JP5274739B2 - Method for reducing hexavalent chromium by adjusting the particle size of silicon - Google Patents

Method for reducing hexavalent chromium by adjusting the particle size of silicon Download PDF

Info

Publication number
JP5274739B2
JP5274739B2 JP2001294104A JP2001294104A JP5274739B2 JP 5274739 B2 JP5274739 B2 JP 5274739B2 JP 2001294104 A JP2001294104 A JP 2001294104A JP 2001294104 A JP2001294104 A JP 2001294104A JP 5274739 B2 JP5274739 B2 JP 5274739B2
Authority
JP
Japan
Prior art keywords
hexavalent chromium
silicon
elution
cement
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001294104A
Other languages
Japanese (ja)
Other versions
JP2003093538A (en
Inventor
清一 星野
茂 松浦
みのり 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2001294104A priority Critical patent/JP5274739B2/en
Publication of JP2003093538A publication Critical patent/JP2003093538A/en
Application granted granted Critical
Publication of JP5274739B2 publication Critical patent/JP5274739B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Fire-Extinguishing Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an effective method for reducing elution of hexavalent chrome at any period of time in the environment. SOLUTION: In this method for reducing elution of hexavalent chrome, a hexavalent chrome elution reducer containing silicon is added to the environment. The particle size of the silicon is controlled according to the targeted period of time.

Description

本発明は、シリコンの粒度を調整することにより、任意の時期における環境中の6価クロムの溶出を低減する方法に関する。  The present invention relates to a method for reducing elution of hexavalent chromium in the environment at an arbitrary time by adjusting the particle size of silicon.

近年、環境保全や環境浄化に対する社会的要請から、各種産業分野で産業廃棄物等の処理やリサイクルが活発に進められており、産業廃棄物、一般廃棄物、下水汚泥、焼却灰等の廃棄物の処理にあたっては、セメントおよびセメントを主成分とする固化材が広く使用される。近年では多種多様なリサイクル資源がセメントの原燃料として使用されておりセメント中にも従来含有されなかった成分が含有される場合が出てきている。その結果、水硬性物質により固化処理した物質(以下、固化体と称する)などからはその使用環境や条件によっては微量の6価クロムが溶出する恐れがある。  In recent years, processing and recycling of industrial waste has been actively promoted in various industrial fields due to social demands for environmental protection and environmental purification. Waste such as industrial waste, general waste, sewage sludge, incineration ash, etc. In this treatment, cement and a solidified material mainly composed of cement are widely used. In recent years, a wide variety of recycled resources have been used as raw materials for cement, and there have been cases where components that have not been contained in cement have been contained. As a result, a trace amount of hexavalent chromium may be eluted from a substance solidified with a hydraulic substance (hereinafter referred to as a solidified substance) depending on the use environment and conditions.

6価クロムの溶出量を低減する方法としては、例えば、特開平3−205331号公報では、第一鉄、第一錫、第一バナジウム、第一銅等の塩の添加が、また特開昭48−83114号公報では、水溶性第一鉄塩の添加が提案されている。しかし第一鉄塩以外の該重金属は毒性を有しており、新たな重金属の溶出が問題になる可能性がある。また、第一鉄塩は水硬性組成物からの初期の6価クロムの溶出を低減するのに有効であるが、その効果はごく初期の段階で消失してしまうため、長期における6価クロムの溶出低減効果は期待できない。  As a method for reducing the elution amount of hexavalent chromium, for example, in JP-A-3-205331, addition of salts such as ferrous iron, stannous, first vanadium, cuprous, etc. Japanese Patent No. 48-83114 proposes addition of a water-soluble ferrous salt. However, the heavy metals other than the ferrous salt are toxic, and elution of new heavy metals may be a problem. Moreover, although ferrous salt is effective in reducing the elution of the initial hexavalent chromium from the hydraulic composition, the effect disappears at an extremely early stage. The elution reduction effect cannot be expected.

また、特許3047833では予め一定量存在していた6価クロムをシリコンにより3価に還元する方法が提案されている。しかし、水硬性組成物により産業廃棄物や下水汚泥、土壌等を固化する場合など6価クロム濃度が経時的に変化する環境下においては、適切な時期に溶出低減効果を付与する必要があり、この方法のみでは必ずしも十分な効果が発揮されるとは言い難い。  Japanese Patent No. 3047833 proposes a method of reducing hexavalent chromium, which has been present in a certain amount in advance, to trivalent with silicon. However, in an environment where the hexavalent chromium concentration changes over time, such as when solidifying industrial waste, sewage sludge, soil, etc. with a hydraulic composition, it is necessary to provide an elution reduction effect at an appropriate time. It is difficult to say that this method alone will always provide a sufficient effect.

