JP2002320954A - Heavy metal elution inhibitor of heavy metal contaminated soil and method for inhibiting elution of heavy metal - Google Patents

Heavy metal elution inhibitor of heavy metal contaminated soil and method for inhibiting elution of heavy metal

Info

Publication number
JP2002320954A
JP2002320954A JP2001126402A JP2001126402A JP2002320954A JP 2002320954 A JP2002320954 A JP 2002320954A JP 2001126402 A JP2001126402 A JP 2001126402A JP 2001126402 A JP2001126402 A JP 2001126402A JP 2002320954 A JP2002320954 A JP 2002320954A
Authority
JP
Japan
Prior art keywords
elution
heavy metal
soil
heavy metals
contaminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001126402A
Other languages
Japanese (ja)
Other versions
JP4663905B2 (en
Inventor
Junji Kasai
淳史 笠井
Toshirou Shinetsu
寿郎 新越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Chemico Co Ltd
Original Assignee
Onoda Chemico Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Chemico Co Ltd filed Critical Onoda Chemico Co Ltd
Priority to JP2001126402A priority Critical patent/JP4663905B2/en
Publication of JP2002320954A publication Critical patent/JP2002320954A/en
Application granted granted Critical
Publication of JP4663905B2 publication Critical patent/JP4663905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for achieving a standard elution value 11 at which at least a contaminated soil can be disposed of at a controlled disposal site by insolubilizing heavy metals in a soil contaminated with at least one kind or plural kinds of heavy metals of hexavalent chromium, arsenic, selenium, cadmium, total mercury and lead whose elution characteristics are individually different from each other to inhibit the elution of the heavy metals. SOLUTION: A heavy metal elution inhibitor is the one, which inhibits the elution of heavy metals in the soil contaminated with at least one kind or plural kinds of heavy metals of hexavalent chromium, arsenic, selenium, cadmium, total mercury and lead and is the heavy metal elution inhibitor of the heavy metal contaminated soil which comprises alkali materials (L) containing fine powder of a blast furnace slag (S), gypsum (G) and calcium.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、重金属で汚染された
土壌、特に六価クロム、砒素、セレン、カドミウム、総
水銀および鉛の少なくとも1種または複数の重金属で汚
染された土壌から重金属が溶出するのを抑制するのに用
いる重金属溶出抑制剤および重金属で汚染された土壌か
ら重金属が溶出するのを抑制する方法に関するものであ
る。
The present invention relates to the elution of heavy metals from soils contaminated with heavy metals, especially soils contaminated with at least one or more heavy metals of hexavalent chromium, arsenic, selenium, cadmium, total mercury and lead. TECHNICAL FIELD The present invention relates to a heavy metal elution inhibitor used for suppressing leaching and a method for suppressing heavy metal elution from soil contaminated with heavy metals.

【0002】[0002]

【従来の技術】汚染土壌の調査・対策についていは、環
境庁から平成11年1月に「土壌・地下水汚染に係る調
査・対策指針」が発表されている。それによると、土壌
について環境基準を越えた有害物が検出された土壌は汚
染土壌とみなされ、この指針に基いて対策が策定される
ことが望ましいとされている。
2. Description of the Related Art Regarding surveys and countermeasures for contaminated soil, the Environment Agency published "Guidelines for Surveys and Countermeasures for Soil and Groundwater Pollution" in January 1999. According to the report, soil in which harmful substances exceeding soil environmental standards were detected is considered to be contaminated soil, and it is desirable that countermeasures be formulated based on this guideline.

【0003】この指針で示す有害物質の中には重金属が
ある。重金属に対する恒久対策としては、対象物質を汚
染土壌から除去する浄化処理がある。浄化処理は、分級
や洗浄などの機械的処理が主流である。そして、浄化処
理は副産物として分離濃縮された汚染土壌や汚染水が発
生し、これをさらに処分する必要がある。
[0003] Among the harmful substances indicated by these guidelines, there are heavy metals. As a permanent measure against heavy metals, there is a purification treatment for removing the target substance from contaminated soil. The mainstream of the purification treatment is a mechanical treatment such as classification or washing. In the purification treatment, contaminated soil and contaminated water separated and concentrated are generated as by-products, and it is necessary to further dispose of the contaminated soil and contaminated water.

【0004】上記指針は、汚染土壌に対する他の対策と
して封じ込めを規定している。これは汚染土壌を少なく
とも一般環境から隔離するものである。封じ込めは、有
害物質の溶出値が高い場合は、その汚染土壌を、コン
クリート製遮断型処分場に持ち込む、コンクリート壁
の遮断型構造で囲い込む、重金属を薬剤で処理して管
理型処分場に持ち込む、重金属を薬剤で処理して汚染
土壌を高密度ポリエチレンシートなどで遮水型構造に囲
い込むなどである。
The above guidelines prescribe containment as another measure against contaminated soil. This at least isolates the contaminated soil from the general environment. Containment: If the elution value of harmful substances is high, bring the contaminated soil to a concrete barrier type disposal site, enclose it with a barrier type structure of concrete walls, treat heavy metals with chemicals and bring it to a management type disposal site And treating heavy metals with chemicals and surrounding the contaminated soil with a high-density polyethylene sheet or the like in a water-blocking structure.

【0005】しかしながら、上記の封じ込めおよび
はコンクリート構造物を用いるので高コストとなり、実
際には、前処理を行なって管理型処分場に持ち込むも
の、同様に前処理を行なって遮水型構造で囲い込む封
じ込めが行われる現場が多い。このように、重金属の汚
染土壌の対策としては、封じ込めに先立って管理処分場
で処分できる基準の溶出値IIが達成できるような重金属
の前処理が通常は必要とし、またこの前処理が極めて重
要な処理となっていた。
[0005] However, the above-mentioned containment and the use of a concrete structure increase the cost, and in practice, it is carried out by pre-treatment and brought to a controlled disposal site. There are many sites where containment is performed. As described above, as a countermeasure against heavy metal contaminated soil, pretreatment of heavy metals is usually necessary prior to containment so as to achieve the standard elution value II that can be disposed of in a controlled repository, and this pretreatment is extremely important. Processing was done.

【0006】これまで土壌汚染の重金属を不溶化処理す
るには、重金属ごとに不溶化特性が異なるために、それ
ぞれの重金属の性質に合わせた不溶化剤を選定する必要
があった。即ち、カドミウム、鉛、総水銀を不溶化する
場合には硫化ナトリウムを、六価クロムを不溶化するに
は硫酸第一鉄を、砒素を不溶化するには塩化第二鉄を用
いていた。
Until now, in the process of insolubilizing heavy metals contaminated with soil, it has been necessary to select an insolubilizing agent according to the properties of each heavy metal because the insolubilization characteristics differ for each heavy metal. That is, sodium sulfide was used for insolubilizing cadmium, lead and total mercury, ferrous sulfate was used for insolubilizing hexavalent chromium, and ferric chloride was used for insolubilizing arsenic.

【0007】しかしながら、これらの不溶化剤はいずれ
も高価で、しかも土壌との混合時に多量の有害ガスが発
生する可能性があるなど、使用に際しても注意すること
が必要であった。
However, these insolubilizing agents are all expensive and may require generation of a large amount of harmful gas when mixed with soil, so that it is necessary to exercise caution when using them.

