JPH11207291A - Solidifying agent for incineration residue and residue solidifying method - Google Patents

Solidifying agent for incineration residue and residue solidifying method

Info

Publication number
JPH11207291A
JPH11207291A JP10013762A JP1376298A JPH11207291A JP H11207291 A JPH11207291 A JP H11207291A JP 10013762 A JP10013762 A JP 10013762A JP 1376298 A JP1376298 A JP 1376298A JP H11207291 A JPH11207291 A JP H11207291A
Authority
JP
Japan
Prior art keywords
solidifying agent
incineration
solidifying
residue
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10013762A
Other languages
Japanese (ja)
Inventor
Yohei Hisada
陽平 久田
Shigeru Yamazaki
茂 山崎
Kunitoshi Suzuki
邦利 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP10013762A priority Critical patent/JPH11207291A/en
Publication of JPH11207291A publication Critical patent/JPH11207291A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a solidified body high in strength while holding the sufficient elution preventing properties of heavy metals by mixing incineration residue with a solidifying agent. SOLUTION: A solidifying agent mixed with incineration ash to solidify the ash consists of 1-30 wt.% gypsum, 4-99 wt.% admixture showing latent hydraulic properties such as blast furnace slag and 0-29 wt.% cement. This solidifying agent 10-70 wt.% and incineration ash 30-90 wt.% are mixed and subsequently kneaded with a necessary amt. of water to obtain a solidified body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、廃棄物焼却プラン
ト等の焼却炉にて発生する焼却灰や煤塵等の焼却残渣を
固化するための固化剤、及びそれによって路盤材等の土
木材料に利用できる焼却残渣のリサイクル用固化体を固
化する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solidifying agent for solidifying incineration residues such as incineration ash and dust generated in an incinerator of a waste incineration plant and the like, and thereby to use as a civil engineering material such as a roadbed material. The present invention relates to a method for solidifying a solidified body for recycling incineration residues that can be produced.

【0002】[0002]

【従来の技術】産業廃棄物や都市ゴミを焼却する際に発
生する焼却灰(ボトムアッシュ)や電気集塵機等にて集
塵された煤塵(飛灰・フライアッシュ)等の焼却残渣に
はカドミウム(Cd)や鉛(Pb)等の有害な重金属が
含まれていることが多く、これらをリサイクル材として
埋め立て処分する場合にはセメントで固化する等、含有
する重金属が溶出しないように処理してから処分しなけ
ればならないことが法律で定められている。
2. Description of the Related Art Cadmium (bottom ash) generated when incinerating industrial waste and municipal waste and dust (fly ash and fly ash) collected by an electric dust collector and the like are incinerated. Harmful heavy metals such as Cd) and lead (Pb) are often contained, and when these are disposed of as landfills by recycling, they must be treated to prevent the contained heavy metals from being eluted, such as by solidifying with cement. It is stipulated by law that it must be disposed of.

【0003】そしてこの焼却残渣を固化する手段とし
て、キレート等の薬剤や様々なセメント系の固化剤及び
石こうを添加する等の手段が提案され、かつこの固化剤
を用いて焼却残渣を固化する方法が種々提案されてい
る。
As means for solidifying the incineration residue, means such as addition of chemicals such as chelate, various cement-based solidifying agents and gypsum have been proposed, and a method of solidifying the incineration residue using this solidifying agent has been proposed. Have been proposed.

【0004】これら従来の技術としては、特開昭56−
10399号公報、特開昭60−41589号公報に示
されたものが知られている。この従来の技術の前者にあ
っては、アウイン40%以下、カルシウムシリケート6
0〜25%、遊離石灰5%未満、石こう40%以下とな
っており、ここでアウインとカルシウムシリケートはポ
ルトランドセメント主成分である。このことからこの固
化剤はポルトランドセメント分が最小でも55%配合さ
れていることになる。
[0004] These prior arts are disclosed in
Japanese Patent Application Laid-Open No. 10399 and No. 60-41589 are known. In the former of this prior art, the height of the calcium silicate is less than 40%.
It is 0 to 25%, free lime less than 5%, and gypsum 40% or less, where awine and calcium silicate are the main components of Portland cement. This means that the solidifying agent contains at least 55% of Portland cement.