発明が解決しようとする課題Problems to be solved by the invention

かかる事情に鑑みて、本発明は環境中の任意の時期における6価クロムの溶出量を効果的に低減するための方法を提供する事を目的とする。さらには、従来から知られる材料と組み合わせることにより、従来以上の6価クロム低減効果を有する方法を提供することを目的とする。  In view of such circumstances, an object of the present invention is to provide a method for effectively reducing the elution amount of hexavalent chromium at any time in the environment. Furthermore, it aims at providing the method which has the hexavalent chromium reduction effect more than before by combining with the material known conventionally.

課題を解決するための手段Means for solving the problem

本発明者らは、環境からの6価クロムの溶出量を低減すべく鋭意検討した結果、粒度を調整したシリコンを環境中に添加することで、目的とする時期における環境からの6価クロムの溶出量を効果的に低減できることを見出した。  As a result of intensive studies to reduce the elution amount of hexavalent chromium from the environment, the present inventors have added silicon having an adjusted particle size to the environment, so that hexavalent chromium from the environment at the target time can be reduced. It was found that the amount of elution can be effectively reduced.

【発明の実施の形態】
以下本発明について詳しく説明する。本発明は、シリコンとセメントとを含む6価クロム溶出低減材を土壌に添加して固化処理する方法であって、該シリコンの粒度を、粒度の異なる2種類以上のシリコンを混合することで調整することにより、任意の期間における固化処理土からの6価クロムの溶出を低減することに特徴がある。粒度としては平均粒径を用いるのが簡便である。6価クロムを効果的に低減するためのシリコンの平均粒径は、6価クロム溶出低減材の他の組成や土壌の種類などにより異なるが、概ね使用開始から7日以内で特に効果を発揮させたい場合には、平均粒径5μm以下のシリコンを用いることが好ましい。また、使用開始から長期に渡って持続的に効果を発揮させたい場合には、平均粒径が5μmから100μmのシリコンを用いることが好ましい。また、6価クロム溶出低減材におけるシリコンの含有量はその平均粒径や効果を発現させたい時期等にも依存するが、6価クロム溶出低減材100重量部に対して0.05〜20重量部が好ましく、0.5〜5重量部がより好ましい。なお、後述するようにシリコンを含有する廃棄物を利用することもできるが、この場合にも、実質のシリコン量で同範囲の添加率が好ましい。
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below. The present invention is a method of adding a hexavalent chromium elution reducing material containing silicon and cement to a soil and solidifying it, and adjusting the particle size of the silicon by mixing two or more types of silicon having different particle sizes By doing so, there is a feature in reducing elution of hexavalent chromium from the solidified soil in an arbitrary period. As the particle size, it is convenient to use an average particle size. The average particle size of silicon for effectively reducing hexavalent chromium varies depending on the other composition of the hexavalent chromium elution reducing material and the type of soil, but it is particularly effective within 7 days from the start of use. If desired, it is preferable to use silicon having an average particle size of 5 μm or less. Further, when it is desired to exert the effect continuously over a long period from the start of use, it is preferable to use silicon having an average particle diameter of 5 μm to 100 μm. Further, the content of silicon in the hexavalent chromium elution reducing material depends on the average particle diameter, the time when the effect is desired to be manifested, etc., but 0.05 to 20 weights per 100 parts by weight of the hexavalent chromium elution reducing material. Part is preferable, and 0.5 to 5 parts by weight is more preferable. As will be described later, waste containing silicon can also be used, but in this case as well, an addition rate in the same range is preferable with a substantial amount of silicon.