【0008】一方、安価なセメントを用い、セメントの
固型化で重金属の溶出を抑制することが行われてきた。
これは、砒素やカドミウムの溶出を抑制するには適して
いた。しかしながら、セメントは六価クロムと鉛の溶出
を抑制する機能が不十分で、六価クロムまたは鉛を含む
重金属で汚染された土壌の重金属の溶出を抑制するに
は、セメントに硫酸第一鉄や硫化ナトリウムを併用する
必要があった。
On the other hand, it has been practiced to use inexpensive cement and to suppress the elution of heavy metals by solidifying the cement.
This was suitable for suppressing the elution of arsenic and cadmium. However, cement does not have a sufficient function to suppress the elution of hexavalent chromium and lead.To suppress the elution of heavy metals from soils contaminated with heavy metals containing hexavalent chromium or lead, ferrous sulfate or ferrous sulfate must be added to the cement. It was necessary to use sodium sulfide in combination.

【0009】ところが、近年になってセメント中に六価
クロムが含有するような現象が現れて、固型化剤として
用いるセメントから溶出する六価クロムについても注意
する必要が生じるようになってきた。
However, in recent years, a phenomenon that hexavalent chromium is contained in cement has appeared, and it has become necessary to pay attention to hexavalent chromium eluted from cement used as a solidifying agent. .

【0010】[0010]

【発明が解決しようとする課題】この発明は、それぞれ
の溶出特性が異なる六価クロム、砒素、セレン、カドミ
ウム、総水銀および鉛の少なくとも1種または複数の重
金属で汚染された土壌の重金属を不溶化して重金属の溶
出を抑制し、これによって少なくとも汚染土壌を管理型
処分場で処分できる基準の溶出値IIを達成することを目
的とするものである。
The present invention provides a method for insolubilizing heavy metals in soil contaminated with at least one or more heavy metals of hexavalent chromium, arsenic, selenium, cadmium, total mercury and lead, each having a different elution characteristic. The purpose of the present invention is to suppress the elution of heavy metals and thereby achieve the standard elution value II at which contaminated soil can be disposed at least in a controlled repository.

【0011】[0011]

【課題を解決するための手段】この発明は、六価クロ
ム、砒素、セレン、カドミウム、総水銀および鉛の少な
くとも1種または複数の重金属で汚染された土壌の重金
属の溶出を抑制する抑制剤であって、高炉スラグ微分末
(S)、石こう(G)およびカルシウムを含有するアル
カリ材料(L)からなる重金属汚染土壌の重金属溶出抑
制剤(請求項1)、重量比で、石こう(G)と高炉スラ
グ微粉末(S)の比(G/S)が2.0以下で、かつカ
ルシウムを含有するアルカリ材料(L)と高炉スラグ微
粉末(S)の比(L/S)が0.02〜1.0である請
求項1記載の重金属汚染土壌の重金属溶出抑制剤(請求
項2)、六価クロム、砒素、セレン、カドミウム、総水
銀および鉛の少なくとも1種または複数の重金属で汚染
された土壌から重金属の溶出を抑制する方法であって、
汚染土壌1m当たりに高炉スラグ微粉末(S)35
kg以上、石こう(G)2kg以上、カルシウムを含有
するアルカリ材料(L)1〜65kgを混合することを
特徴とする重金属で汚染された土壌から重金属の溶出を
抑制する方法(請求項3)および高炉スラグ微粉末
(S)、石こう(G)およびカルシウムを含有するアル
カリ材料(L)を混合した粉体として、またはこの混合
粉体に水を加えスラリーとして土壌と混合する請求項3
に記載の重金属で汚染された土壌から重金属の溶出を抑
制する方法(請求項4)である。
SUMMARY OF THE INVENTION The present invention relates to an inhibitor for suppressing the elution of heavy metals from soil contaminated with at least one or more heavy metals of hexavalent chromium, arsenic, selenium, cadmium, total mercury and lead. A heavy metal elution inhibitor for heavy metal contaminated soil comprising a blast furnace slag differential powder (S), gypsum (G) and an alkaline material (L) containing calcium (Claim 1). The ratio (G / S) of the blast furnace slag fine powder (S) is 2.0 or less, and the ratio (L / S) of the calcium-containing alkaline material (L) and the blast furnace slag fine powder (S) is 0.02. 2. The heavy metal elution inhibitor for heavy metal contaminated soil according to claim 1 (claim 2), which is contaminated with at least one or more heavy metals of hexavalent chromium, arsenic, selenium, cadmium, total mercury and lead. Heavy gold from the soil A method of inhibiting elution,
Blast furnace slag per contaminated soil 1m 3 (S) 35
a method for suppressing elution of heavy metals from soil contaminated with heavy metals, characterized by mixing at least 1 kg of gypsum (G) and 1 to 65 kg of calcium-containing alkali material (L) (claim 3); 4. A powder obtained by mixing blast furnace slag fine powder (S), gypsum (G) and an alkaline material (L) containing calcium, or water is added to this mixed powder to be mixed with soil as a slurry.
(4) A method for suppressing elution of heavy metals from soil contaminated with heavy metals according to (4).

【0012】[0012]

【発明の実施の形態】この発明で対象となる重金属は、
六価クロム、砒素、セレン、カドミウム、総水銀および
鉛の6種である。従来のセメントによるこれら重金属の
不溶化機構についてみると、六価クロムおよび砒素は、
セメントの水和生成物であるエトリンガイド(3CaO
・Al・3CaSO・32HO)の
中に取り込まれる。また、カドミウム、総水銀および鉛
は硫化イオンと反応し難溶性の硫化物を生成して、その
溶出が抑制されることが一般に知られている。しかし、
こうしたセメントによる重金属の汚染土壌の不溶化能力
については、砒素、セレン、カドミウムおよび総水銀に
ついては優れているが、六価クロムと鉛については不溶
化が不十分であった。
BEST MODE FOR CARRYING OUT THE INVENTION
Hexavalent chromium, arsenic, selenium, cadmium, total mercury and lead. Looking at the mechanism of insolubilization of these heavy metals by conventional cement, hexavalent chromium and arsenic
Etrin Guide (3CaO), a hydration product of cement
・ Al 2 O 3 .3CaSO 4 .32H 2 O). It is generally known that cadmium, total mercury, and lead react with sulfide ions to form hardly soluble sulfides, and their elution is suppressed. But,
The ability of cement to solubilize heavy metal contaminated soil was excellent for arsenic, selenium, cadmium and total mercury, but insufficient for hexavalent chromium and lead.

【0013】そこで、本発明者らは、六価クロムについ
ては多量にエトリンガイトが生成してその中に六価クロ
ムをさらに取り込ませるようにアルミニウムと硫酸イオ
ンを追加し、また鉛については難溶性の硫化物が多量に
生成して溶出が抑制できるように硫化イオンを追加する
ことを考え、これによって六価クロムと鉛の不溶化能力
の向上を図ろうとしたものである。
Therefore, the present inventors added aluminum and sulfate ions so that a large amount of ettringite was generated for hexavalent chromium, and hexavalent chromium was further incorporated therein. The idea is to add sulfide ions so that sulfides are generated in large amounts and elution can be suppressed, and this is intended to improve the insolubilizing ability of hexavalent chromium and lead.