【0005】また従来の技術の後者にあっては、石炭灰
にセメント、石こうあるいは消石灰、石こうもしくはセ
メントのみを混合し、これに水を加えて混練した配合材
料となっている。
[0005] In the latter case of the prior art, cement, gypsum or slaked lime, gypsum or cement alone are mixed with coal ash, and water is added to the mixed material to knead it.

【0006】[0006]

【発明が解決しようとする課題】上記従来の技術のう
ち、前者のものは、膨張、セメント用膨張材を主とする
固化剤であって、ポルトランドセメント分が上記したよ
うに最小でも55%と多く含有しているにもかかわら
ず、これを焼却残渣に混合して固化した場合、この固化
体は所定の硬さを得ることができなかった。
Among the above prior arts, the former is a solidifying agent mainly composed of an expanding material for expansion and cement, and the Portland cement content is at least 55% as described above. Despite the high content, when this was mixed with the incineration residue and solidified, the solidified product could not obtain a predetermined hardness.

【0007】これは、上記焼却残渣にはタンニン酸やフ
ミン酸等の有機不純物が含有されているものがあり、こ
の有機不純物を含有している焼却残渣をポルトランドセ
メントで固化した場合、未水和粒子の周辺に無定型物質
が生成し、これらの物質が極性によりセメント粒子の表
面に吸着されるか、またはCa++と結合して被膜を形
成し、セメントの水和反応を阻害して、硬化が阻害され
てしまうことによるものである。これはセメントの量が
多い程顕著になる。
[0007] This is because some of the incineration residues contain organic impurities such as tannic acid and humic acid. When the incineration residues containing these organic impurities are solidified with Portland cement, they are not hydrated. Amorphous substances are formed around the particles, and these substances are adsorbed on the surface of the cement particles depending on the polarity, or combine with Ca ++ to form a film, which inhibits the hydration reaction of cement and hardens. Is obstructed. This becomes more pronounced as the amount of cement increases.

【0008】また、この前者のものにあっては、その明
細書中に固化体からPbやCdが不溶出である旨記載さ
れているが、この重金属の溶出試験方法が明らかにされ
ていないので、どのような状態で不溶出であるのか不明
であった。
[0008] Further, in the former, it is described in the specification that Pb and Cd are not eluted from the solidified product, but the method for testing the elution of heavy metals is not disclosed. It was not clear in what state the substance was not eluted.

【0009】この重金属の溶出については、現在、廃棄
物の溶出の判断基準とされる土壌環境基準は平成6年に
環境庁より告示された数値が用いられているが、上記従
来の技術の前者のものにあっては上記基準施行前の現在
より甘い基準での判断と考えられる。この前者のものに
あっては、セメント成分が多すぎてアルカリ度が高くな
りすぎるために、現在の土壌環境基準をクリアすること
ができないと考えられる。
Regarding the leaching of heavy metals, numerical values reported by the Environment Agency in 1994 are used as soil environmental standards which are currently used as criteria for leaching of waste. In the case of the above, it is considered that the judgment is made based on a more stringent standard than before the enforcement of the above standard. In the former case, it is considered that the present soil environmental standard cannot be satisfied because the cement component is too large and the alkalinity is too high.

【0010】一方、上記従来の技術の後者にあっては、
固化体の硬度も28日養生の一軸圧縮強度で最高15
3.3kg/cmとあまり高くなく、また重金属、例
えばPbの溶出量も0.04以下と多かった。
On the other hand, in the latter case of the above-mentioned prior art,
The hardness of the solidified product is also up to 15 with a uniaxial compressive strength of 28 days curing.
It was not as high as 3.3 kg / cm 2, and the elution amount of heavy metals such as Pb was as high as 0.04 or less.

【0011】このように、従来の固化剤を用いた焼却残
渣の固化方法は、最終処分場に埋め立て処分するために
必要な強度(一軸圧縮強度10kg/cm以上)と、
溶出防止性(Pbの場合は3mg/L)を目的としたも
のがほとんどであり、土木材料へのリサイクルをうたっ
たものでも、路盤材用に使用される細骨材相当の一軸圧
縮強度50〜100kg/cm以上、または路盤材用
に使用される粗骨材相当の一軸圧縮強度400kg/c
以上という高強度と、環境庁告示第46号の溶出試
験において、Pbの場合は0.01mg/L以下という
土壌環境基準との双方の基準を両立する固化体を得るこ
とができる固化剤及び固化方法はなかった。
As described above, the conventional method for solidifying incineration residues using a solidifying agent has a strength required for landfill disposal at a final disposal site (uniaxial compressive strength of 10 kg / cm 2 or more);
In most cases, the purpose is to prevent elution (3 mg / L in the case of Pb), and even if the material is recycled for civil engineering materials, the uniaxial compressive strength of 50 to 50% equivalent to fine aggregate used for roadbed materials 100 kg / cm 2 or more, or uniaxial compressive strength of 400 kg / c equivalent to coarse aggregate used for roadbed material
A solidifying agent capable of obtaining a solidified material that satisfies both high strength of at least m 2 and a soil environmental standard of 0.01 mg / L or less for Pb in the dissolution test of the Environment Agency Notification No. 46. And there was no solidification method.

【0012】本発明者らは、種々の実験により、先に出
願した特願平7−252611号(特開平9−9454
8号)にて、焼却灰や煤塵等の焼却残渣を、機械的強度
(路盤材用に使用される細骨材相当の一軸圧縮強度50
〜100kg/cm以上)と重金属の溶出防止性(土
壌環境基準クリア、Pbの場合は0.01mg/L以
下)を両立させて固化できる焼却灰の固化剤と、この固
化剤を用いて固化する焼却残渣の固化方法を発明し、提
案した。
The inventors of the present invention have conducted various experiments, and have found in Japanese Patent Application No. 7-252611 (Japanese Patent Application Laid-Open No. 9-9454).
No. 8), the incineration residues such as incineration ash and dust were converted to mechanical strength (uniaxial compression strength 50 equivalent to fine aggregate used for roadbed material).
100100 kg / cm 2 or more) and heavy metal elution prevention properties (soil environmental standards clear, Pb: 0.01 mg / L or less), and a solidifying agent for incinerated ash, which can be solidified using this solidifying agent A method for solidifying incineration residues is proposed and proposed.

【0013】本発明は、上記特願平7−252611号
にて出願した発明の改良開発中に発明したもので、重金
属の溶出防止性(土壌環境基準クリア、Pbの場合は
0.01mg/L以下)を十分保持したまま、さらに高
強度(路盤材用に使用される粗骨材相当の一軸圧縮強度
400kg/cm以上)を得ることができる焼却残渣
の固化剤及びこの固化剤を用いた焼却残渣の固化方法を
提供することを目的とするものである。
The present invention was made during the improvement and development of the invention filed in Japanese Patent Application No. Hei 7-252611, and has a heavy metal elution prevention property (soil environmental standard clear, Pb: 0.01 mg / L). The solidification agent of the incineration residue capable of obtaining further high strength (uniaxial compressive strength of 400 kg / cm 2 or more equivalent to coarse aggregate used for roadbed material) while sufficiently maintaining It is an object of the present invention to provide a method for solidifying incineration residues.

【0014】[0014]

【課題を解決するための手段及び作用効果】焼却灰や煤
塵等の焼却残渣に含まれるCdやPb等の重金属の溶出
量は、これを固化した固化物のpHに大きく依存するこ
とが知られている。pHが9.5〜11.5の範囲での
Pbの溶解度は小さいが、これの前後で大きく、特にp
Hが約12を越えたアルカリ側での溶解度は著しく大き
くなる。
It is known that the elution amount of heavy metals such as Cd and Pb contained in incineration residues such as incineration ash and dust greatly depends on the pH of the solidified product. ing. The solubility of Pb is small in the pH range of 9.5 to 11.5, but large before and after this,
The solubility on the alkali side where H exceeds about 12 is significantly increased.

【0015】セメントは水を加えて混練すると、例え
ば、次式に示すように化学変化して、CS等の加水分
解によりCSの表面からCa++を放出し、液層を急
激にアルカリ性に変える。 2(3CaO・SiO)+6HO→3CaO・2S
iO・3HO+3Ca(OH) なお、式中3CaO・SiOはCS、エーライトで
ある。
When the cement is kneaded with the addition of water, it undergoes a chemical change, for example, as shown in the following formula, and Ca ++ is released from the surface of C 3 S by hydrolysis of C 3 S and the like, and the liquid layer is rapidly formed. Change to alkaline. 2 (3CaO.SiO 2 ) + 6H 2 O → 3CaO.2S
iO 2 .3H 2 O + 3Ca (OH) 2 where 3CaO.SiO 2 is C 3 S and alite.

【0016】このため、例えばセメント系の固化剤で焼
却残渣などを固化する場合、固化体の溶液は一般的に強
アルカリ性を示すため、Pb等の両性重金属の溶出が主
に問題になるが、pHを低く押えながら機械的強度を発
現する固化剤が存在するならば、上記機械的強度と溶出
防止性の双方を両立させることができる。
For this reason, for example, when incineration residues and the like are solidified with a cement-based solidifying agent, the solidified solution generally shows strong alkalinity, so that elution of amphoteric heavy metals such as Pb becomes a major problem. If there is a solidifying agent that exhibits mechanical strength while keeping the pH low, both the above-mentioned mechanical strength and anti-elution properties can be achieved.

【0017】本発明者らは、特願平7−252611号
(特開平9−94548号)にて、高炉スラグ等の潜在
水硬性を示す混和材が水の添加による硬化に際して、ア
ルカリ性を示す水酸化物イオン(OH)を減少させる作
用に注目し、水硬性のセメントと潜在水硬性の混和材を
ある比率で配合して固化剤とすることを見出だした。
The present inventors have disclosed in Japanese Patent Application No. 7-252611 (Japanese Unexamined Patent Application Publication No. 9-94548) that an admixture exhibiting latent hydraulic properties such as blast furnace slag exhibits alkalinity when cured by addition of water. Paying attention to the action of reducing oxide ions (OH), it has been found that a hydraulic cement and a latent hydraulic admixture are blended in a certain ratio to form a solidifying agent.

【0018】高炉スラグ等の潜在水硬性を示す混和材
は、水と接触すると不透水性の水和生成物(保護膜)を
生成し、粒子表面がこれに覆われて、水の接触を妨げる
ため、水和反応が進行できない。
[0018] An admixture exhibiting latent hydraulic properties, such as blast furnace slag, forms an impermeable hydration product (protective film) when it comes into contact with water, and the particle surface is covered with the product to prevent water contact. Therefore, the hydration reaction cannot proceed.

【0019】しかし、ここにCa(OH)などのアル
カリ性の刺激剤を入れてやると、上記水和生成物である
保護膜はこの刺激剤と反応して粒子表面から取り除かれ
て水との反応が連続的に進行するようになり、この固化
剤によってC−S−Hを主体とする硬化体を得る。この
プロセスは次式のようになり、これを潜在水硬性とい
う。 xSiO+yCa(OH)+zHO→aCaO・
bSiO・cHO なお、式中xSiOは可溶性シリカ、高炉スラグ主成
分であり、aCaO・bSiO・cHOはC−S−
Hゲル、ケイ酸カルシウム水和物である。
However, when an alkaline stimulant such as Ca (OH) 2 is added, the protective film, which is the hydration product, reacts with the stimulant and is removed from the particle surface to remove water. The reaction proceeds continuously, and a cured body mainly composed of C—S—H is obtained by the solidifying agent. This process is represented by the following equation, which is called latent hydraulicity. xSiO 2 + yCa (OH) 2 + zH 2 O → aCaO.
bSiO 2 · cH 2 O In the formula, xSiO 2 is a soluble silica and a blast furnace slag main component, and aCaO · bSiO 2 · cH 2 O is CS-
H-gel, calcium silicate hydrate.

【0020】ここで、この固化剤において、強アルカリ
性の原因であるセメント(ポルトランドセメント類)が
少ないとpH値も11以下に下がり、これを用いて固化
した焼却灰などに含まれるPb等の両性金属の溶出防止
が期待されるが、このセメントは高炉スラグ等の潜在水
硬性を示す混和材のアルカリ刺激剤であるため、このセ
メントがあまり少ないと十分な固化ができず、高強度の
固化体が得られない。
In this solidifying agent, if the amount of cement (Portland cements) that causes strong alkalinity is small, the pH value also drops to 11 or less, and the amphoteric properties of Pb and the like contained in incinerated ash and the like solidified using the cement are reduced. Although the prevention of metal elution is expected, this cement is an alkali stimulant for admixtures that exhibit latent hydraulic properties, such as blast furnace slag. Can not be obtained.

【0021】すなわち、有機不純物を含有していない焼
却残渣を固化する固化剤の場合、一般に、セメント配合
率が大きいと固化体の強度が大、pH大(重金属溶出
大)となり、セメント配合率が小さいと固化体の強度が
小、pH小(重金属溶出小)となる。
That is, in the case of a solidifying agent that solidifies an incineration residue containing no organic impurities, generally, when the cement mixing ratio is large, the strength of the solidified material becomes large, the pH becomes large (heavy metal elution is large), and the cement mixing ratio becomes large. If it is small, the strength of the solidified product will be low and the pH will be low (heavy metal elution is small).

