JP4497775B2 - Solidified material - Google Patents

Solidified material Download PDF

Info

Publication number
JP4497775B2
JP4497775B2 JP2001347247A JP2001347247A JP4497775B2 JP 4497775 B2 JP4497775 B2 JP 4497775B2 JP 2001347247 A JP2001347247 A JP 2001347247A JP 2001347247 A JP2001347247 A JP 2001347247A JP 4497775 B2 JP4497775 B2 JP 4497775B2
Authority
JP
Japan
Prior art keywords
slag
blast furnace
sulfur
powder
hexavalent chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001347247A
Other languages
Japanese (ja)
Other versions
JP2003146728A (en
Inventor
実 盛岡
隆行 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2001347247A priority Critical patent/JP4497775B2/en
Publication of JP2003146728A publication Critical patent/JP2003146728A/en
Application granted granted Critical
Publication of JP4497775B2 publication Critical patent/JP4497775B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00767Uses not provided for elsewhere in C04B2111/00 for waste stabilisation purposes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
    • C04B2111/1075Chromium-free or very low chromium-content materials
    • C04B2111/1081Chromium VI, e.g. for avoiding chromium eczema
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主に、土木・建築業界等において使用される固化材、特に、軟弱土壌、ヘドロ、スラッジ、建設廃土、並びに、ゴミ焼却灰、汚泥焼却灰、及びそれらの集塵ダストや溶融スラグなどの産業廃棄物を固化する固化材に関する。
なお、本発明における部や%は特に規定しない限り質量基準で示す。
【0002】
【従来の技術とその課題】
最近では環境問題が大きく取り上げられ、人体に悪影響をおよぼす因子の規制がなされており、その一例として、水銀、クロム、カドミウム、及び鉛等の重金属が挙げられる。
重金属は一度体内に入ると、体外に排出されることがないため蓄積され、この量が一定値を超えると様々な障害が現れる。
【0003】
これら重金属のうち、セメント系材料からの溶出が問題視されているのがクロムである。
クロムには、三価クロムと六価クロムが存在する。特に、六価クロムは人体への影響度が大きく、拡散速度も速いので問題となっており、これを抑止する対策が必要とされている。
【0004】
土木・建築業界等において使用される固化材は、軟弱土壌、ヘドロ、スラッジ、建設廃土、並びに、ゴミ焼却灰、汚泥焼却灰、及びそれらの集塵ダストや溶融スラグなどの産業廃棄物を固化するために用いられる。
したがって、固化材中に含まれるセメント系材料から多くの六価クロムが溶出する場合には土壌等を汚染することになる。
また、既に六価クロムで汚染されている土壌、スラッジ、建設廃土、並びに、ゴミ焼却灰、汚泥焼却灰、及びそれらの集塵ダストや溶融スラグなどの産業廃棄物も同様に問題となっている。
【0005】
従来の固化材は、各種ポルトランドセメントや、高炉水砕スラグ、フライアッシュ、及びシリカフュームなどの潜在水硬性物質等からなる水硬性材料を主体としていた。
特に、高強度あるいは低アルカリ性とするために高炉水砕スラグを含有するものが種々提案されている(特開2001-040652号公報、特開平10-273661号公報、及び特開平10-225669号公報等)。
【0006】
一方、製鉄所から産業廃棄物として産出される高炉スラグはセメント産業では広範に利用されている。
高炉スラグは、急冷されてガラス化した高炉水砕スラグと、徐冷されて結晶化した徐冷スラグに大別される。一般に、高炉スラグと言う場合には、高炉水砕スラグを示す。
【0007】
高炉水砕スラグはアルカリ潜在水硬性を有しており、セメントと同程度、もしくは、それ以上に細かく粉砕されたものが高炉セメントの原料として利用されている。
ガラス化した高炉水砕スラグはセメントクリンカーに多量に混和しても長期強度は低下しないという優れた潜在水硬性を有していること、また、水酸化カルシウム生成量を低減する働きがあり、低アルカリ性とすることができることから、固化材には多く利用されている。
【0008】
また、高炉徐冷スラグは別名結晶化スラグ又はバラスとも呼ばれ、水硬性を示さない。そのため、主に路盤材等として利用されてはいるが、再生骨材が路盤材に優先的に利用されることから、従来の用途を失いつつあり、その有効利用方法については未だに模索状態にある。
【0009】
本発明者は、高炉スラグのうち、高炉徐冷スラグを粉末化した高炉徐冷スラグ粉末が、高炉水砕スラグ粉末よりもはるかに六価クロムの還元効果に優れることを見出した。
【0010】
本発明者は鋭意努力を重ね、高炉徐冷スラグの有効利用に鑑み、高炉徐冷スラグ中の特定の成分が六価クロムの還元性能を付与することを見出し、それを固化材に用いることで、六価クロムの溶出量を激減できることを知見し、本発明を完成するに至った。
【0011】
【課題を解決するための手段】
即ち、本発明は、高炉セメントに無機硫酸塩を併用した水硬性材料とブレーン比表面積が2,000〜8,000cm2/g、ガラス化率が30%以下、非硫酸態イオウとして存在するイオウを0.7%以上含む高炉徐冷スラグ粉末とを含有してなる固化材100部中、前記高炉徐冷スラグ粉末が1〜30部である、低アルカリ性で六価クロムの溶出を低減する固化材であり、さらに、固化体のpH値が11.5以下である固化材であり、さらに、前記固化材を用いて固化させる産業廃棄物の処理方法である。
【0012】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0013】
本発明で使用する高炉徐冷スラグ粉末(以下、徐冷スラグ粉という)は徐冷されて結晶化した高炉スラグの粉末である。
徐冷スラグ粉の成分は高炉水砕スラグと同様の組成を有しており、具体的には、SiO2、CaO、Al2O3、及びMgOなどを主要な化学成分とし、その他の成分として、TiO2、MnO、Na2O、S、P2O5、及びFe2O3などが挙げられる。
また、化合物としては、ゲーレナイト2CaO・Al2O3・SiO2とアケルマナイト2CaO・MgO・2SiO2の混晶である、いわゆるメリライトを主成分とし、その他、ダイカルシウムシリケート2CaO・SiO2、ランキナイト3CaO・2SiO2、及びワラストナイトCaO・SiO2などのカルシウムシリケート、メルビナイト3CaO・MgO・2SiO2やモンチセライトCaO・MgO・SiO2などのカルシウムマグネシウムシリケート、アノーサイトCaO・Al2O3・2SiO2、リューサイト(K2O、Na2O)・Al2O3・SiO2、スピネルMgO・Al2O3、マグネタイトFe3O4、さらに、硫化カルシウムCaS、硫化鉄FeSなどの硫化物等を含む場合がある。
これら硫化物は徐冷スラグを粉砕することにより粒子表面に露出し、水と接した際にチオ硫酸イオンや亜硫酸イオンとして溶出し、6価クロム還元性能を発揮する。
本発明では、徐冷スラグ粉のうち、例えば、硫化物、多硫化物、イオウ、チオ硫酸、及び亜硫酸等のように非硫酸態イオウとして存在するイオウ(以下、単に非硫酸態イオウという)を0.5%以上含むものを粉末化した徐冷スラグ粉を用いる。非硫酸態イオウが0.5%未満では、本発明の効果、即ち、六価クロムの還元性能が充分に得られない場合がある。非硫酸態イオウは、0.5%以上であり、0.7%以上が好ましく、0.9%以上がより好ましい。
非硫酸態イオウ量は、全イオウ量、単体イオウ量、硫化物態イオウ量、チオ硫酸態イオウ量、及び硫酸態イオウ量(三酸化イオウ)を、山口と小野の方法により定量することによって、また、硫酸態イオウ量(三酸化イオウ)と硫化物イオウ量については、JIS R 5202に定められた方法により定量することによって求められる。これら状態の異なるイオウの定量方法は、山口と小野の方法によっても求めることが可能である(「高炉スラグ中硫黄の状態分析」、山口直治、小野昭紘、製鉄研究、第301号、pp.37-40、1980参照)。
本発明で使用する徐冷スラグ粉のガラス化率は30%以下が好ましく、10%以下がより好ましい。ガラス化率が30%を越えると、六価クロムの還元性能が充分に得られない場合がある。
ガラス化率が高い場合、ほぼ同量の非硫酸態イオウを含有していても、結晶質である徐冷スラグに比しガラス化率の高いスラグ粉はチオ硫酸イオンなどの溶出が少なく、6価クロムの還元性能は小さい。
本発明でいうガラス化率(X)は X(%)=(1−S/S0)×100として求められる。ここで、Sは粉末X線回折法により求められる徐冷スラグ粉中の主要な結晶性化合物であるメリライト(ゲーレナイト2CaO・Al2O3・SiO2とアケルマナイト2CaO・MgO・2SiO2の混晶)のメインピークの面積であり、S0は徐冷スラグ粉を1,000℃で3時間加熱し、その後、5℃/分の冷却速度で冷却したもののメリライトのメインピークの面積を表す。
徐冷スラグ粉の粉末度は特に限定されるものではないが、ブレーン比表面積(以下、ブレーン値という)で、2,000cm2/g以上が好ましく、3,000〜8,000cm2/gがより好ましく、4,000〜7,000cm2/gが最も好ましい。ブレーン値が2,000cm2/g未満では、本発明の効果、即ち、六価クロムの還元性能が充分に得られない場合がある。また、8,000cm2/gを超えるように粉砕するには、粉砕動力が大きくなり不経済であり、また、徐冷スラグ粉が風化しやすくなり、品質の経時的な劣化が大きくなる場合がある。
この粉末度によって、チオ硫酸イオンや亜硫酸イオンなどの溶出量をコントロールすることが可能であり、粉末度を高めることにより初期の6価クロム還元性能が高まり、逆に粉末度を低くすることで長期に渡る6価クロム還元性能を与えることが可能となる。
徐冷スラグ粉の使用量は特に限定されるものではないが、通常、水硬性材料と徐冷スラグ粉からなる固化材100部中、1〜30部が好ましく、5〜20部がより好ましい。1部未満では本発明の効果が充分に得られない場合があり、30部を超えて使用すると、強度発現性が悪くなる場合がある。
【0014】
本発明で使用する水硬性材料としては、普通、早強、超早強、低熱、及び中庸熱等の各種ポルトランドセメント、これらポルトランドセメントに、高炉スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、石灰石粉末等を混合したフィラーセメント、並びに、産業廃棄物利用型セメント、いわゆるエコセメントなどが挙げられ、これらのうちの一種又は二種以上が使用可能である。
固化材は低アルカリ性であることが求められる場合が多いため、高炉水砕スラグ微粉末を含有せしめることが好ましく、通常、高炉水砕スラグ微粉末を含有する水硬性材料としては、高炉セメントを使用することが可能である。
【0015】
また、本発明では、強度発現性の面から、水硬性材料として、必要じ応じて無機硫酸塩(以下、単に硫酸塩という)を併用することも可能である。
ここで、硫酸塩とは特に限定されるものではないが、その具体例としては、例えば、無水、半水、及び二水の各セッコウ類、無水や含水の各硫酸アルミニウム、無水や含水の各ミョウバン類、並びに、硫酸アルカリなどが挙げられ、経済性の面から、通常、セッコウ類が選択され、強度発現性の面から無水セッコウの使用が好ましい。
【0016】
本発明の固化材はそれぞれの材料を施工時に混合してもよいし、あらかじめ一部あるいは全部を混合しておいても差し支えない。
本発明の固化材の粉末度は特に限定されるものではないが、通常、ブレーン値で3,000〜8,000cm2/gが好ましく、4,000〜6,000cm2/gがより好ましい。3,000cm2/g未満では強度発現性が充分に得られない場合があり、8,000cm2/gを超えると作業性が悪くなる場合がある。
【0017】
本発明では、水硬性材料、徐冷スラグ粉の他に、従来より知られている六価クロム低減剤、石灰石粉末、ベントナイトなどの粘土鉱物、急硬材、及び生石灰や消石灰などのうちの一種又は二種以上を、本発明の目的を実質的に阻害しない範囲で使用することが可能である。
【0018】
【実施例】
以下、本発明を実験例に基づいてさらに説明する。
【0019】
実験例1
表1に示す各種水硬性材料(セメント)、各種高炉スラグ粉(スラグ)、及び硫酸塩を配合して固化材を調製した。
これらの固化材を、六価クロムで汚染された、含水率44.7%の高含水土の汚泥に10%添加・混合して固化させた。
固化体のpH値を測定すると共に、固化材の六価クロム低減能力と固化体からの六価クロムの溶出量を確認した。結果を表1に併記する。
【0020】
<使用材料>
セメントα:普通ポルトランドセメント、三種類の市販品の等量混合品、比重3.15
セメントβ:早強ポルトランドセメント、三種類の市販品の等量混合品、比重3.14
セメントγ:高炉セメントB種、三種類の市販品の等量混合品、比重3.06
スラグa :徐冷スラグ粉、ブレーン値4,000cm2/g、ガラス化率5%、比重3.00、非硫酸態イオウ0.9%
スラグb :徐冷スラグ粉、ブレーン値5,000cm2/g、ガラス化率5%、比重3.00、非硫酸態イオウ0.9%
スラグc :徐冷スラグ粉、ブレーン値6,000cm2/g、ガラス化率5%、比重3.00、非硫酸態イオウ0.9%
スラグd :徐冷スラグ粉、ブレーン値8,000cm2/g、ガラス化率5%、比重3.00、非硫酸態イオウ0.9%
スラグe :徐冷スラグ粉、スラグdを水に浸漬してエイジングし、非硫酸態イオウを0.7%にしたもの、ブレーン値6,000cm2/g、ガラス化率5%、比重3.00
スラグf :徐冷スラグ粉、スラグdを水に浸漬してエイジングし、非硫酸態イオウを0.5%にしたもの、ブレーン値6,000cm2/g、ガラス化率5%、比重3.00
スラグg :徐冷スラグ粉、スラグdを水に浸漬してエイジングし、非硫酸態イオウを0.3%にしたもの、ブレーン値6,000cm2/g、ガラス化率5%、比重3.00
スラグh :徐冷スラグ粉、ブレーン値6,000cm2/g、ガラス化率10%、比重2.97、非硫酸態イオウ0.7%
スラグi :徐冷スラグ粉、ブレーン値6,000cm2/g、ガラス化率30%、比重2.94、非硫酸態イオウ0.5%
スラグj :高炉水砕スラグ粉、ブレーン値6,000cm2/g、ガラス化率95%、比重2.90、非硫酸態イオウ0.6%
硫酸塩 :無水セッコウ、市販品、ブレーン値4,000cm2/g
水 :水道水
砂 :新潟県姫川産、比重2.62
【0021】
<測定方法>
pH値 :5φ×10cmの円柱の固化体を作成し、この固化体100部に対して、1,000部の水に浸漬して24時間静置後のpHを測定
六価クロム低減能力:固化材の六価クロム低減能力を確認するために、六価クロム標準溶液を希釈して、六価クロム濃度が50mg/lの溶液を調製し、この六価クロム溶液50ccに各固化材10gを入れて攪拌し、7日後に固液分離して液相中の残存六価クロム濃度をJIS K 0102に準じ、ICP発光分光分析法により測定
六価クロム溶出量:環境庁告示第46号(土壌の汚染に係る環境基準について)に準拠して測定
【0022】
【表1】