【0014】その結果、エトリンガイトの生成にはセメ
ントよりもアルミニウムと硫化イオンを多く含む高炉ス
ラグ微粉末を選択し、また硫酸イオンを多く含むものと
して石こうを選択したものである。さらに、高炉スラグ
微粉末を早期に活性化させる必要があるが、そのために
はカルシウムを含有するアルカリ材料が必要であると考
えたものである。結局、高炉スラグ微粉末(S)、石こ
う(G)、カルシウムを含有するアルカリ材料(L)の
三者からなるもので重金属溶出抑制剤とすることで、砒
素、セレン、カドミウムおよび総水銀だけでなく、従来
のセメントでは不十分であった六価クロムおよび鉛も同
時に満足のいくように不溶化できることを見出したもの
である。
As a result, for the production of ettringite, blast furnace slag fine powder containing more aluminum and sulfide ions than cement was selected, and gypsum was selected as containing more sulfate ions. Further, it is necessary to activate the blast furnace slag fine powder at an early stage, and for this purpose, it is considered that an alkali material containing calcium is required. In the end, the blast furnace slag fine powder (S), gypsum (G), and calcium-containing alkaline material (L) are used as heavy metal elution inhibitors, so that only arsenic, selenium, cadmium and total mercury can be used. In addition, the present inventors have found that hexavalent chromium and lead, which were insufficient with conventional cement, can also be satisfactorily insolubilized at the same time.

【0015】石こうとカルシウムを含有するアルカリ材
料の2者を汚染土壌に混入してもいずれの重金属も不溶
化することはできない。また、高炉スラグ微粉末と石こ
うの二者を汚染土壌に混入すると、固化が遅いうえに、
六価クロム、砒素、セレンの溶出を抑制することができ
ない。さらに、高炉スラグ微粉末とカルシウムを含有す
るアルカリ材料の二者を汚染土壌に混入すると、固化し
てもセレンの溶出を抑制することは不十分となる。
[0015] Neither of the heavy metals can be insolubilized by mixing both gypsum and an alkaline material containing calcium into the contaminated soil. In addition, when blast furnace slag fine powder and gypsum are mixed into contaminated soil, solidification is slow and
Elution of hexavalent chromium, arsenic and selenium cannot be suppressed. Further, when the blast furnace slag fine powder and the calcium-containing alkaline material are mixed into the contaminated soil, the selenium elution is not sufficiently suppressed even when the slag is solidified.

【0016】しかるに、本発明のように高炉スラグ微粉
末(S)、石こう(G)、カルシウムを含有するアルカ
リ材料(L)の三者を汚染土壌に混入すると、カルシウ
ムを含有するアルカリ材料と土壌中の水分や混練水によ
りスラグが活性化され、さらにスラグのアルミニウムイ
オンと硫化イオンが溶解して、溶解した石こうと速やか
にエトリンガイトを生成するようになる。これと同時
に、硫化イオンで鉛の不溶化も達成されるものである。
However, when the blast furnace slag fine powder (S), gypsum (G), and calcium-containing alkaline material (L) are mixed into the contaminated soil as in the present invention, the calcium-containing alkaline material and the soil are mixed. The slag is activated by the water and the kneading water therein, and further, the aluminum ions and sulfide ions of the slag are dissolved, and the dissolved gypsum and ettringite are quickly generated. At the same time, lead is insolubilized by sulfide ions.

【0017】この発明で用いる高炉スラグ微粉末(S)
は、高炉スラグを微粉砕した比表面積4000〜500
0cm/g(ブレーン値)程度の、通常セメントに混
合して使用されているものがよい。この高炉スラグは、
重金属の不溶化工程で生成するエトリンガイドの生成に
必要なアルミニウムと、硫化物の生成に必要な硫化イオ
ンを含有しているものである。
Blast furnace slag fine powder (S) used in the present invention
Is a crushed blast furnace slag with a specific surface area of 4000 to 500
It is preferable to use a cement of about 0 cm 2 / g (Brain value) which is usually mixed with cement. This blast furnace slag is
It contains aluminum necessary for producing ettrine guides produced in the step of insolubilizing heavy metals and sulfide ions required for producing sulfides.

【0018】石こう(G)は、無水石こう、半水石こ
う、二水石こうのいずれも使用することができる。カル
シウムを含有するアルカリ材料は消石灰または生石灰の
いずれも使用することが可能である。
As the gypsum (G), any of anhydrous gypsum, hemihydrate gypsum and dihydrate gypsum can be used. As the calcium-containing alkaline material, either slaked lime or quick lime can be used.

【0019】これら三者の好ましい配合比は、重量比
で、石こう(G)と高炉スラグ微粉末(S)の比(G/
S)が2.0以下である。この割合を2以下とすること
でエトリンガイドが多く生成し、六価クロムの溶出を抑
制できる。カルシウムを含有するアルカリ材料(L)と
高炉スラグ微粉末(S)の比(L/S)は重量比で0.
02〜1.0とする。この比が0.02未満であると固
化が遅く六価クロムの溶出を抑制できない。L/Sが
1.0を超えるとpHが高く鉛の溶出を抑制できない。
L/Sのさらに好ましい範囲は0.03〜0.09であ
る。このような材料比とすることで、エトリンガイドの
生成と硫化物の反応が促進される。また、この重金属溶
出抑制剤を混入した後の土壌のpHが鉛の不溶化に適切
な範囲となる。
The preferred mixing ratio of these three is, by weight ratio, the ratio of the gypsum (G) to the blast furnace slag fine powder (S) (G /
S) is 2.0 or less. By setting this ratio to 2 or less, a large amount of ettrine guide is generated, and the elution of hexavalent chromium can be suppressed. The ratio (L / S) of the calcium-containing alkaline material (L) to the blast furnace slag fine powder (S) is 0.1% by weight.
02 to 1.0. If the ratio is less than 0.02, the solidification is slow and the elution of hexavalent chromium cannot be suppressed. When L / S exceeds 1.0, the pH is so high that the elution of lead cannot be suppressed.
A more preferable range of L / S is 0.03 to 0.09. With such a material ratio, generation of ettrine guide and reaction of sulfide are promoted. Further, the pH of the soil after mixing the heavy metal elution inhibitor is in a range suitable for insolubilizing lead.