本発明においては、シリコンを含む6価クロム溶出低減材を環境中に添加することを特徴とするが、添加の方法について特に限定はなく、例えば、環境が土壌である場合にはその土壌と6価クロム溶出低減材を機械的に混合するなど、慣用の方法を利用することができる。なお、環境がもともとアルカリ性である場合は、シリコンを含む6価クロム溶出低減材のみを環境中に添加すればよいが、環境が中性または酸性の場合は、塩基性物質(セメント、石灰など)、アルカリ金属塩および/またはアルカリ土類金属塩を6価クロム溶出低減材に併用するのがよい。  In the present invention, a hexavalent chromium elution reducing material containing silicon is added to the environment. However, the addition method is not particularly limited. For example, when the environment is soil, A conventional method such as mechanically mixing a valent chromium elution reducing material can be used. In addition, when the environment is originally alkaline, only a hexavalent chromium elution reducing material containing silicon may be added to the environment, but when the environment is neutral or acidic, basic substances (cement, lime, etc.) An alkali metal salt and / or an alkaline earth metal salt is preferably used in combination with the hexavalent chromium elution reducing material.

また、本発明は粒度の異なる2種以上のシリコンを混合して用いることができる。粒度の異なる2種以上のシリコンを混合することにより、1種のシリコンでは付与できなかった期間に対しても効果を付与することが可能となる。例えば、平均粒径1μm以下のシリコンと1μm以上のシリコンを混合することにより、1μm以下のシリコンが環境への添加から7日以前の期間に溶出低減効果を発現し、また1μm以上のシリコンが7日程度以降の期間に効果を発現する結果、幅広い期間に渡って溶出低減効果を付与することができる。シリコンの粒度の種類は2種類に限られず、3種類以上の平均粒径のシリコンを混合してもよい。  In the present invention, two or more types of silicon having different particle sizes can be mixed and used. By mixing two or more kinds of silicon having different particle sizes, an effect can be imparted even for a period that cannot be imparted with one kind of silicon. For example, by mixing silicon with an average particle size of 1 μm or less and silicon of 1 μm or more, silicon of 1 μm or less exhibits an elution reduction effect in a period of 7 days before the addition to the environment, and silicon of 1 μm or more is 7 As a result of exerting an effect in a period after about a day, an elution reduction effect can be imparted over a wide period. The type of silicon particle size is not limited to two, and silicon having an average particle size of three or more types may be mixed.

本発明に用いるシリコンは、特に種類を問うものではなく、金属シリコン、ポリシリコン、フェロシリコン、多孔質シリコンなど各種のものを使用することができる。これらのシリコンは純度80%程度のものが一般的だが、本発明においては純度については特に規定はなく、シリコンの含有率が10%以上であれば、必要に応じ添加率を調整するなどして十分利用が可能である。  The type of silicon used in the present invention is not particularly limited, and various types of silicon such as metal silicon, polysilicon, ferrosilicon, and porous silicon can be used. These silicons generally have a purity of about 80%, but in the present invention, there is no particular restriction on the purity. If the silicon content is 10% or more, the addition rate is adjusted as necessary. Sufficient use is possible.

また、本発明では廃棄物、副産物として生じたシリコンを用いることが可能である。環境保全や埋め立て処分場の不足が懸念されている昨今においては、資源の有効利用といった観点からも廃棄物、副産物の利用は有効である。シリコンの純度または含有率については特に規定はなく、シリコンの含有率が10%以上であれば添加率を調整するなどして十分利用可能である。シリコンを含有する廃棄物または副産物としては、例えばシリコンウエハスクラップ品や廃シリコン触媒、その他各種廃材などが挙げられる。  In the present invention, silicon generated as a waste or by-product can be used. In recent years when there is concern about environmental conservation and the shortage of landfill sites, the use of waste and by-products is effective from the viewpoint of effective use of resources. The purity or content rate of silicon is not particularly specified, and if the silicon content rate is 10% or more, it can be sufficiently utilized by adjusting the addition rate. Examples of waste or by-products containing silicon include silicon wafer scrap products, waste silicon catalysts, and other various waste materials.

本発明で用いる6価クロム溶出低減材は、シリコンのほかに、セメント、無機質微粉末、還元材、アルカリ金属塩、アルカリ土類金属塩から選ばれる少なくとも1種類を含むものとすることができる。
本発明の方法において利用できるセメントとしては、ポルトランドセメント、混合セメント、低熱セメント、白色セメント、エコセメント、アルミナセメント、ジェットセメント等が挙げられる。具体的には、ポルトランドセメントは、普通、早強、超早強、中庸熱、低熱、耐硫酸塩セメントであり、混合セメントは高炉セメント、フライアッシュセメント、シリカセメント等である。エコセメントは都市ごみ焼却灰や下水汚泥焼却灰などの廃棄物1種以上を原料としたセメントで、カルシウムクロロアルミネート、カルシウムフルオロアルミネート、カルシウムアルミネートの1種以上を10〜40重量%および石膏類などを含むセメントである。また、ジェットセメントはカルシウムフルオロアルミネートを含有し、速硬性を有するセメントである。これらのセメントを6価クロム溶出低減材に含ませることにより、該6価クロム溶出低減材を軟弱地盤などの固化性能を有する地盤改良材として有効に利用することができる。
The hexavalent chromium elution reducing material used in the present invention may contain at least one selected from cement, inorganic fine powder, reducing material, alkali metal salt, and alkaline earth metal salt in addition to silicon.
Examples of the cement that can be used in the method of the present invention include Portland cement, mixed cement, low heat cement, white cement, eco cement, alumina cement, and jet cement. Specifically, Portland cement is usually early strength, very early strength, moderate heat, low heat, sulfate resistant cement, and mixed cement is blast furnace cement, fly ash cement, silica cement and the like. Ecocement is a cement made from one or more wastes such as municipal waste incineration ash and sewage sludge incineration ash, and 10 to 40% by weight of one or more of calcium chloroaluminate, calcium fluoroaluminate, and calcium aluminate. Cement containing plaster. Jet cement is a cement containing calcium fluoroaluminate and having fast curing. By including these cements in the hexavalent chromium elution reducing material, the hexavalent chromium elution reducing material can be effectively used as a ground improvement material having solidification performance such as soft ground.

本発明の方法において利用できる無機質微粉末としては、高炉スラグ、フライアッシュ、けい石粉、石灰石粉、シリカヒュームなどが挙げられる。このうち特に高炉スラグは6価クロムの溶出低減効果があることが知られており、本発明と同様の目的で使用される。しかし、高炉スラグが溶出低減効果を発現するのは使用開始から7日程度以降の長期に渡ってであり、それ以前には大きな溶出低減効果は示さない。従って、使用開始から7日以前に効果を発現する粒度のシリコンと高炉スラグを併用することにより、初期から長期にわたり6価クロムの溶出量を低減することも可能となる。  Examples of the inorganic fine powder that can be used in the method of the present invention include blast furnace slag, fly ash, silica stone powder, limestone powder, and silica fume. Of these, blast furnace slag is known to have an effect of reducing elution of hexavalent chromium, and is used for the same purpose as in the present invention. However, the blast furnace slag exhibits an elution reduction effect for a long period of time after about 7 days from the start of use, and does not show a large elution reduction effect before that. Therefore, it becomes possible to reduce the elution amount of hexavalent chromium from the initial stage over a long period of time by using silicon having a particle size that exhibits an effect 7 days before the start of use and blast furnace slag in combination.

本発明における還元材としては、特に限定されるものではないが、実用的にはセメント系材料中において6価クロム溶出低減効果を発現する物質が好ましい。還元材としては硫酸第一鉄塩、硫化カルシウムや硫化ナトリウム等の硫化物が挙げられる。このうち、特に硫酸第一鉄塩はセメント等の水硬性組成物に対してその性能を損なうことなく優れた6価クロム低減効果を示すことが知られている。しかし、硫酸第一鉄塩が6価クロムの低減効果を示すのは、使用開始から1日程度以前のごく初期に限定され、それ以降ではほとんど効果が消失してしまう。従って、使用開始から1日以降に効果を発現する粒度のシリコンと硫酸第一鉄塩を併用することにより、初期から長期にわたり6価クロムの溶出量を低減することが可能となる。また、硫酸第一鉄塩、高炉スラグおよびこれら溶出低減材のみでは補うことができなかった期間に効果を発現する粒度のシリコンを併用することにより長期に渡って6価クロムの溶出量を低減することも可能である。  Although it does not specifically limit as a reducing material in this invention, The substance which expresses the hexavalent chromium elution reduction effect in a cement-type material is preferable practically. Examples of the reducing material include ferrous sulfate, sulfides such as calcium sulfide and sodium sulfide. Among these, it is known that ferrous sulfate, in particular, exhibits an excellent hexavalent chromium reducing effect on hydraulic compositions such as cement without impairing its performance. However, the ferrous sulfate salt shows the effect of reducing hexavalent chromium only in the very early days before about one day from the start of use, and the effect disappears almost thereafter. Therefore, the combined use of silicon having a particle size that exhibits an effect after one day from the start of use and ferrous sulfate can reduce the elution amount of hexavalent chromium from the beginning to the long term. In addition, the amount of hexavalent chromium eluted can be reduced over a long period of time by using together with silicon having a particle size that produces an effect during the period that cannot be supplemented with ferrous sulfate, blast furnace slag, and these elution reducing materials alone. It is also possible.

本発明の方法においては、アルカリ金属塩、アルカリ土類金属塩を併用してもよい。アルカリ金属塩やアルカリ土類金属塩は、シリコンとセメント等の水硬性物質を併用する際、その凝結時間を調整したり、6価クロムの低減効果を付与する時期を調整する目的で用いられる。アルカリ金属塩としては、炭酸ナトリウムなどが挙げられ、またアルカリ土類金属塩としては、二水石膏、半水石膏等の石膏類や水酸化カルシウムなどが挙げられる。  In the method of the present invention, an alkali metal salt or an alkaline earth metal salt may be used in combination. Alkali metal salts and alkaline earth metal salts are used for the purpose of adjusting the setting time and adjusting the time to give the effect of reducing hexavalent chromium when a hydraulic substance such as silicon and cement is used in combination. Examples of the alkali metal salt include sodium carbonate, and examples of the alkaline earth metal salt include gypsum such as dihydrate gypsum and hemihydrate gypsum, and calcium hydroxide.

本発明で用いる6価クロム溶出低減材には、上記材料のほか必要により各種細骨材や粗骨材を含有してもよい。また、流動性の向上や耐久性の向上、その他目的のために本発明の効果を損なわない範囲でAE剤、減水剤、高性能減水剤、高性能AE減水剤、消泡剤、収縮低減剤等を添加してもよい。  The hexavalent chromium elution reducing material used in the present invention may contain various fine aggregates and coarse aggregates as necessary in addition to the above materials. In addition, AE agent, water reducing agent, high performance water reducing agent, high performance AE water reducing agent, antifoaming agent, shrinkage reducing agent within the range that does not impair the effects of the present invention for the purpose of improving fluidity and durability. Etc. may be added.

以下、本発明の実施例を示す。なお、本発明は以下の実施例に限定されるものではない。  Examples of the present invention will be described below. In addition, this invention is not limited to a following example.

実施例1:
〔使用材料〕
セメント:試製普通ポルトランドセメント
シリコン:市販試薬(純度4N) 平均粒径33μm
水酸化カルシウム:市販特級試薬
試料土:関東ローム、含水率170%に調製
〔固化処理土の配合〕
シリコンは、上記試薬を平均粒径が9μm、1μmになるように粉砕したものを使用した。試料土100重量部に対して、6価クロム溶出低減材15重量部(うち、シリコンは0.3〜0.75重量部で、残りはセメントからなる)を添加して固化処理土を作製した。また、比較用試料として、シリコン無添加の固化処理土を作製した。これら固化処理土の材齢1日、7日、28日、91日における6価クロム溶出量を環告46号報に準拠して測定した。すなわち、試料:水=1:10の比率で6時間振とうし、ろ過後のろ液中のクロム含有量をICPにより測定し6価クロム溶出量とした。結果を表1に示す。
Example 1:
[Materials used]
Cement: Prototype normal Portland cement Silicon: Commercial reagent (purity 4N) Average particle size 33μm
Calcium hydroxide: Commercial grade reagent sample soil: Kanto loam, prepared to a moisture content of 170% [Composition of solidified soil]
The silicon used was the above reagent crushed so that the average particle size was 9 μm and 1 μm. A solidified soil was prepared by adding 15 parts by weight of a hexavalent chromium elution reducing material (of which 0.3 to 0.75 parts by weight of silicon and the rest is made of cement) to 100 parts by weight of sample soil. . In addition, as a comparative sample, solidified soil without addition of silicon was prepared. The amount of elution of hexavalent chromium at the age of 1 day, 7 days, 28 days, and 91 days of these solidified soils was measured in accordance with Circular 46. That is, it was shaken at a ratio of sample: water = 1: 10 for 6 hours, and the chromium content in the filtrate after filtration was measured by ICP to obtain a hexavalent chromium elution amount. The results are shown in Table 1.

Figure 0005274739
Figure 0005274739

シリコン無添加の場合と比較し、平均粒径9μmのシリコンを0.3重量部添加した6価クロム溶出低減材の場合は、材齢1日から6価クロムの溶出量は低減するが、特に材齢7日以降から長期に渡り持続的に低減した。また、平均粒径1μmのシリコンを0.3重量部添加した6価クロム溶出低減材の場合は、特に材齢1日から28日の期間において6価クロム溶出量は低減した。さらに、平均粒径1μmと9μmのシリコンを混合して用いた6価クロム溶出低減材の場合は、材齢1日以降の全期間に渡って溶出量は低減した。  Compared to the case where no silicon is added, in the case of a hexavalent chromium elution reducing material to which 0.3 parts by weight of silicon having an average particle size of 9 μm is added, the elution amount of hexavalent chromium is reduced from the age of 1 day. It decreased continuously over a long period from the age of 7 days. In addition, in the case of the hexavalent chromium elution reducing material to which 0.3 parts by weight of silicon having an average particle diameter of 1 μm was added, the hexavalent chromium elution amount was reduced particularly in the period from the 1st to 28th ages. Furthermore, in the case of a hexavalent chromium elution reducing material using a mixture of silicon having an average particle size of 1 μm and 9 μm, the elution amount was reduced over the entire period after the material age 1 day.

実施例2:
実施例1に示した試料土および材料を用い、試料土100重量部に対し、セメント10.5重量部、高炉スラグ4.5重量部および0.525重量部のシリコン粉末(平均粒径0.5μm、6価クロム溶出低減材100重量部に対して3.38重量部)からなる6価クロム溶出低減材を混合し、固化処理土を作製した。また、比較用試料として試料土100重量部に対してセメント15重量部のみを混合した配合およびセメント10.5重量部と高炉スラグ4.5重量部を混合した配合の固化処理土を作製した。これら固化処理土からの各材齢における6価クロム溶出量を実施例1同様環告46号に準拠して測定した。結果を表2に示す。
Example 2:
Using the sample soil and material shown in Example 1, 10.5 parts by weight of cement, 4.5 parts by weight of blast furnace slag, and 0.525 parts by weight of silicon powder (average particle size of 0. 100 parts by weight). A hexavalent chromium elution reducing material composed of 3.38 parts by weight with respect to 100 parts by weight of 5 μm hexavalent chromium elution reducing material was mixed to prepare a solidified soil. Further, as a comparative sample, a solidified soil having a mixture in which only 15 parts by weight of cement was mixed with 100 parts by weight of sample soil and a mixture in which 10.5 parts by weight of cement and 4.5 parts by weight of blast furnace slag were mixed was prepared. The elution amount of hexavalent chromium at each age from these solidified soils was measured in the same manner as in Example 1 according to Circular 46. The results are shown in Table 2.

Figure 0005274739
Figure 0005274739

高炉スラグを混合した場合には、セメント単独の場合と比較し、材齢1日では溶出低減効果は認められず材齢7日以降で徐々に効果が認められた。これに対し、平均粒径1μmのシリコンを0.525重量部添加した6価クロム溶出低減材の場合は、高炉スラグだけでは補えなかった材齢7日以前の期間に対し溶出低減効果を付与することができ、全期間に渡って6価クロム溶出量を低減できた。  When blast furnace slag was mixed, as compared with the case of cement alone, the elution reduction effect was not recognized at the age of 1 day, and the effect was gradually recognized after the age of 7 days. On the other hand, in the case of a hexavalent chromium elution reducing material to which 0.525 parts by weight of silicon having an average particle diameter of 1 μm is added, an elution reducing effect is imparted to a period of 7 days before material age that cannot be compensated only with blast furnace slag. The amount of elution of hexavalent chromium could be reduced over the entire period.

本発明の効果Effects of the present invention

以上のように、本発明の方法によれば、環境からの6価クロムの溶出量を任意の時期において効果的に低減することができる。  As described above, according to the method of the present invention, the elution amount of hexavalent chromium from the environment can be effectively reduced at any time.

Claims (3)

シリコンとセメントとを含む6価クロム溶出低減材を土壌に添加して固化処理する6価クロムの溶出低減方法であって、該シリコンの粒度を、目的とする時期に応じて、粒度の異なる2種類以上のシリコンを混合することで調整することを特徴とする6価クロム溶出低減方法。
A hexavalent chromium elution reducing method comprising adding a hexavalent chromium elution reducing material containing silicon and cement to a soil and solidifying the same, wherein the silicon has a different particle size depending on a target time. A hexavalent chromium elution reduction method characterized by adjusting by mixing more than one kind of silicon .
6価クロム溶出低減材に含まれるシリコンが、廃棄物または副産物由来のものである請求項に記載の6価クロム溶出低減方法。
The hexavalent chromium elution reducing method according to claim 1 , wherein the silicon contained in the hexavalent chromium elution reducing material is derived from waste or by-products.
6価クロム溶出低減材が、無機質微粉末、還元材、アルカリ金属塩、アルカリ土類金属塩から選ばれる少なくとも1種類を含むことを特徴とする請求項1または2に記載の6価クロム溶出低減方法。 The hexavalent chromium elution reducing material according to claim 1 or 2 , wherein the hexavalent chromium elution reducing material contains at least one selected from an inorganic fine powder, a reducing material, an alkali metal salt, and an alkaline earth metal salt. Method.
JP2001294104A 2001-09-26 2001-09-26 Method for reducing hexavalent chromium by adjusting the particle size of silicon Expired - Fee Related JP5274739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001294104A JP5274739B2 (en) 2001-09-26 2001-09-26 Method for reducing hexavalent chromium by adjusting the particle size of silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001294104A JP5274739B2 (en) 2001-09-26 2001-09-26 Method for reducing hexavalent chromium by adjusting the particle size of silicon

Publications (2)

Publication Number Publication Date
JP2003093538A JP2003093538A (en) 2003-04-02
JP5274739B2 true JP5274739B2 (en) 2013-08-28

Family

ID=19115767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001294104A Expired - Fee Related JP5274739B2 (en) 2001-09-26 2001-09-26 Method for reducing hexavalent chromium by adjusting the particle size of silicon

Country Status (1)

Country Link
JP (1) JP5274739B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100849395B1 (en) * 2007-03-28 2008-07-31 요업기술원 Reducing agent for crvi with high stability

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4883114A (en) * 1972-02-12 1973-11-06
JPH03205331A (en) * 1989-06-13 1991-09-06 Hitoshi Hatano Cement admixture
JPH09150127A (en) * 1995-11-29 1997-06-10 Nippon Kemitatsuku Kk Solidifying treatment of harmful substance
JPH09253620A (en) * 1996-03-23 1997-09-30 Sumitomo Constr Co Ltd Contaminated soil treatment apparatus
JP3047833B2 (en) * 1996-10-11 2000-06-05 日本電気株式会社 Hexavalent chromium treatment method
JPH11347531A (en) * 1998-06-10 1999-12-21 Mitsubishi Materials Corp Method for improving soil contaminated by hexavalent chromium
JP2000282034A (en) * 1999-03-31 2000-10-10 Sumitomo Metal Ind Ltd Method for preventing soil acidification and for stabilizing soil ph

Also Published As

Publication number Publication date
JP2003093538A (en) 2003-04-02

Similar Documents

Publication Publication Date Title
JP2001348571A (en) Ground-modifying material
JP2010163360A (en) Method of choosing air-cooled blast furnace slag powder suitably used as cement admixture
JP5092203B2 (en) Method for suppressing elution of fluorine and heavy metals from waste
JP4600812B2 (en) Ground improvement method
JP2012046704A (en) Solidification material
WO2019244856A1 (en) Heavy metal-insolubilized solidification material and technique for improving contaminated soil
JP6957922B2 (en) Hardened coal ash
JPH11106244A (en) Cement composition
JP4725302B2 (en) Method for treating eluted component-containing substance, stabilizing material and method for producing the same
JP6922448B2 (en) Coal ash composition
JP5274739B2 (en) Method for reducing hexavalent chromium by adjusting the particle size of silicon
JP2004269821A (en) Calcium sulfide type heavy metal fixing agent
JPH11343162A (en) Hydraulic composition and its production
JPH11244815A (en) Contaminated metal fixing and stabilizing agent and its treatment
JPH10245555A (en) Cemental solidifier for organic soil
JP3877583B2 (en) Hexavalent chromium reducing material
JPH09314097A (en) Stabilized incineration ash based solidifying material
JP4473385B2 (en) Hydraulic composition
JP2004105783A (en) Solidification material and solidification method for soil
JP3942404B2 (en) Cement admixture
JP2003226562A (en) Environmental improvement cement composition
JP3774135B2 (en) Method for reducing hexavalent chromium using calcium silicide
JP2018024767A (en) Waste composition for soil modification and ground improving material using the same
JP4497775B2 (en) Solidified material
JP6941301B2 (en) Ground improvement material, improved soil, and method of manufacturing improved soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080922

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130123

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5274739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees