JP2007222694A - Cement based treatment material for heavy metal-contaminated soil and solidification/insolubilization treatment method using it - Google Patents

Cement based treatment material for heavy metal-contaminated soil and solidification/insolubilization treatment method using it Download PDF

Info

Publication number
JP2007222694A
JP2007222694A JP2005365274A JP2005365274A JP2007222694A JP 2007222694 A JP2007222694 A JP 2007222694A JP 2005365274 A JP2005365274 A JP 2005365274A JP 2005365274 A JP2005365274 A JP 2005365274A JP 2007222694 A JP2007222694 A JP 2007222694A
Authority
JP
Japan
Prior art keywords
contaminated soil
heavy metal
soil
cement
treatment material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005365274A
Other languages
Japanese (ja)
Inventor
Yukio Tasaka
行雄 田坂
Yoichi Ueda
陽一 上田
Tetsuo Tsutsumi
徹郎 堤
Atsushi Kidera
淳 木寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Ube Corp
Original Assignee
Mitsubishi Materials Corp
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Ube Industries Ltd filed Critical Mitsubishi Materials Corp
Priority to JP2005365274A priority Critical patent/JP2007222694A/en
Publication of JP2007222694A publication Critical patent/JP2007222694A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cement based treatment material suitable for solidifying/insolubilizing heavy metal-contaminated soil stipulated in a soil contamination counter measure regulation, and a solidification/insolubilization treatment method for heavy metal-contaminated soil using it. <P>SOLUTION: The cement based treatment material for the heavy metal-contaminated soil containing portland cement, a blast furnace slug and a plaster contains 30-70 mass% and relative to a total amount of portland cement, blast furnace slug and plaster and 2-8 mass% of plaster based on SO<SB>3</SB>and the residue is the portland cement. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、六価クロム、水銀、砒素、鉛、カドミウムまたはセレン等の有害重金属、あるいはフッ素、ホウ素等の有害金属(以下、これらを総称して「重金属」という)で汚染された土壌、汚泥、廃棄物および底質等(以下、「重金属汚染土壌」という)からの重金属の溶出、特に六価クロムまたは水銀の溶出を抑制するセメント系処理材およびそれを用いた固化不溶化方法に関する。   The present invention relates to soil, sludge contaminated with harmful heavy metals such as hexavalent chromium, mercury, arsenic, lead, cadmium or selenium, or harmful metals such as fluorine and boron (hereinafter collectively referred to as “heavy metals”). The present invention relates to a cementitious treatment material that suppresses elution of heavy metals from wastes and bottom sediments (hereinafter referred to as “heavy metal contaminated soil”), particularly hexavalent chromium or mercury, and a solidification and insolubilization method using the same.

人の健康確保や動植物等に与える環境負荷を低減するため、有害な重金属汚染土壌からの重金属の溶出を抑制する固化不溶化や封じ込めのための処理方法が知られている。汚染重金属種としては、水銀、六価クロム、砒素、鉛、カドミウム及びセレン等に加え、2001年に制定された環境基準では、フッ素、ホウ素についての規制も始まっている。   In order to ensure human health and reduce the environmental burden on animals and plants, there are known treatment methods for solidification insolubilization and containment that suppress elution of heavy metals from harmful heavy metal contaminated soil. In addition to mercury, hexavalent chromium, arsenic, lead, cadmium, selenium, and the like as contaminated heavy metal species, regulations on fluorine and boron have been started in the environmental standards established in 2001.

さらに、このような重金属汚染土壌の固化不溶化あるいは封じ込め処理方法に使用される種々の処理材(剤)が開発・実用化され、このうち、各種のセメントをベースに、還元剤、pH調整剤、固定化剤(共沈剤、硫化剤)、キレート剤(錯体生成剤)、イオン吸着剤等を併用した処理材が公知である。例えば、特許文献1には、セメントと石膏を含むセメント系固化材とスラグと亜硫酸化合物等を含む処理材、特許文献2には、生石灰および/または消石灰系の処理材、特許文献3には、セメント系または石灰系の処理材が開示されている。   Furthermore, various treatment materials (agents) used in such solid metal insolubilized soil insolubilization or containment treatment methods have been developed and put to practical use. Of these, various cements are used as bases, reducing agents, pH adjusters, Treatment materials using a fixing agent (coprecipitation agent, sulfurizing agent), chelating agent (complex forming agent), ion adsorbent and the like are known. For example, Patent Document 1 includes a cement-based solidifying material including cement and gypsum, a processing material including slag and a sulfite compound, Patent Document 2 includes quick lime and / or slaked lime-based processing material, and Patent Document 3 includes A cement-based or lime-based treatment material is disclosed.

従来、重金属汚染土壌からの重金属溶出量はセメント系処理材の添加量の増加に伴って一般に減少すると考えられてきた。例えば、特許文献1は、セメントに少量の亜硫酸化合物、チオ硫酸化合物または硫化物を添加した処理材を開示するが、重金属汚染土壌に対する処理材の添加量が少ないと混合むらが起こり易く、処理土からの溶出量を均質化することが困難となることから、処理材の添加量を多くする必要があった。また、硫黄化合物は大気中で一般に不安定で、時間と伴に溶出抑制性能が低下することも懸念される。   Conventionally, it has been thought that the amount of heavy metal elution from heavy metal contaminated soil generally decreases with an increase in the amount of cementitious treatment material added. For example, Patent Document 1 discloses a treatment material in which a small amount of a sulfite compound, a thiosulfate compound, or a sulfide is added to cement. However, if the amount of the treatment material added to heavy metal-contaminated soil is small, uneven mixing tends to occur, and the treated soil. Therefore, it was difficult to homogenize the amount of elution from the material, and it was necessary to increase the amount of treatment material added. In addition, sulfur compounds are generally unstable in the atmosphere, and there is also a concern that the elution suppression performance decreases with time.

一般に、重金属汚染土壌の固化不溶化処理後の重金属溶出の状況は、対象となる重金属種とその汚染濃度、複合汚染の度合および土質性状(固化特性、重金属イオン吸着能)等によって異なる。このため、いわゆる万能的な効能を有する処理材や薬剤はなく、重金属汚染土壌の汚染条件に応じた対処療法が求められ、個々の処方箋が必要であった。特に、六価クロムまたは水銀汚染土壌では、セメント系処理材を過剰に加えると、固化された土壌からこれら重金属の溶出量が再び増加することがあり、問題となっている。 Generally, the state of elution of heavy metal after solidification insolubilization treatment of heavy metal contaminated soil varies depending on the heavy metal species to be treated, the concentration of the contamination, the degree of complex contamination, soil properties (solidification characteristics, heavy metal ion adsorption capacity), and the like. For this reason, there is no treatment material or drug having a so-called all-purpose effect, a coping treatment according to the contamination condition of heavy metal-contaminated soil is required, and individual prescriptions are required. In particular, in the soil contaminated with hexavalent chromium or mercury, if an excessive amount of cement-based treatment material is added, the elution amount of these heavy metals may increase again from the solidified soil, which is a problem.

一方では、セメント自体にも、使用する原燃料由来の六価クロムや水銀などが微量含まれ、このセメントを含むセメント系固化材で固化処理した土壌から六価クロムが溶出するケースもあり、セメント系処理材からの二次的な溶出にも配慮する必要もあった。
特開2001‐79536号公報 特開2005−238193号公報 特開2005−162895号公報
On the other hand, the cement itself contains a small amount of hexavalent chromium or mercury derived from the raw fuel used, and in some cases the hexavalent chromium is eluted from the soil solidified with the cement-based solidifying material containing this cement. It was also necessary to consider secondary elution from the system treatment material.
JP 2001-79536 A JP 2005-238193 A JP 2005-162895 A

土壌汚染対策法施行規則(環境省令第29号、平成14年12月26日)では、重金属類は第二種特定有害物質に分類され、汚染土の汚染濃度や不溶化レベルに応じた適切な措置が規定されている。表1に第二種特定有害物質のうちシアン化合物を除いた重金属類の固化不溶化処理に関連する基準値を示す。また、表2に処理前後の重金属の溶出量と適用措置との関係を示す。すなわち、重金属の溶出量を、第二溶出量基準を超えて汚染された土壌では第二溶出量基準以下に、また、第二溶出量基準以下でかつ溶出量基準を超えて汚染された土壌では溶出量基準以下に、抑制する必要がある。 According to the Ordinance for Enforcement of the Soil Contamination Countermeasures Law (Ministry of the Environment Ordinance No. 29, December 26, 2002), heavy metals are classified as Type 2 Specified Hazardous Substances, and appropriate measures are taken according to the contaminated soil contamination level and insolubilization level. Is stipulated. Table 1 shows reference values related to the solidification and insolubilization treatment of heavy metals excluding the cyanide compound among the second type specific harmful substances. Table 2 shows the relationship between the amount of elution of heavy metals before and after treatment and the applicable measures. That is, the elution amount of heavy metals is less than the second elution amount standard in soil contaminated exceeding the second elution amount standard, and in the soil that is less than the second elution amount standard and exceeding the elution amount standard. It is necessary to suppress below the elution amount standard.

Figure 2007222694
Figure 2007222694

Figure 2007222694
Figure 2007222694

したがって、本発明は、土壌汚染対策法施行規則に規定の第二溶出量基準あるいは溶出量基準(土壌環境基準)を超える重篤な重金属汚染土壌を、第二溶出量基準以下、あるいは溶出量基準以下に固化不溶化するのに適したセメント系処理材およびそれを用いた重金属汚染土壌の固化不溶化処理方法を提供することを目的とする。   Therefore, the present invention is intended to treat serious heavy metal contaminated soil exceeding the second elution amount standard or elution amount standard (soil environmental standard) specified in the Enforcement Regulations of the Soil Contamination Countermeasures Law, below the second elution amount standard, or the elution amount standard. An object of the present invention is to provide a cement-based treatment material suitable for solidifying and insolubilizing and a method for solidifying and insolubilizing heavy metal-contaminated soil using the same.

特に、従来のセメント系処理材での固化不溶化が困難であった六価クロムや水銀汚染土壌からの溶出を効率的に封じ込めるセメント系処理材およびそれを用いた重金属汚染土壌の固化不溶化処理方法を提供することを目的とする。   In particular, a cement-based treatment material that efficiently contains elution from hexavalent chromium and mercury-contaminated soil, which has been difficult to solidify and insolubilize with conventional cement-based treatment materials, and a method for solidifying and insolubilizing heavy metal-contaminated soil using the same. The purpose is to provide.

本発明者らは、上記課題を達成するために鋭意検討した結果、従来の亜硫酸化合物、チオ硫酸化合物または硫化物を含有するセメント系処理材等とは異なり、高炉スラグを多量に含有させたセメント系処理材が、重金属の溶出抑制性能を安定的に確保することができることを知見して、本発明のポルトランドセメント−高炉スラグ−石膏を含むセメント系処理材を完成するに至った。また、本発明のセメント系処理材は、六価クロムおよび水銀等の特定の重金属に対して特異な溶出抑制性能を示すこと、および汚染土壌に対する適正添加量に上限値が存在することを新たに知見して、本発明の重金属汚染土壌の固化不溶化処理方法を完成した。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that a cement containing a large amount of blast furnace slag, unlike conventional cement-based treatment materials containing a sulfurous acid compound, a thiosulfuric acid compound, or a sulfide. Knowing that the system treatment material can stably secure the elution suppression performance of heavy metals, the present inventors have completed a cement-based treatment material containing Portland cement-blast furnace slag-gypsum of the present invention. In addition, the cementitious treatment material of the present invention newly shows that it exhibits specific elution suppression performance for specific heavy metals such as hexavalent chromium and mercury, and that there is an upper limit for the appropriate amount added to contaminated soil. As a result, the solidified insolubilization method for heavy metal-contaminated soil of the present invention was completed.

すなわち、本発明の重金属汚染土壌用セメント系処理材は、ポルトランドセメントと高炉スラグと石膏とを含み、これらの合計量に対して、高炉スラグを30〜70質量%および石膏をSO基準で2〜8質量%含み、残余がポルトランドセメントであるセメント系処理材である。より好ましくは、高炉スラグが40〜60質量%および石膏がSO基準で4〜6質量%であり、残余がポルトランドセメントである。 That is, the cementitious treatment material for heavy metal-contaminated soil of the present invention includes Portland cement, blast furnace slag, and gypsum, and blast furnace slag is 30 to 70% by mass and gypsum is 2 on the basis of SO 3 with respect to the total amount thereof. It is a cement-based treatment material containing ˜8% by mass and the remainder being Portland cement. More preferably, the blast furnace slag is 40 to 60% by mass, the gypsum is 4 to 6% by mass based on SO 3 , and the balance is Portland cement.

また本発明の重金属汚染土壌の固化不溶化処理方法は、ポルトランドセメントと高炉スラグと石膏とを含み、これらの合計量に対して、高炉スラグを30〜70質量%および石膏をSO基準で2〜8質量%含み、残余がポルトランドセメントであるセメント系処理材を、六価クロムまたは水銀汚染土壌1m当たり50kg以上、かつ250kgを超えない範囲で添加し、混合・攪拌する、固化不溶化処理方法である。より好ましくは、高炉スラグが40〜60質量%および石膏がSO基準で4〜6質量%であり、残余がポルトランドセメントのセメント系処理材を使用する。 The method for solidifying and insolubilizing heavy metal-contaminated soil according to the present invention includes Portland cement, blast furnace slag and gypsum, and blast furnace slag is 30 to 70% by mass and gypsum is 2 to 2 based on SO 3 based on the total amount thereof. A solidified and insolubilized treatment method in which 8% by mass and the rest of Portland cement is cement-based treatment material is added in a range of 50 kg or more per 1 m 3 of hexavalent chromium or mercury-contaminated soil and not exceeding 250 kg, and mixed and stirred. is there. More preferably, a cementitious treatment material of 40 to 60% by mass of blast furnace slag and 4 to 6% by mass of gypsum based on SO 3 is used, and the remainder is Portland cement.

また、六価クロムまたは水銀汚染土壌の固化不溶化処理土からの六価クロムまたは水銀の溶出は、土壌を構成する土粒子でも変化するため、セメント系処理材の適正添加量も異なる。すなわち、セメント系処理材の六価クロムまたは水銀汚染土壌1m当たりの適正添加量は、砂質土では50〜150kg、粘性土および火山灰質粘性土では100kg以上、250kgを超えない範囲である。 Moreover, since the elution of hexavalent chromium or mercury from the solidified and insolubilized treated soil of hexavalent chromium or mercury-contaminated soil also changes in the soil particles constituting the soil, the appropriate amount of cementitious treatment material is also different. That is, the appropriate amount of cementitious treatment material per 1 m 3 of hexavalent chromium or mercury-contaminated soil is in the range of 50 to 150 kg for sandy soil and 100 kg or more and 250 kg for viscous soil and volcanic ash clay.

特に、六価クロムまたは水銀汚染土壌では、セメント系処理材を過剰に加えると、固化された土壌からこれら重金属の溶出量が再び増加するので、本発明のセメント系処理材を、六価クロムまたは水銀汚染土壌1m当たり250kgを超えない量で添加することが必須要件である。 In particular, in the soil contaminated with hexavalent chromium or mercury, when an excessive amount of cement-based treatment material is added, the amount of elution of these heavy metals from the solidified soil increases again. it is essential to be added in an amount not in excess of mercury contaminated soil 1 m 3 per 250 kg.

本発明の重金属汚染土壌の固化不溶化処理方法は、鉛、砒素、フッ素またはホウ素にも好適に適用できる。   The method for solidifying and insolubilizing heavy metal-contaminated soil of the present invention can also be suitably applied to lead, arsenic, fluorine, or boron.

本発明の重金属汚染土壌用セメント系処理材およびそれを用いた固化不溶化処理方法は、六価クロムや水銀汚染土壌から、六価クロムや水銀の溶出量を土壌汚染対策法施行規則(環境省令第29号)に規定の第二溶出量基準値または溶出量基準値以下に低減することができ、六価クロムまたは水銀汚染土壌を効果的に封じ込めることが可能となる。このため、汚染土壌の措置方法としての原位置(現場)封じ込め、遮水工封じ込め、原位置不溶化、不溶化埋め戻し、遮断工封じ込め等に選択的に適用することができる。さらに、本発明の重金属汚染土壌用セメント系処理材およびそれを用いた固化不溶化処理方法は、六価クロムや水銀のほかに、鉛、砒素、フッ素およびホウ素を含む汚染土壌に対しても、効果的に適用でき、汚染土壌からの重金属の溶出量を低減できる。   The cement-based treatment material for heavy metal-contaminated soil and the solidification and insolubilization treatment method of the present invention are based on the Ordinance for Enforcement of the Soil Contamination Countermeasures Law (Declaration of the Ministry of the Environment) No. 29) can be reduced below the second elution amount reference value or elution amount reference value, and hexavalent chromium or mercury contaminated soil can be effectively contained. For this reason, it can selectively be applied to in-situ (on-site) containment, impermeable containment, in-situ insolubilization, insolubilization backfill, and containment containment as measures for contaminated soil. Furthermore, the cement-based treatment material for heavy metal-contaminated soil of the present invention and the solidified insolubilization method using the same are effective for contaminated soil containing lead, arsenic, fluorine and boron in addition to hexavalent chromium and mercury. The amount of heavy metal leaching from contaminated soil can be reduced.

本発明の重金属汚染土壌用セメント系処理材は、ポルトランドセメントと高炉スラグと石膏とを含む重金属汚染土壌用セメント系処理材であって、ポルトランドセメントと高炉スラグと石膏との合計量に対して、高炉スラグを30〜70質量%および石膏をSO基準で2〜8質量%含み、残余がポルトランドセメントであるセメント系処理材である。 The cement-based treatment material for heavy metal-contaminated soil of the present invention is a cement-based treatment material for heavy metal-contaminated soil containing Portland cement, blast furnace slag, and gypsum, with respect to the total amount of Portland cement, blast furnace slag, and gypsum, It is a cementitious treatment material containing 30 to 70% by mass of blast furnace slag and 2 to 8% by mass of gypsum based on SO 3 , with the remainder being Portland cement.

ポルトランドセメントは、JIS R5210:2003「ポルトランドセメント」に規定されるセメントを使用できるが、特に普通ポルトランドセメントや早強ポルトランドセメントが好適に使用できる。 As the Portland cement, a cement specified in JIS R5210: 2003 “Portland cement” can be used, and particularly ordinary Portland cement and early-strength Portland cement can be preferably used.

高炉スラグは、JIS R 5211:2003「高炉セメント」に規定される品質を有する高炉スラグであれば使用可能である。塩基度が1.80以上、粉末度がブレーン比表面積で3500cm/g以上、好ましくは4500cm/g以上である高炉スラグ粉が好ましい。また高炉スラグは、硫化物硫黄量が硫黄基準で0.5質量%以上、より好ましくは1.0質量%以上であり、「還元電位」を示すことが好ましい。セメント系処理材中の高炉スラグの配合量は、ポルトランドセメントと高炉スラグと石膏との合計量に対して、30〜70質量%である。セメント処理材中の高炉スラグ量が30質量%以上あると、六価クロムまたは水銀汚染土壌からのこれらの溶出量、およびセメント自体に含まれる六価クロムなどの重金属溶出量を低減するのに十分であり、高炉スラグ量が70質量%以下であると、固化強度が増加するとともに、主目的である重金属の溶出抑制性能が確保できる。好ましくは、高炉スラグの配合量は40〜60質量%である。 As the blast furnace slag, any blast furnace slag having a quality defined in JIS R 5211: 2003 “Blast furnace cement” can be used. Basicity 1.80 or more, fineness is in Blaine specific surface area of 3500 cm 2 / g or more, preferably blast furnace slag powder is preferably 4500cm 2 / g or more. The blast furnace slag has a sulfur content of 0.5% by mass or more, more preferably 1.0% by mass or more based on sulfur, and preferably exhibits a “reduction potential”. The compounding quantity of the blast furnace slag in a cement-type processing material is 30-70 mass% with respect to the total amount of Portland cement, a blast furnace slag, and a gypsum. When the amount of blast furnace slag in the cement treatment material is 30% by mass or more, it is sufficient to reduce the elution amount of hexavalent chromium or mercury from contaminated soil and the elution amount of heavy metals such as hexavalent chromium contained in the cement itself. When the amount of blast furnace slag is 70% by mass or less, the solidification strength is increased and the elution suppression performance of heavy metal, which is the main purpose, can be ensured. Preferably, the compounding quantity of blast furnace slag is 40-60 mass%.

石膏は、二水石膏、半水石膏、無水石膏のいずれも使用できるが、好ましい結晶形態は無水石膏である。セメント系処理材中の石膏の配合量は、ポルトランドセメントと高炉スラグと石膏との合計量に対して、SO基準で2〜8質量%、好ましくは4〜6質量%である。石膏の配合量がSO基準で2質量%以上であると、石膏添加による固化強度の向上効果が得られるか、あるいは重金属不溶化性能が低下しない。石膏の配合量がSO基準で8質量%以下であると、汚染土壌とセメント系処理材との混合不良が起こった場合の汚染処理土が部分的に過度の膨張を引き起こす、いわゆる「盤ぶくれ現象」が抑えられ、その結果、重金属の溶出量が低減できる。なお、セメント系処理材中の石膏は、ポルトランドセメントに元来含有されている石膏以外の付加的な石膏成分である。 As the gypsum, any of dihydrate gypsum, hemihydrate gypsum, and anhydrous gypsum can be used, but the preferred crystal form is anhydrous gypsum. The blending amount of gypsum in the cement-based treatment material is 2 to 8% by mass, preferably 4 to 6% by mass on the basis of SO 3 with respect to the total amount of Portland cement, blast furnace slag and gypsum. When the blending amount of gypsum is 2% by mass or more based on SO 3 , the effect of improving the solidification strength by adding gypsum can be obtained, or the heavy metal insolubilization performance does not deteriorate. When the blending amount of gypsum is 8% by mass or less on the basis of SO 3 , the contaminated soil in the case of poor mixing of the contaminated soil and the cementitious treatment material partially causes excessive expansion. "Pure phenomenon" is suppressed, and as a result, the amount of elution of heavy metals can be reduced. The gypsum in the cement-based treatment material is an additional gypsum component other than gypsum originally contained in Portland cement.

本発明の固化不溶化処理方法は、上記のセメント系処理材を六価クロムまたは水銀汚染土壌1m当たり50kg以上、かつ250kgを超えない範囲で添加し、混合・攪拌する。また、六価クロムまたは水銀汚染土壌が砂質土の場合は、汚染土壌1m当たり50〜150kg、粘性土および火山灰質粘性土の場合は、汚染土壌1m当たり100kg以上、250kgを超えない範囲で添加し、混合・攪拌することが好ましい。 In the solidified and insolubilized treatment method of the present invention, the above cement-based treatment material is added within a range of 50 kg or more per 1 m 3 of hexavalent chromium or mercury-contaminated soil and not exceeding 250 kg, and mixed and stirred. Further, if hexavalent chromium or mercury contaminated soil is sandy soil, contaminated soil 1 m 3 per 50~150Kg, in the case of cohesive soil and volcanic ash quality cohesive soil, contaminated soil 1 m 3 per 100kg or more, it does not exceed 250kg range It is preferable to add and mix and stir.

汚染土壌とセメント系処理土との混合・攪拌方法は、特に限定されるものではなく、原位置(現場)不溶化措置、不溶化埋め戻し措置、原位置封じ込め措置および遮水工封じ込め措置に適用可能なものが対象となる。   The mixing / stirring method of contaminated soil and cementitious treated soil is not particularly limited, and can be applied to in-situ (in situ) insolubilization measures, insolubilization backfill measures, in-situ containment measures, and impermeable containment measures. Things are the target.

本発明の固化不溶化処理は、六価クロムまたは水銀汚染土壌に対してもっとも優れた効果を奏する。これは、溶出機構からみて、六価クロムおよび水銀はセメントによる固化不溶化が一般に難しく、処理土からの重金属の溶出量を大幅に低減することが困難であったからである。また本発明の固化不溶化処理方法は、重金属汚染の重金属種が鉛、砒素、フッ素またはホウ素であっても好適に適用できる。   The solidification and insolubilization treatment of the present invention has the most excellent effect on hexavalent chromium or mercury contaminated soil. This is because hexavalent chromium and mercury are generally difficult to solidify and insolubilize with cement from the elution mechanism, and it is difficult to significantly reduce the elution amount of heavy metals from the treated soil. The solidification and insolubilization treatment method of the present invention can be suitably applied even if the heavy metal contamination heavy metal species is lead, arsenic, fluorine or boron.

本発明の固化不溶化処理の対象となる汚染土壌の汚染レベルは、目安として土壌汚染対策法施行規則(環境省令第29号)に規定される第二溶出量基準または溶出量基準を超えるものが挙げられる。しかしながら、第二溶出量基準を大幅に超える、例えば六価クロム汚染土壌の溶出量レベルが数十mg/Lを超える高濃度汚染土に対しては、本発明のセメント系処理材や処理方法のみによる固化不溶化は必ずしも十分とはいえないので、他の処理方法を併用することが好ましい。なお、本発明での重金属溶出量は、環境省告示第46号法によるものである。 As a standard, the contamination level of the contaminated soil subject to the solidification and insolubilization treatment of the present invention exceeds the second elution amount standard or elution amount standard stipulated in the Ordinance for Enforcement of the Soil Contamination Countermeasures Law (Ministry of the Environment Ordinance No. 29). It is done. However, for high-concentration contaminated soil that greatly exceeds the second elution amount standard, for example, the elution amount level of hexavalent chromium-contaminated soil exceeds several tens mg / L, only the cement-based treatment material and treatment method of the present invention are used. Since solidification and insolubilization by means of is not always sufficient, it is preferable to use other treatment methods in combination. In addition, the amount of heavy metal elution in the present invention is based on the Ministry of the Environment Notification No. 46.

本発明の固化不溶化処理方法においては、セメント系処理材を六価クロムまたは水銀汚染土壌1m当たり50kg以上、250kgを超えない範囲で使用する。すなわち、六価クロムまたは水銀汚染土壌に対して、セメント系処理材を過剰に使用しないことが特徴である。これは、セメント系処理材を六価クロムまたは水銀汚染土壌に過剰に添加すると、処理土からの六価クロムまたは水銀の溶出量増加を引き起こすため、処理材の最適添加量の上限が存在するという本発明者らの新たな知見に基づく。 In the solidification insolubilization treatment method of the present invention, the cement-based treatment material is used in a range not less than 50 kg and not exceeding 250 kg per 1 m 3 of hexavalent chromium or mercury-contaminated soil. That is, it is characterized by not using an excessive amount of cementitious treatment material for hexavalent chromium or mercury contaminated soil. This is because there is an upper limit of the optimum amount of treatment material because excessive addition of cement-based treatment material to hexavalent chromium or mercury contaminated soil causes an increase in the elution amount of hexavalent chromium or mercury from the treated soil. Based on our new findings.

この場合、セメント系処理材の六価クロムまたは水銀汚染土壌1m当たりの最適添加量は、汚染土壌の土質によって異なる。汚染土壌が砂質土の場合は50〜150kg、粘性土の場合は100kg以上、250kgを超えない範囲である。六価クロムまたは水銀汚染土壌に対して本発明のセメント系処理材の添加量を多くすると、固化強度の向上には有用であるが、重金属の封じ込めの観点からは添加量に上限が存在することは、上述したとおりである。 In this case, the optimum amount of cementitious treatment material per 1 m 3 of hexavalent chromium or mercury contaminated soil varies depending on the soil quality of the contaminated soil. When the contaminated soil is sandy soil, the range is 50 to 150 kg. When the contaminated soil is viscous soil, the range is 100 kg or more and does not exceed 250 kg. Increasing the amount of the cementitious treatment material of the present invention to hexavalent chromium or mercury contaminated soil is useful for improving the solidification strength, but there is an upper limit to the amount of addition from the viewpoint of containment of heavy metals. Is as described above.

本発明のセメント系処理材により封じ込めがより有効な重金属種を対象に、本発明セメント系処理材と重金属汚染土壌とを混合攪拌して固化不溶化した処理土(材齢7日)について、処理材添加量と重金属溶出量との関係を図1〜図3に示す。ここで、試験に使用したセメント系処理材の構成材料の配合割合(質量%)は、早強ポルトランドセメント:高炉スラグ:無水石膏=50:40:10である。   For the heavy metal species that can be more effectively contained by the cement-based treatment material of the present invention, the treated soil (age 7 days) obtained by solidifying and insolubilizing the cement-based treatment material and heavy metal-contaminated soil by mixing and stirring. The relationship between the addition amount and the heavy metal elution amount is shown in FIGS. Here, the blending ratio (mass%) of the constituent material of the cement-based treatment material used in the test is early strong Portland cement: blast furnace slag: anhydrite = 50: 40: 10.

図1は、水銀汚染土壌(土質:砂質土、水銀汚染量:溶出量0.12mg/L)の例である。固化不溶化処理土からの水銀溶出量は、セメント系処理材の比較的少量添加で著しく低減できるが、それ以上の多量添加では溶出量が逆に増加する。六価クロムもこの範疇に属する。汚染土壌が砂質土の場合、セメント系処理材の添加量は重金属汚染土壌1m当たり、50kg以上の添加で効果を奏するが、150kgを超える添加混合は処理土からの溶出量が大幅に増加するため好ましくない。 FIG. 1 is an example of mercury-contaminated soil (soil: sandy soil, mercury contamination: elution amount 0.12 mg / L). The amount of mercury elution from the solidified insolubilized soil can be significantly reduced by adding a relatively small amount of cementitious treatment material, but the amount of elution increases conversely when adding a larger amount. Hexavalent chromium also belongs to this category. If contaminated soil is sandy soil, the addition amount of a cement-based processing material heavy metal contaminated soil 1 m 3 per produces effects by the addition of more than 50 kg, elution is increased significantly from the addition mixing is treated soil exceeding 150kg Therefore, it is not preferable.

このようなセメント系処理材の多量添加による水銀や六価クロムの溶出機構は、六価クロムまたは水銀イオンのセメント水和物(高結晶性水和物または低結晶コロイド質)の構造内へのイオン置換やコロイド微粒子表面への吸着、水酸化物、硫化物、水硫化物あるいは還元反応(六価クロムの三価クロムへの還元による無害化)が関係していると考えられる。これらがセメント系処理材の構成材料の水和反応、潜在水硬性反応の進行速度や水和率、あるいはその環境条件(pH、土粒子のイオン吸着量、平衡状態等)が複雑に作用することによって決定されるものであり、上記のように溶出量と固化強度との間に相関関係が存在しない特異な現象に属するものである。   The elution mechanism of mercury and hexavalent chromium by adding a large amount of such cement-based treatment material is the mechanism of hexavalent chromium or mercury ion cement hydrate (high crystalline hydrate or low crystalline colloid) into the structure. It is considered that ion substitution, adsorption on the surface of colloidal fine particles, hydroxide, sulfide, hydrosulfide or reduction reaction (detoxification by reduction of hexavalent chromium to trivalent chromium) are related. These are complex effects of the hydration reaction of the constituent materials of cementitious treatment materials, the speed and hydration rate of latent hydraulic reactions, or the environmental conditions (pH, ion adsorption amount, equilibrium state, etc.). And belongs to a unique phenomenon in which there is no correlation between the elution amount and the solidification strength as described above.

図2は、鉛汚染土壌(土質:粘性土、鉛汚染量:溶出量8.8mg/L)の例である。セメント系処理材を鉛汚染土壌に所定量添加、混合・攪拌すれば、土壌汚染対策法に規定される第二溶出量あるいは溶出量基準を大幅に超える汚染土壌であっても、溶出量基準以内(図2では定量下限(0.002mg/L)未満)まで低減できる。カドミウムもこの範疇に属する。   FIG. 2 is an example of lead-contaminated soil (soil: viscous soil, lead contamination: elution amount 8.8 mg / L). If a predetermined amount of cement-based treatment material is added to lead-contaminated soil and mixed and stirred, even if it is contaminated soil that greatly exceeds the second leaching amount or leaching amount standard stipulated in the Soil Contamination Countermeasures Law, it is within the leaching amount standard (In FIG. 2, it can be reduced to less than the lower limit of quantification (0.002 mg / L)). Cadmium also belongs to this category.

図3は、ホウ素汚染土壌(土質:粘性土、ホウ素汚染量:溶出量45mg/L)の例である。セメント系処理材の添加量の増加とともに処理土からの重金属溶出量が漸減する。フッ素もこの範疇に属する。   FIG. 3 is an example of boron-contaminated soil (soil: viscous soil, boron contamination: elution amount 45 mg / L). As the amount of cementitious treatment material increases, the amount of heavy metal elution from the treated soil decreases gradually. Fluorine also belongs to this category.

以下に、本発明を実施例を用いて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail using examples, but the present invention is not limited to these examples.

セメント系処理材:
使用したセメント系処理材は、セメント系処理材基準で、高炉スラグ粉(硫化物硫黄1.32質量%、ブレーン比表面積:4320cm/g)を42質量%、天然無水石膏(ブレーン比表面積:3970cm/g)をSO基準で4.7質量%含有し、残余が早強ポルトランドセメント(宇部興産(株)製)である。これらの組成物を混合して、セメント系処理材を調製した。以下、高炉スラグ配合量の影響を確認する実験を除いて、本組成のセメント系処理材を使用した。
Cement-based treatment material:
The cement-based processing material used was 42% by mass of blast furnace slag powder (sulfuric sulfur 1.32% by mass, Blaine specific surface area: 4320 cm 2 / g), natural anhydrous gypsum (Blaine specific surface area: 3970 cm 2 / g) is 4.7% by mass on the basis of SO 3 , and the remainder is Hayashi Portland Cement (manufactured by Ube Industries). These compositions were mixed to prepare a cementitious treatment material. Hereinafter, the cementitious treatment material of this composition was used except for the experiment for confirming the influence of the blending amount of blast furnace slag.

重金属汚染土壌の調製:
試料土は、砂質土、粘性土または関東ローム(火山灰質粘性土)から、粒径4.75mm以上の土粒子を分級・除去したものを使用した。試料土を、自然含水比の約半量になるまで乾燥したのち、その際の蒸発水分量に相当するイオン交換水に各種の重金属試薬を所定量溶解した水溶液を試料土に添加し、ソイルミキサーを用いて混合し、24時間密封保存した。この模擬汚染土を環境省告示第46号法(平成3年8月23日)に準拠し、重金属の溶出量を測定し、汚染度レベルを確認した。土質によっては、重金属添加量が溶出量に対応しないケースがあり、条件設定のためには、この確認操作が不可欠である。
Preparation of heavy metal contaminated soil:
As the sample soil, sandy soil, viscous soil, or Kanto loam (volcanic ash clay) was used which classified and removed soil particles having a particle size of 4.75 mm or more. After drying the sample soil to about half of the natural water content, add a predetermined amount of various heavy metal reagents dissolved in ion exchange water corresponding to the amount of evaporated water to the sample soil. And mixed and stored sealed for 24 hours. In accordance with the Ministry of the Environment Notification No. 46 (August 23, 1991), the amount of elution of heavy metals was measured and the pollution level was confirmed. Depending on the soil, there are cases where the amount of heavy metal added does not correspond to the amount of elution, and this confirmation operation is indispensable for setting the conditions.

〔試料土〕
下記の3種を使用した。これらの土質性状を表3に示した。
山口県宇部市産砂質土
山口県美祢市産粘性土
千葉県産関東ローム(火山灰質粘性土)
[Sample soil]
The following three types were used. These soil properties are shown in Table 3.
Sandy soil from Ube City, Yamaguchi Pref. Viscous soil from Biei City, Yamaguchi Pref. Kanto Loam from Chiba Prefecture (volcanic ash clay)

Figure 2007222694
Figure 2007222694

〔重金属試薬〕
使用した重金属含有試薬は下記の7種である。
水銀 塩化水銀:広島和光(株)製 試薬1級
六価クロム 重クロム酸カリウム:広島和光(株)製 試薬1級
鉛 硝酸鉛:広島和光(株)製 試薬1級
カドミウム 硝酸カドミウム:広島和光(株)製 試薬1級
砒素 砒酸水素二ナトリウム・七水和物:広島和光(株)製 試薬1級
フッ素 フッ化カリウム・二水和物
ホウ素 メタホウ酸ナトリウム・四水和物
[Heavy metal reagent]
The following seven heavy metal-containing reagents were used.
Mercury Mercury chloride: Hiroshima Wako Co., Ltd. Reagent grade 1 Hexavalent chromium Potassium dichromate: Hiroshima Wako Co., Ltd. reagent grade 1 Lead Nitrate: Hiroshima Wako Co., Ltd. Reagent grade 1 Cadmium Cadmium nitrate: Hiroshima Wako ( Reagent grade 1 arsenic Disodium hydrogen arsenate heptahydrate made by Hiroshima Wako Co., Ltd. Reagent grade 1 Fluorine Potassium fluoride dihydrate Boron Sodium metaborate tetrahydrate

固化不溶化処理方法:
汚染土にセメント系処理材を所定量添加した。混合操作は、ソイルミキサーにより低速2分間、掻き落とし、低速2分間とした。このようにして得られた処理土は、地盤工学会基準 JGS 0821−2000「安定処理土の締固めをしない供試体の作製方法」またはセメント協会標準試験方法 JCAS L−1:2003「セメント系固化材による安定処理土の試験方法」に準じて、φ5×10cmのモールドに3層に分けて、各層毎に気泡を除去しながら充填して円柱供試体を作製し、20℃で材齢7日まで密封養生した。7日間養生した円柱供試体をJIS A 1216:1998「土の一軸圧縮試験方法」に準拠して一軸圧縮強さを測定した。
Solidification and insolubilization treatment method:
A predetermined amount of cementitious treatment material was added to the contaminated soil. The mixing operation was performed by scraping with a soil mixer for 2 minutes at low speed for 2 minutes at low speed. The treated soil thus obtained can be obtained from the Japan Geotechnical Society standard JGS 0821-2000 “Method of preparing specimens without compacting the stabilized soil” or the Cement Association standard test method JCAS L-1: 2003 “Cement-based solidification In accordance with “Testing method for stabilized soil using materials”, a cylindrical specimen was prepared by dividing into 3 layers in a mold of φ5 × 10 cm and removing bubbles for each layer, and at 20 ° C. for 7 days Sealed and cured until. The uniaxial compressive strength of the cylindrical specimen cured for 7 days was measured according to JIS A 1216: 1998 “Soil uniaxial compression test method”.

処理土からの重金属溶出試験:
一軸圧縮強さ試験を行った円柱供試体を2mm以下に解砕して、環境省告示第46号法(平成3年8月23日)に準拠し、処理土からの重金属の溶出量を測定した。
Heavy metal dissolution test from treated soil:
Cylinder specimen subjected to uniaxial compressive strength test is crushed to 2mm or less, and the amount of elution of heavy metals from treated soil is measured according to the Ministry of the Environment Notification No. 46 (August 23, 1991) did.

水銀汚染土壌のセメント系処理材による固化不溶化処理後の水銀溶出量を表4に示す。ここで、水銀汚染量は、表4中の処理材無添加部分の数値であり、上段の数値は高濃度汚染土、下段の数値は低濃度汚染土を示す。   Table 4 shows the mercury elution amount after the solidification and insolubilization treatment of the mercury-contaminated soil with the cement-based treatment material. Here, the amount of mercury contamination is a numerical value of the portion to which no treatment material is added in Table 4, the upper numerical value indicates high-concentration contaminated soil, and the lower numerical value indicates low-concentration contaminated soil.

Figure 2007222694
Figure 2007222694

セメント系処理材の添加量と処理土からの水銀溶出量との関係は、前述の図1に示したように、水銀溶出量を最も低減できるセメント系処理材の最適添加量の範囲が存在することがわかる。   As shown in FIG. 1 above, the relationship between the amount of cementitious treatment material added and the amount of mercury eluted from the treated soil has a range of the optimum amount of cementitious treatment material that can reduce the amount of mercury eluted most. I understand that.

次に、高炉スラグ配合量の影響を調査した。セメント系処理材は、セメント系処理材中のSO基準で6質量%(一定)のフッ酸無水石膏と、10〜70質量%に変化させた高炉スラグとを含み、残余が早強ポルトランドセメントである。処理材添加量は、水銀汚染土壌に対して、200kg/m(一定)である。高炉スラグ配合量を変化させた場合の処理土(粘性土)からの水銀溶出量を表5に示す。なお、この実験における水銀汚染量は、表5中の処理材無添加部分(0.34mg/L)であり、高炉スラグの効果を明確にするため、極端に濃度の高い水銀汚染土を試験した。 Next, the influence of the blend amount of blast furnace slag was investigated. The cementitious treatment material contains 6% by mass (constant) hydrofluoric anhydride gypsum based on SO 3 in the cementitious treatment material and blast furnace slag changed to 10 to 70% by mass, and the remainder is early-strength Portland cement. It is. The amount of treatment material added is 200 kg / m 3 (constant) with respect to mercury-contaminated soil. Table 5 shows the elution amount of mercury from the treated soil (cohesive soil) when the blend amount of the blast furnace slag is changed. The amount of mercury contamination in this experiment is the untreated portion (0.34 mg / L) in Table 5, and in order to clarify the effect of blast furnace slag, extremely high concentration mercury contaminated soil was tested. .

Figure 2007222694
Figure 2007222694

表5からわかるように、固化不溶化後の処理土からの水銀の溶出量はセメント系処理材の高炉スラグ配合量によって異なり、高炉スラグの適正配合量は30〜70質量%、より好ましくは40〜60質量%であることがわかる。   As can be seen from Table 5, the elution amount of mercury from the treated soil after solidification and insolubilization varies depending on the blend amount of blast furnace slag in the cementitious treatment material, and the proper blend amount of blast furnace slag is 30 to 70% by mass, more preferably 40 to 40%. It turns out that it is 60 mass%.

次に、六価クロム汚染土壌に対するセメント系処理材による固化不溶化処理後の六価クロム溶出量を表6に示す。ここで、六価クロム汚染量は、表6中の処理材無添加部分(0.835、0.892、0.723mg/L)である。   Next, Table 6 shows the elution amount of hexavalent chromium after solidification insolubilization treatment with a cement-based treatment material for hexavalent chromium contaminated soil. Here, the amount of hexavalent chromium contamination is the treatment material-free portion (0.835, 0.892, 0.723 mg / L) in Table 6.

Figure 2007222694
Figure 2007222694

六価クロム汚染土壌においても、水銀汚染土壌と同様に、処理土からの六価クロム溶出量を最も低減できるセメント系処理材の適正添加量の範囲が存在することがわかる。   It can be seen that, in the hexavalent chromium contaminated soil, there is a range of the appropriate amount of cementitious treatment material that can reduce the amount of hexavalent chromium elution from the treated soil as much as the mercury contaminated soil.

処理土からの水銀溶出量とセメント系処理材添加量の関係を示す図である。It is a figure which shows the relationship between the mercury elution amount from a treated soil, and cement-type process material addition amount. 処理土からの鉛溶出量とセメント系処理材添加量の関係を示す図である。It is a figure which shows the relationship between the amount of lead elution from a treated soil, and the amount of cementitious treatment material addition. 処理土からのホウ素溶出量とセメント系処理材添加量の関係を示す図である。It is a figure which shows the relationship between the boron elution amount from a treated soil, and cement-type process material addition amount.

Claims (7)

ポルトランドセメントと高炉スラグと石膏とを含む重金属汚染土壌用セメント系処理材であって、ポルトランドセメントと高炉スラグと石膏との合計量に対して、高炉スラグを30〜70質量%および石膏をSO基準で2〜8質量%含み、残余がポルトランドセメントである、重金属汚染土壌用セメント系処理材。 A cement-based treatment material for heavy metal-contaminated soil containing Portland cement, blast furnace slag, and gypsum, and 30 to 70 mass% of blast furnace slag and SO 3 with respect to the total amount of Portland cement, blast furnace slag, and gypsum. A cement-based treatment material for heavy metal-contaminated soil, which contains 2 to 8% by mass on the basis and the remainder is Portland cement. 高炉スラグが40〜60質量%および石膏がSO基準で4〜6質量%であり、残余がポルトランドセメントである、請求項1記載の重金属汚染土壌用セメント系処理材。 The cementitious treatment material for heavy metal-contaminated soil according to claim 1, wherein the blast furnace slag is 40 to 60% by mass, the gypsum is 4 to 6% by mass based on SO 3 , and the remainder is Portland cement. 重金属汚染土壌の固化不溶化処理方法であって、ポルトランドセメントと高炉スラグと石膏とを含み、ポルトランドセメントと高炉スラグと石膏との合計量に対して、高炉スラグを30〜70質量%および石膏をSO基準で2〜8質量%含み、残余がポルトランドセメントであるセメント系処理材を、六価クロムまたは水銀汚染土壌1m当たり50kg以上、かつ250kgを超えない範囲で添加し、混合・攪拌する、重金属汚染土壌の固化不溶化処理方法。 A method for solidifying and insolubilizing heavy metal-contaminated soil, comprising Portland cement, blast furnace slag and gypsum, 30 to 70% by mass of blast furnace slag and SO Add cement-based treatment material containing 2-8% by mass on the basis of 3 standards and the remainder being Portland cement within a range of 50 kg or more per 1 m 3 of hexavalent chromium or mercury-contaminated soil and not exceeding 250 kg, and mixing and stirring. Solidification and insolubilization treatment method for heavy metal contaminated soil. セメント系処理材が、高炉スラグを40〜60質量%および石膏をSO基準で4〜6質量%含み、残余がポルトランドセメントである、請求項3記載の重金属汚染土壌の固化不溶化処理方法。 The method for solidifying and insolubilizing heavy metal-contaminated soil according to claim 3, wherein the cement-based treatment material contains 40 to 60% by mass of blast furnace slag and 4 to 6% by mass of gypsum based on SO 3 , and the remainder is Portland cement. 重金属汚染土壌の土質が砂質土であり、セメント系処理材を六価クロムまたは水銀汚染土壌1m当たり50〜150kgの範囲で添加する、請求項3または4記載の重金属汚染土壌の固化不溶化処理方法。 Soil heavy metal contaminated soil is sandy soil, the addition of cementitious treatment material in the range of hexavalent chromium or mercury contaminated soil 1 m 3 per 50~150Kg, solidification insolubilization of heavy metal contaminated soil according to claim 3 or 4, wherein Method. 重金属汚染土壌の土質が粘性土または火山灰質粘性土であり、セメント系処理材を六価クロムまたは水銀汚染土壌1m当たり100kg以上、250kgを超えない範囲で添加する、請求項3または4記載の重金属汚染土壌の固化不溶化処理方法。 The soil of the heavy metal-contaminated soil is a viscous soil or a volcanic ash clay, and the cementitious treatment material is added in a range not less than 100 kg per 1 m 3 of hexavalent chromium or mercury-contaminated soil and not exceeding 250 kg. Solidification and insolubilization treatment method for heavy metal contaminated soil. 重金属汚染土壌の汚染重金属種が、鉛、カドミウム、砒素、フッ素またはホウ素である、請求項3〜6のいずれか1項記載の重金属汚染土壌の固化不溶化処理方法。   The method for solidifying and insolubilizing heavy metal-contaminated soil according to any one of claims 3 to 6, wherein the contaminated heavy metal species of the heavy metal-contaminated soil is lead, cadmium, arsenic, fluorine or boron.
JP2005365274A 2005-12-19 2005-12-19 Cement based treatment material for heavy metal-contaminated soil and solidification/insolubilization treatment method using it Pending JP2007222694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005365274A JP2007222694A (en) 2005-12-19 2005-12-19 Cement based treatment material for heavy metal-contaminated soil and solidification/insolubilization treatment method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005365274A JP2007222694A (en) 2005-12-19 2005-12-19 Cement based treatment material for heavy metal-contaminated soil and solidification/insolubilization treatment method using it

Publications (1)

Publication Number Publication Date
JP2007222694A true JP2007222694A (en) 2007-09-06

Family

ID=38544997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005365274A Pending JP2007222694A (en) 2005-12-19 2005-12-19 Cement based treatment material for heavy metal-contaminated soil and solidification/insolubilization treatment method using it

Country Status (1)

Country Link
JP (1) JP2007222694A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079161A (en) * 2007-09-27 2009-04-16 Jfe Mineral Co Ltd Ground improving material
JP2010195975A (en) * 2009-02-26 2010-09-09 Ube Ind Ltd Cement-based solidifying material, method for producing the same and method for solidifying soil
JP2013202561A (en) * 2012-03-29 2013-10-07 Ube Industries Ltd Solidification method
JP2017075235A (en) * 2015-10-14 2017-04-20 Dowaエコシステム株式会社 Calcium-based compound coating insolubilization material of arsenic-containing sludge
JP2018100374A (en) * 2016-12-21 2018-06-28 鹿島建設株式会社 Soil modifier, soil modifier kit, and modification method of soil
JP2018109128A (en) * 2017-01-05 2018-07-12 デンカ株式会社 Elution reducing agent of hexavalent chromium and elution reducing method of hexavalent chromium using the same
JP2019172900A (en) * 2018-03-29 2019-10-10 株式会社大林組 Cement slurry and ground improvement method
CN111018276A (en) * 2019-12-09 2020-04-17 昆明理工大学 Method for solidifying arsenic-containing sludge by using silicate cement and blast furnace slag
JP2020122293A (en) * 2019-01-29 2020-08-13 サン・アンド・シイ・コンサルタント株式会社 Method for simultaneously improving contaminated soil and constructing foundation of overlaid structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11207291A (en) * 1998-01-27 1999-08-03 Komatsu Ltd Solidifying agent for incineration residue and residue solidifying method
JP2000143306A (en) * 1998-09-04 2000-05-23 Nkk Corp Treatment of blast furnace slag
JP2001348571A (en) * 2000-06-07 2001-12-18 Taiheiyo Cement Corp Ground-modifying material
JP2002320954A (en) * 2001-04-24 2002-11-05 Onoda Chemico Co Ltd Heavy metal elution inhibitor of heavy metal contaminated soil and method for inhibiting elution of heavy metal
JP2004041942A (en) * 2002-07-12 2004-02-12 Earth Create Office Co Ltd Cement-based solidifying agent and solidification method using the same
JP2005162862A (en) * 2003-12-02 2005-06-23 Sumitomo Osaka Cement Co Ltd Heavy metal elution controller and method for controlling heavy metal elution

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11207291A (en) * 1998-01-27 1999-08-03 Komatsu Ltd Solidifying agent for incineration residue and residue solidifying method
JP2000143306A (en) * 1998-09-04 2000-05-23 Nkk Corp Treatment of blast furnace slag
JP2001348571A (en) * 2000-06-07 2001-12-18 Taiheiyo Cement Corp Ground-modifying material
JP2002320954A (en) * 2001-04-24 2002-11-05 Onoda Chemico Co Ltd Heavy metal elution inhibitor of heavy metal contaminated soil and method for inhibiting elution of heavy metal
JP2004041942A (en) * 2002-07-12 2004-02-12 Earth Create Office Co Ltd Cement-based solidifying agent and solidification method using the same
JP2005162862A (en) * 2003-12-02 2005-06-23 Sumitomo Osaka Cement Co Ltd Heavy metal elution controller and method for controlling heavy metal elution

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079161A (en) * 2007-09-27 2009-04-16 Jfe Mineral Co Ltd Ground improving material
JP2010195975A (en) * 2009-02-26 2010-09-09 Ube Ind Ltd Cement-based solidifying material, method for producing the same and method for solidifying soil
JP2013202561A (en) * 2012-03-29 2013-10-07 Ube Industries Ltd Solidification method
JP2017075235A (en) * 2015-10-14 2017-04-20 Dowaエコシステム株式会社 Calcium-based compound coating insolubilization material of arsenic-containing sludge
JP2018100374A (en) * 2016-12-21 2018-06-28 鹿島建設株式会社 Soil modifier, soil modifier kit, and modification method of soil
JP2018109128A (en) * 2017-01-05 2018-07-12 デンカ株式会社 Elution reducing agent of hexavalent chromium and elution reducing method of hexavalent chromium using the same
JP2019172900A (en) * 2018-03-29 2019-10-10 株式会社大林組 Cement slurry and ground improvement method
JP7124386B2 (en) 2018-03-29 2022-08-24 株式会社大林組 Cement slurry and ground improvement method
JP2020122293A (en) * 2019-01-29 2020-08-13 サン・アンド・シイ・コンサルタント株式会社 Method for simultaneously improving contaminated soil and constructing foundation of overlaid structure
JP7190137B2 (en) 2019-01-29 2022-12-15 サン・アンド・シイ・コンサルタント株式会社 Simultaneous construction method for improving contaminated soil and laying foundations for superimposed structures
CN111018276A (en) * 2019-12-09 2020-04-17 昆明理工大学 Method for solidifying arsenic-containing sludge by using silicate cement and blast furnace slag

Similar Documents

Publication Publication Date Title
JP5189119B2 (en) Method for selecting blast furnace slow-cooled slag powder suitably used as cement admixture
JP2007222694A (en) Cement based treatment material for heavy metal-contaminated soil and solidification/insolubilization treatment method using it
JP4712483B2 (en) Treatment composition and treatment method for heavy metal contaminated soil
Sun et al. Leaching of monolithic geopolymer mortars
JP4835359B2 (en) Coal ash granulated sand and method for producing coal ash granulated sand
JP5599061B2 (en) Neutral solidifying material additive, neutral solidifying material and method for suppressing elution of heavy metals
JP5158462B2 (en) Reduced solidification of toxic metals
JP2005146275A (en) Agent for improving, solidifying, and stabilizing soil and its quality
JP5053572B2 (en) Cement-based solidification material and solidification treatment method
JP2006193971A (en) Soil improvement method
JP2011207952A (en) Method for producing cement-based solidifying material, method for solidifying soil, and method for reducing elusion amount of hexavalent chromium from solidified soil
WO2019244856A1 (en) Heavy metal-insolubilized solidification material and technique for improving contaminated soil
JP4663999B2 (en) Soil neutral solidification material and soil neutral solidification improvement method
JP2010195975A (en) Cement-based solidifying material, method for producing the same and method for solidifying soil
JP2004269821A (en) Calcium sulfide type heavy metal fixing agent
JP2016074763A (en) Method for producing cement-based solidifying material, method for solidifying soft soil, and method for reducing amount of hexavalent chromium to be eluted from solidified soil
JP2003334568A (en) Method for treating drain containing heavy metal
JP2004105783A (en) Solidification material and solidification method for soil
JP7341882B2 (en) Insolubilizing material
JP6525238B2 (en) Heavy metal insoluble material
JP3560285B2 (en) Method of insolubilizing contaminated soil
JP2004033839A (en) Heavy metal fixing agent
JP7436200B2 (en) Insolubilization treatment method for heavy metals contained in waste
JP3942404B2 (en) Cement admixture
JP7411429B2 (en) Method for evaluating suitability of waste treatment and method for insolubilizing waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20100930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120911