【0022】ここで、本発明者らは、石こうにも高炉ス
ラグ等の潜在水硬性を示す混和材の水和反応を促進する
作用があることに注目し、水硬性のセメントと潜在水硬
性の混和材及び石こう(CaSO)をある比率で配合
することにより、高強度の固化体を得るための固化剤及
び固化方法を見出した。
Here, the present inventors have noticed that gypsum also has an effect of accelerating the hydration reaction of an admixture exhibiting latent hydraulicity such as blast furnace slag, and has considered that hydraulic cement and latent hydraulic A solidifying agent and a solidifying method for obtaining a high-strength solidified body by mixing an admixture and gypsum (CaSO 4 ) at a certain ratio have been found.

【0023】固化剤中の石こうは、水を加えて混練する
と、次式で示すように、多量の水と結合した針状の結晶
であるエトリンガイドを生成する。このとき、初め、エ
トリンガイド(CaA・3CaSO・32HO)を
大量に生成して骨格を形成し、その周囲をケイ酸カルシ
ウム水和物C−S−Hが充填して緻密な構造となるため
高硬度の固化体が得られる。 3CaO・Al+3CaSO+32HO→3
CaO・Al・3CaSO・32HO なお式中3CaO・Al・3CaS・32H
Oはエトリンガイドである。
The gypsum in the solidifying agent, when kneaded with water, produces an ettrine guide, which is a needle-like crystal combined with a large amount of water, as shown in the following formula. At this time, initially, et Trinh guide (CaA · 3CaSO 4 · 32H 2 O) to produce large amounts to form a skeleton, dense structure by filling the periphery of calcium silicate hydrate C-S-H Therefore, a solid body having high hardness can be obtained. 3CaO.Al 2 O 3 + 3CaSO 4 + 32H 2 O → 3
CaO.Al 2 O 3 .3CaSO 4 .32H 2 O In the formula, 3CaO.Al 2 O 3 .3CaS 4 .32H 2
O is an ettrine guide.

【0024】すなわち、本発明に係る焼却残渣のリサイ
クル用固化体を製造するための固化剤は、石こう:1〜
30wt%、高炉スラグ等の潜在水硬性を示す混和材:
41〜99wt%、セメント:0〜29wt%であり、
この固化剤と焼却残渣を所定の配合比率で混合し、かつ
必要量の水を加えて混練し固化体及び路盤材を成形す
る。
That is, the solidifying agent for producing the solidified body for recycling incineration residues according to the present invention is gypsum:
30 wt%, admixture showing potential hydraulic properties such as blast furnace slag:
41 to 99 wt%, cement: 0 to 29 wt%,
The solidifying agent and the incineration residue are mixed at a predetermined mixing ratio, and a necessary amount of water is added and kneaded to form a solidified body and a roadbed material.

【0025】このときの限界的配合例としては、(1)
石こう:1wt%、高炉スラグ99wt%、(2)石こ
う:30wt%、高炉スラグ70wt%、(3)セメン
ト:29wt%、石こう:30wt%、高炉スラグ49
wt%となる。
At this time, examples of marginal compounding are (1)
Gypsum: 1 wt%, blast furnace slag 99 wt%, (2) gypsum: 30 wt%, blast furnace slag 70 wt%, (3) cement: 29 wt%, gypsum: 30 wt%, blast furnace slag 49
wt%.

【0026】固化剤の配合について以下に説明する。焼
却残渣を固化するための固化剤の配合比率の内訳とし
て、セメントはこれの配合比率が増えると、これを用い
て硬化した固化体の機械的強度は、一般的(焼却残渣中
に有機不純物が含有しない場合)には増加するが、同時
にpHも増大してPb等の重金属溶出量が増加するた
め、これの配合比率に上限がある。本発明者らの種々の
実験によると29wt%を越えると多くの場合、Pb等
の重金属の溶出量が増加し、環境基準を越えてしまうこ
とがわかった。
The compounding of the solidifying agent is described below. As a breakdown of the compounding ratio of the solidifying agent for solidifying the incineration residue, as the mixing ratio of cement increases, the mechanical strength of the solidified material hardened using this compound generally decreases (when organic impurities are contained in the incineration residue). ), But at the same time, the pH also increases and the elution amount of heavy metals such as Pb increases, so there is an upper limit to the blending ratio. According to various experiments by the present inventors, it has been found that when the content exceeds 29 wt%, the elution amount of heavy metals such as Pb often increases and exceeds the environmental standard.

【0027】また、高炉スラグ等の潜在水硬性を示す混
和材は、単独では硬化性を示さず、石こうなどの刺激に
より硬化性を示すため、本発明者らの種々の実験による
と1wt%程度の石こうの硬化刺激剤が必要となる。ま
た、石こうの過剰な添加は固化体の膨張・破壊を引き起
こす原因になるので、発明者らの種々の実験によると7
0wt%以下、好ましくは30wt%がよいことがわか
った。
Also, the admixture exhibiting latent hydraulic properties such as blast furnace slag does not exhibit curability by itself, but exhibits curability due to the stimulation of gypsum or the like. Therefore, according to various experiments by the present inventors, about 1 wt% was obtained. Gypsum hardening stimulant is required. Further, since excessive addition of gypsum causes expansion and destruction of the solidified body, according to various experiments by the inventors, 7
It turned out that 0 wt% or less, preferably 30 wt% is good.

【0028】さらに、上記焼却残渣などを、路盤材や各
種ブロック等、一軸圧縮強度が400kg/cm以上
程度の機械的強度が望ましい土木材料等へリサイクルす
る場合には、上記した固化剤を用いて、焼却残渣:30
〜90wt%、固化剤:10〜70wt%とし、実験的
に好ましくは、焼却残渣:30〜70wt%、固化剤:
30〜70wt%の配合比率で混合し、必要量の水を加
えて混練し、成形する。
Further, when the above-mentioned incineration residue and the like are recycled into a civil engineering material or the like having a mechanical strength of about 400 kg / cm 2 or more having a uniaxial compressive strength of about 400 kg / cm 2 , such as a roadbed material or various blocks, the above-mentioned solidifying agent is used. And incineration residue: 30
9090 wt%, solidifying agent: 10-70 wt%, experimentally preferably incineration residue: 30-70 wt%, solidifying agent:
The mixture is mixed at a mixing ratio of 30 to 70 wt%, a necessary amount of water is added, and the mixture is kneaded and molded.

【0029】このようにして成形した固化体は、28日
養生にて、一軸圧縮強度400kg/cm以上であ
り、環境庁告示第46号に基づく溶出試験を行った結
果、Pbの溶出量が0.01mg/L(土壌環境基準)
以下であった。
The solidified product thus formed had a uniaxial compressive strength of 400 kg / cm 2 or more after curing for 28 days, and was subjected to a dissolution test based on the Environment Agency Notification No. 46. 0.01mg / L (Soil environmental standard)
It was below.

【0030】焼却残渣と固化剤との配合比率としては、
廃棄物または焼却残渣のリサイクル率と処理コストの面
から、一般的に固化剤は70wt%程度が上限であると
考えられる。また、路盤材等の土木材料にリサイクルす
るのに望ましい機械的強度の面から、固化剤は30wt
%が下限であると考えられる。
The mixing ratio of the incineration residue and the solidifying agent is as follows:
It is generally considered that the upper limit of the solidifying agent is about 70 wt% from the viewpoint of the recycling rate of waste or incineration residue and the processing cost. Also, from the viewpoint of mechanical strength desirable for recycling into civil engineering materials such as roadbed materials, the solidifying agent is 30 wt.
% Is considered to be the lower limit.

【0031】上記のように、固化剤を用いて廃棄物また
は焼却残渣を固化することにより、環境基準をクリアす
る重金属の溶出防止性を備えた、きわめて高強度の固化
物を得ることができ、これを土木材料等のリサイクル材
として使用できる。この場合、固化剤中のセメント含有
率が0〜29wt%と少ないことにより、固化しようと
する焼却残渣中に有機不純物が仮に含有していても、こ
れの固化の妨げとはならない。
As described above, by solidifying the waste or the incineration residue using the solidifying agent, it is possible to obtain an extremely high-strength solidified substance having a heavy metal elution preventing property that meets environmental standards. This can be used as a recycled material such as civil engineering materials. In this case, since the cement content in the solidifying agent is as small as 0 to 29 wt%, even if organic impurities are contained in the incineration residue to be solidified, it does not hinder solidification.

【0032】[0032]

【発明の実施の形態】本発明の実施の形態を表1を参照
して説明する。表1は、固化剤の配合、及びこの各配合
の固化剤を用いた固化体の配合、さらにこの各固化体に
おける一軸圧縮強度、Pbの溶出量を、実験例No1〜
5にわたって行った実験例として示す。この表1におけ
る各実験例の固化体は、各配合に適当な量の水を加えて
混練し、100kg/cmの圧力をかけてプレス成形
したもので、このときの一軸圧縮強度は常温、常圧化で
28日養生の場合であり、また、Pbの溶出量は環境庁
告示第46号に基づく溶出試験による結果である。
Embodiments of the present invention will be described with reference to Table 1. Table 1 shows the composition of the solidifying agent, the composition of the solidified product using the solidifying agent of each composition, and the uniaxial compressive strength and the elution amount of Pb in each solidified product.
5 are shown as experimental examples. The solidified material of each experimental example in Table 1 was obtained by adding an appropriate amount of water to each formulation, kneading the mixture, and press-molding the mixture under a pressure of 100 kg / cm 2 . In the case of curing for 28 days under normal pressure, the dissolution amount of Pb is the result of a dissolution test based on the Environment Agency Notification No. 46.

【0033】[0033]

【表1】 [Table 1]

【0034】各実験例における判定は、No1,3にお
いて一軸圧縮強度が450,430kg/cmと40
0kg/cm以上となり、かつPbの溶出量が環境庁
告示第46号に基づく溶出試験にて0.01mg/L未
満という土壌環境基準をクリアできた。
The determination in each of the experimental examples was as follows: in Nos. 1 and 3, the uniaxial compression strength was 450, 430 kg / cm 2 and 40.
The soil environmental standard was 0 kg / cm 2 or more and the elution amount of Pb was less than 0.01 mg / L in an elution test based on the notification of the Environment Agency No. 46.

【0035】一方、No2はPb溶出基準はクリアでき
たが強度が不足し、No4は強度は高いが、Pb溶出基
準はクリアできず、判定は不可であった。
On the other hand, No. 2 passed the Pb elution criterion, but lacked strength. No. 4 exhibited high strength, but failed to clear the Pb elution criterion, and could not be judged.

【0036】なお、上記各実験例における溶出重金属の
判定には、最も溶出しやすいPbを代表として示した
が、それ以外の有害重金属、例えば、水銀、カドミウ
ム、6価クロムや砒素なども測定し、それぞれにおいて
土壌環境基準をクリアしている。
In the above examples, Pb, which is most easily eluted, was shown as a representative for the determination of eluting heavy metals, but other harmful heavy metals such as mercury, cadmium, hexavalent chromium and arsenic were also measured. , Each of which meets the soil environmental standards.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 焼却残渣を固化してリサイクル材を得る
ための固化剤であり、かつ、石こう:1〜30wt%、
高炉スラグ等の潜在水硬性を示す混和材:41〜99w
t%、セメント:0〜29wt%からなることを特徴と
する焼却残渣用固化剤。
1. A solidifying agent for solidifying an incineration residue to obtain a recycled material, and gypsum: 1 to 30% by weight;
Admixtures exhibiting potential hydraulic properties such as blast furnace slag: 41-99w
A solidifying agent for incineration residues, characterized in that the solidifying agent comprises 0% to 29% by weight of cement.
【請求項2】 請求項1記載の焼却残渣用固化剤:10
〜70wt%、焼却残渣:30〜90wt%を必要量の
水と共に混練して成形することを特徴とする焼却残渣の
固化方法。
2. The solidifying agent for incineration residues according to claim 1, wherein
7070 wt%, incineration residue: A method for solidifying incineration residue, comprising kneading and shaping 30 to 90 wt% together with a required amount of water.
【請求項3】 請求項1記載の焼却残渣用固化剤:10
〜70wt%、焼却残渣:30〜90wt%を必要量の
水と共に混練して、焼却残渣のリサイクルとしての路盤
材に成形することを特徴とする焼却残渣の固化方法。
3. The solidifying agent for incineration residue according to claim 1, wherein the solidifying agent is 10.
A method for solidifying incineration residues, comprising kneading 30 to 90% by weight of incineration residues together with a required amount of water to form a base material for recycling incineration residues.
JP10013762A 1998-01-27 1998-01-27 Solidifying agent for incineration residue and residue solidifying method Pending JPH11207291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10013762A JPH11207291A (en) 1998-01-27 1998-01-27 Solidifying agent for incineration residue and residue solidifying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10013762A JPH11207291A (en) 1998-01-27 1998-01-27 Solidifying agent for incineration residue and residue solidifying method

Publications (1)

Publication Number Publication Date
JPH11207291A true JPH11207291A (en) 1999-08-03

Family

ID=11842278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10013762A Pending JPH11207291A (en) 1998-01-27 1998-01-27 Solidifying agent for incineration residue and residue solidifying method

Country Status (1)

Country Link
JP (1) JPH11207291A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162862A (en) * 2003-12-02 2005-06-23 Sumitomo Osaka Cement Co Ltd Heavy metal elution controller and method for controlling heavy metal elution
CN1331798C (en) * 2003-11-06 2007-08-15 同济大学 Method for producing cement using burning fly ash as blending stock
JP2007222694A (en) * 2005-12-19 2007-09-06 Ube Ind Ltd Cement based treatment material for heavy metal-contaminated soil and solidification/insolubilization treatment method using it
CN101781103A (en) * 2010-02-10 2010-07-21 吉林中路新材料有限责任公司 Enhancing agent for consolidating tailing of iron core
CN102676118A (en) * 2011-03-11 2012-09-19 新疆大学 Curing agent for oily sludge incineration innocent treatment and usage method of curing agent

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1331798C (en) * 2003-11-06 2007-08-15 同济大学 Method for producing cement using burning fly ash as blending stock
JP2005162862A (en) * 2003-12-02 2005-06-23 Sumitomo Osaka Cement Co Ltd Heavy metal elution controller and method for controlling heavy metal elution
JP2007222694A (en) * 2005-12-19 2007-09-06 Ube Ind Ltd Cement based treatment material for heavy metal-contaminated soil and solidification/insolubilization treatment method using it
CN101781103A (en) * 2010-02-10 2010-07-21 吉林中路新材料有限责任公司 Enhancing agent for consolidating tailing of iron core
CN102676118A (en) * 2011-03-11 2012-09-19 新疆大学 Curing agent for oily sludge incineration innocent treatment and usage method of curing agent

Similar Documents

Publication Publication Date Title
JP4030636B2 (en) Cement composition using sewage sludge incineration ash and method of using the cement composition
JP4157485B2 (en) Cement composition and quick-hardening grout material
KR101371701B1 (en) Solidification brick
JP3752980B2 (en) Technology for stabilizing industrial waste containing chromium
JP4663999B2 (en) Soil neutral solidification material and soil neutral solidification improvement method
JPH11207291A (en) Solidifying agent for incineration residue and residue solidifying method
JP4013168B2 (en) Ground improvement material
JP2005281064A (en) Cement admixture, cement composition, quick hardening grout material, and quick hardening grout
JP3213054B2 (en) Treatment method for incinerated ash containing heavy metals
KR100709388B1 (en) A landfill material by using by-products of iron and steel industry and a method of preparing the same
KR20040020494A (en) Manufacturing method of cement for solidifying industrial waste using waste concrete and the cement thereby
JP2004105783A (en) Solidification material and solidification method for soil
KR20010025183A (en) method of manufacturing solity for preventing heavy metals from being occurred in wastes and solity manufactured by the same
JP4259373B2 (en) Method for fixing fluorine and heavy metal elements contained in fly ash
KR20090070263A (en) Environmental friendly soil stabilizer
JPH09314097A (en) Stabilized incineration ash based solidifying material
JP3415066B2 (en) Manufacturing method of solidified waste incineration ash
KR100423410B1 (en) Stabilization material of sewage sludge
JPH09155319A (en) Method for processing for making heavy metal-containing incineration ash, etc., and shredder dust pollution-free and manufacture of reuse material
JPH10338564A (en) Elution preventing material of heavy metal from hardened body, and hardened body
FR2672046A1 (en) Process for the activation of latent hydraulic and pozzolanic binders with the aid of basic industrial residues
JPH0848549A (en) Slag curing material
JP2013119586A (en) Earthwork material
JP3980109B2 (en) Incineration ash firing method / fired product and method of using the fired product
JPH0994548A (en) Agent and process for solidifying incineration residue