Figure 0004497775
【0023】
【発明の効果】
本発明の固化材の使用により、軟弱土壌、ヘドロ、スラッジ、建設廃土、並びに、ゴミ焼却灰、汚泥焼却灰、及びそれらの集塵ダストや溶融スラグなどの産業廃棄物の固化処理後の六価クロムの溶出量を激減できるなどの効果を奏する。[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to solidified materials used in the civil engineering / architecture industry, etc., in particular, soft soil, sludge, sludge, construction waste soil, waste incineration ash, sludge incineration ash, and their dust collection and melting. The present invention relates to a solidifying material for solidifying industrial waste such as slag.
In the present invention, “parts” and “%” are based on mass unless otherwise specified.
[0002]
[Prior art and its problems]
Recently, environmental problems have been greatly taken up, and factors that adversely affect the human body have been regulated. Examples of such heavy metals include mercury, chromium, cadmium, and lead.
Once the heavy metal enters the body, it is accumulated because it is not excreted from the body, and when this amount exceeds a certain value, various obstacles appear.
[0003]
Among these heavy metals, chromium is regarded as a problem of elution from cementitious materials.
Chromium includes trivalent chromium and hexavalent chromium. In particular, hexavalent chromium is a problem because it has a large influence on the human body and a high diffusion rate, and measures to prevent this are needed.
[0004]
Solidification materials used in the civil engineering and construction industries solidify soft soil, sludge, sludge, construction waste soil, waste incineration ash, sludge incineration ash, and industrial waste such as dust collection dust and molten slag. Used to do.
Accordingly, when a large amount of hexavalent chromium is eluted from the cementitious material contained in the solidified material, the soil or the like is contaminated.
Similarly, soil, sludge, construction waste soil, waste incineration ash, sludge incineration ash, and industrial waste such as dust collection and molten slag are also problematic. Yes.
[0005]
Conventional solidification materials mainly consist of hydraulic materials composed of various portland cements, latent hydraulic materials such as blast furnace granulated slag, fly ash, and silica fume.
In particular, various types of blast furnace granulated slag containing high strength or low alkalinity have been proposed (Japanese Patent Laid-Open Nos. 2001-040652, 10-273661, and 10-225669). etc).
[0006]
On the other hand, blast furnace slag produced as industrial waste from steelworks is widely used in the cement industry.
Blast furnace slag is roughly classified into blast furnace granulated slag that has been quenched and vitrified and slowly cooled and crystallized. In general, blast furnace slag refers to blast furnace granulated slag.
[0007]
Blast furnace granulated slag has an alkaline latent hydraulic property, and pulverized finely to the same degree or more than cement is used as a raw material for blast furnace cement.
Vitrified granulated blast furnace slag has excellent latent hydraulic properties that long-term strength does not decrease even when mixed in a large amount with cement clinker, and also has a function of reducing the amount of calcium hydroxide produced. Since it can be made alkaline, it is often used as a solidifying material.
[0008]
Moreover, blast furnace slow cooling slag is also called crystallization slag or ballast, and does not show hydraulic property. Therefore, although it is mainly used as roadbed materials, etc., since recycled aggregates are preferentially used for roadbed materials, they are losing their conventional uses, and their effective use methods are still in the sought state. .
[0009]
The present inventor has found that among the blast furnace slag, the blast furnace slow-cooled slag powder obtained by pulverizing the blast furnace slow-cooled slag is far superior to the reduction effect of hexavalent chromium than the blast furnace granulated slag powder.
[0010]
The present inventor has made intensive efforts and found that a specific component in the blast furnace slow cooling slag gives the reduction performance of hexavalent chromium in view of effective utilization of the blast furnace slow cooling slag, and uses it as a solidifying material. The inventors have found that the amount of hexavalent chromium eluted can be drastically reduced, and have completed the present invention.
[0011]
[Means for Solving the Problems]
That is, the present invention is a hydraulic material using a blast furnace cement combined with an inorganic sulfate, a Blaine specific surface area of 2,000 to 8,000 cm 2 / g, a vitrification rate of 30% or less, and a sulfur present as non-sulfate sulfur of 0.7% Among 100 parts of solidified material containing the above-mentioned blast furnace slow-cooled slag powder, the blast furnace slow-cooled slag powder is 1-30 parts of a solidified material that is low alkaline and reduces elution of hexavalent chromium , Further, the solidified material is a solidified material having a pH value of 11.5 or less, and further is a method for treating industrial waste that is solidified using the solidified material.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0013]
The blast furnace slow-cooled slag powder (hereinafter referred to as slow-cooled slag powder) used in the present invention is a powder of blast furnace slag that has been cooled and crystallized.
The components of slow-cooled slag powder have the same composition as granulated blast furnace slag. Specifically, SiO 2 , CaO, Al 2 O 3 , MgO, etc. are the main chemical components, and other components , TiO 2 , MnO, Na 2 O, S, P 2 O 5 , Fe 2 O 3 and the like.
In addition, as a compound, the main component is so-called melilite, which is a mixed crystal of gelenite 2CaO · Al 2 O 3 · SiO 2 and akermanite 2CaO · MgO · 2SiO 2 , other than that, dicalcium silicate 2CaO · SiO 2 , and lanknite 3CaO · 2SiO 2, and wollastonite calcium silicates, such as CaO · SiO 2, calcium magnesium silicate, such as Merubinaito 3CaO · MgO · 2SiO 2 and Monte celite CaO · MgO · SiO 2, anorthite CaO · Al 2 O 3 · 2SiO 2 , Leucite (K 2 O, Na 2 O) · Al 2 O 3 · SiO 2 , spinel MgO · Al 2 O 3 , magnetite Fe 3 O 4 , and sulfides such as calcium sulfide CaS and iron sulfide FeS May include.
These sulfides are exposed on the surface of the particles by pulverizing the slowly cooled slag, and are eluted as thiosulfate ions and sulfite ions when in contact with water, and exhibit hexavalent chromium reduction performance.
In the present invention, among the slow-cooled slag powder, for example, sulfur existing as non-sulfuric sulfur such as sulfide, polysulfide, sulfur, thiosulfuric acid, and sulfurous acid (hereinafter simply referred to as non-sulfuric sulfur). Use slow-cooled slag powder powdered containing 0.5% or more. If non-sulfuric sulfur is less than 0.5%, the effects of the present invention, that is, the reduction performance of hexavalent chromium may not be sufficiently obtained. Non-sulfuric sulfur is 0.5% or more, preferably 0.7% or more, and more preferably 0.9% or more.
The amount of non-sulfuric sulfur is determined by quantifying the total sulfur amount, single-body sulfur amount, sulfide sulfur amount, thiosulfate sulfur amount, and sulfate sulfur amount (sulfur trioxide) by the method of Yamaguchi and Ono. Further, the amount of sulfate sulfur (sulfur trioxide) and the amount of sulfide sulfur can be determined by quantification by the method defined in JIS R 5202. Quantitative methods for sulfur in different states can also be obtained by the method of Yamaguchi and Ono ("State Analysis of Sulfur in Blast Furnace Slag", Naoji Yamaguchi, Shogo Ono, Steel Research, No. 301, pp. 37 -40, 1980).
The vitrification rate of the slowly cooled slag powder used in the present invention is preferably 30% or less, more preferably 10% or less. If the vitrification rate exceeds 30%, sufficient reduction performance of hexavalent chromium may not be obtained.
When the vitrification rate is high, the slag powder having a high vitrification rate compared to the slow-cooled slag that is crystalline has less elution of thiosulfate ions, etc., even though it contains almost the same amount of non-sulfuric sulfur. The reduction performance of valent chromium is small.
The vitrification rate (X) referred to in the present invention is determined as X (%) = (1−S / S 0 ) × 100. Here, S is the main crystalline compound in slow-cooled slag powder obtained by powder X-ray diffraction method (Gerlenite 2CaO · Al 2 O 3 · SiO 2 and akermanite 2CaO · MgO · 2SiO 2 mixed crystal) S 0 represents the area of the main peak of melilite after the slowly cooled slag powder was heated at 1,000 ° C. for 3 hours and then cooled at a cooling rate of 5 ° C./min.
The fineness of the slowly cooled slag powder is not particularly limited, but is preferably 2,000 cm 2 / g or more, more preferably 3,000 to 8,000 cm 2 / g, in terms of the specific surface area of the brane (hereinafter referred to as the brane value), 4,000 Most preferred is ˜7,000 cm 2 / g. When the brane value is less than 2,000 cm 2 / g, the effect of the present invention, that is, the reduction performance of hexavalent chromium may not be sufficiently obtained. In addition, pulverization to exceed 8,000 cm 2 / g is uneconomical because the pulverization power is increased, and the slow-cooled slag powder is likely to be weathered, which may cause deterioration in quality over time. .
It is possible to control the elution amount of thiosulfate ions and sulfite ions by this fineness. By increasing the fineness, the initial hexavalent chromium reduction performance is enhanced, and conversely, by reducing the fineness, long-term It is possible to provide hexavalent chromium reduction performance over a wide range.
Although the usage-amount of slow-cooled slag powder is not specifically limited, Usually, 1-30 parts are preferable in 100 parts of solidification materials which consist of a hydraulic material and slow-cooled slag powder, and 5-20 parts are more preferable. If it is less than 1 part, the effect of the present invention may not be sufficiently obtained, and if it is used in excess of 30 parts, strength development may be deteriorated.
[0014]
Examples of hydraulic materials used in the present invention include various portland cements such as normal, early strength, ultra-early strength, low heat, and moderate heat, and various mixed cements obtained by mixing these portland cements with blast furnace slag, fly ash, or silica. In addition, filler cement mixed with limestone powder and the like, industrial waste utilization type cement, so-called eco cement, and the like can be used, and one or more of these can be used.
Since the solidified material is often required to have low alkalinity, it is preferable to contain blast furnace granulated slag fine powder. Normally, blast furnace cement is used as the hydraulic material containing blast furnace granulated slag fine powder. Is possible.
[0015]
In the present invention, from the standpoint of strength development, an inorganic sulfate (hereinafter simply referred to as sulfate) can be used as a hydraulic material as needed.
Here, the sulfate is not particularly limited, and specific examples thereof include, for example, anhydrous, semi-water, and dihydrate gypsum, anhydrous and hydrous aluminum sulfate, anhydrous and hydrous each Examples include alums and alkali sulfates. Gypsums are usually selected from the economical aspect, and anhydrous gypsum is preferred from the viewpoint of strength development.
[0016]
In the solidifying material of the present invention, the respective materials may be mixed at the time of construction, or a part or all of them may be mixed in advance.
Fineness of the solidified material of the present invention is not particularly limited, is preferably 3,000~8,000cm 2 / g in Blaine value, 4,000~6,000cm 2 / g is more preferable. If it is less than 3,000 cm 2 / g, sufficient strength development may not be obtained, and if it exceeds 8,000 cm 2 / g, workability may deteriorate.
[0017]
In the present invention, in addition to hydraulic materials and slow-cooled slag powder, conventionally known hexavalent chromium reducing agents, limestone powder, clay minerals such as bentonite, rapid hardwood, and one kind of quick lime and slaked lime Alternatively, two or more kinds can be used as long as the object of the present invention is not substantially inhibited.
[0018]
【Example】
Hereinafter, the present invention will be further described based on experimental examples.
[0019]
Experimental example 1
Various hydraulic materials (cement) shown in Table 1, various blast furnace slag powder (slag), and sulfate were blended to prepare a solidified material.
These solidified materials were solidified by adding and mixing 10% to sludge of highly hydrous soil with a moisture content of 44.7% contaminated with hexavalent chromium.
While measuring the pH value of the solidified body, the hexavalent chromium reducing ability of the solidified material and the elution amount of hexavalent chromium from the solidified body were confirmed. The results are also shown in Table 1.
[0020]
<Materials used>
Cement α: Ordinary Portland cement, mixed product of three types of commercial products, specific gravity 3.15
Cement β: Early strong Portland cement, mixed product of three types of commercial products, specific gravity 3.14
Cement γ: Blast furnace cement B, mixed product of three types of commercial products, specific gravity 3.06
Slag a: Slowly cooled slag powder, brain value 4,000 cm 2 / g, vitrification rate 5%, specific gravity 3.00, non-sulfate sulfur 0.9%
Slag b: Slowly cooled slag powder, brain value 5,000 cm 2 / g, vitrification rate 5%, specific gravity 3.00, non-sulfate sulfur 0.9%
Slag c: Slowly cooled slag powder, brain value 6,000cm 2 / g, vitrification rate 5%, specific gravity 3.00, non-sulfate sulfur 0.9%
Slag d: Slowly cooled slag powder, brain value 8,000cm 2 / g, vitrification rate 5%, specific gravity 3.00, non-sulfuric sulfur 0.9%
Slag e: Slowly cooled slag powder, slag d dipped in water and aged to 0.7% non-sulfate sulfur, brain value 6,000cm 2 / g, vitrification rate 5%, specific gravity 3.00
Slag f: Slowly cooled slag powder, slag d dipped in water and aged to 0.5% non-sulfate sulfur, brain value 6,000cm 2 / g, vitrification rate 5%, specific gravity 3.00
Slag g: Slowly cooled slag powder, slag d dipped in water and aged to 0.3% non-sulfate sulfur, brane value 6,000cm 2 / g, vitrification rate 5%, specific gravity 3.00
Slag h: Slowly cooled slag powder, brain value 6,000cm 2 / g, vitrification rate 10%, specific gravity 2.97, non-sulfate sulfur 0.7%
Slag i: Slowly cooled slag powder, brain value 6,000cm 2 / g, vitrification rate 30%, specific gravity 2.94, non-sulfate sulfur 0.5%
Slag j: Blast furnace granulated slag powder, brain value 6,000cm 2 / g, vitrification rate 95%, specific gravity 2.90, non-sulfate sulfur 0.6%
Sulfate: Anhydrous gypsum, commercially available, brain value 4,000cm 2 / g
Water: tap water sand: from Himekawa, Niigata Prefecture, specific gravity 2.62
[0021]
<Measurement method>
pH value: A solidified solid body of 5φ × 10 cm was prepared, and 100 parts of this solidified body was immersed in 1,000 parts of water and measured after standing for 24 hours. Hexavalent chromium reduction ability: In order to confirm the hexavalent chromium reduction ability, dilute the hexavalent chromium standard solution to prepare a solution with a hexavalent chromium concentration of 50 mg / l, and add 10 g of each solidified material to 50 cc of this hexavalent chromium solution and stir. 7 days later, solid-liquid separation was performed, and the residual hexavalent chromium concentration in the liquid phase was measured by ICP emission spectroscopic analysis according to JIS K 0102. Elution volume of hexavalent chromium: Environmental Agency Notification No. 46 ( Measured according to environmental standards)
[Table 1]
Figure 0004497775
[0023]
【The invention's effect】
By using the solidification material of the present invention, soft soil, sludge, sludge, construction waste soil, and waste incineration ash, sludge incineration ash, and waste after the solidification treatment of industrial waste such as dust collection and molten slag There are effects such as drastic reduction of the elution amount of valent chromium.

Claims (3)

高炉セメントに無機硫酸塩を併用した水硬性材料とブレーン比表面積が2,000〜8,000cm2/g、ガラス化率が30%以下、非硫酸態イオウとして存在するイオウを0.7%以上含む高炉徐冷スラグ粉末とを含有してなる固化材100部中、前記高炉徐冷スラグ粉末が1〜30部である、低アルカリ性で六価クロムの溶出を低減する固化材。 Blast furnace slow-cooled slag containing a hydraulic material combined with inorganic sulfate in blast furnace cement, a Blaine specific surface area of 2,000 to 8,000 cm 2 / g, a vitrification rate of 30% or less, and sulfur present as non-sulfate sulfur of 0.7% or more The solidification material which is low alkalinity and reduces elution of hexavalent chromium , wherein the blast furnace annealed slag powder is 1 to 30 parts in 100 parts of the solidification material containing powder. 固化体のpH値が11.5以下であることを特徴とする請求項に記載の固化材。The solidified material according to claim 1 , wherein the solidified body has a pH value of 11.5 or less. 請求項1又は2に記載の固化材を用いて固化させる産業廃棄物の処理方法。The processing method of the industrial waste solidified using the solidification material of Claim 1 or 2 .
JP2001347247A 2001-11-13 2001-11-13 Solidified material Expired - Fee Related JP4497775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001347247A JP4497775B2 (en) 2001-11-13 2001-11-13 Solidified material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001347247A JP4497775B2 (en) 2001-11-13 2001-11-13 Solidified material

Publications (2)

Publication Number Publication Date
JP2003146728A JP2003146728A (en) 2003-05-21
JP4497775B2 true JP4497775B2 (en) 2010-07-07

Family

ID=19160280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001347247A Expired - Fee Related JP4497775B2 (en) 2001-11-13 2001-11-13 Solidified material

Country Status (1)

Country Link
JP (1) JP4497775B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4585328B2 (en) * 2005-02-08 2010-11-24 三菱マテリアル株式会社 Solidifying material composition

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344480A (en) * 1976-10-06 1978-04-21 Onoda Cement Co Ltd Hydraulic composition for removing harmful substances
JPS55121938A (en) * 1979-02-14 1980-09-19 Nippon Steel Corp Manufacture of specific mortar raw material
JPH02160895A (en) * 1988-12-15 1990-06-20 Tetsugen:Kk Foundation conditioner
JP2983696B2 (en) * 1991-06-11 1999-11-29 電気化学工業株式会社 Cement admixture and cement composition
JP3125404B2 (en) * 1992-01-29 2001-01-15 三菱マテリアル株式会社 Grout wood
JPH0761852A (en) * 1993-08-25 1995-03-07 Nissan Chem Ind Ltd Cement composition
JP3367576B2 (en) * 1994-05-18 2003-01-14 電気化学工業株式会社 Hydration heat generation time adjusting material for cement and cement composition
JP3638308B2 (en) * 1994-06-20 2005-04-13 電気化学工業株式会社 Cement composition
JP3821496B2 (en) * 1994-09-19 2006-09-13 電気化学工業株式会社 Cement composition for injection material
JP3299174B2 (en) * 1997-03-27 2002-07-08 川崎製鉄株式会社 Method for treating chromium oxide-containing material
JP2000086322A (en) * 1998-09-17 2000-03-28 Taiheiyo Cement Corp Hexavalent chromium leach reducing agent for hydraulic material, and method for reducing hexavalent chromium leach
JP2000301107A (en) * 1999-04-14 2000-10-31 Center For Coal Utilization Japan Method for suppressing elution of very small amount of heavy metal contained in coal ash and earthwork material using coal ash
JP2001294459A (en) * 2000-04-12 2001-10-23 Denki Kagaku Kogyo Kk Cement admixture and cement composition

Also Published As

Publication number Publication date
JP2003146728A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
JP5189119B2 (en) Method for selecting blast furnace slow-cooled slag powder suitably used as cement admixture
JP4157485B2 (en) Cement composition and quick-hardening grout material
JP4264523B2 (en) Hazardous substance reducing material and method for reducing harmful substances
JP3960955B2 (en) Cement composition
JP5768293B2 (en) Method for producing soil-solidifying material using fluorine-containing inorganic waste, obtained soil-solidifying material, and method for solidifying soft soil using the soil-solidifying material
JP3844456B2 (en) Solidification material and method for purification of contaminated soil using the same
JP4014518B2 (en) Soil improvement material
JP4725302B2 (en) Method for treating eluted component-containing substance, stabilizing material and method for producing the same
JPH10165920A (en) Nodulizing agent of slurry and solidifying agent using the same
JP4497775B2 (en) Solidified material
JP2002241166A (en) Hydraulic composition
JP3897727B2 (en) Hazardous material collector
JP3983033B2 (en) Cement admixture, cement composition, and cement concrete using the same
JP3877583B2 (en) Hexavalent chromium reducing material
JP3810350B2 (en) Cement admixture and cement composition
JP3877584B2 (en) Hexavalent chromium reducing agent
JP3871596B2 (en) Slurry cement admixture and cement concrete using the same
JP4634060B2 (en) Soil treatment method
JP4318418B2 (en) Cement composition
JP3942404B2 (en) Cement admixture
JP3725068B2 (en) Waste water treatment material for cement concrete and waste water treatment method using the same
JP3841770B2 (en) Neutral solidified material and soil treatment method using the same
JP3786872B2 (en) Concrete composition and concrete using the same
JP5274739B2 (en) Method for reducing hexavalent chromium by adjusting the particle size of silicon
JP4409102B2 (en) Heavy metal elution reducing material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061218

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4497775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees