfate in the form of a solution, and the lime used in combination is Alternatively, it has the characteristics of rapidly reacting with quicklime to effect ettringite-type hardening, and suppressing the pH of the granules after the reaction to a relatively low range.

この意味において、石灰或いは消石灰を用いることも重
要となる。只、本発明方法に使用する石灰或いは消石灰
の量は、従来の方法で使用する量に比してかなり少ない
ものであることは注目に値する。
In this sense, it is also important to use lime or slaked lime. However, it is worth noting that the amount of lime or slaked lime used in the method of the invention is considerably lower than that used in conventional methods.

本発明においては、上述した成分に加えて、粘土類を使
用することも迅速な粒状固化性能を付与する点で重要で
ある。即ち、石炭灰は、シリカ成分がAI、03成分と
共にガラス化し塩基性成分として、CaO,MfO,N
a、0.に、0を包蔵したものであり、それ自体迅速反
応性に劣ると共に、殆んど保水性を有していない。かぐ
して、石炭灰に石灰、セメント等の従来の硬化剤成分と
水とを配合した場合には、配合組成物は数時間は形態保
持性のない状態であり、数日の放置により固化した状態
となる。
In the present invention, in addition to the above-mentioned components, the use of clay is also important in providing rapid granulation solidification performance. That is, in coal ash, the silica component is vitrified together with AI and 03 components, and basic components include CaO, MfO, and N.
a, 0. However, it contains 0 and has poor rapid reactivity and almost no water retention. When water is mixed with coal ash and conventional curing agent components such as lime and cement, the blended composition does not retain its shape for several hours, but solidifies after being left for several days. state.

これに対して、本発明の配合系では、粘土鉱物自体が造
粒に際して賦型剤としてバインダー的作用を行うと共に
、前述した廃酸及び石灰との組合せ使用にも関連して、
配合物は直ちに造粒可能な状態となり、1〜かもこの造
粒物の状態で固化反応が進行するのである。
On the other hand, in the blending system of the present invention, the clay mineral itself acts as a binder as an excipient during granulation, and also in conjunction with the aforementioned waste acid and lime,
The blend immediately becomes ready for granulation, and the solidification reaction proceeds in the granulated state.

粘土類としては、酸性白土、ベントナイト、カオリン、
アタプルガイト、サボナイト、ハロイサイト、パイロフ
イラメト、ゼオライト等のアルミノケイ酸塩粘土が何れ
も使用される。一般に吸油量が40乃至65rnl/1
00グの範囲内にある粘土類が好適である。
Clays include acid clay, bentonite, kaolin,
Aluminosilicate clays such as attapulgite, sabonite, halloysite, pyrofilamate, and zeolite can all be used. Generally oil absorption is 40 to 65rnl/1
Clays in the 00g range are preferred.

本発明において、石炭灰当り、廃酸は10乃至60%、
特に25乃至55%の量で使用するのがよく、上記範囲
よりも少ない場合には、粒状化及び固化が不満足なもの
となると共に、生成粒状物のpHが高くなり過ぎる欠点
を生じる。一方、上記範囲を越えると、配合系の限界吸
液量よりも液分が多くなる結果として造粒が困難となる
傾向がある。石灰又は消石灰は石炭灰当り2乃至8%、
特に6乃至6チのような比較的少量で十分であゆ、上記
範囲よりも少ないと、迅速硬化性能が得られなくなり、
また上記範囲よりも多いと、本発明の利点、即ち石灰の
使用量を少なくし且つ粒状物のpHを下げるという利点
が失われる傾向がある。
In the present invention, waste acid is 10 to 60% per coal ash,
In particular, it is preferable to use it in an amount of 25 to 55%; if it is less than the above range, granulation and solidification will be unsatisfactory, and the pH of the resulting granules will become too high. On the other hand, when the above range is exceeded, granulation tends to become difficult as a result of the liquid content being greater than the limit liquid absorption of the blended system. Lime or slaked lime is 2 to 8% per coal ash,
In particular, a relatively small amount such as 6 to 6 inches is sufficient; if the amount is less than the above range, rapid curing performance cannot be obtained.
Moreover, if the amount exceeds the above range, the advantages of the present invention, namely, the advantage of reducing the amount of lime used and lowering the pH of the granules, tend to be lost.

粘土類は、石炭灰当り5乃至40重量%、特に10乃至
60重量%の量で用いるのがよく、上記範囲よりも少な
い場合にはやはり迅速粒状固化性能が失われる傾向があ
り、上記使用量を越えると、少ない配合剤の使用量で、
石炭灰を粒状化処理するという利点が損われることにな
る。
Clays are preferably used in an amount of 5 to 40% by weight, particularly 10 to 60% by weight, based on coal ash; if the amount is less than the above range, the rapid granulation solidification performance tends to be lost, so the above usage amount If it exceeds , with a small amount of compounding agent
The benefits of granulating coal ash will be lost.

本発明において、これら各成分の配合及び粒状化はそれ
自体公知の種々の手法で行うことができる。配合方法の
適尚な例として、石炭灰、石灰及び粘土を乾式混合;−
1これに廃酸を噴霧しつつ混合と粒状化とを行う。この
際、造粒媒体としての水分は、廃酸中に含有される水分
として供給することができるが、勿論必要あれば、廃酸
中の水分とは別個に添加してもよい。
In the present invention, the blending and granulation of these components can be carried out by various methods known per se. A suitable example of a blending method is dry mixing of coal ash, lime and clay;-
1 Mixing and granulation are performed while spraying waste acid onto the mixture. At this time, water as a granulation medium can be supplied as water contained in the waste acid, but of course, if necessary, it may be added separately from the water in the waste acid.

混合及び造粒の条件は、全体が比較的一様に混合され、
所望の粒子サイズに造粒されるようなものであればよく
、格別面倒な条件及び操作は特に必要としない。例えば
、温度は室温或いは雰囲気温度で十分であり、反応によ
り発熱する傾向が認められるが、この発熱により養生が
更に促進されるし、固化処理の前後において、火力発電
所で発生する廃熱を養生に利用してもかまわない。得ら
れる粒状物は既に十分な形態保持性と強度とを有してい
るが、この粒状物を放置することにより、養生が進行し
、一層強度、例えば圧潰強度の増大がもたらされる。
The mixing and granulation conditions are such that the whole is mixed relatively uniformly,
Any material that can be granulated to a desired particle size is sufficient, and particularly complicated conditions and operations are not required. For example, room temperature or ambient temperature is sufficient, and the reaction tends to generate heat, but this heat generation further accelerates curing, and waste heat generated at thermal power plants can be used for curing before and after solidification It may be used for. The resulting granules already have sufficient shape retention and strength, but by leaving the granules to stand, curing progresses and further strength, for example an increase in crushing strength, is brought about.

粒状物の粒子サイズは、用途によっても相違するが、埋
立や地盤改良剤等の用途に使用する場合には、一般に1
乃至15醜、特にろ乃至10mmの粒子サイズを有する
ことが望ましい。粒子形状も、球状、柱状、不定形等の
任意形状とすることができ、この粒子形状に応じて、例
えば転動造粒法、押出造粒法、混合造粒法等が採用され
る。
The particle size of granules varies depending on the application, but when used for applications such as landfill or ground improvement agents, generally 1.
It is desirable to have a particle size of from 15 to 15 mm, especially from 0 to 10 mm. The particle shape can also be arbitrary, such as spherical, columnar, or irregular, and depending on the particle shape, for example, a rolling granulation method, an extrusion granulation method, a mixed granulation method, etc. are employed.

発明の作用効果 本発明により得られる石炭灰の粒状物は、得られた直後
で5.5乃至6.5のpH2及び長期水浸漬後で6.5
乃至z5のpHを有し、粒状物のpHが低いレベルに抑
制されていることが特徴である。そこで添付第1図は、
後述する例に示す実施例及び比較例によって石炭灰を粒
状体に処理し、この粒状物を水に浸漬させ、その経時に
おけるそれぞれの浸漬水のpHを測定したものである。
Effects of the Invention The coal ash granules obtained by the present invention have a pH of 5.5 to 6.5 immediately after being obtained, and a pH of 6.5 after long-term immersion in water.
It has a pH of z5 to z5, and is characterized in that the pH of the granules is suppressed to a low level. Therefore, the attached Figure 1 is
Coal ash was processed into granules according to Examples and Comparative Examples shown below, and the granules were immersed in water, and the pH of each immersion water was measured over time.

この第1図の結果から、石炭灰中の可溶性の塩基性成分
が中性化及び安定に固定されている実施例(,4)に比
らべて、比較例CB)は、該成分の浸出による浸漬水の
pH上昇が著しく、しかも長期に亘って該成分の浸出に
よる高pEを呈することがら、本発明による作用効果と
しての石炭灰の粒状処理物のpHが低いレベルに抑制さ
れる事実がよ〈理解される。しかも、本発明による粒状
物は、水中での圧潰強度が大で、しかも水中で粒状物の
崩壊等を生じることがなく、また透水性能にも際立って
優れている。
From the results shown in Figure 1, compared to Example (4), in which the soluble basic components in coal ash are neutralized and stably fixed, Comparative Example CB) is more effective at leaching out these components. The fact that the pH of the granular treated coal ash is suppressed to a low level as an effect of the present invention is due to the fact that the pH of the immersion water increases significantly and exhibits a high pE over a long period of time due to the leaching of the components. yo〈understood. Moreover, the granular material according to the present invention has high crushing strength in water, does not disintegrate in water, and has outstanding water permeability.

更に、本発明によれば、得られる粒状物は混和造粒直後
から優れた形態保持性を有し、しかも用いる原料が安価
に得られるもので、その配合量も比較的少食でよいこと
から、製造操作が容易でコストも安く、多量の石炭灰処
理にも適しているという利点がある。
Furthermore, according to the present invention, the resulting granules have excellent shape retention immediately after mixing and granulation, and the raw materials used are inexpensive and can be incorporated in relatively small amounts. It has the advantages of easy manufacturing operation, low cost, and suitable for processing large amounts of coal ash.

本発明を次の例で説明する0 実施例1゜ 石炭灰に賦型剤として酸性白土の微粉末(酸白)と消石
灰の粉末を混合し、次いで廃酸を噴霧させながら攪拌す
ることにより、石炭灰を耐水性及び塩基度の抑制された
粒状物(砂粒)に造粒する方法について説明する。
The present invention will be explained with the following examples.0 Example 1 By mixing coal ash with fine powder of acid clay (acid white) and powder of slaked lime as excipients, and then stirring while spraying waste acid, A method for granulating coal ash into granules (sand grains) with reduced water resistance and basicity will be described.

〔石炭灰〕[Coal ash]

本実施例で用いる石炭灰は、東北フライアッシュにによ
り入手した原粉(FA)を用いた0第  1  表 〔賦型剤〕 本実施例で用いる賦型剤として粘土質、石灰質及び廃酸
について説明する。
The coal ash used in this example was raw powder (FA) obtained from Tohoku Fly Ash. explain.

粘土質 本発明の賦型剤である粘土質は、特に石炭灰のような吸
油量が小さく、保水性に乏しいガラス質を造粒するため
に形体保持性を与え造粒性を高める上で重要な添加剤で
ある。本実施例では低廉で工業的に容易に入手できる酸
白を王に用いた。
Clay: Clay, which is the excipient of the present invention, is particularly important for providing shape retention and improving granulation properties for granulating glassy materials such as coal ash, which have low oil absorption and poor water retention. It is an additive. In this example, acid white, which is inexpensive and easily available industrially, was used as the base.

第2表 石灰質 同じく賦型剤である石灰質は、石炭灰の造粒硬化に係わ
る反応としての工) IJンジャイト硬化、石膏硬化、
及びポゾラン硬化の反応媒体として作用し、造粒物の硬
化を促進させるために重要である。
Table 2: Calcareous material Calcareous material, which is also an excipient, is used as a reaction related to the granulation and hardening of coal ash) IJ ingite hardening, gypsum hardening,
It also acts as a reaction medium for pozzolan curing, and is important for accelerating the curing of granules.

石灰質としては、工業的に低廉で容易に入手できる消石
灰、ポルトランドセメント及び天然のケイ酸カルシウム
であるオーラストナイト等が用いられるが、本実施例で
は吸油t44.5 ml/100r。
As the limestone, slaked lime, Portland cement, and aurastonite which is a natural calcium silicate, which are industrially inexpensive and easily available, are used, but in this example, the oil absorption was 44.5 ml/100r.

平均粒度15μmの工業用消石灰を賦型剤(/?)とし
て主に用いた。
Industrial slaked lime with an average particle size of 15 μm was mainly used as the excipient (/?).

廃酸 同じ〈賦型剤である廃酸は、石炭灰、酸白、消石灰の配
合物に噴霧1.攪拌することによって、配合物の粒状化
における一次バインダーとして作用すると同時に、エト
+Jンジャイト反応、石膏反応及びポゾラン反応を石炭
灰、石灰質及び酸白間に起こさせる反応開始剤として作
用し、従って本発明における賦型剤CC)として酸白と
同様に重要な添加剤である。使用する賦型剤(C)は、
酸白を硫酸で処理し、油脂の精製剤である活性白土及び
活性シリカなどを製造する際に副生ずる廃酸を主に用い
た。なおこの廃酸は、含鉄硫酸バンド(商品名MIC5
)として上下水道の凝集剤として大量に使用されている
工業的に安価なものである。
Same as waste acid. Waste acid, which is an excipient, is sprayed onto a mixture of coal ash, acid white, and slaked lime. Stirring acts as a primary binder in the granulation of the formulation and at the same time as a reaction initiator for etho+Jnggite, gypsum and pozzolanic reactions to take place between the coal ash, calcareous and acid white, and thus the present invention. As excipient CC), it is an important additive as well as acid white. The excipient (C) used is
We mainly used waste acid, which is a by-product when treating acid white with sulfuric acid to produce activated clay and activated silica, which are refining agents for oils and fats. Note that this waste acid is ferrous sulfuric acid band (trade name: MIC5).
) is an industrially inexpensive product that is used in large quantities as a coagulant for water and sewage systems.

第6表 〔造粒方法〕 本実施例における造粒方法の代表例について説q−する
。容1157tのモルタルミキサーに(−ワキタ製、型
式KM−3T)、石炭灰の原初(FA)を2DKyの市
販の工業用消石灰を1.1 Kqと更らに酸白2.4に
4を投入し、よく攪拌混合した後、その攪拌系廻廃酸7
.5tC9BKo)を徐々に圧加し、次いで6乃至5分
間攪拌することによって、2乃至10X径の石炭灰の砂
粒物66Kgを回収した。
Table 6 [Granulation Method] Typical examples of the granulation method in this example will be explained. Into a mortar mixer with a capacity of 1157 tons (manufactured by Wakita, model KM-3T), coal ash primordial (FA), 2 DKy of commercially available industrial slaked lime, 1.1 Kq, and acid white 2.4 to 4 were added. After stirring and mixing thoroughly, remove the waste acid from the stirring system.
.. 5tC9BKo) was gradually pressurized and then stirred for 6 to 5 minutes to recover 66 kg of coal ash sand grains with a diameter of 2 to 10X.

回収した砂粒物は反応熱によって40乃至60Cに昇温
される。
The temperature of the recovered sand grains is raised to 40 to 60C by the heat of reaction.

次いで回収した砂粒物の一部を6乃至6時間室温で放置
後及び室温で6日間放置した後、それぞれ水中に浸漬さ
せ目視観察による崩壊、泥流化の有無を評価した。
Next, some of the recovered sand grains were left at room temperature for 6 to 6 hours, and after being left at room temperature for 6 days, they were immersed in water and visually observed to evaluate the presence or absence of disintegration and mudflow.

なお、表4に記載したIシリーズは本実施例の効果を明
確にするための比較例である。
Note that the I series listed in Table 4 is a comparative example for clarifying the effects of this example.

〔物性試験〕[Physical property test]

■ 吸油量 試料粉粒体51をとり、これに煮アマニ油を滴下し、全
体が硬いパテ状を呈し、釧ベラでの練り混ぜ時にらせん
状に巻き起こされる程度になった時を終点として、試料
1002当りの煮アマニ油の添加量を算出し、吸油量(
y+//100S’)とした。
■ Take the oil absorption sample powder 51, drop boiled linseed oil onto it, and set the end point when the whole becomes like a hard putty and can be rolled up into a spiral shape when mixed with a spatula. Calculate the amount of boiled linseed oil added per 1002 samples and calculate the oil absorption (
y+//100S').

実施例2゜ 実施例1で調製した砂粒物について、耐水性及び塩基度
抑制効果について評価した。
Example 2 The sand grains prepared in Example 1 were evaluated for water resistance and basicity suppression effect.

耐水性 回収した砂粒物の中で、水浸漬で崩壊を起こさない造粒
物について、長期に亘たって水に接触された際の耐水性
を評価するために、20φ×1200Xのガラスカラム
に約800xの層高で砂粒物を充填し、次いで充填層の
上部に約150−の水が留るように水を圧加し、次いで
それぞれ1日、6日、7日、60日、180日及び36
0日間浸漬経過させた後、それぞれ下部より150−の
浸漬水を排出させその速度を測定し、これより浸漬日数
による通水速度(td /yprii )の経時好個を
することによって、長期に亘って造粒物が水に接触され
た時に必要とする耐水性を評価した〇塩基度 石炭灰のアルカリ対策として石炭灰及びその処理物を埋
立地等に再利用するに際し、石炭灰からのアルカリ物質
の溶出が問題にされる。
Water Resistance Among the collected sand grains, in order to evaluate the water resistance of the granules that do not disintegrate when immersed in water over a long period of time when they come into contact with water, they were placed in a 20φ x 1200X glass column at approximately 800×. Filled with sand grains at a bed height of 1,000 ml, then pressurized water so that about 150 ml of water remained at the top of the packed bed, and then heated for 1 day, 6 days, 7 days, 60 days, 180 days and 36 days, respectively.
After immersion for 0 days, 150-immersion water was discharged from the bottom of each tube and its speed was measured. From this, the water flow rate (td / yprii) was calculated over time depending on the number of days of immersion. The water resistance required when the granules come into contact with water was evaluated.〇Basicity As a countermeasure against alkalinity in coal ash, when reusing coal ash and its processed materials in landfills, etc., the alkaline substances from coal ash elution is a problem.

そこで耐水性の評価試験と併せて、浸漬液のpHを測定
し、本発明による石炭灰の塩基度抑制効果について評価
した。
Therefore, in addition to the water resistance evaluation test, the pH of the immersion liquid was measured to evaluate the basicity suppressing effect of coal ash according to the present invention.

なお表5に通水速度の結果を表示し、塩基度の抑制効果
についてはその代表例を図−1に表示した0 第5表 以上の結果、実施例1及び2から明らかなように、本発
明によって、微粉末の石炭灰を砂粒状に処理することに
よって、長期に亘って水中に浸漬されても、崩壊又は泥
流化を起こさない耐水性に優れた砂粒物にすることがで
き、しかも問題とされた塩基度も長期に亘って抑制され
ることがよく理解される。
The results of the water flow rate are shown in Table 5, and a typical example of the basicity suppression effect is shown in Figure 1.0 As is clear from the results in Table 5 and Examples 1 and 2, this According to the invention, by processing finely powdered coal ash into sand grains, it is possible to create sand grains with excellent water resistance that will not disintegrate or turn into mudslides even if immersed in water for a long period of time. It is well understood that the problematic basicity is also suppressed over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

981図は、実施例1の実験番号1−1の条件で得られ
た砂粒物と比較例として石炭灰を水に浸漬させた際の塩
基度の経時変化を示す。 図中の記号(A)は実施例を表わ12、記号(B)は比
較例を表わす。 特許出願人  水澤化学工業株式会社 →嘗要(五) 手続補正書帽鋤 昭和60年12月11日
Figure 981 shows the change in basicity over time when sand grains obtained under the conditions of experiment number 1-1 of Example 1 and coal ash as a comparative example were immersed in water. The symbol (A) in the figure represents an example 12, and the symbol (B) represents a comparative example. Patent Applicant: Mizusawa Chemical Industry Co., Ltd. → Summary (5) Procedural Amendment Form December 11, 1985

Claims (2)

【特許請求の範囲】[Claims] (1)石炭灰に、粘土鉱物の硫酸処理により副生する廃
酸、石灰又は消石灰及び粘土類を配合し、この配合組成
物を造粒することを特徴とする石炭灰の粒状化法。
(1) A method for granulating coal ash, which comprises blending waste acid, lime or slaked lime, and clay, which are by-produced by the sulfuric acid treatment of clay minerals, into coal ash, and granulating this blended composition.
(2)石炭灰に対し、固形分基準で廃酸15乃至60重
量%、石灰又は消石灰2乃至8重量%及び粘土類5乃至
40重量%を配合する特許請求の範囲第1項記載の粒状
化法。
(2) Granulation according to claim 1, wherein 15 to 60% by weight of waste acid, 2 to 8% by weight of lime or slaked lime, and 5 to 40% by weight of clay are blended with coal ash on a solid content basis. Law.
JP14024785A 1985-06-28 1985-06-28 Granulation method of coal ash Expired - Lifetime JPH068198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14024785A JPH068198B2 (en) 1985-06-28 1985-06-28 Granulation method of coal ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14024785A JPH068198B2 (en) 1985-06-28 1985-06-28 Granulation method of coal ash

Publications (2)

Publication Number Publication Date
JPS623056A true JPS623056A (en) 1987-01-09
JPH068198B2 JPH068198B2 (en) 1994-02-02

Family

ID=15264335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14024785A Expired - Lifetime JPH068198B2 (en) 1985-06-28 1985-06-28 Granulation method of coal ash

Country Status (1)

Country Link
JP (1) JPH068198B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08113777A (en) * 1994-10-18 1996-05-07 Taisei Corp Method for utilizing solidified coal ash
JP2007119341A (en) * 2005-09-30 2007-05-17 Ube Ind Ltd Coal ash granulated sand and method of manufacturing coal ash granulated sand
JP2007210838A (en) * 2006-02-09 2007-08-23 Ube Ind Ltd Hydraulic composition and its manufacturing method
JP2007255103A (en) * 2006-03-24 2007-10-04 Tokyo Electric Power Co Inc:The Filling water retention material for water retention pavement
CN110015855A (en) * 2019-04-01 2019-07-16 中国地质科学院郑州矿产综合利用研究所 Treatment method of lithium slag

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08113777A (en) * 1994-10-18 1996-05-07 Taisei Corp Method for utilizing solidified coal ash
JP2007119341A (en) * 2005-09-30 2007-05-17 Ube Ind Ltd Coal ash granulated sand and method of manufacturing coal ash granulated sand
JP2007210838A (en) * 2006-02-09 2007-08-23 Ube Ind Ltd Hydraulic composition and its manufacturing method
JP2007255103A (en) * 2006-03-24 2007-10-04 Tokyo Electric Power Co Inc:The Filling water retention material for water retention pavement
JP4692830B2 (en) * 2006-03-24 2011-06-01 東京電力株式会社 Filled water retention material for water retentive pavement
CN110015855A (en) * 2019-04-01 2019-07-16 中国地质科学院郑州矿产综合利用研究所 Treatment method of lithium slag

Also Published As

Publication number Publication date
JPH068198B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
US4518508A (en) Method for treating wastes by solidification
US4375986A (en) Process for treating liquids wastes possessing a strong acidity
JPS5910280B2 (en) Fixation method for waste liquid or sludge
JPH01127091A (en) Method for solidifying waste liquid to chemically fixing the same
US4865761A (en) Compositions and method for control and clean-up of hazardous acidic spills
CN110684537A (en) Chromium-contaminated soil curing agent and application thereof
JPH05500325A (en) Method of inactivating and/or immobilizing environmentally significant hazardous substances
JP5768293B2 (en) Method for producing soil-solidifying material using fluorine-containing inorganic waste, obtained soil-solidifying material, and method for solidifying soft soil using the soil-solidifying material
JP3274376B2 (en) Agglomerating agent for mud, solidifying agent using it
JPS623056A (en) Granulation for coal ash
CA1280584C (en) Compositions and method for neutralization and solidification of hazardous acid spills
KR100375407B1 (en) method of manufacturing solity for preventing heavy metals from being occurred in wastes and solity manufactured by the same
JPH0975747A (en) Method for caking photocatalyst
JP2006290713A (en) Method of reforming slag particle group as artificial sand, and artificial sand
JPH07185499A (en) Waste treatment material
GB1578098A (en) Hydraulic activated slag binder
JPS62260753A (en) Neutral consolidating agent and manufacture
JP4006584B2 (en) Fluorine adsorbent and method for treating fluorine in water
JPH06304544A (en) Method of treating contaminated waste, product obtained by said method and product for coagulat- ing said contaminated waste
EP0188305A2 (en) A process for processing a moist metal or metal compounds containing composition comprising at least on solid product separated from gases evolved during the preparation of iron
CN110052489A (en) A kind for the treatment of agent and preparation method for manganese mud heavy metal pollution
JPH0442080B2 (en)
JP2004105783A (en) Solidification material and solidification method for soil
JPH0848549A (en) Slag curing material
JPH11207291A (en) Solidifying agent for incineration residue and residue solidifying method