【0020】本発明の重金属溶出抑制剤は、汚染土壌1
当たりに高炉スラグ微粉末(S)35kg以上、
石こう(G)2kg以上、カルシウムを含有するアルカ
リ材料(L)1〜65kgを混入して混合することが好
ましい。土壌の汚染具合にもよるが、高炉スラグ微粉末
(S)が汚染土壌1m当たり35kg未満では、六
価クロムの溶出抑制が不十分である。石こう(G)が2
kg未満ではセレンの溶出が不十分となる。カルシウム
を含有するアルカリ材料(L)の含有量が1kg未満で
は六価クロムの溶出抑制が不十分となる。また、アルカ
リ材料(L)の含有量が65kgを超えると鉛の溶出抑
制が不十分となる。これらの混入量および配合比は、関
東ロームなど特殊土の場合に土壌の吸着および溶出特性
に応じて適宜に調整することが必要である。
The heavy metal elution inhibitor of the present invention comprises
blast furnace slag per m 3 (S) 35kg or more,
It is preferable to mix and mix 2 kg or more of gypsum (G) and 1 to 65 kg of an alkaline material (L) containing calcium. Depending on the contamination degree of the soil, the ground granulated blast furnace slag (S) is less than the contaminated soil 1 m 3 per 35 kg, is insufficient dissolution inhibiting hexavalent chromium. Gypsum (G) is 2
If it is less than kg, the elution of selenium becomes insufficient. If the content of the calcium-containing alkaline material (L) is less than 1 kg, the elution suppression of hexavalent chromium is insufficient. Further, when the content of the alkali material (L) exceeds 65 kg, the elution of lead is insufficiently suppressed. It is necessary to appropriately adjust these mixing amounts and mixing ratios in the case of special soil such as Kanto loam according to the adsorption and elution characteristics of the soil.

【0021】本発明の重金属溶出抑制剤は、現場条件に
応じて粉体のまま或いは水と混合しスラリーとして汚染
土壌に混入する。即ち、比較的高含水比の土壌では粉体
のままで混入することができるが、低含水比の土壌では
水に懸濁してスラリーで土壌に混入する。浅層を不溶化
する場合は、バックホウによる混合や掘削後プラントに
よる混合で処理することができるが、深層まで不溶化す
る場合は、粉体噴射攪拌工法やスラリー攪拌工法の施工
機械などを用いて原位置で処理することができる。
The heavy metal elution inhibitor of the present invention is mixed with water as a powder or mixed with water into a contaminated soil depending on the on-site conditions. That is, in a soil with a relatively high water content, the powder can be mixed as it is, but in a soil with a low water content, it is suspended in water and mixed into the soil with a slurry. If the shallow layer is insolubilized, it can be treated by mixing with a backhoe or by a plant after excavation. Can be processed.

【0022】以上のような本発明の溶出抑制剤を混入す
ることで、重金属で汚染された土壌は、管理型処分場に
搬送して処分できる溶出値IIを少なくとも達成すること
ができ、場合によっては健全な土壌と判断する値である
土壌環境基準値に改良することもできるようになった。
本発明で使用する高炉スラグ微粉末と石こうはいずれも
産業副産物を利用できるので、経済性、資源、環境など
の面でも有益である。
By mixing the dissolution inhibitor of the present invention as described above, soil contaminated with heavy metals can achieve at least a dissolution value II that can be transported to a controlled disposal site for disposal. Can now be improved to the soil environmental standard value, which is a value for judging healthy soil.
Since both blast furnace slag fine powder and gypsum used in the present invention can utilize industrial by-products, they are also advantageous in terms of economy, resources, environment and the like.

【0023】[0023]

【実施例】(実施例1〜5、比較例1)重クロム酸カリ
ウム(KCr)を単独の重金属試薬と
し、この所定量に水と8号硅砂を加えて混合し模擬汚染
土壌を作成した。含水比は15%とした。この汚染土壌
(原土)のクロム溶出値は13ppmであった。
EXAMPLES (Examples 1 to 5, Comparative Example 1) Potassium dichromate (K 2 Cr 2 O 7 ) was used as a single heavy metal reagent, and water and No. 8 silica sand were added to a predetermined amount of the reagent and mixed to simulate contamination. The soil was created. The water content was 15%. The chromium elution value of this contaminated soil (original soil) was 13 ppm.

【0024】ホバードミキサーに所定量の供試模擬汚染
土壌と表1に示す本発明の重金属溶出抑制剤を入れ、さ
らに重量比で1:1になるように水を加えて10分間混
合したのち径5cm、長さ10cmのモールドに入れ、
20℃の恒温室で所定の期間養生した。その後、環境庁
告示46号による溶出試験を行なった。その結果を表1
に示した。
A predetermined amount of the test simulated contaminated soil and the heavy metal elution inhibitor of the present invention shown in Table 1 are added to a hobard mixer, and water is added so that the weight ratio becomes 1: 1 and mixed for 10 minutes. Put in a mold with a diameter of 5cm and a length of 10cm,
Cured for a predetermined period in a constant temperature room at 20 ° C. Thereafter, a dissolution test according to the Environment Agency Notification No. 46 was conducted. Table 1 shows the results.
It was shown to.

【0025】[0025]

【表1】 [Table 1]

【0026】表1から明らかなように、この発明の重金
属溶出抑制剤を六価クロムで汚染された土壌に混入する
ことで、材齢7日で管理型処分場に搬送して処分できる
溶出値IIを満足し、齢令28日ではすべて不検出となっ
ている。これに対し、比較例1では材齢28日でも溶出
値IIを達成できなかった。
As is clear from Table 1, by mixing the heavy metal elution inhibitor of the present invention into soil contaminated with hexavalent chromium, the elution value that can be transported to a controlled disposal site at 7 days of age for disposal. II was satisfied, and all were not detected at 28 days of age. In contrast, in Comparative Example 1, the dissolution value II could not be achieved even at a material age of 28 days.

【0027】(実施例6〜15、比較例2〜5)重金属
同士の共沈の影響を避けるために、水に溶解してアニオ
ンの性質を呈する六価クロム、砒素およびセレンのアニ
オン系重金属と、カチオンの性質を呈するカドミウム、
総水銀および鉛のカチオン系重金属とに分けて行なうこ
とにして、本実施例ではアニオン系重金属について溶出
抑制の試験を行なった。
(Examples 6 to 15 and Comparative Examples 2 to 5) In order to avoid the influence of coprecipitation between heavy metals, an anionic heavy metal of hexavalent chromium, arsenic and selenium which dissolves in water and exhibits anionic properties is used. , Cadmium exhibiting cationic properties,
In the present example, a test for suppressing the dissolution of anionic heavy metals was performed by dividing the total heavy mercury and lead into cationic heavy metals.

【0028】KCr、NaAsO
よびNaSeOを重金属試薬とし、この所定量
に水と8号硅砂を加えて混合し模擬汚染土壌を作成し
た。含水比は19%とした。この汚染土壌(原土)の重
金属の溶出値は、六価クロムが16ppm、砒素が0.
52ppm、セレンが1.5ppmであったホバードミ
キサーに所定量の供試模擬汚染土壌と表2に示す本発明
の重金属溶出抑制剤を入れ、さらに重量比で1:1にな
るように水を加えて10分間混合したのち径5cm、長
さ10cmのモールドに入れ、20℃の恒温室で所定の
期間養生した。その後、環境庁告示46号による溶出試
験を行なった。その結果を表2に示した。
K 2 Cr 2 O 7 , NaAsO 2 and Na 2 SeO 3 were used as heavy metal reagents, and water and No. 8 silica sand were added to a predetermined amount thereof and mixed to prepare a simulated contaminated soil. The water content was 19%. The elution value of heavy metals in the contaminated soil (original soil) was 16 ppm for hexavalent chromium and 0.1 ppm for arsenic.
A predetermined amount of the test simulated contaminated soil and the heavy metal elution inhibitor of the present invention shown in Table 2 were added to a hobard mixer having 52 ppm and selenium of 1.5 ppm, and water was further added so as to have a weight ratio of 1: 1. After mixing for 10 minutes, the mixture was placed in a mold having a diameter of 5 cm and a length of 10 cm, and cured in a constant temperature room at 20 ° C. for a predetermined period. Thereafter, a dissolution test according to the Environment Agency Notification No. 46 was conducted. The results are shown in Table 2.

【0029】[0029]

【表2】 [Table 2]

【0030】表2から明らかなように、この発明の重金
属溶出抑制剤を六価クロム、砒素およびセレンで汚染さ
れた土壌に混入することで、材齢7日で管理型処分場に
搬送して処分できる溶出値IIを満足し、実施例10、1
1、14、15はいずれの重金属も不検出となってい
る。また、実施例12は環境基準値を満足している。こ
れに対し、比較例2ないし5では溶出値IIをいずれも満
足できなかった。
As is clear from Table 2, the heavy metal elution inhibitor of the present invention was mixed into the soil contaminated with hexavalent chromium, arsenic and selenium, and was conveyed to a controlled disposal site at the age of 7 days. Satisfies the dissolution value II that can be disposed, and
In Nos. 1, 14, and 15, none of the heavy metals was detected. Further, Example 12 satisfies the environmental standard value. On the other hand, in Comparative Examples 2 to 5, none of the elution values II could be satisfied.

【0031】(実施例16〜24、比較例6〜9)本実
施例は、前記実施例6ないし15と同様の汚染土壌を用
いた。これに高炉スラグ微粉末(S)、石こう(G)、
消石灰(L)の添加量を表3に示すように添加し、前記
実施例6ないし15と同様にして環境庁告示46号によ
る溶出試験を行なった。その結果を表3に示した。
(Examples 16 to 24, Comparative Examples 6 to 9) In this example, the same contaminated soil as in Examples 6 to 15 was used. Blast furnace slag fine powder (S), gypsum (G),
The amount of slaked lime (L) was added as shown in Table 3, and a dissolution test was conducted in the same manner as in Examples 6 to 15 in accordance with the notification of the Environment Agency, No. 46. Table 3 shows the results.

【0032】[0032]

【表3】 [Table 3]

【0033】表3から明らかなように、この発明の重金
属溶出抑制剤を六価クロムなどで汚染された土壌に混入
することで、材齢7日で管理型処分場に搬送して処分で
きる溶出値IIを満足し、実施例18、19、20、21
はいずれの重金属も不検出となっている。これに対し、
比較例6、7、8、9では溶出値IIを達成することはで
きなかった。
As is clear from Table 3, by mixing the heavy metal elution inhibitor of the present invention into soil contaminated with hexavalent chromium or the like, elution can be carried to a controlled disposal site at 7 days of age to be disposed. Satisfying the value II, Examples 18, 19, 20, 21
No heavy metal was detected. In contrast,
In Comparative Examples 6, 7, 8, and 9, the elution value II could not be achieved.

【0034】比較例8は高炉B種セメントを100kg/
添加したものであるが、この場合は六価クロムの
溶出が溶出値IIを超えている。これに対し、この発明の
重金属抑制剤を用いた実施例23の場合は、同じ100
kg/m添加したもので六価クロム、砒素、セレンの
全ての溶出を抑制することが可能である。同じように、
比較例9は高炉B種セメントを50kg/m添加した
ものであるが、この場合は六価クロムの溶出が溶出値II
を大幅に超えている。これに対し、この発明の重金属抑
制剤を用いた実施例24の場合は、同じ50kg/m
添加したもので六価クロム、砒素、セレンの全ての溶出
を抑制することが可能である。
In Comparative Example 8, 100 kg / kg of blast furnace type B cement was used.
although that m 3 is added, in this case, the elution of hexavalent chromium is greater than the dissolution values II. In contrast, in the case of Example 23 using the heavy metal inhibitor of the present invention, the same 100
With the addition of kg / m 3 , all elution of hexavalent chromium, arsenic, and selenium can be suppressed. Similarly,
Comparative Example 9 was obtained by adding 50 kg / m 3 of blast furnace Class B cement. In this case, the elution of hexavalent chromium was the elution value II.
Is greatly exceeded. On the other hand, in the case of Example 24 using the heavy metal inhibitor of the present invention, the same 50 kg / m 3 was used.
It is possible to suppress all elution of hexavalent chromium, arsenic, and selenium by the addition.

【0035】(実施例25〜34、比較例10〜11)
前記した実施例と同様に、重金属同士の共沈の影響を避
けるために、本実施例ではカチオン系重金属であるカド
ミウム、総水銀および鉛について溶出抑制の試験を行な
った。
(Examples 25 to 34, Comparative Examples 10 to 11)
As in the above-described example, in order to avoid the influence of co-precipitation between heavy metals, in this example, a test for suppressing elution was performed for cation heavy metals such as cadmium, total mercury, and lead.

【0036】CdCl、HgClおよびPbN
を重金属試薬とし、この所定量に水と8号硅砂を
加えて混合し模擬汚染土壌を作成した。含水比は19%
とした。この汚染土壌(原土)の重金属の溶出値は、C
dが5.9ppm、T−Hgが1.2ppm、Pbが
1.7ppmであったホバートミキサーに所定量の上記
供試模擬汚染土壌と表4に示す本発明の重金属溶出抑制
剤を入れ、さらに重量比で1:1になるように水を加え
て10分間混合したのち径5cm、長さ10cmのモー
ルドに入れ、20℃の恒温室で所定の期間養生した。そ
の後、環境庁告示46号による溶出試験を行なった。そ
の結果を表4に示した。
CdCl 2 , HgCl 2 and PbN
The O 3 as a heavy metal reagent to prepare a simulated contaminated soil were mixed with water and No. 8 silica sand to the predetermined amount. 19% moisture content
And The elution value of heavy metals in this contaminated soil (original soil) is C
A predetermined amount of the test simulated contaminated soil and the heavy metal elution inhibitor of the present invention shown in Table 4 were added to a Hobart mixer having d of 5.9 ppm, T-Hg of 1.2 ppm, and Pb of 1.7 ppm. Water was added at a weight ratio of 1: 1 and mixed for 10 minutes, then placed in a mold having a diameter of 5 cm and a length of 10 cm, and cured in a constant temperature room at 20 ° C. for a predetermined period. Thereafter, a dissolution test according to the Environment Agency Notification No. 46 was conducted. Table 4 shows the results.

【0037】[0037]

【表4】 [Table 4]

【0038】表4から明らかなように、この発明の重金
属溶出抑制剤をカドミウム、総水銀、鉛で汚染された土
壌に混入することで、材齢7日で管理型処分場に搬送し
て処分できる溶出値IIを満足している。実施例31はい
ずれの重金属も不検出となっている。また、実施例3
0、32、33、34は環境基準値を満足している。こ
れに対し、比較例10および11では溶出値IIを達成で
きなかった。
As is clear from Table 4, the heavy metal elution inhibitor of the present invention is mixed into cadmium, total mercury and lead contaminated soil, and conveyed to a controlled disposal site at the age of 7 days for disposal. Satisfies the possible elution value II. In Example 31, none of the heavy metals was detected. Example 3
0, 32, 33, and 34 satisfy the environmental standard values. On the other hand, in Comparative Examples 10 and 11, the elution value II could not be achieved.

【0039】(実施例35〜43、比較例12)本実施
例は、前記実施例25ないし34と同様の汚染土壌を用
いた。これに高炉スラグ微粉末(S)、石こう(G)、
消石灰(L)の添加量を表5に示すように添加し、前記
実施例と同様にして環境庁告示46号による溶出試験を
行なった。その結果を表5に示した。
(Examples 35 to 43, Comparative Example 12) In this example, the same contaminated soil as in Examples 25 to 34 was used. Blast furnace slag fine powder (S), gypsum (G),
The amount of slaked lime (L) was added as shown in Table 5, and a dissolution test was conducted in the same manner as in the above Examples according to the Environment Agency Notification No. 46. The results are shown in Table 5.

【0040】[0040]

【表5】 [Table 5]

【0041】表5から明らかなように、この発明の重金
属溶出抑制剤をカドミウム、総水銀および鉛で汚染され
た土壌に混入することで、材齢7日で管理型処分場に搬
送して処分できる溶出値IIを満足している。これに対
し、比較例12では溶出値IIを達成できなかった。比較
例12は石こうを含まなく、鉛の溶出を溶出値IIに抑制
することができなかった。
As is clear from Table 5, the heavy metal elution inhibitor of the present invention is mixed with soil contaminated with cadmium, total mercury, and lead, and conveyed to a controlled disposal site at the age of 7 days for disposal. Satisfies the possible elution value II. On the other hand, in Comparative Example 12, the elution value II could not be achieved. Comparative Example 12 contained no gypsum and could not suppress the elution of lead to the elution value II.

【0042】(実施例44、比較例13)金属同士の反
応の影響を明らかにするため、重金属試薬、蒸留水およ
び8号硅砂を用いて汚染土壌を作成し、各種材料による
不溶化処理を行なった。水に溶解してアニオンの性質を
呈する六価クロム、砒素およびセレンのアニオン系重金
属と、カチオンの性質を呈するカドミウム、総水銀およ
び鉛のカチオン系重金属とを混合した。
(Example 44, Comparative Example 13) To clarify the influence of the reaction between metals, a contaminated soil was prepared using a heavy metal reagent, distilled water and No. 8 silica sand, and insolubilized with various materials. . An anionic heavy metal of hexavalent chromium, arsenic and selenium exhibiting anionic properties when dissolved in water was mixed with a cationic heavy metal of cadmium, total mercury and lead exhibiting cationic properties.

【0043】各種重金属の含有量と含水比が実施例6〜
15および実施例25〜34と同じになるように、アニ
オン系重金属としてKCr,NaAsO
およびNaSeOの重金属試薬を蒸留水に溶
解した。また、カチオン系重金属としてCdCl
HgClおよびPbNOの重金属試薬を蒸留水
に溶解した。さらに、両者を混合すると黄白色の懸濁液
となった。この懸濁液物質はクロム酸鉛と考えられる。
この懸濁液を8号硅砂に混合して模擬汚染土壌とした。
The content and water content of various heavy metals were determined in Examples 6 to
15 and Examples 25 to 34, K 2 Cr 2 O 7 and NaAsO are used as anionic heavy metals.
Heavy metal reagent 2 and Na 2 SeO 3 was dissolved in distilled water. CdCl 2 ,
HgCl 2 and PbNO 3 heavy metal reagents were dissolved in distilled water. Further, when both were mixed, a yellow-white suspension was obtained. This suspension material is considered lead chromate.
This suspension was mixed with No. 8 silica sand to obtain a simulated contaminated soil.

【0044】ホバートミキサーに所定量の供試汚染土壌
を入れ水比1:1のスラリーにして10分間混合したの
ち、φ5cm、L10cmのモールドに入れ20℃の恒温室
で養生して、養生後環境庁告示46号による溶出試験を
行なった。この結果を表6に示した。
A predetermined amount of the test contaminated soil was put in a Hobart mixer, and a slurry having a water ratio of 1: 1 was mixed for 10 minutes. Then, the mixture was put into a mold having a diameter of 5 cm and L 10 cm and cured in a constant temperature room at 20 ° C. A dissolution test was conducted according to Agency Notification No. 46. The results are shown in Table 6.

【0045】[0045]

【表6】 [Table 6]

【0046】表6に示す原土の重金属の溶出値から、ア
ニオン系重金属とカチオン系重金属との反応により、六
価クロム、砒素、セレンおよび鉛が一部不溶化されたこ
とがわかる。
From the elution values of heavy metals in the original soil shown in Table 6, it can be seen that hexavalent chromium, arsenic, selenium, and lead were partially insolubilized by the reaction between anionic heavy metals and cationic heavy metals.

【0047】この土壌に高炉B種セメントを混合する
と、六価クロムおよび鉛が原土以上に溶出した(比較例
13)。これに対し、本発明の抑制剤を混入するといず
れの重金属も環境基準値以下に抑制することができた
(実施例44)。これは、原土中のクロム酸鉛が比較例
では高炉B種セメントとの混合でpHが高くなって再溶
出され、エトリンガイドの生成が緩慢であるので溶出抑
制が不十分であるのに対し、実施例では再溶出されたク
ロムイオンが速やかにエトリンガイドに取り込まれ、六
価クロムおよび鉛の溶出抑制が可能となったものと考え
られる。
When blast furnace type B cement was mixed with this soil, hexavalent chromium and lead eluted more than the original soil (Comparative Example 13). On the other hand, when the inhibitor of the present invention was mixed, all heavy metals could be suppressed below the environmental standard value (Example 44). This is because although lead chromate in the original soil was re-eluted due to the increase in pH in the comparative example when mixed with blast furnace type B cement, the dissolution suppression was insufficient because the formation of ettrine guide was slow. On the other hand, in the examples, it is considered that the re-eluted chromium ions were quickly taken into the ettrine guide, and the elution of hexavalent chromium and lead could be suppressed.

【0048】なお、本発明の重金属溶出抑制剤の成分配
合比は汚染土壌の含有重金属の比率に応じて適宜に調製
する。また、土壌に対する重金属溶出抑制剤の混合比に
ついても同様に土壌の汚染度合いに応じて変えることが
必要である。
The compounding ratio of the heavy metal elution inhibitor of the present invention is appropriately adjusted according to the ratio of the heavy metals contained in the contaminated soil. In addition, it is necessary to change the mixing ratio of the heavy metal elution inhibitor to the soil according to the degree of contamination of the soil.

【0049】[0049]

【発明の効果】以上の通り、この発明によれば高炉スラ
グ微粉末(S)、石こう(G)およびカルシウムを含有
するアルカリ材料(L)の3成分からなる1種類の重金
属溶出抑制剤でもって、六価クロム、砒素、セレン、カ
ドミウム、総水銀および鉛の中のいずれか一種または複
数、さらには全ての重金属の溶出抑制を行なうことが可
能となったものである。しかも、その抑制効果は溶出値
IIを満足させるとともに、場合によってはより厳しい基
準値である環境基準値をも達成することができるように
なるものである。
As described above, according to the present invention, one kind of heavy metal elution inhibitor comprising three components of blast furnace slag fine powder (S), gypsum (G) and calcium-containing alkali material (L) is used. One or more of hexavalent chromium, arsenic, selenium, cadmium, total mercury, and lead, and furthermore, the elution of all heavy metals can be suppressed. Moreover, the inhibitory effect is the elution value
In addition to satisfying II, in some cases, it will be possible to achieve even stricter environmental standard values.

【0050】これまでは重金属ごとに不溶化特性が異な
るために、それぞれの重金属の性質に合わせた不溶化剤
を選定する必要があったが、この発明によるとこうした
手数も一切必要がなくなったので、工事コストの低減に
も有益である。
In the past, since the insolubilizing properties differed for each heavy metal, it was necessary to select an insolubilizing agent in accordance with the properties of each heavy metal. However, according to the present invention, such a trouble is not required at all. It is also beneficial for cost reduction.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C09K 103:00 Fターム(参考) 4D004 AA41 AB03 AC07 CA34 CC11 CC12 DA03 DA20 4H026 AA01 AA03 AB04 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // C09K 103: 00 F term (Reference) 4D004 AA41 AB03 AC07 CA34 CC11 CC12 DA03 DA20 4H026 AA01 AA03 AB04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 六価クロム、砒素、セレン、カドミウ
ム、総水銀および鉛の少なくとも1種または複数の重金
属で汚染された土壌の重金属の溶出を抑制する抑制剤で
あって、高炉スラグ微分末(S)、石こう(G)および
カルシウムを含有するアルカリ材料(L)からなる重金
属汚染土壌の重金属溶出抑制剤。
1. An inhibitor for suppressing the elution of heavy metals from soil contaminated with at least one or more heavy metals of hexavalent chromium, arsenic, selenium, cadmium, total mercury and lead, comprising a blast furnace slag differential powder ( A heavy metal elution inhibitor for heavy metal contaminated soil comprising S), gypsum (G) and an alkaline material (L) containing calcium.
【請求項2】 重量比で、石こう(G)と高炉スラグ微
粉末(S)の比(G/S)が2.0以下で、かつカルシ
ウムを含有するアルカリ材料(L)と高炉スラグ微粉末
(S)の比(L/S)が0.02〜1.0である請求項
1記載の重金属汚染土壌の重金属溶出抑制剤。
2. The weight ratio of gypsum (G) to blast-furnace slag fine powder (S) is not more than 2.0, and calcium-containing alkali material (L) and blast-furnace slag fine powder. The heavy metal elution inhibitor according to claim 1, wherein the ratio (L / S) of (S) is 0.02 to 1.0.
【請求項3】 六価クロム、砒素、セレン、カドミウ
ム、総水銀および鉛の少なくとも1種または複数の重金
属で汚染された土壌から重金属の溶出を抑制する方法で
あって、汚染土壌1m当たりに高炉スラグ微粉末
(S)35kg以上、石こう(G)2kg以上、カルシ
ウムを含有するアルカリ材料(L)1〜65kgを混合
することを特徴とする重金属で汚染された土壌から重金
属の溶出を抑制する方法。
3. A hexavalent chromium, arsenic, selenium, cadmium, from the total mercury and at least one or more heavy metal-contaminated soil of lead provides a method of inhibiting elution of heavy metals, per contaminated soil 1 m 3 Mixing blast furnace slag fine powder (S) 35 kg or more, gypsum (G) 2 kg or more, and calcium-containing alkali material (L) 1-65 kg. Suppress heavy metal elution from soil contaminated with heavy metal. Method.
【請求項4】 高炉スラグ微粉末(S)、石こう(G)
およびカルシウムを含有するアルカリ材料(L)を混合
した粉体として、またはこの混合粉体に水を加えスラリ
ーとして土壌と混合する請求項3に記載の重金属で汚染
された土壌から重金属の溶出を抑制する方法。
4. Blast furnace slag fine powder (S), gypsum (G)
4. Elution of heavy metals from soil contaminated with heavy metals according to claim 3, wherein the mixture is mixed with soil as powder mixed with an alkali material (L) containing calcium and calcium, or as a slurry by adding water to the mixed powder. how to.
JP2001126402A 2001-04-24 2001-04-24 Heavy metal elution inhibitor and heavy metal elution control method for heavy metal contaminated soil Expired - Fee Related JP4663905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001126402A JP4663905B2 (en) 2001-04-24 2001-04-24 Heavy metal elution inhibitor and heavy metal elution control method for heavy metal contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001126402A JP4663905B2 (en) 2001-04-24 2001-04-24 Heavy metal elution inhibitor and heavy metal elution control method for heavy metal contaminated soil

Publications (2)

Publication Number Publication Date
JP2002320954A true JP2002320954A (en) 2002-11-05
JP4663905B2 JP4663905B2 (en) 2011-04-06

Family

ID=18975449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001126402A Expired - Fee Related JP4663905B2 (en) 2001-04-24 2001-04-24 Heavy metal elution inhibitor and heavy metal elution control method for heavy metal contaminated soil

Country Status (1)

Country Link
JP (1) JP4663905B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162862A (en) * 2003-12-02 2005-06-23 Sumitomo Osaka Cement Co Ltd Heavy metal elution controller and method for controlling heavy metal elution
JP2005240313A (en) * 2004-02-24 2005-09-08 Jfe Steel Kk Method of using concrete waste as roadbed material, and the roadbed material
JP2006000043A (en) * 2004-06-17 2006-01-05 Mitsubishi Materials Corp Method for suppressing cadmium absorption of paddy rice
JP2007222694A (en) * 2005-12-19 2007-09-06 Ube Ind Ltd Cement based treatment material for heavy metal-contaminated soil and solidification/insolubilization treatment method using it
CN107470350A (en) * 2017-10-12 2017-12-15 大连地拓环境科技有限公司 A kind of heavy-metal contaminated soil purification method
CN112430049A (en) * 2020-11-18 2021-03-02 东南大学 Curing agent for reducing permeability coefficient and effective diffusion coefficient of heavy metal polluted soil as well as preparation method and application of curing agent
CN113333449A (en) * 2021-07-22 2021-09-03 湖南中森环境科技有限公司 Leaching equipment and leaching method for high-concentration heavy metal contaminated soil

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535810A (en) * 1976-07-07 1978-01-19 Mitsubishi Heavy Ind Ltd Method of improving poor soil
JPS55155086A (en) * 1979-05-24 1980-12-03 Sumitomo Metal Ind Ltd Ground conditioner
JPH0483012A (en) * 1990-07-25 1992-03-17 Toda Constr Co Ltd Liquefaction preventing ground improving method
JPH08109377A (en) * 1994-10-07 1996-04-30 Ube Ind Ltd Solidifying material composition
JPH08311446A (en) * 1995-05-16 1996-11-26 Mitsubishi Materials Corp Solidifier for soil conditioning
JPH10192819A (en) * 1997-01-10 1998-07-28 Daiichi Cement Kk Method for stabilizing and solidifying incineration fly ash and dust containing chlorine, alkali and harmful heavy metal and solidified product
JPH10258263A (en) * 1997-03-19 1998-09-29 Chichibu Onoda Cement Corp Heavy metal elution controlling material
JPH11256173A (en) * 1998-03-09 1999-09-21 Kawasaki Heavy Ind Ltd Refuse solid fuel suitable for solidification of burned ash, its production, burning treatment and burning treatment apparatus of the refuse solid fuel
JP2000053961A (en) * 1998-08-06 2000-02-22 Zenitaka Corp Improvement of ground
JP2000093927A (en) * 1998-07-21 2000-04-04 Fuji Sogyo Kk Material for fixing hazardous substance
JP2000176410A (en) * 1998-12-21 2000-06-27 Kawasaki Heavy Ind Ltd Method for solidifying and stabilizing molten fly ash and device therefor
JP2000344556A (en) * 1999-06-01 2000-12-12 Sumitomo Metal Ind Ltd Manufacture of soil based inorganic material and method for using the same
JP2001079536A (en) * 1999-09-16 2001-03-27 Sumitomo Osaka Cement Co Ltd Caking material for fixing heavy metal and heavy metal fixing method
JP2001096258A (en) * 1999-09-29 2001-04-10 Shikoku Res Inst Inc Method of producing solidified body

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535810A (en) * 1976-07-07 1978-01-19 Mitsubishi Heavy Ind Ltd Method of improving poor soil
JPS55155086A (en) * 1979-05-24 1980-12-03 Sumitomo Metal Ind Ltd Ground conditioner
JPH0483012A (en) * 1990-07-25 1992-03-17 Toda Constr Co Ltd Liquefaction preventing ground improving method
JPH08109377A (en) * 1994-10-07 1996-04-30 Ube Ind Ltd Solidifying material composition
JPH08311446A (en) * 1995-05-16 1996-11-26 Mitsubishi Materials Corp Solidifier for soil conditioning
JPH10192819A (en) * 1997-01-10 1998-07-28 Daiichi Cement Kk Method for stabilizing and solidifying incineration fly ash and dust containing chlorine, alkali and harmful heavy metal and solidified product
JPH10258263A (en) * 1997-03-19 1998-09-29 Chichibu Onoda Cement Corp Heavy metal elution controlling material
JPH11256173A (en) * 1998-03-09 1999-09-21 Kawasaki Heavy Ind Ltd Refuse solid fuel suitable for solidification of burned ash, its production, burning treatment and burning treatment apparatus of the refuse solid fuel
JP2000093927A (en) * 1998-07-21 2000-04-04 Fuji Sogyo Kk Material for fixing hazardous substance
JP2000053961A (en) * 1998-08-06 2000-02-22 Zenitaka Corp Improvement of ground
JP2000176410A (en) * 1998-12-21 2000-06-27 Kawasaki Heavy Ind Ltd Method for solidifying and stabilizing molten fly ash and device therefor
JP2000344556A (en) * 1999-06-01 2000-12-12 Sumitomo Metal Ind Ltd Manufacture of soil based inorganic material and method for using the same
JP2001079536A (en) * 1999-09-16 2001-03-27 Sumitomo Osaka Cement Co Ltd Caking material for fixing heavy metal and heavy metal fixing method
JP2001096258A (en) * 1999-09-29 2001-04-10 Shikoku Res Inst Inc Method of producing solidified body

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162862A (en) * 2003-12-02 2005-06-23 Sumitomo Osaka Cement Co Ltd Heavy metal elution controller and method for controlling heavy metal elution
JP2005240313A (en) * 2004-02-24 2005-09-08 Jfe Steel Kk Method of using concrete waste as roadbed material, and the roadbed material
JP2006000043A (en) * 2004-06-17 2006-01-05 Mitsubishi Materials Corp Method for suppressing cadmium absorption of paddy rice
JP4655516B2 (en) * 2004-06-17 2011-03-23 三菱マテリアル株式会社 Method for suppressing cadmium absorption in paddy rice
JP2007222694A (en) * 2005-12-19 2007-09-06 Ube Ind Ltd Cement based treatment material for heavy metal-contaminated soil and solidification/insolubilization treatment method using it
CN107470350A (en) * 2017-10-12 2017-12-15 大连地拓环境科技有限公司 A kind of heavy-metal contaminated soil purification method
CN112430049A (en) * 2020-11-18 2021-03-02 东南大学 Curing agent for reducing permeability coefficient and effective diffusion coefficient of heavy metal polluted soil as well as preparation method and application of curing agent
CN112430049B (en) * 2020-11-18 2022-06-07 东南大学 Curing agent for reducing permeability coefficient of heavy metal polluted soil and effective diffusion coefficient of pollutants as well as preparation method and application of curing agent
CN113333449A (en) * 2021-07-22 2021-09-03 湖南中森环境科技有限公司 Leaching equipment and leaching method for high-concentration heavy metal contaminated soil

Also Published As

Publication number Publication date
JP4663905B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
US6186939B1 (en) Method for stabilizing heavy metal in a material or waste
JP4712483B2 (en) Treatment composition and treatment method for heavy metal contaminated soil
GB2277515A (en) Treating metal-bearing waste
US6050929A (en) Method for stabilizing heavy metal bearing waste in a waste generation stream
JP2003225640A (en) Solidifying and insolubilizing agent for contaminated soil
JP2000086322A (en) Hexavalent chromium leach reducing agent for hydraulic material, and method for reducing hexavalent chromium leach
JP2007222694A (en) Cement based treatment material for heavy metal-contaminated soil and solidification/insolubilization treatment method using it
JP2002320954A (en) Heavy metal elution inhibitor of heavy metal contaminated soil and method for inhibiting elution of heavy metal
JP4264523B2 (en) Hazardous substance reducing material and method for reducing harmful substances
EP2982450A1 (en) In-situ process for stabilization and solidification of contaminated soil into composite material - building material
JP2005131574A (en) Insolubilization method of heavy metal contaminated soil
JP2007216069A (en) Treating method of contaminated soil
JP3867002B2 (en) Detoxification method for contaminated soil
JP2003334568A (en) Method for treating drain containing heavy metal
JPH05309356A (en) Treatment of heavymetal-containing incineration ash
JP3117568B2 (en) Hydraulic solidifying material
JP5274739B2 (en) Method for reducing hexavalent chromium by adjusting the particle size of silicon
JPH0910727A (en) Treatment agent and method for solidifying collected incineration ash of waste
JP2018024767A (en) Waste composition for soil modification and ground improving material using the same
JPH07179854A (en) Solidifying agent for soft ground and method of stabilizing soft ground
JP3005617B2 (en) Method for stable solidification of incinerated ash and solidified products
JP3348061B2 (en) Detoxifying agent for cement solidification of hazardous waste
JP2007176793A (en) Method for manufacturing fired product of incineration ash
JPH11221543A (en) Hazardous material immobilizing material and immobilization treatment thereof
JPH08209124A (en) Preparation of cement-based soil conditioner/solidifier of incineration ash and stabilizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110106

R150 Certificate of patent or registration of utility model

Ref document number: 4663905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees